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Abstract

The topic of robustness is experiencing a resurgence of interest in
the statistical and machine learning communities. In particular, robust
algorithms making use of the so-called median of means estima-
tor were shown to satisfy strong performance guarantees for many
problems, including estimation of the mean, covariance structure as
well as linear regression. In this work, we propose an extension of
the median of means principle to the Bayesian framework, leading
to the notion of the robust posterior distribution. In particular, we
(a) quantify robustness of this posterior to outliers, (b) show that
it satisfies a version of the Bernstein-von Mises theorem that con-
nects Bayesian credible sets to the traditional confidence intervals,
and (c) demonstrate that our approach performs well in applications.

Keywords: Robustness, Bayesian inference, posterior distribution, median of
means, Bernstein-von Mises theorem

1 Introduction.

Modern statistical and machine learning algorithms typically operate under
limited human supervision, therefore robustness - the ability of algorithms to
properly handle atypical or corrupted inputs - is an important and desirable
property. Robustness of the most basic algorithms, such as estimation of the
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2 MOM for Bayes

mean and covariance structure that serve as “building blocks” of more complex
methods, have received significant attention in the mathematical statistics and
theoretical computer science communities; the survey papers by Lugosi and
Mendelson (2019a); Diakonikolas and Kane (2019) provide excellent overview
of the recent contributions of these topics as well as applications to a vari-
ety of statistical problems. The key defining characteristics of modern robust
methods are (a) their ability to operate under minimal model assumptions; (b)
ability to handle high-dimensional inputs and (c) computational tractability.
However, many algorithms that provably admit strong theoretical guarantees
are not computationally efficient. In this work, we rely on a class of methods
that can be broadly viewed as risk minimization : the output (or the solution)
provided by such methods is always a minimizer of the properly defined risk,
or cost function. For example, estimation of the mean µ of a square-integrable
random variable Z can be viewed as minimization of the risk L(θ) = E(Z−θ)2

over θ ∈ R. Since the risk involves the expectation with respect to the unknown
distribution, its exact computation is impossible. Instead, risk minimization
methods introduce a robust data-dependent “proxy” of the risk function, and
attempt to minimize it instead. The robust empirical risk minimization method
by Brownlees et al (2015), the “median of means tournaments” developed by
Lugosi and Mendelson (2019b) and a closely related method due to Lecué and
Lerasle (2020) are the prominent examples of this approach. Unfortunately,
the resulting problems are computationally hard as they typically involve mini-
mization of general non-convex functions. In this paper, we propose a Bayesian
analogue of robust empirical risk minimization that allows one to replace non-
convex loss minimization by sampling that can be readily handled by many
existing MCMC algorithms. Moreover, we show that for the parametric mod-
els, our approach preserves one of the key benefits of Bayesian methods - the
“built-in” quantification of uncertainty - and leads to asymptotically valid con-
fidence sets. At the core of our method is a version of the median of means
principle, and our results demonstrate its potential beyond the widely studied
applications in the statistical learning framework.

Next, we introduce the mathematical framework used throughout the text.
Let X̃ be a random variable with values in some measurable space and

unknown distribution P . Suppose that X̃N :=
(
X̃1, . . . , X̃N

)
are the training

data – N i.i.d. copies of X̃. We assume that the sample has been modified in the
following way: an “adversary” replaces a random set of O < N observations by
arbitrary values, possibly depending on the sample. Only the corrupted values
XN := (X1, . . . , XN ) are observed.

Suppose that P has a density p with respect to a σ-finite measure µ (for
instance, the Lebesgue measure or the counting measure). We will assume
that p belongs to a family of density functions {pθ(·), θ ∈ Θ}, where Θ ⊂ Rd
is a compact subset, and that p ≡ pθ0 for some unknown θ0 in the interior
of Θ. We will also make the necessary identifiability assumption stating that
θ0 is the unique minimizer of L(θ) := E`(θ,X) over θ ∈ Θ, where `(θ, ·) is
the negative log-likelihood, that is, `(θ, ·) = − log pθ(·). Clearly, an approach
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based on minimizing the classical empirical risk LN (θ) := 1
N

∑N
j=1 `(θ,Xj) of

E`(θ,X) leads to familiar maximum likelihood estimator (MLE) θ∗N . At the
same time, the main object of interest in the Bayesian approach is the posterior
distribution, which is a random probability measure on Θ defined via

ΠN (B | XN ) =

∫
B

∏N
j=1 pθ(Xj)dΠ(θ)∫

Θ

∏N
j=1 pθ(Xj)dΠ(θ)

(1)

for all measurable sets B ⊆ Θ. Here, Π is the prior distribution with density
π(·) with respect to the Lebesgue measure. The following result, known as the
Bernstein-von Mises (BvM) theorem that is due to L. Le Cam in its present
form (see the book by Van der Vaart (2000) for its proof and discussion), is
one of the main bridges connecting the frequentist and Bayesian approaches.

Theorem (Bernstein-von Mises). Under the appropriate regularity assump-
tions on the family {pθ, θ ∈ Θ},∥∥∥∥ΠN −N

(
θ∗N ,

1

N
(I(θ0))

−1

)∥∥∥∥
TV

P−→ 0 ,

where θ∗N is the MLE, ‖·‖TV stands for the total variation distance, I(θ) is the

Fisher Information matrix and
P−→ denotes convergence in probability (with

respect to the distribution of the sample X̃N ).

In essence, BvM theorem implies that for a given 0 < α < 1, the 1−α cred-
ible set, i.e. the set of (1 − α) posterior probability, coincides asymptotically

with the set of (1−α) probability under the distribution N
(
θ∗N ,

1
N (I(θ0))

−1
)

,

which is well-known to be an asymptotically valid (1− α) “frequentist” confi-
dence interval for θ0, again under minimal regularity assumptions1. It is well
known however that the standard posterior distribution is, in general, not
robust: if the sample contains even one corrupted observation (referred to as an
“outlier” in what follows), the posterior distribution can concentrate arbitrarily
far from the true parameter θ0 that defines the data-generating distribution. A
concrete scenario showcasing this fact is given in Baraud et al (2020); another
illustration is presented below in example 2). The approach proposed below
addresses this drawback: the resulting posterior distribution (a) admits natu-
ral MCMC-type sampling algorithms and (b) satisfies quantifiable robustness
guarantees as well as a version of the Bernstein-von Mises theorem that is
similar to its classical counterpart in the outlier-free setting. In particular, the
credible sets associate with the proposed posterior are asymptotically valid
confidence intervals that are also robust to sample contamination.

1For instance, these are rigorously defined in the book by Van der Vaart (2000).
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Many existing works are devoted to robustness of Bayesian methods, and
we attempt to give a (necessarily limited) overview of the state of the art. The
papers by Doksum and Lo (1990) and Hoff (2007) investigated approaches
based on “conditioning on partial information,” while a more recent work by
Miller and Dunson (2015) introduced the notion of the “coarsened” posterior;
however, non-asymptotic behavior of these methods in the presence of outliers
has not been explicitly addressed. Another line of work on Bayesian robust-
ness models contamination by either imposing heavy-tailed likelihoods, like
the Student’s t-distribution, on the outliers (Svensen and Bishop, 2005), or by
attempting to identify and remove them, as was done by Bayarri and Berger
(1994).

As mentioned before, the approach followed in this work relies on a ver-
sion of the median of means (MOM) principle to construct a robust proxy for
the log-likelihood of the data and, consequently, a robust version of the poste-
rior distribution. The original MOM estimator was proposed by Nemirovsky
and Yudin (1983) and later, independently, by Jerrum et al (1986); Alon et al
(1999). Its versions and extensions were studied more recently by many authors
including Lerasle and Oliveira (2011); Lugosi and Mendelson (2019b); Lecué
and Lerasle (2020); Minsker (2020); we refer the reader to the surveys men-
tioned in the introduction for a more detailed literature overview. The idea of
replacing the empirical log-likelihood of the data by its robust proxy appeared
previously the framework of general Bayesian updating described by Bissiri
et al (2016), where, given the data and the prior, the posterior is viewed as the
distribution minimizing the loss expressed as the sum of a “loss-to-data” term
and a “loss-to-prior” term. In this framework, Jewson et al (2018) adopted
different types of f-divergences (such as the one corresponding to the Hellinger
distance), to the loss-to-prior term to obtain a robust analogue of the posterior;
this approach has been investigated further in Knoblauch et al (2019). Asymp-
totic behavior of related types of posteriors was studied by Miller (2021),
though the framework in that paper is not limited to parametric models while
imposing more restrictive regularity conditions than the ones required in the
present work. Various extensions for this class of algorithms were suggested,
among others, by Hooker and Vidyashankar (2014, based on so-called “robust
disparities”), Ghosh and Basu (2016, based on α-density power divergence),
Nakagawa and Hashimoto (2020), Bhattacharya et al (2019), and Matsubara
et al (2021, who used kernel Stein discrepancies in place of the log-likelihood).
Yet another interesting idea for replacing the log-likelihood by its robust alter-
native, yielding the so-called “ρ-Bayes” posterior, was proposed and rigorously
investigated by Baraud et al (2020). However, sampling from the ρ-posterior
appears to be computationally difficult, while most of the other works men-
tioned above impose strict regularity conditions on the model that, unlike our
results, exclude popular examples like the Laplace likelihood.
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1.1 Proposed approach.

