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Abstract

We give the first polynomial-time, polynomial-sample, differentially private estimator for the mean
and covariance of an arbitrary Gaussian distribution A/(jz, 22) in RZ. All previous estimators are
either nonconstructive, with unbounded running time, or require the user to specify a priori bounds
on the parameters p and . The primary new technical tool in our algorithm is a new differentially
private preconditioner that takes samples from an arbitrary Gaussian A/(0, ) and returns a matrix
A such that AX AT has constant condition number.

Keywords: Privacy, learning, Gaussian.

1. Introduction

All useful statistical estimators have the side effect of revealing information about their sample,
which leads to concerns about the privacy of the individuals who contribute their data to the sample.
In this work we study statistical estimation with the constraint of differential privacy (DP) (Dwork
et al., 2006), a rigorous individual privacy criterion well suited to statistical estimation and machine
learning.

As in classical statistical estimation, it is impossible to privately estimate even basic statistics
like the mean and covariance without some restrictions on the distribution, although the assumptions
made in the private setting are typically stronger both qualitatively and quantitatively. To provide
some intuition for the assumptions required for private estimation, consider the simple problem of
privately estimating the mean of a distribution D over R? from a set of n samples X1, ..., X,, ~ D.
The standard way to solve this problem is by computing a noisy empirical mean /i = % Yo Xi+
Z, where Z is a suitable random variable—typically Gaussian or Laplacian. The magnitude of
Z must be proportional to the sensitivity of % Z?Zl X;, which measures how much its value can
change if a single point X; is modified arbitrarily. Without further information about the underlying
distribution, the sensitivity is infinite, rendering this naive approach ineffective.

To facilitate using a low-sensitivity mean estimator, we generally make two types of assumptions
on the underlying distribution D:
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1. The distribution D is somehow well-behaved. For example, we assume D is a Gaussian
distribution N(p, ), while other works have assumed weaker moment bounds (Barber and
Duchi, 2014; Bun and Steinke, 2019; Kamath et al., 2020).

2. The analyst has some prior knowledge about the parameters of the distribution D. The stan-
dard assumption in this setting is that the analyst knows parameters R > 0 and K > 0 such
that ||pll2 < Rand T < ¥ < KI.!2

These assumptions ensure that we can identify a finite subset of the domain that contains all the
samples with high probability, which we can use to find a proxy for the empirical mean with finite
sensitivity.

The first style of assumption is common and generally necessary to provide non-trivial guaran-
tees even in the non-private setting. The second style of assumption however is particular to the
private setting, and forces the analyst to input some prior knowledge about the location and shape
of their data. This may be a minimal burden to place on the user when the domain is familiar, but
can be unreasonable for unfamiliar, high-dimensional domains. In that case the analyst may only be
able to give extremely loose bounds, corresponding to very large values of R and K. This leads to
a degradation of the accuracy of the final output.

For these reasons, a key goal in private algorithm design is minimizing the sample complex-
ity’s dependence on the prior knowledge in the form of the parameters 12 and K. Naive algorithms
limit the empirical estimator’s sensitivity by simply clipping the data based on the analyst’s prior
knowledge, incurring an undesirable linear dependence on R and K. More clever approaches it-
eratively refine the analyst’s knowledge of the shape and location of the distribution. That is, we
start by finding a weak estimate of the parameters y and >, which allows us to rescale the data
and thereby reduce the parameters R and K for the next steps. This approach results in improved
sample complexity compared to the naive strategy outlined above: For the univariate case, it can be
used to eliminate the dependence on R and K entirely (Karwa and Vadhan, 2018). For the multi-
variate case, existing approaches yield a polylogarithmic dependence on R and K (Kamath et al.,
2019a)—an exponential improvement—but do not eliminate the need for a priori bounds.

Despite exponential improvements, it is natural to wonder whether a dependence on R and
K is necessary at all. For more restrictive special cases of differential privacy, such as pure or
concentrated differential privacy,’ packing lower bounds imply that a polylogarithmic dependence
is the best possible (Bun and Steinke, 2016; Bun et al., 2019). However, these lower bounds do not
apply to the most general notion of approximate differential privacy, and in this model we can often
eliminate the need for any a priori bounds on the distribution, which is clearly an appealing feature
of an estimator.

For mean estimation, it is relatively easy to eliminate the need for a priori bounds on the mean
(the parameter R), but the rich geometric structure of covariance matrices makes it much more
challenging to eliminate the need for bounds on the covariance (the parameter K), even without
requiring computational efficiency. Recently, building on a cover-based technique of Bun et al.

1. Here, A < B refers to the PSD order denoting that 27 Az < 27 Bz for every = € R?, and T denotes the identity
matrix.

2. By translating and rescaling the distribution, these assumptions can be relaxed to || — c|]|2 < R for some known
vector cand I < AX AT < KT for some known matrix A.

3. Though we later define the various relevant notions of DP, we remind the reader that pure (¢, 0)-DP is stronger than
concentrated DP, which in turn is stronger than approximate (&, §)-DP.



(2019), Aden-Ali et al. (2021a) show the existence of an estimator that doesn’t require any bounds
on the covariance matrix, but their argument is non-constructive and does not give an estimator with
polynomial, or even finite running time.

1.1. Results

Our main result is a polynomial-time algorithm for Gaussian estimation which requires no prior
knowledge about the distribution parameters.

Theorem 1 (Informal) There is a polynomial-time (e, §)-differentially private estimator M with
the following guarantee: For every u € R% and positive semidefinite ¥ € R if X1, ..., X, ~

ag
outputs i € R and ¥ € R such that |X — By = |[27288" V2 1| < o and
i — plls = I2"Y20 — ©7Y2ully < o. In particular; this guarantee implies that N (ji,>)
and N (u, ) are O(«)-close in total variation distance.

N, %) andn > O (gé + Lopolylog(1/0) 4 d*/? polylog(1/ ‘”), then, with high probability, M (X1, - -

The main advantage of our result compared to prior work is that our estimator both runs in
polynomial time and requires no prior bounds on ¥, whereas all estimators from prior work lack
at least one of these properties. The best known sample complexity is the result of Aden-Ali et al.
(2021a), which is n = O(d?/a? + d*/ae + log(1/8)/e). Our estimator has a slightly worse
dependence on the dimension d, but our running time is polynomial instead of unbounded, and it
remains open to find a polynomial-time estimator with information-theoretically optimal sample
complexity. Their bound is conjectured to be tight, but matching lower bounds under (e, §)-DP are
only known for the first and third terms. A lower bound of £(d?/ae) has only been proven under
(e,0)-DP. See Section 1.1.1 of Aden-Ali et al. (2021a) for more discussion on lower bounds. See
Table 1 for more information on prior upper bounds.

Several concurrent works have appeared after the preprint of our work, which also achieve
similar results. See the discussion of Simultaneous and Subsequent Work in Section 1.3.

1.2. Overview of Techniques

Our algorithm builds on the private preconditioning framework introduced in Kamath et al. (2019a).
Here our goal is to privately obtain a matrix A such that, after rescaling, I < AX AT < O(1) - L.
The preceding statement implicitly assumes that X is full rank, which is useful to simplify the
discussion, but our methods also handle the more general case of a degenerate covariance matrix
3. Given such a matrix A, we can perform the invertible transformation of replacing each sample
X; with AX; and then apply the naive private estimator to these transformed samples and finally
invert the transformation to obtain our estimates f and 3. Since X ~ N (1, %) implies AX ~
N(Ap, AEAT), we now have a good a priori bound on the covariance AY. AT and, hence, the naive
estimator will have small sample complexity.

