
PrORAM
Fast O(logn) Authenticated Shares ZK ORAM

David Heath(B) and Vladimir Kolesnikov(B)

Georgia Institute of Technology, Atlanta, GA, USA
{heath.davidanthony,kolesnikov}@gatech.edu

Abstract. We construct a concretely efficient Zero Knowledge (ZK)
Oblivious RAM (ORAM) for ZK Proof (ZKP) systems based on authen-
ticated sharings of arithmetic values. It consumes 2 log n oblivious trans-
fers (OTs) of length-2σ secrets per access of an arithmetic value, for
statistical security parameter σ and array size n. This is an asymptotic
and concrete improvement over previous best (concretely efficient) ZK
ORAM BubbleRAM of Heath and Kolesnikov ([HK20a], CCS 2020),
whose access cost is 1

2
log2 n OTs of length-2σ secrets.

ZK ORAM is essential for proving statements that are best expressed
as RAM programs, rather than Boolean or arithmetic circuits.

Our construction is private-coin ZK. We integrate it with [HK20a]’s
ZKP protocol and prove the resulting ZKP system secure.

We implemented PrORAM in C++. Compared to state-of-the-art Bub-
bleRAM, PrORAM is ≈10× faster for arrays of size 220 of 40-bit values.

Keywords: Oblivious RAM · Zero knowledge

1 Introduction

Zero Knowledge (ZK) proofs (ZKP) allow an untrusted prover P to convince
an untrusted verifier V of the truth of a given statement while revealing nothing
additional. ZKPs are foundational cryptographic objects useful in many contexts.
Early ZK focused on proofs of specific statements, but more recent systems
handle arbitrary statements, so long as the statements are encoded as circuits.

Motivation. Unfortunately, many statements are more easily and efficiently
expressed as RAM machine programs rather than circuits. Indeed, most stan-
dard algorithms are formalized for RAM machines.1 Importantly, recent work,
e.g. [HK20a], shows that support for writing proof statements as arbitrary C
programs is within reach. ORAM is a major cost factor in [HK20a]’s ZK virtual
machine, responsible for 1/3 to 1/2 or more of the total cost, since ORAM is
1 RAM machines reduce to circuits, but improving the reduction will allow more effi-

cient proofs.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-030-92068-5 17.

c© International Association for Cryptologic Research 2021
M. Tibouchi and H. Wang (Eds.): ASIACRYPT 2021, LNCS 13093, pp. 495–525, 2021.
https://doi.org/10.1007/978-3-030-92068-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92068-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-92068-5_17
https://doi.org/10.1007/978-3-030-92068-5_17

496 D. Heath and V. Kolesnikov

accessed at each CPU step. An efficient ZK ORAM would greatly improve the
performance of (already practical) ZK virtual machine of [HK20a].

Most ORAM research targets either (1) an untrusted server holding a client’s
private data or (2) the secure multiparty computation setting. ZK ORAMs have
been less studied. ZK, as compared to these more explored settings, gives a
crucial advantage: P can precompute the order in which the proof circuit will
access each RAM element. Prior work [HK20a] has shown that this knowledge
suffices to build a circuit-based ORAM that incurs only 1

2 log2 n oblivious trans-
fers (OTs) per access. While the constant factor of this approach is excellent,
the log2 scaling can be costly for large RAMs.

Our work. We construct an efficient ZK ORAM that we call PrORAM. PrO-
RAM consumes only 2 log n OTs per access. Note, ZK-ORAM’s security has
not been defined standalone; rather, its functionality and security are consid-
ered together with a complete ZKP system, e.g., in [HK20a]. We follow a similar
approach: our ZK-ORAM construction is modular, but we prove security of the
complete ZKP system, implementing arithmetic circuit with RAM access. Based
on this, we then motivate and present a ZK ORAM definition for a specific exe-
cution environment.

Our approach. We use the [JKO13] ZK framework, which converts any sound,
correct, and verifiable garbling scheme into a malicious-verifier ZKP.

1.1 High Level Intuition of Our Approach

Informally, ORAM is an object implementing a persistent memory. The RAM
is initialized and accessed by a computation, such as an arithmetic circuit. ZK
ORAM and the computation must together realize a secure ZKP system.

P and V evaluate the proof circuit or program by jointly processing it gate-
by-gate. The validity of the proof is ensured by the fact that each circuit wire
holds an authenticated secret share that P cannot forge.