Let θ′ ∈ Θ be an arbitrary fixed point in the relative interior of Θ. Observe

that the density of the posterior distribution dΠN (θ|XN )
dθ is proportional to

π(θ)e−N
∑N
j=1(`(θ,Xj)−`(θ

′,Xj)
N ; indeed, this is evident from equation 1 once the

numerator and the denominator are divided by
∏n
j=1 pθ′(Xj). The key idea

is to replace the average N−1
∑N

j=1 (`(θ,Xj)− `(θ′, Xj)) by its robust proxy

denoted L̂(θ) 2 and defined formally in equation (3) below, which gives rise to
the robust posterior distribution

Π̂N (B | XN ) =

∫
B

exp
(
−NL̂(θ)

)
π(θ)dθ∫

Θ
exp

(
−NL̂(θ)

)
π(θ)dθ

(2)

defined for all measurable sets B ⊆ Θ.

Remark 1 While it is possible to work with the log-likelihood `(θ,X) directly, it is
often easier and more natural to deal with the increments `(θ,X) − `(θ′, X). For
instance, in the Gaussian regression model with X = (Y, Z) ∈ R×Rd, Y = θTZ + ε

with likelihood pθ(y, z) ∝ exp
(
− (y−θT z)2

σ2

)
exp

(
− z

TΣz
2

)
and θ′ = 0, `(θ, (Y, Z))−

`(θ′, (Y, Z)) =
(
θTZ

)2
− 2Y · θTZ which is more manageable than `(θ, (Y, Z)) itself:

in particular, the increments do not include the terms involving Y 2.

Note that the density of Π̂N (B | XN ) is maximized for θ̂N =

argminθ∈Θ L̂(θ) − 1
N log π(θ). For instance, if the prior Π is the uniform dis-

tribution over Θ, then θ̂N = argminθ∈Θ L̂(θ) corresponds exactly to the
robust risk minimization problem which, as we’ve previously mentioned, is
hard due to non-convexity of the function L̂(θ). At the same time, sampling

from Π̂N (B | XN ) is possible, making the “maximum a posteriori” (MAP)

estimator θ̂ as well as the credible sets associated with Π̂N (B | XN ) acces-

sible. The robust risk estimator L̂(θ) employed in this work is based on the
ideas related to the median of means principle. The original MOM estima-
tor was proposed by Nemirovsky and Yudin (1983) and later by Jerrum et al
(1986); Alon et al (1999). Its versions and extensions were studied more
recently by many researchers including Audibert et al (2011); Lerasle and
Oliveira (2011); Brownlees et al (2015); Lugosi and Mendelson (2019b); Lecué
and Lerasle (2020); Minsker (2020). Let k ≤ N/2 be a positive integer and
{G1, G2, . . . , Gk} be k disjoint subsets (“blocks”) of {1, 2, . . . , N} of equal car-
dinality |Gj | = n ≥ N/k, j ∈ {1, 2, . . . , k}. For every θ ∈ Θ, define the block

2Since θ′ is fixed, we will suppress the dependence on θ′ in the notation for brevity.
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average

L̄j(θ) =
1

n

∑
i∈Gj

(`(θ,Xi)− `(θ′, Xj)),

which is the (increment of) empirical log-likelihood corresponding to the sub-
sample indexed by Gj . Next, let ρ : R 7→ R+ be a convex, even, strictly
increasing smooth function with bounded first derivative; for instance, a
smooth (e.g. convolved with an infinitely differentiable kernel) version of the
Huber’s loss H(x) = min

(
x2/2, |x| − 1/2

)
is an example of such function. Fur-

thermore, let {∆n}n≥1 be a non-decreasing sequence such that ∆n →∞ and
∆n = o(

√
n). Finally, define

L̂(θ) := argmin
z∈R

k∑
j=1

ρ

(√
n
L̄j(θ)− z

∆n

)
, (3)

which is clearly a solution to the convex optimization problem. Robustness
and non-asymptotic performance of L̂(θ) can be quantified as follows. Let

σ2(θ) = var (`(θ,X)− `(θ′, X)), and ∆̃n = max(σ(θ),∆n); then for all s, and
number of outliers O such that max(s,O) ≤ ck for some absolute constant
c > 0,

∣∣∣L̂(θ)− L(θ)
∣∣∣ ≤ ∆̃n

∆n
σ(θ)

√
s

N
+ ∆̃n

(
s+O
k
√
n

+

√
k

N
o (1)

)
(4)

with probability at least 1 − 2e−s, where o(1) → 0 as max(∆n, n) → ∞.

Put simply, under very mild assumptions on `(θ,X) − `(θ′, X), L̂(θ) admits
sub-Gaussian deviations around L(θ), moreover, it can absorb the number of
outliers that is of order k. We refer the reader to Theorem 3.1 in Minsker
(2018) for a uniform over θ version of this bound as well as more details. We
end this section with two technical remarks.

Remark 2 The classical MOM estimator corresponds to the choice ρ(x) = |x| which
is not smooth but is scale-invariant, in a sense that the resulting estimator does not
depend on the choice of ∆n. While the latter property is often desirable, we conjecture
that the posterior distribution based on such “classical” MOM estimator does not
satisfy the Bernstein-von Mises theorem, and that smoothness of ρ is important
beyond being just a technical assumption. This, perhaps surprising, conjecture is so
far only supported by our simulation results explained in Example 1.

Example 1 Let X̃N = (X̃1, . . . , X̃N ) be i.i.d. with normal distribution N (θ, 1), θ0 =
−30 and the prior distribution for θ is N (−29.50, 1). Furthermore, let ρ(x) = |x|. We
sample from the robust posterior distribution for the values of k = 20, 40, 60, 80 and
n = b1000/kc. The resulting plots are presented in Figure 1. The key observation is
that the posterior distributions are often multimodal and skewed, unlike the expected
“bell shape.”



MOM for Bayes 7

0
10

-30.15 -30.10 -30.05 -30.00 -29.95
k =  20
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Fig. 1 Posterior distribution Π̂N for Example 1. The dark blue curve is the density function
and the light blue area represents the 95% credible interval.

Remark 3 Let us mention that the posterior distribution Π̂N is a valid probability
measure, meaning that Π̂N (Θ | XN ) = 1. By the definition at display (2), it suffices

to show the denominator,
∫
e−NL̂(θ)π(θ)dθ, is finite. Indeed, note that L̂(θ) > L̂(θ̃N )

for all θ where θ̃N = argminθ∈Θ L̂(θ), hence∫
e−NL̂(θ)π(θ)dθ ≤ e−NL̂(θ̃N )

∫
Θ
π(θ)dθ.

Therefore, a sufficient condition for
∫
Θ e−NL̂(θ)π(θ)dθ being finite is L̂(θ̃N ) > −∞

a.s. This is guaranteed by the fact that under mild regularity assumptions, for any
θ ∈ Θ, `(θ, x) = − log pθ(x) > −∞, Pθ0 - almost surely.