The main technical ingredient in our estimator is a new private preconditioner that takes samples
of the form X ~ A(0,%), for an arbitrary ¥, and outputs a matrix A so that AX AT is well
conditioned.*

4. Without loss of generality, we can restrict our attention to the case where the data is drawn from A (p, 3) with u = 0.
If we are given two independent samples X, X’ ~ N(u, ), then (X — X’)/+/2 has the distribution of A/(0, ).

» Xn)
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Reference Sample Complexity Computational Complexity
Non-Private g—z Polynomial
Naive Estimator g—z + & ”f Polynomial
Kamath et al. (2019a) 4oLy PP PR pojynomial
Aden-Ali et al. (2021a) L Unbounded
Theorem 1 (this work) g—z + i—i + %/2 Polynomial
Ashtiani and Liaw (2021) (concurrent) i—z + i—i Polynomial
Kothari et al. (2021) (concurrent) aﬂf; Polynomial

Table 1: Comparing (e, §)-differentially private covariance estimators for A/(0,X). Here, d is the
dimension, K is an a priori bound such that I < 3 < KT, and the accuracy guarantee is
|- — 2||s; < a. The sample-complexity bounds suppress polylogarithmic factors in d, <,
and &,

)

Theorem 2 (Informal) There is a polynomial-time (e, §)-differentially private algorithm M with
the following guarantee: For every positive-semidefinite, rank-k matrix ¥ € R¥™4 if X1,..., X, ~

N(0,%) and n > O (w), then, with high probability, M (X1, ..., X,) outputs A €

RY%D sych that f‘\;g‘:igﬁzg = O(1), where we write A\ > Ao > --- > A\ for the sorted eigenvalues

of the matrix.

To contrast Theorem 2 with that of Kamath et al. (2019a), their work gave a polynomial-time
algorithm that takes samples from a Gaussian N (0, X) such that T < ¥ < KT and returns a matrix
AsuchthatT < AXAT < %H. Thus, iteratively applying their preconditioner O(log K') times and
using composition bounds for differential privacy gives a result similar to Theorem 2, but with a
(log K )1/ 2 term in the sample complexity. In contrast, very informally, our preconditioner is able
to find a good estimate of X one direction at a time, no matter how poorly conditioned X is, so the
number of iterations depends only on the dimension d and not on any assumptions about 3 itself.

Since the preconditioner of Kamath et al. (2019a) can already handle the case where the condi-
tion number K is small or moderately large, the main technical hurdle that our work must overcome
is the case where the condition number is very large, specifically exponential: \;(X)/A1(X) <
exp(—poly(d)). When the eigenvalues of X are so spread out, there must be a large eigenvalue
gap where \;11(2) /A, (X) is very small, at most inverse-polynomial in d. Thus, the key technical
ingredient we need is a private algorithm that can output an approximation to the k-dimensional
subspace of X containing the directions of large variance. Given such a subspace, we can partition
the space into a k-dimensional subspace where the covariance is well conditioned and a lower-
dimensional subspace, and then recur on the lower-dimensional subspace. This private subspace
recovery problem has been investigated before, originally by Dwork et al. (2014), and, recently
Singhal and Steinke (2021) gave an algorithm for this problem that gives dimension-independent
sample complexity under the assumption of a large eigenvalue gap between the top-k subspace and
its complement. In order to apply their algorithm in our setting, we give a different analysis, and



along the way we make other modifications that, for our application, reduce the sample complexity
by polynomial factors in the dimension.

Theorem 3 (Informal, extension of Singhal and Steinke (2021)) There is a polynomial-time (&, 0)-
differentially private algorithm M with the following guarantee: Let ¥ € R¥*? such that \j,1(X) /e () <
72 for some 1 < k < dand 0 < v < 1, and let II € R¥? be the matrix that projects onto the
subspace spanned by the top-k eigenvectors of X. If 0 < ¢ < 1 and X1,..., X, ~ N(0,%)
andn > O (d3/2k1/2'p°1y log(1/ ‘”) then with high probability, M (X1, . .., X,,) outputs a projection

il wQe > bl bl 9 n

matrix 1T € R such that |11 — II||o < o).

The subspace recovery algorithm of Singhal and Steinke (2021) is tailored to allow a dimension-
independent sample complexity, which is something that our modifications no longer achieve. How-
ever, in our setting, a direct application of their algorithm would be inefficient in terms of the sam-
ple complexity. Here, we are free to pick poly(d) samples, which gives us the option to use more
accurate methods in the subspace recovery algorithm — we trade poly(d) sample complexity for
improved accuracy. In particular, we incorporate the ball-finding algorithm of Nissim et al. (2016).
Roughly speaking, if the eigengap is 72, then to get an error proportional to -y, Singhal and Steinke
(2021) would require O(d?k?) samples, while our modifications reduce this cost to O(d3/2k!/?).

1.3. Related Work

Differentially private statistical inference has been an active area of research for over a decade
(e.g. Dwork and Lei (2009); Vu and Slavkovié (2009); Wasserman and Zhou (2010); Smith (2011)),
and the literature is too broad to fully summarize here. Our work fits into two more recent trends
that we survey below—designing private estimators without the need for strong prior bounds and
pinning down the minimax sample complexity for differentially private estimation.

Private Estimation without Prior Knowledge. The influential work Karwa and Vadhan (2018)
focused attention on minimizing the need for prior knowledge as a key issue for obtaining practical
private estimators, providing both algorithms and lower bounds for univariate Gaussian mean and
variance estimation. In particular, they designed pure DP estimators with a logarithmic dependence
on the bounding parameters using a general recipe based on private histograms, and estimators
with approximate DP with no dependence on these parameters. Subsequent works gave other pure
DP or concentrated DP algorithms for the univariate case with a similar logarithmic dependence,
based on techniques such as the exponential mechanism (Du et al., 2020), iteratively shrinking
confidence intervals (Biswas et al., 2020), the trimmed mean (Bun and Steinke, 2019), and quantile
estimation (Huang et al., 2021). Other techniques have been employed to deal with the bounding
parameters for univariate median estimation (Avella-Medina and Brunel, 2019; Tzamos et al., 2020),
including propose-test-release (Dwork and Lei, 2009) and efficient Lipschitz extensions (Cummings
and Durfee, 2020; Tzamos et al., 2020).

All the above techniques for univariate mean estimation extend to multivariate mean estimation
with known covariance, simply by applying a univariate estimator to each coordinate, however
extending to multivariate covariance estimation is significantly more challenging. Kamath et al.
(2019a) gave the first algorithm for this setting which satisfies concentrated DP or approximate DP,
and incurs only a logarithmic dependence on the bounding parameters, which was subsequently
refined into a more practical variant (Biswas et al., 2020). Bun et al. (2019) provides a cover-based
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approach which leads to pure DP algorithms for more general settings with logarithmic dependence
on the bounding parameters, but the estimators have exponential running time or worse. They
further provide an approach for proving approximate DP sample complexity bounds which require
no bounding parameters, contingent on the construction of a locally-sparse cover. As they describe
it, their method has an infinite running time, and they are also only able to construct such a cover for
multivariate Gaussians with known covariance, as the rich geometric structure makes the unknown
covariance case hard to reason about. Aden-Ali et al. (2021a) extends this approach to require
only a collection of sparse local covers, allowing them to prove a bound on the sample complexity
of covariance estimation with no bounding parameters. Again, their approach does not provide
even a finite-time algorithm, and our result is the first polynomial-time algorithm for covariance
estimation with no dependence on the bounding parameters. Recent work (Brown et al., 2021)
provides an approach for Gaussian mean estimation with unknown covariance, which bypasses the
problem of covariance estimation to obtain better sample complexity. Specifically, they provide
a computationally-inefficient approximate DP algorithm which requires no parameter knowledge.
Since our goal is to estimate the covariance, their results are inapplicable to our setting.