Our prover P stores the RAM locally on her system, but the authenticated
contents are masked by one-time-pad masks chosen by V. Because P stores the
RAM locally and because she knows the RAM access order, she can directly
access each requested index. From here, the crucial problem is that each RAM
slot is masked by a distinct value chosen by V. To ensure V, who does not know
the access order, can authenticate a value read from the RAM, the value must
have a mask that is independent of the accessed index. Thus, RAM essentially
reduces to ‘aligning’ masks without leaking the RAM access order to V. We
arrange mask alignment by allowing P to authentically and obliviously permute
V’s chosen masks into a desired order.

For a RAM with n slots, a single permutation on 2n elements suffices to
support the next n accesses. Using a permutation network, this can be achieved
by 2n log n OTs. Thus, each access consumes amortized 2 log n OTs.

PrORAM 497

1.2 Contribution

We construct a private-coin ZK ORAM, PrORAM, that uses only 2 log n OTs
per access, while previous ZK ORAM has cost 1/2 log2 n. We instantiate our
ORAM in the [JKO13] ZK framework, resulting in a ZKP protocol with 2 rounds
(4 flows) of communication when using standard OT, such as [KOS15].2

– We present PrORAM in technical detail, and prove it correct.
– We integrate PrORAM into the arithmetic ZK protocol of [HK20a]. Thus,

our construction allows proofs of arbitrary arithmetic statements encoded as
circuits with access to a highly efficient RAM. Note, [HK20a]’s ZK virtual
machine is a circuit; our ORAM can be directly plugged in their ZK VM.

– We formalize the resulting construction in the [JKO13] garbled-circuit based
ZK proof framework and prove the system correct and secure.

– We propose a definition of ZK ORAM for a specific execution environment.
Security of our ZKP system implies ZK ORAM security of PrORAM.

– We implemented our approach in C++ and we explore its concrete perfor-
mance. As compared to BubbleRAM [HK20a], a state-of-the-art ORAM for
the same setting, and for size 220 RAMs, PrORAM improves communication
by >4× and runs >10× faster on a commodity laptop. Our more signifi-
cant computation improvement follows from the fact that our algorithms are
friendlier to cache than BubbleRAM’s (see Sect. 9).

2 Related Work

Our contribution is an efficient ORAM for an interactive Zero Knowledge pro-
tocol. In our review of related work, we discuss both ZK protocols and ORAMs.
For lack of space, we postpone the detailed discussion of related work to Sup-
plementary Material (Sect. 10). Here we provide comparison with prior work in
the setting of concretely efficient interactive ZK.

Consider the prover P, interacting with V, wishing to convince him, that
she, P, holds a satisfying assignment to a circuit. One line of work builds linear-
sized proofs [JKO13,FNO15,HK20c,HK20a,WYKW20]. This line of work is
attractive because it features costs that scale linearly in the circuit size with
low constants. Thus, if P and V wish to finish a proof as fast as possible, these
constructions are excellent choices.

[JKO13] was the first work to construct concretely efficient proofs of arbi-
trary circuits by reducing ZKPs to garbled circuits (GCs). Recent work [HK20a]
proposed a concretely efficient (running at 2.1 KHz on a commodity laptop)
ZKP system for RAM programs, and a ZK ORAM, BubbleRAM. BubbleRAM
has amortized complexity 1/2 log2 n per access of an array of n elements.

2 In our implementation, we use Ferret OT [YWL+20], which greatly improves com-
munication. Ferret processes OTs in very large chunks, requiring additional rounds
for each next chunk. This round complexity increase is small and contributes little
to total runtime. E.g., in concrete terms, two added rounds give ≈223 OTs.

498 D. Heath and V. Kolesnikov

Our ZK ORAM PrORAM is built to work with the in [HK20a]’s arithmetic
protocol. PrORAM improves performance of ZK ORAM to 2 log n, thus asymp-
totically improving over BubbleRAM.

Recently, BubbleCache [HYDK21] enhanced BubbleRAM by adding multi-
level ORAM caching. The idea is to “spread out” the BubbleRAM schedule and
hope for the best (i.e., that the required array element won’t be needed too soon,
in which case a cache miss occurs, with a corresponding performance penalty).
BubbleCache has worse worst-case performance than BubbleRAM, and hence
PrORAM correspondingly improves over BubbleCache as well. See Sect. 9 for an
expanded comparison between PrORAM and BubbleCache.

3 Notation

– P is the prover. We refer to P by she, her, hers, etc.
– V is the verifier. We refer to V by he, him, his, etc.
– σ is the statistical security parameter (e.g., 40).
– κ is the computational security parameter (e.g., 128).
– x ∈$ S denotes that the value x is drawn uniformly from the set S.
– 〈x, y〉 denotes a pair of values where x is held by V and y is held by P.
– We write a � b to denote that a is defined to be b.
– p denotes a prime integer.
– We work with authenticated sharings of values held between V and P. The

authentic sharing of a value x ∈ Zp is denoted by �x�. We define authentic
sharings and an algebra over such sharings in Sect. 4.1. A sharing consists of
two shares, one held by V and one by P.