2 Main results.

We are ready to state the main theoretical results for the robust posterior
distribution Π̂N (· | XN ). First, we will state them in a way that avoids
technical assumptions which can be found in the latter part of the section.
Recall that L(θ) = E`(θ,X) where `(θ, x) = − log pθ(x), and let σ(Θ) :=

supθ∈Θ var (`(θ,X)) and ∆̃ = max (∆n, σ(Θ)). The following theorem charac-

terizes robustness properties of the mode of the posterior Π̂N (· | XN ) defined
as

θ̂N = argmin
θ∈Θ

L̂(θ)− 1

N
log π(θ). (5)

Theorem 1 Under the appropriate regularity conditions on the function ρ, prior Π
and the family {pθ, θ ∈ Θ}, with probability at least 99%,∣∣∣θ̂N − θ0∣∣∣2 ≤ C

(
∆̃

(
O + 1

k
√
n

+

√
k

N
o(1)

))
+O

(
1√
N

)



8 MOM for Bayes

as long as O ≤ ck for some absolute constants c, C > 0. Here, o(1) is a function that
converges to 0 as n→∞.

In particular, stated inequality implies that as long as the number of blocks
containing outliers, whose cardinality is O, is not too large, the effect of these
outliers on the squared estimation error is limited, regardless of their nature
and magnitude. While the fact that the mode of Π̂N is a robust estimator of
θ0 is encouraging, one has to address the ability of the method to quantify
uncertainty to fully justify the title of the “posterior distribution.” This is
exactly the content of the following result. Let θ̃N = argminθ∈Θ L̂(θ); it can be
viewed as a mode of the posterior distribution corresponding to the uniform
prior on Θ.

Theorem 2 Assume the outlier-free framework. Under appropriate regularity con-
ditions on the prior Π and the family {pθ, θ ∈ Θ},∥∥∥∥Π̂N (· | XN )−N

(
θ̃N ,

1

N
(I(θ0))−1

)∥∥∥∥
TV

P−→ 0.

Moreover,
√
N
(
θ̃N − θ0

)
d−→ N

(
0, I−1(θ)

)
.

The message of this result is that in the ideal, outlier-free scenario, the
robust posterior distribution Π̂N asymptotically behaves like the usual pos-
terior distribution ΠN , and that the credible sets associated with it are
asymptotically valid confidence intervals. Technical requirements include a
condition on the growth of the number of blocks of data, namely k = o(nτ )
for some τ ∈ (0, 1] defined below. The main novelty here is the first, “BvM

part” of the theorem, while asymptotic normality of θ̃N has been previously
established by Minsker (2020).

We finish this section by listing and discussing the complete list of regularity
conditions that are required for the stated results to hold. The norm ‖·‖ refers
to the standard Euclidean norm everywhere below.

Assumption 1 The function ρ : R 7→ R+ is convex, even, and such that

(i) ρ′(z) = z for |z| ≤ 1 and ρ′(z) = const for |z| ≥ 2.
(ii) z − ρ′(z) is nondecreasing on R+;

(iii) ρ(5) is bounded and Lipschitz continuous.

One example of such ρ is the smoothed Huber’s loss: let

H(z) =
z2

2
I {|z| ≤ 3/2}+

3

2

(
|z| − 3

4

)
I {|z| > 3/2} .
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Moreover, set ψ(z) = Ce
− 4

1−4z2 I
{
|z| ≤ 1

2

}
. Then ρ(z) = (H ? ψ)(z), where ?

denotes the convolution, satisfies assumption 1. Condition (iii) on the higher-
order derivatives is technical in nature and can likely be avoided at least in
some examples; in numerical simulations, we did not notice the difference
between results based on the usual Huber’s loss and its smooth version. Next
assumption is a standard requirement related to the local convexity of the loss
function L(θ) at its global minimum θ0.

Assumption 2 The Hessian ∂2
θL(θ0) exists and is strictly positive definite.

In particular, this assumption ensures that in a sufficiently small neighbor-
hood of θ0, c(θ0)‖θ−θ0‖2 ≤ L(θ)−L(θ0) ≤ C(θ0)‖θ−θ0‖2 for some constants
0 < c(θ0) ≤ C(θ0) <∞. The following two conditions allow one to control the
“complexity” of the class {`(θ, ·), θ ∈ Θ}.

Assumption 3 For every θ ∈ Θ, the map θ′ 7→ `(θ′, x) is differentiable at
θ for P -almost all x (where the exceptional set of measure 0 can depend
on θ), with derivative ∂θ`(θ, x). Moreover, ∀θ ∈ Θ, the envelope function
V(x; δ) := sup‖θ′−θ‖≤δ

∥∥∂θ`(θ′, x)
∥∥ of the class

{
∂θ`(θ

′, ·) : ‖θ′ − θ‖ ≤ δ
}

satisfies

EV2+τ (X; δ) <∞ for some τ ∈ (0, 1] and a sufficiently small δ = δ(θ).

An immediate implication of this assumption is the fact that the function
θ 7→ `(θ, x) is locally Lipschitz. It other words, for any θ ∈ Θ, there exists a
ball B(θ, r(θ)) of radius r(θ) such that for all θ′, θ′′ ∈ B(θ, r(θ)) |`(θ′, x) −
`(θ′′, x)| ≤ V(x; δ)‖θ′ − θ′′‖. In particular, this condition suffices to prove

consistency of the estimator θ̃N .
The following condition is related to the modulus of continuity of the

empirical process indexed by the gradients ∂θ`(θ, x). It is similar to the typ-
ical assumptions required for the asymptotic normality of the MLE, such as
Theorem 5.23 in the book by Van der Vaart (2000). Define

ωN (δ) = E sup
‖θ−θ0‖≤δ

∥∥∥√N (PN − P ) (∂θ`(θ, ·)− ∂θ`(θ0, ·))
∥∥∥ ,

where PN is the empirical distribution by X̃N .

Assumption 4 The following relation holds:

lim
δ→0

lim sup
N→∞

ωN (δ) = 0.

Moreover, the number of blocks k satisfies k = o(nτ ) as k, n→∞.

Limitation on the growth of k is needed to ensure that the bias of the esti-
mator θ̃N is of order o

(
N−1/2

)
, a fact that we rely on in the proof of Theorem
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2. Finally, we state a mild requirement imposed on the prior distribution; it is
only slightly more restrictive than its counterpart in the classical BvM theorem
(for example, Theorem 10.1 in the book by Van der Vaart (2000)).

Assumption 5 The density π of the prior distribution Π is positive and bounded on
Θ, and is continuous on the set {θ : ‖θ − θ0‖ < cπ} for some positive constant cπ.

Remark 4 Most commonly used families of distributions satisfy assumptions 2-4.
For example, this is easy to check for the normal, Laplace or Poisson families in
the location model where pθ(x) = f(x − θ), θ ∈ Θ. Other examples covered by our
assumptions include the linear regression with Gaussian or Laplace-distributed noise.
The main work is usually required to verify assumption 4; it relies on the standard
tools for the bounds on empirical processes for classes that are Lipschitz in parameter
or have finite Vapnik-Chervonenkis dimension. Examples can be found in the books
by Van der Vaart (2000) and Van Der Vaart et al (1996).

3 Numerical examples and applications.

We will illustrate our theoretical findings by presenting numerical examples
below. The loss function that we use is Huber’s loss defined before. While,
strictly speaking, it does not satisfy the smoothness requirements, we found
that it did not make a difference in our simulations. Algorithm for sampling
from the posterior distributions was based on the “No-U-Turn sampler” variant
of Hamiltonian Monte Carlo method (Hoffman and Gelman, 2014). Robust

estimator of the log-likelihood L̂(θ) are approximated via the gradient descent
algorithm at every θ. Our first example demonstrates that using Huber’s loss
in the framework of Example 1 is enough for BvM theorem to hold.

Example 2 We consider two scenarios: in the first one, the data are N = 1000 i.i.d.
copies of N (−30, 1) random variables. In the second scenario, data are generated in
the same way except that 40 randomly chosen observations are replaced with 40 i.i.d.
copies of N (104, 1) distributed random variables. Results are presented in figures
2 and 3, where the usual posterior distribution is plotted as well for comparison
purposes. The main takeaway from this simple example is that the proposed method
behaves as expected: as long as the number of blocks k is large enough, robust
posterior distribution concentrates most of its “mass” near the true value of the
unknown parameter, while the usual posterior distribution is negatively affected by
the outliers. At the same time, in the outlier-free regime, both posteriors perform
similarly.