Minimax Sample Complexity. Our work also falls into a broader line of work on minimax sam-
ple complexities for differentially private statistical estimation. See Kamath and Ullman (2020)
for a partial survey of this line of work. The first minimax sample complexity bounds to show an
asymptotic separation between private and non-private estimation for private mean estimation were
proven in Bun et al. (2014), and subsequently sharpened and generalized in several respects (Dwork
et al., 2015; Bun et al., 2017; Steinke and Ullman, 2017a,b; Kamath et al., 2019a). More recently,
Cai et al. (2019) extended these bounds to sparse estimation and regression problems. Acharya
et al. (2021) provides an alternative, user-friendly approach to proving sample complexity bounds,
which is directly analogous to the classical approaches for proving minimax lower bounds in statis-
tics. These approaches are less powerful in general, but yields tight bounds for certain statistical
estimation tasks.

There are a wide variety of results pinning down the minimax sample complexity for estima-
tion under a variety of distributional assumptions, including settings with heavy-tailed data (Barber
and Duchi, 2014; Bun and Steinke, 2019; Kamath et al., 2020; Wang et al., 2020; Kamath et al.,
2021; Hopkins et al., 2022), mixtures of Gaussians (Kamath et al., 2019b; Aden-Ali et al., 2021b),
graphical models (Zhang et al., 2020), and discrete distributions (Diakonikolas et al., 2015). Addi-
tionally, Liu et al. (2021a,b); Hopkins et al. (2022) give algorithms for mean estimation which are
simultaneously private and robust. Some recent works (Liu et al., 2020; Levy et al., 2021) focus on
estimation in a setting where a single person may contribute multiple samples (but privacy must still
be provided with respect to all of a person’s records). One work (Avent et al., 2019) studies mean
estimation in a hybrid model where some users require the more stringent local DP property, while
other are content with central DP.

Simultaneous and Subsequent Work. The initial online posting of this work was accompanied by
a flurry of simultaneous and independent papers featuring results on private covariance estimation.
Most directly comparable with our work are the simultaneous and independent results of Ashtiani
and Liaw (Ashtiani and Liaw, 2021), and Kothari, Manurangsi, and Velingker (Kothari et al., 2021),
which obtain computationally-efficient algorithms for private estimation of unbounded Gaussians.
Both are also robust to adversarial corruptions. The techniques of all three works differ from each
other, and thus offer multiple perspectives on how to address this problem. While our work employs



ideas from private subspace recovery, Ashtiani and Liaw (2021) uses a framework based on privately
checking whether the results of several non-private estimates resemble each other (a la Propose-
Test-Release (Dwork and Lei, 2009)), and Kothari et al. (2021) privately adapts convex relaxations
which have recently seen use in robust statistics. Focusing on the dependence on the dimension d,
our algorithm has sample complexity O(d??), while Ashtiani and Liaw (2021) is O(d?) and Kothari
et al. (2021) is O(d®).

Also simultaneous to all these works, Tsfadia, Cohen, Kaplan, Mansour, and Stemmer (Tsfadia
etal., 2021) provided a framework similar to that of Ashtiani and Liaw’s (Ashtiani and Liaw, 2021),
and applied it to the problem of mean estimation. In a subsequent update, Tsfadia et al. (2021)
showed that their approach too can give an efficient (non-robust) private algorithm for estimation of
unbounded Gaussian covariances.

Finally, simultaneous and independent to our work, Liu, Kong, and Oh (Liu et al., 2021b) give
a framework for designing private estimators via connections with robustness. For the specific case
of Gaussian covariance estimation, they give a computationally inefficient algorithm with similar
guarantees as the work of Aden-Ali, Ashtiani, and Kamath (Aden-Ali et al., 2021a).

1.4. Organization of the Paper

We start with our main procedure to learn Gaussian covariances, which puts all of our techniques
together, in Section 2. Then we state our novel and the most important component for this process —
the private preconditioner — in Section 3. We give standard background on differential privacy and
concentration-of-measure in Appendix A. After that, we present the algorithm for private eigen-
value estimation in Appendix B. It is followed by our extended subspace-recovery algorithm in
Appendix C. We describe the final subroutine for our main algorithms, the naive estimator, in Ap-
pendix D.

2. Our Estimator

In this section, we state our new estimator for Gaussian covariances (Algorithm 1) that we call,
“GaussianCovarianceEstimator”, which uses our novel preconditioning technique from Section 3,
and the naive estimator. The algorithm first makes the Gaussian well-conditioned using the pre-
conditioner (Algorithm 4), followed by estimating it using the naive estimator (Algorithm 7), and
then it applies the inverse transformation of the preconditioning matrix. The following is the
main result of the section. Then using that and Lemma 15, we would be able to conclude that

~

dTV(N<:u7 E)7N<l[)/7 E)) S Q.

Theorem 4 Let ¥ € RY*? be a symmetric, PSD matrix and i € R?. Then for all ¢,6,a, 8 > 0,
there exists an (e,0)-DP algorithm that takes n > O <g722 + % + d;) samples from N (p1, %),

and outputs a symmetric, PSD matrix S € R4 gnd o e RNd, such that with probability at least
1-0B), |E=2]s <« and ||fi—p|x < . Inthe above, O hides factors of polylog(d, %, 1, %)
Proof In our estimator, Algorithm 1 is one of the main components that is used to estimate the
covariance of the Gaussian. The other component is the approximate DP version of the private
mean estimation algorithm (PME) from Kamath et al. (2019a). We replace the preconditioning

matrix in PME by our DP preconditioner that we obtain from running Algorithm 1. To prove the
theorem, it is enough to show the privacy and accuracy guarantees of Algorithm 1.
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Privacy follows from the privacy guarantees of Algorithm 7 (Lemma 27), Algorithm 4 (Theo-
rem 7), and the approximate DP version of PME (Kamath et al., 2019a), followed by composition
(Lemma 10) and post-processing (Lemma 9).

Now, we prove the first accuracy statement. Let Y be the original dataset with 2n samples
chosen i.i.d. from N (u, X). We construct the dataset X as follows: for each i € [n], set X; =

% Then each X is an independent sample from N (0, ). We then supply the dataset X

to Algorithm 1. Note that AX contains points from N (0, AX A) by construction. This means that

ifgﬁgﬁ; > Q(1). Thus, by the accuracy guarantees of NaiveEstimator (Theorem 29), we have

IS/ — AS Al ana < O(a). However, |X — AS Al x4 = || — ||x. This gives us the first result.

The mean estimation result follows from the accuracy guarantees of PME, to which we supply
the dataset Y. Note that PME is designed to provide zCDP (Bun and Steinke, 2016) and has
a polylogarithmic dependence on the range parameter R that bounds the magnitude of the true
mean. The goal is to eliminate that dependence, which is only possible under approximate DP. The
approximate DP version of this that doesn’t have any dependence on R can be obtained by using
the approximate DP version of Karwa and Vadhan (2018) that utilises stability based histograms.
With a multiplicative cost in the sample complexity in terms of polylog(1/d), this would establish
the result that we need. |

Algorithm 1: Differentially Private GaussianCovarianceEstimator, s o 5(X)

Input: Samples X, ..., X, € R?. Parameters ¢, 6, o, 3 > 0.
Output: Matrix > € R%x,

// Precondition the covariance.
Set A «+— Preconditioner, 5 g(X).

// Estimate the transformed covariance.
Set X' <— NaiveEstimator, 5 3(AX).