Example 3 In this example, we consider a non-synthetic dataset in the linear regres-
sion framework. The dataset in question was provided by Cortez et al (2009) and
describes the qualities of different samples of red and white wine. It contains 11 “sub-
jective” features such as fixed acidity, pH, alcohol, etc., and one “objective” feature,
the scoring of wine quality; 4898 white wine samples are selected to perform the lin-
ear regression where the objective feature is the response and the subjective features
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Fig. 2 Posterior distribution Π̂N for Example 2, scenario 1. The blue curves and blue
shaded regions correspond to the density function and 95% credible sets of Π̂N whereas
dashed red curves and red shaded region are the standard posterior and its corresponding
95% credible set.
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Fig. 3 Posterior distribution Π̂N for Example 2, scenario 2.

are the regressors. It is assumed that the data is sampled from the model

Y = β0 + β1X1 + β2X2 + . . . β8X8 + ε ,

where β0 is the intercept, Y is the response, X1, X2, . . . , X8 are the chosen regressors
(see detailed variable names in Table 1) along with the corresponding coefficients
β1, β2, . . . , β8, and ε is the random error with N(0, σ2) distribution. Here we remark
that, for simplicity only 8 out of 11 “subjective” features are selected such that this
model agrees with the OLS linear regression model generated by best subset selection
with minimization of BIC. In the second experiment, 10 randomly chosen response
variables are replaced with N (1000, 10) random outliers. In both cases, the priors for
βj are set to be N(0, 102) for every j, and the prior for σ is the uniform distribution
on (0, 1]. The block size n is set to be 158 and the number of blocks k is 31. The MAP
estimates of βj ’s and σ, as well as the two end points of the 95% credible intervals are

reported in Table 1. These plots yet again demonstrate that the posterior Π̂N , unlike
its standard version, shows stable behavior when the input data are corrupted.
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Table 1 MAP estimates of the intercept, regression coefficients and the standard
deviation σ, left and right end points of 95% credible intervals in parentheses.

variable name Π̂N

intercept −0.002(−0.026, 0.022)
fixed.acidity 0.065(0.027, 0.101)

volatile.acidity −0.207(−0.232,−0.183)
residual.sugar 0.453(0.381, 0.536)

free.sulfur.dioxide 0.077(0.051, 0.102)
density −0.487(−0.600,−0.372)

pH 0.125(0.093, 0.160)
sulphates 0.075(0.049, 0.101)
alcohol 0.287(0.227, 0.350)
σ 0.852(0.835, 0.868)

4 Discussion.

The proposed extension of the median of means principle to Bayesian infer-
ence yields a version of the posterior distribution possessing several desirable
characteristics, such as (a) robustness, (b) valid asymptotic coverage and (c)
computational tractability. In addition, the mode of this posterior distribu-
tion serves as a robust alternative to the maximum likelihood estimator. The
computational cost of our method is higher compared to the usual posterior dis-
tribution as we need to solve a one-dimensional convex optimization problem
to estimate the expected log-likelihood, however, the method is still practi-
cal and, unlike many existing alternatives with similar theoretical properties,
can be implemented with many off the shelf sampling packages. As with many
MOM-based methods, the main “tuning parameter” is the number of blocks
k: while larger k increases robustness, smaller values k reduce the bias in the
estimation of the likelihood. In many examples however, this bias is far from
the worst case scenario, and we observed that in our simulations, the method
behaves well even when the size of each “block” is small. As a practical rule
of a thumb, we recommend setting k �

√
N if no prior information about the

number of outliers is available.
Now, let us discuss the drawbacks. First of all, the requirement for Θ to

be compact is quite restrictive, and is typically necessary to ensure that the
quantity σ(Θ) = supθ∈Θ var (`(θ,X)) appearing in our bounds is finite. This

root of this requirement is related to the fact that L̂(θ), viewed as an estimator
of the mean, is not scale-invariant. At the same time, compactness assumption
is satisfied if one has access to some preliminary, “low-resolution” proxy θ̃ of
θ0 such that ‖θ0− θ̃‖ ≤ R for some, possibly large, R > 0. Second, our method
is currently tailored only for the case of i.i.d. data and the parametric models,
which is the most natural setup that is natural for demonstrating the “proof
of concept.” At the same time, it would be interesting to obtain practical
and theoretically sound extensions that are applicable in more challenging
frameworks.
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Fig. 4 Posterior distribution Π̂N for Example 3, no outliers.
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Fig. 5 Posterior distribution Π̂N for Example 3, with outliers.

5 Proofs.

This section explains the key steps behind the proofs of our mains results. The
complete argument leading to Theorem 2 is rather long and technical. Here,
we will outline the main ideas of the proof and the reduction steps that are
needed to transform the problem into an easier one, while the missing details
are included in the supplementary material.
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Fig. 6 Standard posterior distribution for Example 3, with outliers.

6 Proof of Theorem 1.

In view of assumption 2, ‖θ − θ0‖2 ≤ c′(θ0) (L(θ)− L(θ0)) whenever ‖θ − θ0‖
is sufficiently small. Hence, if we show that θ̂N satisfies this requirement, we
would only need to estimate L(θ̂N ) − L(θ0). To this end, denote L(θ, θ′) =
L(θ)− L(θ′), and observe that

L(θ̂N , θ
′) = L(θ̂N , θ

′)− L̂(θ̂N ) + L̂(θ̂N ) +
1

N
log(1/π(θ̂N ))− 1

N
log(1/π(θ̂N ))

≤ L(θ̂N , θ
′)− L̂(θ̂N ) + L̂(θ0) +

1

N
log

(
π(θ̂N )

π(θ0)

)

≤ L(θ0, θ
′) + 2 sup

θ∈Θ

∣∣∣L(θ, θ′)− L̂(θ)
∣∣∣+

1

N
log

(
π(θ̂N )

π(θ0)

)
.

If π(θ̂N ) ≤ π(θ0), the last term above can be dropped without chang-
ing the inequality. On the other hand, π(θ) is bounded and π(θ0) > 0,
π(θ̂N )
π(θ0) ≤

‖π‖∞
π(θ0) , whence the last term is at most C(π,θ0)

N . Given ε > 0, assump-

tion 2 implies that there exists δ > 0 such that inf‖θ−θ0‖≥ε L(θ) > L(θ0) + δ.

Let N be large enough so that C(π,θ0)
N ≤ δ/2, whence P

(
‖θ̂N − θ0‖ ≥ ε

)
≤

P
(

supθ∈Θ|L̂(θ)− L(θ, θ′)| > δ/2
)

. It follows from Lemma 2 in Minsker (2020)
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(see also Theorem 3.1 in Minsker (2018)) that under the stated assumptions,

sup
θ∈Θ

∣∣∣L̂(θ)− L(θ, θ′)
∣∣∣ ≤ o(1) + C∆̃

O
k
√
n

with probability at least 99% as long as n, k are large enough and O/k is
sufficiently small. Here, o(1) is a function that tends to 0 as n → ∞. This

shows consistency of θ̂N . Next, we will provide the required explicit upper
bound on ‖θ̂N − θ0‖. As we’ve demonstrated above, it suffices to find an

upper bound for L(θ̂N ) − L(θ0, θ
′). We will apply the result of Theorem

2.1 in Mathieu and Minsker (2021) to deduce that for C large enough,

L(θ̂N ) − L(θ0) ≤ C

(
∆̃

(
O+1
k
√
n

+
√

k
N o(1)

))
+ O

(
1√
N

)
with probability at

least 99%. To see this, it suffices to notice that in view of Lemma 6 in the sup-

plementary material, E supθ∈Θ

∣∣∣ 1
N

∑N
j=1 `(θ,Xj)− `(θ′, Xj)− L(θ, θ′)

∣∣∣ ≤ C√
N

where C may depend on Θ and the class {pθ, θ ∈ Θ}.

6.1 Proof of Theorem 2 (sketch).

The high-level idea of the proof is fairly standard and consists in obtaining
a proper (quadratic) local approximation of L̂(θ) in the neighborhood of θ0,
coupled with careful control of the remainder terms. However, the difficulty
that one has to overcome is the fact that, unlike the empirical log-likelihood,
the robust estimator L̂(θ) is not linear in − log pθ(X). To do so, we develop the
technical tools that are based on the existing results in the papers by Minsker
(2020, 2018).