// Revert to the original space.
Set ¥+ A7I¥ AL

return >..

2.1. Handling the Degenerate Case

So far, we have implicitly assumed that all the eigenvalues of X are strictly greater than 0. Here, we
talk about the case where some of the eigenvalues of X could be 0. Let k& € [d] be the largest number
such that the k-th eigenvalue of X is non-zero. Then we can use Algorithm 6 to exactly recover the
top k subspace, and project onto that subspace, and run GaussianCovarianceEstimator within that
subspace. To elaborate, this can be done in three steps: (1) detecting the non-zero eigenvalues of X
using Algorithm 5; (2) finding the true subspace of ¥ using Algorithm 6, which can exactly recover
the subspace at a cost of 5((12 /€) in the sample complexity; and (3) running Algorithm 1 on the
points projected on to that subspace.



3. Private Preconditioning

In this section, we develop a preconditioning technique that does not rely on knowledge of a priori
bounds on the eigenvalues of the covariance matrix of the underlying distribution. It is the main
preprocessing step that makes the Gaussian covariance almost spherical. For the following, we
assume that the eigenvalues of the covariance matrix Y are examined in non-increasing order A\; >
e 2> Ag > 0.

3.1. Coarse Preconditioning

We describe here the function of the “coarse” preconditioner which, along with Algorithm 6, consti-
tutes the main technical novelty of our approach. The purpose served by this subroutine is to reduce
gaps between consecutive eigenvalues (say Ay and A\;;1). Observe that, our only assumptions are

that the ratio )";\:(lg) is below some threshold and that the eigenvalues that come before exhibit

no significant gaps (:\\—’1C is lower bounded appropriately, implying that it is larger than some abso-
lute constant). The first condition essentially prohibits us from using the preconditioning technique
from Kamath et al. (2019a), since we do not know how large the gap between A\, and A may
be. Instead, the algorithm uses our adaptation of the subspace algorithm of Singhal and Steinke
(2021) (see Algorithm 6) in order to approximate the subspace that corresponds to the eigenvalues
that come before the gap. Specifically, we obtain projection matrices IIy- onto a subspace V' and
Iy, = I — IIy onto its complement V'*, such that these matrices are close in spectral norm to
the projections onto the top k eigenspace of 3 and its complement. Rescaling our data by a ma-
trix of the form A = xIly + yll . roughly results in the eigenvalues of the covariance matrix
corresponding to V and V' being rescaled by 22 and y?, respectively. Setting the scalars x and y
appropriately will reduce the eigenvalue gap, even if the subspace V' is not perfectly aligned with
the top k eigenvalues. Interestingly, if the eigengap is large (i.e., the ratio ’\’;\:Eg) is small), then our
algorithm works just as well as when it is small. This is because the subspace recovery subroutine
will become more accurate in this setting as it outputs a projection matrix, whose error scales with
this gap. Note that this step reduces the eigengap to a large extent, but does not exactly get us in
the range that we would desire, that is, the gap between the 1-st and the (k + 1)-th eigenvalues is
greatly reduced, but it is still not small enough to maintain the loop invariant of Algorithm 4, which
says that in iteration ¢, the gap between the 1-st and the i-th eigenvalues is bounded. We address
this issue in Section 3.2.

Having described the algorithm above, we now present the corresponding pseudocode, followed
by its analysis.

Algorithm 2: Differentially Private CoarsePreconditioner, 5 5 1, 5 (X)

Input: Samples X1,..., X,, € R%. Parameters ¢, 6, 3,k > 0,4 > 0.
Output: Matrix A € R?¥9,

Setl —n <« 4.
Set Il < SubspaceRecovery, 5 3 1. 5 (X) and Il 1.q <= I — Uy
Set A (1 — )y + gy 1.0

return A.
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Theorem 5 (Coarse Precondltloner) Let 0 <7 < 1land 0 < %4 < 1 be arbitrary parameters.
lylog(d, %
Then foralle, 6,8 > 0andn > O poly Og e ) there exists an (g, 0)-DP algorithm, such

that the following holds. Let X = (X1,...,Xy,) be i.i.d. samples from N (0,Y), where, for some

1<k<d $ (D) > 2, and v? = = 2en®) o [— 45 } Then with probability at least 1 — O([3),

A (Z) e (2)
the algorithm takes X and 4 as input, and outputs A € R that satisfies % > ZO

<
l
5

1
050

Proof We prove the privacy and accuracy guarantees of Algorithm 2. Privacy follows from the
privacy guarantees of SubspaceRecovery (Theorem 26) and post-processing of DP (Lemma 9).

Now, we prove the accuracy guarantees. Suppose ¥ = UAU " and U, A, Y € R%*?, where
UTU =TandAis diagonal with entries A\; > Ao > --- > A\; > 0.

We know that there is a large eigengap —i.e., A1 = 72 - \i, for some & € [d] and 0 < v < 1.
Consider the subspace spanned by the eigenvectors corresponding to Ay, ..., A; and let I1;.; be the
corresponding projection matrix. We then run the subspace algorithm SubspaceRecovery (Singhal
and Steinke, 2021) with parameters ¢, 8, 3, k, 4 to obtain IT;.;, € R%*? satisfying ||II;.; — 1.5 <
¢ = ||Tp1. d — sz—i—l.d” < ¢ with probability at least 1 — O(f3), where, because of our sample

complexity ¢ < I75.
Now let y; = [(1 — 9Tl + Hjp1.4)X; for all i € [n]. Here, 0 < n = 1 — 4. Then
Y1, Yn € R? are n independent draws from N(0, %), where

S = (31 + Mp1:0) 30 + g 1.0)-
We set £ = & = Iy, — ;. and & = ﬁk+1:d — g11.0 = —& where ||€]| < ¢. We have for >

S = (A1 + Wig1:0) Sk + Mg 1.0)

= (%1 + &2 + Ak + Hgy1:0) (560 + &2 + Ak + gt 1.a)

= (%1 + &2 + Ak + Uy 1:0) (560 + &2 + Yk + gt 1.a)

= (96 + &)E(& + &) + (g + p1:a)B(561 + &2)
+ (¥ + &)E( 1k + Wi 1:a) + (Pik + Mepr:a) 231 + Mg1:a)
= (%1 + &)X (Y61 + &2) + A X (561 + &) + M p1.aB (561 + &2)

+A(3& + &)1k + (Y& + &) EMi1.q + VS + iy 1.0 5124

Now, we need to find an upper limit for A (3), and a lower limit for A1 ().
We start with the upper bound on A; (X).

HEH < |41 + &I 112 + 24 1Tk ) 156 + &l + 2 M| 1561 + &)
+ A2 T e X+ T 1202 ey 124l

< (1-4)* 5om M () + 201 = ) 5 M (D) + 2(1 = 9) g e ()
+AALD) + Mg ()

252 2 9
< Ae(2) + = M(2) +2(1 — A — () + M1 (T
< 2300 )+ 55 M)+ 20 = D e (E) + =M (D) + A (%)

7 2 4
Sm)\k+1(2)+%/\k+1(2)+2(1 )100)\k+1( ) + g/\k+1(2)+)\k+1(2)
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)
Sf)\klz-
72 +()

Now, we prove a lower bound on A1 (X).

Ae+1(2) > N1 (B2 STy + Mg 1.0 e 1.0)
+ (1= 4)°Aa (£2€) — A(1 — A)Ag (114 3€)
— (1 =) Ag pg1:428) = (1 = A)Ag (§X111:1)

— (1 =) Aa (EX1k11:a) (Lemma 19)
Mt ox . .

> == = 231 = ) NN E] = 20 =) ST vl
M1 VA2 A

> ZkEL 2) = (D

Z 50 (D) 20 Mer1(2)
Mey1 2 A7

> — e (®) = (s

> M2 ) - Do)

o Akt

- 8

Mg (B) o 72
Therefore, i:(lz) > 15 m

3.2. Fine Preconditioning

In this section, we present our second preconditioning constituent (the “fine” preconditioner) that is
used in the presence of small cumulative gaps. This component of our preconditioning process is
similar to the one that appears in Kamath et al. (2019a). It first uses the naive estimator (i.e., clipping
data based on the covariance matrix’s spectrum and noising the empirical covariance, Algorithm 7)
to get a rough estimate of the covariance. This gives us enough information about the top k + 1
eigenvectors and eigenvalues to operate (approximately) within the top-(k + 1) subspace, allowing
us to shrink down the top £ eigenvalues by a small multiplicative factor. We initially assume that
the gap between the 1-st and the (k + 1)-th eigenvalues is large, but not too large, essentially the
setting that we will be in after running the coarse preconditioner described in Section 3.1. In other
words, when the gap between the 1-st and the (k + 1)-th eigenvalues is loosely bounded, the fine
preconditioner tightens that gap. We now present our algorithm and its analysis.

Theorem 6 (Fine Preconditioner) Ler X = (X1,...,X,,) be i.i.d. samples from N (0,%), such

that for some 1 < k < d, )"j\f(lg) > 7252 for 5 < 1. Then for all €, > 0, there exists an (g, §)-DP
d3/2.polylog(d, %, % 1)

algorithm, such that if n > O < LY LY >, then with probability at least 1 — O(3), it

T2

Akp1(AZA) o 72

takes X as input, and outputs a matrix A that satisfies N (ASA) 2

Proof We prove the privacy and accuracy guarantees of Algorithm 3. Privacy follows from the
guarantees of Lemma 27.

Now, we prove the accuracy. Let IIg and flg be matrices as defined in Algorithm 3. We first
show an upper bound on ||AX A||. For this, by Lemma 22, it is enough to prove an upper bound on

11
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Algorithm 3: Differentially Private FinePreconditioner, 5 1 5, (X)

Input: Samples X1,..., X,, € R% Parameters ¢, 6, 3, k,7, x > 0.
Output: Matrix A € R%¥9,

Set Z <— NaiveEstimator, 5 g, (X).

IﬁS%ﬁuM@Eﬁ%@}
Ai(Z)

Ak+1(2)

Let v; be the i-th eigenvector of Z.
T

Set g « > wa; and Il < > v, .
! 9iY h ?
€S €S

Let g; <

Set A ﬁs +ﬂ§

return A.

IA(Z = N)A|.

|A(Z — N)A|| < |[AZA| + [[ANA]|
< |HsZls + g ZTlg|| + || N|]
< Met1(Z)  M1(2)
- 1672 1672
_ Mer1(4)
872

In the above, the third inequality comes from Corollary 28 and our sample complexity. This shows
that | ATA|| < 2542,

Now, we show a lower bound on A1 (AYX.A). As before, by Lemma 22, it is enough to show a
lower bound on A1 (A(Z — N)A).

Met1(A(Z — N)A) > M1 (AZA) — ||ANA|| (Lemma 19)

~ A(2)

In the above, the third inequality again follows from Corollary 28 and our sample complexity. This
gives us A1 (AXA) > ’\’“’TI(Z).

Aes1 (AZA) o o2 -

Therefore, W =

3.3. Putting Everything Together

We are now ready to present our overall preconditioning algorithm (Algorithm 4). The algorithm
essentially relies on a dynamic programming approach. In particular, the i—th iteration always starts

12



under the assumption that the cumulative gap of the eigenvalues A\; > - -- > ); is (relatively) small,
so the focus is on the gaps involving the eigenvalue \;; 1, namely the ratios )‘i\tl and /\j\—“;l Based
on how small these ratios are, the algorithm may use either the coarse or the fine preconditioner, or
both. Doing so, it ensures that, at the start of the next iteration, the loop’s invariant will be preserved.
At the end of a run of this algorithm, we get a linear transformation that reduces the multiplicative

gap between the 1-st and the d-th eigenvalues of 3 to {2(1). The algorithm and its analysis follow.

Algorithm 4: Differentially Private Preconditioner, 5 g(X)

Input: Samples X1, ..., X,, € R% Parameters ¢, 6, 3 > 0.
Output: Matrix A € R4*?,

=~2

52 A0

.2 1
Set parameter: 7 < 15505

10000
Let A+ L
AL, .-, Ag ¢ EigenvalueEstimator, 5 5(X).
Seti <+ 1.
while 7 < d do
if % < 472 then
B + CoarsePreconditioner —(X).
£ L ﬁz >‘1+1
Vot T
A+ BA.
X + AX.
7 <+ NaiveEstimator . 5 5(X).
Voo l175) 414
if 212 < 477 then
C <+ FinePreconditioner E 5 s (X).
W’ﬁ’ﬁ’l’%)‘l(z)
A+ CA.
X+ AX.
end
end
else if % < 472 then
1
D < FinePreconditioner c 5 5. _ (X).
Wyﬁqﬂm)\l(z)
A+ DA.
X + AX.
end
Z < NaiveEstimator . 5 5 (X).
\/6dlog(1/5) d+17d
A, - .., Aq < EigenvalueEstimator c 5 (X))
\/6dlog(1/5) d+1"d
11+ L
end
return A.

13
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Theorem 7 (DP Preconditioner) Let ¥ € R4*? be a symmetric, positive-definite matrix. There

d25-polylog(d, 1,1, %
exists an (€, 0)-DP algorithm, such thatif X = (X1,...,X,) ~N(0,%)andn > O polylog(d £ ﬁ)>,

)

then with probability at least 1 — (3, the algorithm outputs a matrix A that satisfies i’;gﬁgﬁg > Q(1).
Proof We prove the theorem by proving the privacy and accuracy of Algorithm 4. Privacy follows
from Theorems 5, 6, and 23, Lemma 27, and composition of DP (Lemma 10).

For the accuracy argument, it is enough to show that at the beginning of each iteration 1 < i < k,
/’\\i((ﬁgi)) > O(5?). We prove this via induction on 3.

For the basis step, it is trivial because A> A = 3. Therefore, the ratio equals 1.

Now, we move on to the inductive step. Suppose for ¢ > 1, the claim holds for all j < . Let the

matrix A be equal to A;_; at the beginning of iteration ¢ — 1. This implies that for iteration ¢ — 1,

Ni—1(Ai1ZAiq) o
> 77, 1
M(Ai1XAiq) — 7 )

According to the If-block, if the privately estimated eigenvalue ratio is less than 472, then it must
be the case that with high probability (Theorem 23), % < 1672. Then because of (1),
Theorem 5, and Corollary 28, it must be the case that with probability 1 — O(3/d), at the beginning

of the nested If-block, 3P4 BAZL ) > 30 Now, if 344} < 452, then by Corollary 28,
Ai(BAi_15(BA;—1)7)

M (BA I S(BA )T) < 1672. By the guarantees of Theorem 6, with probability at least 1 —O(3/d),
at the end of the nested If-block (hence, at the end of the loop and the starting of the i-th iteration),

;;‘((gﬁﬁig((ggﬁ;))?) > 72, Supposcz,4 the 21go§ithm skips the first If-block. Then with high
i—1(Ai—13A 1

probability, it must be the case that W > 72 If it enters the ElIf-block, then it mean

that with high probability, % < 167%2. Then again, by the guarantees of Theorem 6,

with probability at least 1 — O(/3/d), at the end of the iteration, /)\‘i((gﬁfjg((g ffj))p) > 72,

This proves the inductive step. If neither of the If or ElIf-blocks are entered, it would mean that the
ratio is already at least 72. Applying the union bound over all i, we get the required result. |
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Appendix A. Preliminaries
A.1. Differential Privacy Preliminaries

A dataset X = (X1,...,X,) € X" is a collection of elements from some universe. We say that
two datasets X, X' € X™ are neighboring if they differ on at most a single entry, and denote this by
X ~ X'

Definition 8 (Differential Privacy (DP) (Dwork et al., 2006)) A randomized algorithm M : X —
Y satisfies (e, 6)-differential privacy ((e,0)-DP) if for every pair of neighboring datasets X, X' €
X",

VYW CY P(M(X)eY)<eP(M(X')eY)+4.