In view of the well-known property of the total variation distance,∥∥∥∥Π̂N −N
(
θ̃N ,

1

N
(∂2
θL(θ0))−1

)∥∥∥∥
TV

=
1

2

∫
Θ

∣∣∣∣∣ π(θ)e−NL̂(θ)∫
Θ
π(θ′)e−NL̂(θ′)dθ′

−N
d/2|∂2

θL(θ0)|1/2

(2π)d/2
e−

1
2N(θ−θ̃N )T ∂2

θL(θ0)(θ−θ̃N )

∣∣∣∣∣dθ.
Next, let us introduce the new variable h =

√
N(θ − θ0), multiply the

numerator and the denominator on the posterior by NL̂(θ0), and set

κN (h) = −N(L̂(θ0 + h/
√
N)− L̂(θ0))

− N

2
(∂θL̂(θ0))T (∂2

θL(θ0))−1∂θL̂(θ0), (6)

and KN =
∫
Rd π(θ0 + h/

√
N)eκN (h)dµ(h). The total variation distance

can then be equivalently written as
∥∥∥Π̂N −N

(
θ̃N ,

1
N (∂2

θL(θ0))−1
)∥∥∥

TV
=
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1
2

∫ ∣∣∣π(θ0+h/
√
N)eκN (h)

KN
− |∂

2
θL(θ0)|1/2

(2π)d/2
e−

1
2 (h−

√
N(θ̃N−θ0))T ∂2

θL(θ0)(h−
√
N(θ̃N−θ0))

∣∣∣dh.

The function π(θ0+h/
√
N)eκN (h)/KN can be viewed a pdf of a new probability

measure Π̂′N . Thus it suffices to show that∥∥∥Π̂′N −N
(√

N(θ̃N − θ0), (∂2
θL(θ0))−1

)∥∥∥
TV

P−→ 0 .

Since θ0 is the unique minimizer of L(θ), ∂θL(θ0) = 0. Next, define H(θ, z) =∑k
j=1 ρ

′
(√

n
L̄j(θ)−z

∆n

)
; it is twice differentiable since both ρ and ` are. It is

shown in the proof of Lemma 4 in Minsker (2020) that ∂zH(θ, L̂(θ0)) 6= 0

with high probability. Therefore, a unique mapping θ 7→ L̂(θ) exists around

the neighborhood of θ0 and so do ∂θL̂(θ0) and ∂2
θ L̂(θ0). Denote ZN =

−(∂2
θL(θ0))−1

√
N ∂θL̂(θ0). The following result, proven in the supplementary

material, essentially establishes stochastic differentiability of L̂(θ) at θ = θ0.

Lemma 1 The following relation holds:
√
N
(
θ̃N − θ0

)
− ZN

P−→ 0.

In view of the lemma, the total variation distance between the nor-

mal laws N
(√

N(θ̃N − θ0),
(
∂2
θL(θ0)

)−1
)

and N
(
ZN , (∂

2
θL(θ0))−1

)
con-

verges to 0 in probability. Hence one only needs to show that∥∥∥Π̂′N −N
(
ZN , (∂

2
θL(θ0))−1

)∥∥∥
TV

P−→ 0. Let

λN (h) = −1

2
(h− ZN )T∂2

θL(θ0)(h− ZN ) (7)

and observe that as long as one can establish that∫
Rd

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dh P−→ 0 , (8)

we will be able to conclude that∣∣∣KN − (2π)d/2|∂2
θL(θ0)|−1π(θ0)

∣∣∣
=

∣∣∣∣KN −
∫
Rd
π(θ0)eλN (h)dµ(h)

∣∣∣∣
≤
∫
Rd

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dh P−→ 0,

so that KN
P−→ (2π)d/2|∂2

θL(θ0)|−1π(θ0). This further implies that
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Rd

∣∣∣∣π(θ0 + h/
√
N)eκN (h) − KN |∂2

θL(θ0)|
(2π)d/2

eλN (h)

∣∣∣∣ dh
≤
∫
Rd

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dµ(h)

+

∣∣∣∣π(θ0)− KN |∂2
θL(θ0)|

(2π)d/2

∣∣∣∣ ∫
Rd
eλN (h)dh

=

∣∣∣∣π(θ0)− KN |∂2
θL(θ0)|

(2π)d/2

∣∣∣∣ (2π)d/2

|∂2
θL(θ0)|

+

∫
Rd

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dh P−→ 0,

and the desired result would follow. Therefore, it suffices to establish that
relation (8) holds. Moreover, since π = 0 outside of a compact set Θ, it is
equivalent to showing that∫

Θ′

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dµ(h)
P−→ 0, (9)

where Θ′ = {h : θ0 + h/
√
N ∈ Θ}. Note that

∂θL̂(θ0 + h/
√
N)− ∂θL̂(θ0) =

1√
N
∂2
θ L̂(θ0)h+ oP (‖h‖/

√
N) .

An argument behind the proof of Lemma 1 yields (again, we present the miss-
ing details in the technical supplement) the following representation for κN (h)
defined in (6):

κN (h) = −
√
NhT∂θL̂(θ0)− 1

2
hT∂2

θL(θ0)h

− N

2
(∂θL̂(θ0))T (∂2

θL(θ0))−1∂θL̂(θ0)

−N
(
R1(θ0 + h/

√
N) +R2(θ0 + h/

√
N)
)
. (10)

Let us divide Θ′ into 3 regions: A1
N = {h ∈ Θ′ : ‖h‖ ≤ ‖h0

N‖}, A2
N = {h ∈

Θ′ : ‖h0
N‖ < ‖h‖ ≤ δ

√
N} and A3

N = {h ∈ Θ′ : δ
√
N < ‖h‖ ≤ R

√
N}

where δ is a sufficiently small positive number and R is a sufficiently large so
that {θ ∈ Rd : ‖θ − θ0‖ ≤ R} contains Θ. Finally, h0

N is chosen such that
‖h0

N‖ → ∞, ‖h0
N/
√
N‖ → 0 and that satisfies an additional growth condition

specified in Lemma 8 in the supplement. The remainder of the proof is technical
and is devoted to proving that each part of the integral (9) corresponding
to A1

N , A
2
N , A

3
N converges to 0. Details are presented in the supplementary

material.
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A Preliminary results.

In this section, we introduce some of the technical tools that will be used in
the proofs of our main results. Lemmas 2 - 5 stated below were established in
Minsker (2020), and therefore will be given without the proofs. Let Θ′ ⊂ Θ be
a compact set, and define

∆̃(Θ′) := max(∆n, σ
2(Θ′)) .

The following lemma provides a high probability bound for
∣∣∣L̂(θ)− L(θ)

∣∣∣ that

holds uniformly over Θ′ ⊂ Θ.

Lemma 2 Let L = {`(θ, ·), θ ∈ Θ} be a class of functions mapping S to R, and

assume that supθ∈Θ E |`(θ,X)− L(θ)|2+τ < ∞ for some τ ∈ [0, 1]. Then there

exist absolute constants c, C > 0 and a function gτ,P (x) satisfying gτ,P (x)
x→∞

={
o(1), τ = 0,

O(1), τ > 0
such that for all s > 0, n and k satisfying

s√
k∆n

E sup
θ∈Θ′

1√
N

N∑
j=1

∣∣`(θ,Xj))− L(θ)
∣∣+ gτ,P (n) sup

θ∈Θ′

E |`(θ,X)− L(θ)|2+τ

∆2+τ
n nτ/2

≤ c,

the following inequality holds with probability at least 1− 1
s :

sup
θ∈Θ′

∣∣∣L̂(θ)− L(θ)
∣∣∣ ≤ C[s · ∆̃(Θ′)

∆n
E sup
θ∈Θ′

∣∣∣∣∣∣ 1

N

N∑
j=1

(
`(θ,Xj)− L(θ)

)∣∣∣∣∣∣
+ ∆̃(Θ′)

(
gτ,P (n)
√
n

sup
θ∈Θ′

E |`(θ,X)− L(θ)|2+τ

∆2+τ
n nτ/2

)]
.

This lemma implies that as long as
E supθ∈Θ′ N

−1/2
∑N

j=1 |`(θ,Xj)− L(θ)| = O(1) and σ2(Θ′) . ∆n = O(1),

sup
θ∈Θ′

∣∣∣L̂(θ)− L(θ)
∣∣∣ = Op(N

−1/2 + n−(1+τ)/2) .

Next, Lemma 3 below establishes consistency of the estimator θ̃N that is a
necessary ingredient in the proof of the Bernstein-von Mises theorem.

Lemma 3 θ̃N → θ0 in probability as n,N/n→∞.

The following lemma establishes the asymptotic equicontinuity of the pro-
cess θ 7→ ∂θL̂(θ) − ∂θL(θ) at θ0 (recall that the existence of ∂θL̂(θ) at the
neighborhood around θ0 has bee justified in the proof of Theorem 2).