This definition is closed under post-processing

Lemma 9 (Post-Processing (Dwork et al., 2006)) If M : X" — Yis (¢,0)-DPand P : Y — Z
is any randomized function, then the algorithm P o M is (g, 9)-DP.

A crucial property of all the variants of differential privacy is that they can be composed adap-
tively. By adaptive composition, we mean a sequence of algorithms M;(X),..., M7 (X) where
the algorithm M;(X') may also depend on the outcomes of the algorithms M7 (X), ..., M;_1(X).

Lemma 10 (Composition of DP (Dwork et al., 2006, 2010; Bun and Steinke, 2016)) If M is an
adaptive composition of differentially private algorithms M, . .., Mr, then the following all hold:

1. If My, ..., Mg are (e1,61),...,(er,07)-DP then M is (¢,5)-DP fore = Y, &1 and § =
Zt O

2. If My, ..., My are (g9,01),...,(€0,07)-DP for some ey < 1, then for every 5o > 0, M is
(¢,6)-DP for
e=-¢e9-+/6Tlog(1/6y) and =0+ Z(St
t

Note that the first property says that (¢, §)-DP composes linearly—the parameters simply add
up. The second property says that (g, §)-DP actually composes sublinearly—the parameter ¢ grows
roughly with the square root of the number of steps in the composition, provided we allow a small
increase in 4.

A.1.1. USEFUL DIFFERENTIALLY PRIVATE MECHANISMS
Our algorithms will extensively use the well known and standard Gaussian mechanism to ensure
differential privacy.

Definition 11 (¢/»-Sensitivity) Let f : X™ — R? be a function, its (5-sensitivity is

Ap= max 00 = (X))
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Lemma 12 (Gaussian Mechanism) Let f : X — R? be a function with {o-sensitivity A t. Then
the Gaussian mechanism

2 n
M(X) = F(X) + N (o, 2ol ~udxd>

satisfies (g, 9)-DP.
Next, we describe a tool to privately estimate histograms.

Lemma 13 (Stability-based Histograms (Korolova et al., 2009; Bun et al., 2016; Vadhan, 2017))
Let (X1, ...,X,) be samples in some data universe U, and let Q2 = {hy }ncu be a collection of dis-
Jjoint histogram buckets over U. Then we have an (&, 6)-DP histogram algorithm with the following
guarantees:

£

o With probability at least 1 — 3, the £, error is O <M).

* The algorithm runs in time poly (n, log (%) )

Finally, we provide a tool to find an approximately smallest ball that contains all the points in
the dataset with high probability.

Theorem 14 (GoodCenter from Nissim et al. (2016)) Ler X = (Xi,...,X,) € RP be the

dataset such that 11 1
o0 (x/&-polylog(Dv 57675)> _

3

Suppose the smallest ball in RP that contains all the points in X has radius Ropi. Then for all
€,0, > 0, there exists an (g,9)-DP algorithm (GoodCenter) that takes X, Ropt as input, and
outputs a point ¢ € RP, such that B Rope /1087 (¢) (for a universal constant C) contains at least &
points from X with probability at least 1 — j3.

A.2. Distribution Estimation Preliminaries

In this work, our goal is to estimate some underlying distribution in total variation distance. We will
achieve this by estimating the parameters of the distribution, and we argue that a distribution from
the class with said parameters will be accurate in total variation distance. For a vector z, define
|zl|s = ||=~Y2z||o. Similarly, for a matrix X, define || X|x = [|2~Y/2X%~1/2| . With these
two norms in place, we have the following lemma, which is a combination of Corollaries 2.13 and
2.14 of Diakonikolas et al. (2016).

Lemma 15 Let o > 0 be smaller than some absolute constant. Suppose that || — fi||x < o, and
12 — 3lls < o, where N'(u1, Y) is a Gaussian distribution in R%, fi € RY, and ¥ € R™? is a PSD

A

matrix. Then dpy (N (1, ), N (1, X)) < O(«).
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A.2.1. USEFUL INEQUALITIES

We will need several facts about Gaussians and Gaussian matrices. Throughout this section, let
GUE(c?) denote the distribution over d x d symmetric matrices M where for all i < j, we have
M;; ~ N(0, 02) i.i.d.. From basic random matrix theory, we have the following guarantee.

Theorem 16 (see e.g. Tao (2012) Corollary 2.3.6) For d sufficiently large, there exist absolute
constants C, ¢ > 0 such that

< _
. (1102 > A7Vd) < C exp(~cAd)

forall A > C.
We also require the following, well known tail bound on quadratic forms on Gaussians.

Theorem 17 (Hanson-Wright Inequality (see e.g. Laurent and Massart (2000))) Let X ~ N(0,T)
and let A be a d x d matrix. Then, for all t > 0, the following two bounds hold:

P (XTAX —tr(A) > 2| Al pVE + 2HAH2t) < exp(—t) )
P (XTAX —tr(A) < —QHAHF\/Z) < exp(—t) 3)

As a special case of the above inequality, we also have the following.

Fact 18 (Laurent and Massart (2000)) Fix 3 > 0, and let X1, ..., X, ~ N(0,02) be indepen-

dent. Then
P ( L3 X202 > 40 ( logl1/B) 210g<1/ﬂ)>> <
Lt "

m
Now, we state an inequality bounding the eigenvalues of sum of two matrices.

Lemma 19 (Weyl’s Inequality) Ler M, N, R be d x d Hermitian matrices, such that M = N + R.
Then for each 1 < i < d,

Ai(N) + Aa(R) < Xi(M) < Ai(N) + Ai(R).

In order to prove accuracy, we will use the following standard tail bounds for Gaussian random
variables.

Lemma 20 If Z ~ N(0,02) then for every t > 0, P (|Z] > to) < 2e~1*/2.

A.2.2. DETERMINISTIC REGULARITY CONDITIONS FOR GAUSSIANS

We will rely on certain regularity properties of i.i.d. samples from a Gaussian. These are standard
concentration inequalities, and a reference for these facts is Section 4 of Diakonikolas et al. (2016).

Fact21 Let Xy,..., X, ~N(0,%) iid. for k11 < ¥ < kol Let Y; = £~ Y2 X, and let

~ 1 &
Sy =Ly owr
n
=1
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Then for every 3 > 0, the following conditions hold except with probability 1 — O(3).

vie[n] Y3 < O (dlog(n/B)) 0

<1—o< d+105(1/5)>>.ﬂjiyj<1+0< d+lo7g1(1/5)>>.]1 )

o], o/ FH2)
F n

We now note some simple consequences of these conditions. These inequalities follow from simple
linear algebra and we omit their proof for conciseness.