22 MOM for Bayes

Lemma 4 For any ε > 0,

lim
δ→0

lim sup
k,n→∞

P

(
sup

‖θ−θ0‖≤δ

∥∥∥√N (∂θL̂(θ)− ∂θL(θ)−
(
∂θL̂(θ0)− ∂θL(θ0)

))∥∥∥ ≥ ε) = 0.

This result combined with Lemma 3 yields a useful corollary. Note that
due to consistency of θ̃N ,

∂θL(θ̃N )− ∂θL(θ0) = ∂2
θL(θ0)

(
θ̃N − θ0

)
+ op

(∥∥∥θ̃N − θ0

∥∥∥) . (11)

On the other hand,

∂θL(θ̃N )− ∂θL(θ0) = ∂θL̂(θ̃N )− ∂θL̂(θ0)

+
(
∂θL(θ̃N )− ∂θL̂(θ̃N )

)
−
(
∂θL(θ0)− ∂θL̂(θ0)

)
= ∂θL̂(θ̃N )− ∂θL̂(θ0) + rN , (12)

where rN =
(
∂θL(θ̃N )− ∂θL̂(θ̃N )

)
−
(
∂θL(θ0)− ∂θL̂(θ0)

)
. Note that for any

δ > 0,

√
N‖rN‖ ≤

√
N sup
‖θ−θ0‖≤δ

∥∥∥(∂θL̂(θ)− ∂θL(θ)
)
−
(
∂θL̂(θ0)− ∂θL(θ0)

)∥∥∥
+
√
N‖rN‖I{‖θ̃N − θ0‖ > δ} .

The first term converges to 0 in probability by Lemma 4 the second term
converges to 0 in probability by Lemma 3. Therefore,

∂2
θL(θ0)

(
θ̃N − θ0

)
+ o

(
‖θ̃N − θ0‖

)
= −

(
∂θL̂(θ0)− ∂θL(θ0)

)
+ op(N

−1/2) .

Under assumptions of the following Lemma 5,
√
N
(
∂θL̂(θ0)− ∂θL(θ0)

)
is asymptotically (multivariate) normal, therefore, ‖∂θL̂(θ0) − ∂θL(θ0)‖ =
Op(N

−1/2). Moreover, ∂2
θL(θ0) is non-singular by Assumption 2. It follows

that ‖θ̃N − θ0‖ = Op(N
−1/2), and we conclude that

√
N(θ̃N − θ0) = −

(
∂2
θL(θ0)

)−1√
N
(
∂θL̂(θ0)− ∂θL(θ0)

)
+ op(1) . (13)

Lemma 5 The following asymptotic relations hold:
√
N
(
∂θL̂(θ0)− ∂θL(θ0)

)
d−→ N (0, I(θ0)) and

√
N
(
θ̃N − θ0

)
d−→ N

(
0, I−1(θ0)

)
.
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The following lemma demonstrates that empirical processes indexed by
classes that are Lipschitz in parameter (for example, satisfying assumption
3) are “well-behaved.” This fact is well-known but we outline the proof for
reader’s convenience.

Lemma 6 Let F =
{
fθ, θ ∈ Θ′ ⊆ Rd

}
be a class of functions that is Lipschitz in

parameter, meaning that |fθ1(x)− fθ2(x)| ≤M(x)‖θ1 − θ2‖. Moreover, assume that

EM2(X) <∞ for some p ≥ 1. Then

E sup
θ1,θ2∈Θ′

1√
n

∣∣∣∣∣∣
n∑
j=1

(
fθ1(Xj)− fθ2(Xj)− P (fθ1 − fθ2)

)∣∣∣∣∣∣
≤ C
√
ddiam(Θ′, ‖ · ‖)E‖M‖L2(Πn).

Proof Symmetrization inequality yields that

E sup
θ1,θ2∈Θ′

1√
n

∣∣∣∣∣∣
n∑
j=1

(
fθ1(Xj)− fθ2(Xj)− P (fθ1 − fθ2)

)∣∣∣∣∣∣
≤ CE sup

θ1,θ2∈Θ′

1√
n

∣∣∣∣∣∣
n∑
j=1

εj
(
fθ1(Xj)− fθ2(Xj)

)∣∣∣∣∣∣
= CEXEε sup

θ1,θ2∈Θ′

1√
n

∣∣∣∣∣∣
n∑
j=1

εj
(
fθ1(Xj)− fθ2(Xj)

)∣∣∣∣∣∣ .
As the process f 7→ 1√

n

∑n
j=1 εj

(
fθ1(Xj)− fθ2(Xj)

)
is sub-Gaussian condition-

ally on X1, . . . , Xn, its (conditional) Lp-norms are equivalent to L1 norm. Hence,
Dudley’s entropy bound implies that

Eε sup
θ1,θ2∈Θ′

1√
n

∣∣∣∣∣∣
n∑
j=1

εj
(
fθ1(Xj)− fθ2(Xj)

)∣∣∣∣∣∣
≤ CEε sup

θ1,θ2∈Θ′

1√
n

∣∣∣∣∣∣
n∑
j=1

εj
(
fθ1(Xj)− fθ2(Xj)

)∣∣∣∣∣∣ ≤ C
∫ Dn(Θ′)

0
H1/2(z, Tn, dn)dz,

where d2
n(fθ1 , fθ2) = 1

n

∑n
j=1

(
fθ1(Xj)− fθ2(Xj)

)2
, Tn ={

(fθ(X1), . . . , fθ(Xn)), θ ∈ Θ′
}
⊆ Rn and Dn(Θ′) is the diameter of Θ with

respect to the distance dn. As fθ(·) is Lipschitz in θ, we have that d2
n(fθ1 , fθ2) ≤

1
n

∑n
j=1M

2(Xj)‖θ1 − θ2‖2, implying that Dn(Θ′) ≤ ‖M‖L2(Πn)diam(Θ′, ‖ · ‖) and

H(z, Tn, dn) ≤ H
(
z/‖M‖L2(Πn),Θ

′, ‖ · ‖
)
≤ log

(
C

diam(Θ′, ‖ · ‖) ‖M‖L2(Πn)

z

)d
.

(14)
Therefore, ∫ Dn(Θ′)

0
H1/2(z, Tn, dn)dz ≤ C

√
ddiam(Θ′, ‖ · ‖) · ‖M‖L2(Πn)
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and

EXEε sup
θ1,θ2∈Θ′

1√
n

∣∣∣∣∣∣
n∑
j=1

εj
(
fθ1(Xj)− fθ2(Xj)

)∣∣∣∣∣∣ ≤ C√ddiam(Θ′, ‖·‖)E1/2‖M‖2L2(Πn).

(15)
�

Next are three lemmas that we rely on in the proof of Theorem 2. Define

rN (θ) =
(
∂θL(θ)− ∂θL̂(θ)

)
−
(
∂θL(θ0)− ∂θL̂(θ0)

)
.

Lemma 7 For any θ ∈ Θ,

L̂(θ) = L̂(θ0) + (θ − θ0)T ∂θL̂(θ0) +
1

2
(θ − θ0)T ∂2

θL(θ0)(θ − θ0) +R1(θ) +R2(θ) ,

where R1(θ) and R2(θ) are two functions such that for any θ satisfying ‖θ−θ0‖ ≤ δ,

R1(θ) ≤ ‖θ − θ0‖ sup
θ
‖rN (θ)‖ , and sup

θ

∣∣∣∣ R2(θ)

‖θ − θ0‖2

∣∣∣∣→ 0 ,

as δ → 0.

Let Gθ(t) = L̂ (θ0 + tv) where v = θ−θ0 and note that G′θ(t) = vT∂θL̂(θ0+
tv). Then

L̂(θ) = L̂(θ0) +

∫ 1

0

G′θ(s)ds = L̂(θ0) +

∫ 1

0

G′θ(0)ds+

∫ 1

0

(G′θ(s)−G′θ(0)) ds .