(6)

Lemma22 LetYy,...,Y, satisfy (4)~(6). Fix M = 0, and foralli =1,...,n, let Z; = M2y,
andletSy; = L3 | 7,77, Let v/ be the top eigenvalue of M. Then

Vi € [n] 11Zi])3 < O (k'dlog(n/B))

(1-0( d+lo§(1/ﬁ)>> <, < <1+0< d+lo§(1/6)>> u

32— 5| <0< ﬂ+bﬂﬂm>
<

n

Appendix B. Eigenvalue Estimation

In this section, we present an algorithm that estimates the eigenvalues of a covariance matrix of
a Gaussian distribution up to a constant factor, under the constraint of approximate differential
privacy. This algorithm’s function is important for the following sections, since it helps us overcome
the issue that we have no prior bounds on the eigenvalues, as well as identify gaps between them.
The algorithm performs a subsample-and-aggregate process. The samples are split into ¢ subsets
and for each of them, the eigenvalues of the empirical covariance are computed. Denoting the
i-th eigenvalue (in decreasing order of magnitude) of the j-th subsample by X/, for each i, we
construct stability-based histograms and output an estimate of A; based on the bucket where )\g tend
to concentrate most.

Theorem 23 For every ¢, 6, 5 > 0, there exists an (¢, 9)-DP algorithm, that takes

0 <d3/2 -polylog(d, 1/6, 1/, 1/6))

3

samples from N'(0,%), for an arbitrary symmetric, positive-semidefinite ¥ € R*¥*?, and outputs
A1 > - > Ag, such that with probability at least 1 — O(8), A; € [Ai(z) ; \/i)\Z(Z)} forall i.

V2

Proof We show this by proving privacy and accuracy guarantees of Algorithm 5.

Fix an i € [d]. Then by changing one sample in X, only one subsample of X (say, X7
gets changed, hence, only one X! gets affected. This can change at most two histogram buck-
ets, leading to sensitivity 2. Therefore, by the privacy of private histograms Lemma 13, we have

22



Algorithm 5: Differentially Private EigenvalueEstimator, 5 3(X)

Input: Samples X, ..., X, € R% Parameters ¢, 6,8 > 0.
Output: Noisy eigenvalues of X: (A1,...,\g) € R,

C1 log(d/dp)

Set parameters: ¢ < 6

m <+ |n/t]
Split X into ¢ datasets of size m: Xt .. Xt

// Estimate the eigenvalues via DP Histograms.
fori < 1,...,ddo
forj < 1,...,tdo
‘ Let )\g be the i-th eigenvalue of % S XIT X,
end
Divide [0, co0) into
Qe {.., [1/V2,1/2V/0)[1/21/4, 1)[1,21/4), 24, 1/3), ... } U {[0, 0]}
Run 7\/60115*;%’ dj—l) -DP histogram on all )\g over €.

if no bucket is returned then

| return L.
end
Let I, r] be a non-empty bucket returned.
Set \; < L.
end
Sort (A1, ..., \q) to get PYID ¥
return (\p,..., \g)

c 8y ). . . . . .
(O (\/W) ,O ( d)> DP for this fixed 7. Applying Lemma 10 gives us the final privacy

guarantee.
Now, we move on to the accuracy guarantees. It is sufficient to show that with probability at

least 1 — O(B/d), foreach 1 <i < d, \; € [’\i%), ﬂ)\z(E)} Fix an i. Now, by Lemma 22, with

probability at least 1 — O(3/d), the non-private estimates of \;(%) must be within a factor of 21/%
of \;(X) due to our sample complexity. Therefore, at most two consecutive buckets would be filled
with \/’s. Due to our sample complexity and Lemma 13, those buckets are released with probability
atleast 1 — O(3/d). Since they are built at a multiplicative width of 21/4 they approximate the non-
private estimate to within a factor of 2'/4. Therefore, the total multiplicative error is at most a factor
of 2. Taking the union bound over all ¢, we get the required result. |

Appendix C. Subspace Recovery

We improve the guarantees of the subspace algorithm from Singhal and Steinke (2021) for our prob-
lem, where we are willing to pay poly(d) in the sample complexity. In our version, the algorithm’s
aggregation step uses the ball-finding algorithm from Nissim et al. (2016), followed by noisy mean
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estimation, instead of using high-dimensional stability-based histograms as in Singhal and Steinke
(2021). For completeness, we restate the entire algorithm, but just point out the differences in the
proof of the final accuracy lemma from Singhal and Steinke (2021).

Algorithm 6: DP Subspace Estimator SubspaceRecovery, s , - 1 (X)

Input: Samples X1,..., X, € R?. Parameters ¢, 6, o, v, k > 0.
Output: Projection matrix IT € R%*9 of rank k.

CoVdk-polylog(d,k,%,%)

Set parameters: t <

€
CoyVd(VEk++/In(kt))
T 7

Sample reference points py, . .., p, from N (0, I) independently.

m < |n/t| q <+ Cik

// Subsample from X, and form projection matrices.

forjel,....tdo

Let X7 = (X(j—l)m-i-b NN ,X]m) S Rde'

LetII; € R?*4 be the projection matrix onto the subspace spanned by the eigenvectors
of X7(X7)T € R¥ corresponding to the largest k eigenvalues.

forie€1,...,qdo
| v} < ps

end

end

// Aggregate using a ball-finding algorithm.
for i € [¢] do
Let P; € R%* be the dataset, where column j is pg .

Set ¢; + GoodCenter . s . (Ph).
Valn(1/8)’ a4’

end
Set R + C3r+/log(t)

// Return the subspace.

Letr o Hivabis)
for each i € [g] do

Truncate all pi"s to within Bg (¢;).

¢
Letp; < > pl + N(0,0%Laxq).
J=1

end

Letlje(@,...,ﬁq). R
Let IT be the projection matrix of the top-k subspace of P.
return II.

Lemma 24 Algorithm 6 is (2¢,20)-DP.

Proof The first aggregation step of finding c; is (¢, d)-DP by Theorem 14 and Lemma 10. In the
mean estimation step, because we are restricting all the p!’s to within Bg (¢;), the sensitivity is 2R,

24



since by changing one point in X, we can change exactly one p{ by 2R in /5 norm. Therefore, by
Lemmata 12 and 10, this step is (¢, §)-DP. The final privacy guarantee follows from Lemma 10. W

Lemma 25 (Lemma 4.9 of Singhal and Steinke (2021) Modified) Let Tl be the projection matrix
as defined in Algorithm 6, n be the total number of samples, and 0 < 1 < 1. If

v dk - polvl 11 . polyl 11
t20< dk poyog(dak7515)> and m20<d pOyOg(d,k,E,(;) ’

€ P2

which implies that

1.5 . 11
n 2 O d \/% pOIYIOg(da ka e 5) ,
g2

then ||II — ﬁ|| < 4y with probability at least 0.7.

Proof For each i € [g], let p} be the projection of p; on to the subspace spanned by ¥, p; be as
defined in the algorithm, and pz be the projection of p; on to the subspace spanned by the j** subset
of X. From the analysis in Singhal and Steinke (2021), we know that for a fixed 7, all pg ’s are
contained in a ball of radius 7. Therefore, all points in F; lie in a ball of radius . Therefore, by the
guarantees of GoodCenter (Theorem 14), Bg, (¢;) contains all of p{ s, such that R € O(r+/In(t)).
This implies that p; is also contained within Bp (¢;).

Now, let P = (p},...,p}). Suppose P=py,..., Pq) as defined in the algorithm. Then by
above, P = P + E for some E € R%*%. The goal is to show that ||IT — II|| < O(%) < O(vv).
We set ¥ = EFy + E7, where Ey is the sampling error, and F is the error due to privacy, In other

t _ _ ~
words, letp; = + > p and P = (py,...,p,); then Eg = P — Pand By = P — P.
j=1
We first analyse ||Ep||. Let IIY be the subspace spanned by the j-th subsample. We know that
the subspaces spanned by P/ = (p),...,p}) and the j-th subsample are the same. Therefore,

ITT — Y] € @(W#IDH) < v4/2 by Lemmata 2.4 and 4.5, and Corollary 2.7 of Singhal and
Steinke (2021). Therefore,

53] o (1—F1)

VE T VEk
t
H%lej—PH
-0 J=
vk
1< ‘
LIPS P
<0 =
VEk
1< d
< . et
=0 t 27 m

i=1
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of )

€ O(vv). (By our sample complexity.)

Next, we analyse |E1||. Ej is a matrix with i.i.d. entries from N(0,02). Therefore, by
Lemma 2.4 of Singhal and Steinke (2021), we have

B (ovd
NG EO(@)

co (r\/log(t)kdlog(k/é))

etvk
-
€eO0|— By our sample complexity.
( \/E) (By p plexity.)
[ d
€0 (’y >
m
€ O(vv). (By our sample complexity.)

Therefore, we have || E|| € O(yv).

Let E = Ep + E5, where Ep is the component of F in the subspace spanned by P, and E be
the orthogonal component. Let P’ = P + Ep. We will be analysing P with respect to P’.

As before, we will try to bound the distance between the subspaces spanned by P’ and P. The
quantities a, z12 remain unchanged, but b, zo; change.

b <[l Ep]
201 < || Epl|
Therefore, we get the final error:
o~ aza1 + bz1o
I-1I1 <
I = a? — b? — min{z3,, 23, }
< Y.
This completes our proof. |

This gives us the following theorem about Algorithm 6.

Theorem 26 Let Y € RY%4 pe symmetric, PSD matrix, such that for 1 < k < dand v < 1,
/\’;\:ES) < 2. Suppose 11 is the subspace spanned by the top k eigenvectors of X. Then for all

g,0, 8,1 > 0, there exists an (g, 6)-DP algorithm, that takes
o (dl-%-mlylog(d, ) }9)

g2

samples fromAN (0,3), and outputs a projection matrix 1L, such that with probability at least 1 —
O(B), [T — T} < 4.
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Proof The claim, but with error probability 0.35, is guaranteed from Lemma 25. Now, we just
have to boost the success probability. This can be done using Theorem 4.10 of Singhal and Steinke
(2021). |

Appendix D. Naive Estimator

In this section, we revisit the naive estimator presented in Kamath et al. (2019a) for well-conditioned
gaussians. We present a slightly modified version of the algorithm and its analysis that is tailored to
our setting.

Algorithm 7: Naive Private Gaussian Covariance Estimation NaiveEstimator, 5 5(X)

Input: A set of n samples X1, ..., X, from an unknown Gaussian. Parameters ¢, §, 8 > 0
Output: A covariance matrix M.

Set A1, ..., \g < EigenvalueEstimator, 5 5(X).
Set ks« 4.
Let S « {i € [n] : | Xi|3 < O(dk2log(n/B))}

Let
drolog(%)\/log(1/0
W@( 2 log(%) </>>
ne
Let M' + 13« X; X, + N where N;; ~ N(0,0?)

Let M be the Euclidean projection of M’ on the PSD cone.
return M

Lemma 27 (Analysis of NaiveEstimator) For every €,6, 3, k1, k2,n, NaiveEstimator, 53(X)
satisfies (g,0)-DP, and if X1, ..., X, are sampled i.i.d. from N(0,%) for k1l < ¥ =< kol and
satisfy (4)—(6), then with probability at least 1 — O(), it outputs M so that:

K1Nne n

A HE _ MHE <0 <52d2log(n/ﬁ)log(l/ﬁ)\/log(l/é) I \/d2+10g(1/,8)>.

2 15— M|, <0 <K2 drlog(1/5) | e log(n/0) ffu/ﬂ)\/log(l/a))
Proof We prove the lemma by proving the privacy and accuracy guarantees of Algorithm 7. We
first prove the privacy guarantee. Given two neighboring data sets X, X’ of size n which differ in
that one contains X; and the other contains X/, the truncated empirical covariance of these two data
sets can change in Frobenius norm by at most

! 1 1 dralog(n/B
H (Xz’XiT - Xé(Xé)T> ‘ < S IXiB+ = IX2 <0 ((/)) .
" rn n n

Thus the privacy guarantee follows immediately from Lemma 12.
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We now prove correctness. First, we have:

HE - MHE < HM - M/HE + HM/ B EHE
<M =M= 2+ 1M = Z||s

< Vinpt M= M, + || M= 3

(a)
< Vdr' N, + || M -5

_ 1 ¢
< Vs IVl + ||~ Y0 XX =8| + IVl
=1 »
®) . 1< T 1
< Vi HIN] + 1 XX =B+ [N
=1 by

Yo (W log(n/8) log(1/5) log<1/5>>

Rr1ne

o ( &+ 1og<1/ﬂ>> o (mdQ log(n/3) log"/*(1/8) 1og<1/6>)

NK1E

0 <m2d2 log(n/5) log(1/6) /oa(1/5) \/d2 + log(l/ﬂ)>

K1Ne n

where (a) holds because 1 3°. ¢ X; X7 is PSD, and M is the projection of M’ = 1 5> X, X.T +
N onto the PSD cone, so by Weyl’s inequality, the zeroed out eigenvalues have to be at most || NV ||2;
(b) is by the inequality HB%AB% < ||B||5 ||A|| 7 and the fact that ¥ > xI; and (c) is due to
Facts 21 and 18. "

Additionally, we have:

IS = My < ||B = M, +[|M" — M,
1 n
< ( n;XiXZT—Z

2z iZ (33x) (78x) -1

i=1

2o <m2\/d”’§<1/5)> +2|N],
Yo <Fm [TERS(1]5), a8 125(1/6)x/10g(1/5)> |

where (c) is by the sub-multiplicative property of the spectral norm, (d) is by Fact 21 and (e) is by
Theorem 16. |

+ ||N||2> + |V,
2

+2[|N||,
2
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Corollary 28 Suppose X1, ..., X, are sampled i.i.d. from N'(0,X) for k1l <X ¥ =< koll and satisfy
(4)—(6). Let 1 < k < d be the largest number, such that \,(X) > 72X\ (2) for 0 <5 < 1. If

0 <d3/2 - polylog(1/5, 1/6))

5&2

then with probability at least 1 — O(f), NaiveEstimator, s g .. (X) outputs M so that for each

1<i<k MNM) e [Aigm,mi(z)}.

Proof By Lemma 22 and our sample complexity, each eigenvalue of X is estimated correctly by
the empirical covariance up to a factor of v/2. Now, by Lemma 16 and our sample complexity,
|N||2 € O(k27?). By applying Weyl’s inequality (Lemma 19) for each eigenvalue 1 < i < k, the
claim follows. Note, that the eigenvalues corresponding to ¢ > k£ may not be estimated accurately,
but because || V|| is bounded, the corresponding estimates in Z cannot be more than 2\, (X) by
Weyl’s inequality. |

The following is an immediate consequence of Lemma 27.

Theorem 29 For every €, d, o, 3,> 0, kg > k1 > 0, the algorithm NaiveEstimator, s 3 is (¢, J)-
DP, and when given

hs 0 (d? +10g(1/8) , rad?log(n/ ) log(1/) log<1/5>>

)

a? K1OE

samples from N (0, X) satisfying k11 <X ¥ <X kol with probability at least 1 — O(3), it returns M
such that || — M||s < O(«).
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