(16)

The first integral equals ∂θL̂(θ0)(θ−θ0). For the second integral, note that the
reasoning similar to the one behind equation (11) yields that for any θ′

∂θL̂(θ′)− ∂θL̂(θ0)− rN (θ′) = ∂2
θL(θ0)(θ′ − θ0) +R(θ′ − θ0) ,

where R(θ− θ0) is a vector-valued function such that R(θ− θ0)/‖θ− θ0‖ → 0
as θ → θ0. Therefore, for any s ∈ (0, 1)

G′θ(s)−G′θ(0) = vT
(
∂θL̂(θ0 + sv)− ∂θL̂(θ0)

)
= s vT∂2

θL(θ0)v + vT rN (θ0 + sv) + vTR(sv),

implying that

∫ 1

0

(G′θ(s)−G′θ(0)) ds =

∫ 1

0

(
s vT∂2

θL(θ0)v + vT rN (θ0 + sv) + vTR(sv)
)
ds

=
1

2
vT∂2

θL(θ0)v +

∫ 1

0

vT rN (θ0 + sv)ds+

∫ 1

0

vTR(sv)ds .



MOM for Bayes 25

Denoting the last two terms R1(θ) and R2(θ) respectively, and combining the
previous display with equation (16), we deduce that

L̂(θ) = L̂(θ0) + ∂θL̂(θ0)(θ − θ0) +
1

2
(θ − θ0)T∂2

θL(θ0)(θ − θ0) +R1(θ) +R2(θ).

Moreover,∫ 1

0

vT rN (θ0 + sv)ds ≤
∫ 1

0

‖v‖ sup
t∈[0,1]

‖rN (θ0 + tv)‖ds = ‖v‖ sup
t∈[0,1]

‖rN (θ0 + tv)‖ .

Therefore, for δ > 0 such that ‖θ − θ0‖ ≤ δ, R1(θ) ≤ ‖θ −
θ0‖ sup‖θ−θ0‖≤δ ‖rN (θ)‖ . Furthermore,

∫ 1

0

vTR(sv)ds ≤
∫ 1

0

‖v‖ sup
t∈[0,1]

‖R(tv)‖ds = ‖v‖ sup
t∈[0,1]

‖R(tv)‖ .

and

R2(θ0 + tv)

‖v‖2
≤

supt∈[0,1] ‖R(tv)‖
‖v‖

≤ sup
t∈[0,1]

∥∥∥∥R(tv)

‖tv‖

∥∥∥∥ ,
Thus, sup‖θ−θ0‖≤δ

∣∣‖R2(θ)‖/‖θ − θ0‖2
∣∣ ≤ sup‖θ−θ0‖≤δ ‖R(θ − θ0)‖ /‖θ − θ0‖

which converges to 0 as δ → 0.

Lemma 8 There exits a sequence h0
N such that ‖h0

N‖ → ∞, ‖h0
N/
√
N‖ → 0 and

sup
h:‖h‖≤‖h0

N‖

∣∣∣N (R1(θ0 + h/
√
N) +R2(θ0 + h/

√
N)
)∣∣∣ P−→ 0 ,

where R1 and R2 are defined in Lemma 7.

Proof of Lemma 8. Let h∗N be a sequence such that ‖h∗N‖ → ∞ and ‖h∗N/
√
N‖ → 0.

In view of Lemma 4,

sup
h:‖h‖≤‖h∗N‖

‖
√
NrN (θ0 + h/

√
N)‖ P−→ 0 ,

where rN is given in Lemma 7. Moreover, let h
(1)
N be a sequence such that ‖h(1)

N ‖ →
∞, ‖h(1)

N ‖ ≤ ‖h
∗
N‖ and

‖h(1)
N ‖ sup

h:‖h‖≤‖h∗N‖
‖
√
NrN (θ0 + h/

√
N)‖ P−→ 0 .

Lemma 7 implies that

sup
h:‖h‖≤‖h(1)

N ‖

∣∣∣NR1(θ0 + h/
√
N)
∣∣∣ ≤ sup

h:‖h‖≤‖h(1)
N ‖

∣∣∣∣∣∣√N‖h‖ sup
h:‖h‖≤‖h(1)

N ‖
‖rN (θ0 + h/

√
N)‖

∣∣∣∣∣∣
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≤ ‖h1
N‖ sup

h:‖h‖≤‖h(1)
N ‖
‖
√
NrN (θ0 + h/

√
N)‖ P−→ 0 .

Similarly, let h∗∗N be a sequence such that ‖h∗∗N ‖ → ∞ and ‖h∗∗N /
√
N‖ → 0. Lemma

7 yields that

sup
h:‖h‖≤‖h∗∗N ‖

∣∣∣∣R2(θ0 + h/
√
N)

‖h/
√
N‖2

∣∣∣∣→ 0 .

Finally, let h
(2)
N be the sequence such that h

(2)
N →∞, ‖h(2)

N ‖ ≤ ‖h
∗∗
N ‖ and∥∥∥h(2)

N

∥∥∥2
sup

h:‖h‖≤‖h∗∗N ‖

∣∣∣∣R2(θ0 + h/
√
N)

‖h/
√
N‖2

∣∣∣∣→ 0 .

Then

sup
h:‖h‖≤‖h(2)

N ‖

∣∣∣NR2(θ0 + h/
√
N)
∣∣∣ ≤ ‖h(2)

N ‖
2 sup
h:‖h‖≤‖h(2)

N ‖

∣∣∣∣R2(θ0 + h/
√
N)

‖h/
√
N‖2

∣∣∣∣
≤ ‖h(2)

N ‖
2 sup
h:‖h‖≤‖h∗∗N ‖

∣∣∣∣R2(θ0 + h/
√
N)

‖h/
√
N‖2

∣∣∣∣→ 0 .

Finally, take h0
N = argmin

h∈{h(1)
N ,h

(2)
N }
‖h‖, and conclude using the triangle inequal-

ity. �

Lemma 9 Let {Un}n≥1 be a sequence of random vectors that converges to UZ
weakly, where Z is a standard random vector of dimension d and U is a d × d
invertible matrix. Furthermore, let V be a d × d symmetric positive definite matrix
and {an}n≥1 - a sequence of positive numbers converging to infinity. Then∫

‖h‖≥an
e−

1
2 (h−Un)TV (h−Un)dµ(h)

P−→ 0 .

Proof of Lemma 9. Note that∫
‖h‖≥an

e−
1
2 (h−Un)TV (h−Un)dh ≤

∫
‖h‖≥an

e−
1
2λ

V
min‖h−Un‖

2

dh ,

where λVmin is the smallest eigenvalue of V . Let C be an arbitrary positive constant
and Bn = {‖Un‖ ≤ C}, then on the set Bn,∫

‖h‖≥an
e−

1
2λ

V
min‖h−Un‖

2

dh ≤
∫
‖h‖≥an

e−
1
2λ

V
min(‖h‖−C)2dh ≤ δ

for any δ > 0 as n → ∞. Note that P(Bn) → P(‖UZ‖ ≤ C) ≥ P(‖Z‖2 ≤
C(λU

TU
min )−1), where λU

TU
min is the smallest eigenvalue of UTU . For an arbitrary ε > 0,

select C such that P(‖Z‖2 ≤ C(λU
TU

min )−1) ≥ 1− ε. Then∫
‖h‖≥an

e−
1
2 (h−Un)TV (h−Un)dh ≤ δ

with probability at least 1− ε, thus the assertion holds. �
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B Proof of Theorem 2.

We begin by filling in the details omitted in the sketch given in Section 6.1.
First, Lemma 1 is implied directly by display (13) and display (10) is given by
Lemma 7. For the integral over the set A1

N , observe that∫
A1
N

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dµ(h) ≤∫
A1
N

π(θ0+h/
√
N)
∣∣∣eκN (h) − eλN (h)

∣∣∣ dµ(h)+

∫
A1
N

∣∣∣π(θ0 + h/
√
N)− π(θ0)

∣∣∣ eλN (h)dµ(h) .

To estimate the first term, recall the definition of λN in display (7) and note
that

λN (h) = −
√
NhT∂θL̂(θ0)− 1

2
hT∂2

θL(θ0)h− N

2
(∂θL̂(θ0))T (∂2

θL(θ0))−1∂θL̂(θ0) .

Therefore, recalling that κN can be written as in display (10), we have that

κN (h) = λN (h)−N
(
R1(θ0 + h/

√
N) +R2(θ0 + h/

√
N)
)
,

hence∫
A1
N

π(θ0 + h/
√
N)
∣∣∣eκN (h) − eλN (h)

∣∣∣ dh
≤ sup
h∈A1

N

{
π(θ0 + h/

√
N)
∣∣∣e−N(R1(θ0+h/

√
N)+R2(θ0+h/

√
N)) − 1

∣∣∣} ∫
h∈A1

N

eλN (h)dµ(h) .

Here, suph∈A1
N
π(θ0 + h/

√
N)→ π(θ0) by the continuity of π while

sup
h∈A1

N

∣∣∣e−N(R1(θ0+h/
√
N)+R2(θ0+h/

√
N)) − 1

∣∣∣ P−→ 0

by Lemma 8. Moreover, by the definition of λN (see equation (7)), the integral
factor equals (2π)d/2/|∂2

θL(θ0)|. Therefore, the first integral converges to 0 in
probability. For the second integral, observe that∫

A1
N

∣∣∣π(θ0 + h/
√
N)− π(θ0)

∣∣∣ eλN (h)dh

≤ sup
h∈A1

N

∣∣∣π(θ0 + h/
√
N)− π(θ0)

∣∣∣ ∫
Rd
eλN (h)dh

= sup
h∈A1

N

∣∣∣π(θ0 + h/
√
N)− π(θ0)

∣∣∣ (2π)d/2

|∂2
θL(θ0)|

→ 0 ,
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by Assumption 5. Next, to estimate the integral over A2
N , note that

∫
A2
N

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dh
≤
∫
A2
N

∣∣∣π(θ0 + h/
√
N)eκN (h)

∣∣∣ dh
+

∫
A2
N

∣∣∣π(θ0)eλN (h)
∣∣∣ dh .

For the first term, consider again the representation of κN as

κN (h) = −
√
NhT∂θL̂(θ0)−1

2
hT∂2

θL(θ0)h−N
2

(∂θL̂(θ0))T (∂2
θL(θ0))−1∂θL̂(θ0)

−N
(
R1(θ0 + h/

√
N) +R2(θ0 + h/

√
N)
)
.

Since ∂2
θL(θ0) is a positive definite matrix, λmin

(
∂2
θL(θ0)

)
> 0 and, in view of

Lemma 7,∣∣∣N (R1(θ0 + h/
√
N) +R2(θ0 + h/

√
N)
)∣∣∣

≤ ‖h‖2 sup
‖h‖≤δ

√
N

(∥∥∥∥∥
√
NrN (θ0 + h/

√
N)

2‖h0‖

∥∥∥∥∥+
|R2(θ0 + h/

√
N)|

‖h/
√
N‖2

)

≤
λmin

(
∂2
θL(θ0)

)
4

‖h‖2 ≤ 1

4
hT∂2

θL(θ0)h ,

with probability close to 1, for sufficiently small δ. Then

κN (h) ≤ −
√
NhT∂θL̂(θ0)− 1

4
hT∂2

θL(θ0)h− N

2
(∂θL̂(θ0))T (∂2

θL(θ0))−1∂θL̂(θ0)

= −
(
h− 1

2
ZN

)T
∂2
θL(θ0)

(
h− 1

2
ZN

)
+WN ,

where WN = 1
2N(∂θL̂(θ0))T (∂2

θL(θ0))−1∂θL̂(θ0) and WN converges to ZTHZ
weakly with Z ∼ N (0, Id) and Id and H being a d-dimensional identity matrix
1
2I(θ0)(∂2

θL(θ0))−1I(θ0) respectively. Therefore, for any positive increasing
sequence {cN},∫

A2
N

∣∣∣π(θ0 + h/
√
N)eκN (h)

∣∣∣ dµ(h) ≤

cN sup
h∈A2

N

π(θ0 + h/
√
N)

∫
h∈A2

N

e−(h− 1
2ZN)

T
∂2
θL(θ0)(h− 1

2ZN)dµ(h)
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+ sup
h∈A2

N

π(θ0+h/
√
N)eWN

∫
h∈A2

N

e−(h− 1
2ZN)

T
∂2
θL(θ0)(h− 1

2ZN)dµ(h)I{WN > log cN} .

It is easy to see that suph∈A2
N
π(θ0 +

h/
√
N)
∫
h∈A2

N
e−(h− 1

2ZN)
T
∂2
θL(θ0)(h− 1

2ZN)dµ(h) converges to 0 in probability

by Lemma 9. Then choosing cN such that

cN sup
h∈A2

N

π(θ0 + h/
√
N)

∫
h∈A2

N

e−(h− 1
2ZN)

T
∂2
θL(θ0)(h− 1

2ZN)dµ(h)
P−→ 0 ,

guarantees that the first term converges to 0. Meanwhile, the second term is
0 with probability P (WN ≤ log cN ). Note that for any C,

P (WN ≤ log cN ) = P (WN ≤ log cN )− P (WN ≤ logC)

+ P (WN ≤ logC)− P
(
ZTHZ ≤ logC

)
+ P

(
ZTHZ ≤ logC

)
.

P (WN ≤ log cN )−P (WN ≤ logC) is positive for cN large enough by tightness
and P (WN ≤ logC) − P

(
ZTHZ ≤ logC

)
converges to 0 by weak conver-

gence. Thus, for N large enough, P (WN ≤ log cN ) ≥ P
(
ZTHZ ≤ logC

)
for

any C. Since I(θ0) and ∂2
θL(θ0) are symmetric and positive definite, so is H.

Note that for arbitrary ε > 0, one can select a sufficiently large C such that

P
(
‖Z‖2 > logC

λmax(H)

)
≤ ε . Therefore,

P(ZTHZ > logC) ≤ P(λmax(H)‖Z‖2 > logC) ≤ ε .

Thus, for N large enough,

sup
h∈A2

N

π(θ0 + h/
√
N)eWN

∫
h∈A2

N

e−(h− 1
2ZN)

T
∂2
θL(θ0)(h− 1

2ZN)dµ(h)I{WN > log cN}

equals 0 with probability at least 1−ε for any ε, hence the above term converges

to 0 in probability. We have so far shown that
∫
A2
N

∣∣∣π(θ0 + h/
√
N)eκN (h)

∣∣∣ dµ(h)

converges to 0 in probability. Another application of Lemma 9 implies that∫
A2
N

∣∣∣π(θ0)eλN (h)
∣∣∣ dµ(h) ≤ π(θ0)

∫
‖h‖≥a logN

eλN (h)dµ(h)
P−→ 0 ,

which shows the integral over A2
N converges to 0 in probability. For the final

part, the integral over A3
N , observe again that

∫
A3
N

∣∣∣π(θ0 + h/
√
N)eκN (h) − π(θ0)eλN (h)

∣∣∣ dµ(h)
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≤
∫
A3
N

∣∣∣π(θ0 + h/
√
N)eκN (h)

∣∣∣ dµ(h) +

∫
A3
N

∣∣∣π(θ0)eλN (h)
∣∣∣ dµ(h) .

As before, the second integral converges to 0 in probability by Lemma 9. The
first integral can be further estimated as∫
A3
N

∣∣∣π(θ0 + h/
√
N)eκN (h)

∣∣∣ dµ(h) ≤
∫
a≤‖h/

√
N‖≤R

∣∣∣π(θ0 + h/
√
N)eκN (h)

∣∣∣ dµ(h) .

On the compact set {θ : δ ≤ ‖θ − θ0‖ ≤ R}, L(θ)− L(θ0) attains a minimum
positive value t1. Moreover,

inf
a≤‖h/

√
N‖≤R

L̂(θ0+h/
√
N)−L̂(θ0) ≥ inf

‖h/
√
N‖≤R

(
L̂(θ0 + h/

√
N)− L(θ0 + h/

√
N)
)

+ inf
a≤‖h/

√
N‖≤R

(
L(θ0 + h/

√
N)− L(θ0)

)
+
(
L(θ0)− L̂(θ0)

)
.

By Lemma 2, the terms in the first and third pair of brackets converge to 0 in
probability. Thus,

inf
a≤‖h/

√
N‖≤R

L̂(θ0 + h/
√
N)− L̂(θ0) ≥ t1

2
,

with probability approaching 1. Therefore,∫
a≤‖h/

√
N‖≤R

∣∣∣π(θ0 + h/
√
N)eκN (h)

∣∣∣ dµ(h)

≤ e− 1
2Nt1

∫
Rd
π(θ0 + h/

√
N)dµ(h) ≤ Nd/2e−

1
2Nt1 → 0 ,

with probability approaching 1. This establishes the relation (8), and therefore
completes the proof.


	Introduction.
	Proposed approach.

	Main results.
	Numerical examples and applications.
	Discussion.
	Proofs.
	Proof of Theorem 1.
	Proof of Theorem 2 (sketch).

	Preliminary results.
	Proof of Theorem 2.