– Authenticated sharings use uniform masks chosen by V. It is sometimes con-
venient to make this mask explicit. �x�M is an authenticated share of x that
uses the mask M (see Sect. 4.3).

– We also work with standard additive sharings. We denote the additive sharing
of a value x ∈ Zp by (|x|). Additive sharings are discussed in Sect. 4.4.

– We view RAMs as arrays of values, and hence work extensively with arrays:
• In general we use capital variables to denote arrays, e.g. A.
• When clear from context, n denotes the number of array slots. When

needed for precision, we use |A| to denote the number of array slots in A.
• We consider arrays where each array slot may hold more than one integral

value. When clear from context, s denotes the slot size, i.e., the number
of integer values stored in each array slot.
Flexibly sized array slots both allow arrays of complex objects and also
are crucial for preventing P from accessing an arbitrary RAM slot rather
than the program-dictated slot: we store an explicit RAM index in each
slot and perform an equality check as part of the ZK proof.

• The set (Zs
p)

n denotes the prime field arrays of n slots each with size s.
• A[i] denotes the value stored in the ith slot of A. We use zero-based

indexing.
• A[i := x] denotes an array update. The expression A[i := x] is a new

array whose contents are identical to A except that slot i is set to x.

PrORAM 499

This notation does not denote a program statement that mutates an
array in computer memory, but rather denotes the construction of a fresh
mathematical object.

• When clear from context, we extend notation over field elements to arrays.
For example, if A and B are two arrays of field elements with matching
length and slot size, A + B denotes the array containing the pointwise
addition of the contents. We similarly extend share notation to arrays, �A�
denotes an array where each element is an authentic sharing. We also extend
array access notation: �A[i]� is the sharing of the ith element of array A.

• If i ≤ j, then A[i..j] denotes the subarray of elements A[i]..A[j − 1]. The
subarray does not include the jth element. We write A[i..] to denote the
subarray starting from index i and containing all subsequent elements of A.

• [·] denotes the empty array. [a] denotes an array holding only the value a.
• We sometimes concatenate arrays. A | B is the composite array containing

each element of A followed by each element of B.
– We work with permutations that map points in time to array locations being

accessed. We represent such permutations by arrays over the natural numbers
such that for a given permutation π, π[t] = i indicates that location i is
accessed at time t.

– It will be convenient to keep track of a complementary view of the access
order that we refer to as a timetable. A timetable T is an array over the
natural numbers such that T [i] = t indicates that location i was last written
at time t. In general, a timetable is not a permutation.

4 Preliminaries

In this section, we present technical background to our work needed to under-
stand our contribution. In particular, we review [HK20a]’s arithmetic ZK proto-
col and discuss permutation networks.

4.1 Authenticated Share Algebra

We now review authenticated secret shares and the operations they support.
Our ORAM is built on this share algebra. We use [HK20a]’s efficient arithmetic
protocol, where the parties operate over shares using a combination of local
operations and OT. Crucially, although the parties compute using OT, each of
P’s OT inputs can be precomputed from her proof witness. Thus, all OTs can
be executed in parallel, and the resulting protocol runs in constant rounds.

Authenticated Shares. In the protocol, P and V hold authenticated sharings
of values in a field Zp for a σ-bit prime p (our implementation instantiates p
as 240 − 87, the largest 40 bit prime). An authenticated sharing consists of two
shares, one held by V and one by P. We denote a sharing where V’s share is
s ∈ Zp and P’s share is t ∈ Zp by writing 〈s, t〉. At the start of the protocol,
V samples a non-zero global value Δ ∈$ Z

×
p . Consider a sharing 〈X,xΔ − X〉

500 D. Heath and V. Kolesnikov

where X ∈ Zp is chosen by V. A sharing of this form is a valid sharing of the
semantic value x ∈ Zp. We use the shorthand �x� to denote a valid sharing:

�x� � 〈X,xΔ − X〉

Sharings have two key properties:

1. V’s share gives no information about the semantic value. This holds trivially:
V’s share is independent of x.

2. P’s share is ‘unforgeable’: P cannot use xΔ − X to construct yΔ − X for
y �= x. We ensure this by hiding from P both the additive mask X and the
authentication value Δ. This, combined with the fact that (1) the multiples
of Δ are uniformly distributed over the field, and (2) the chosen prime p is
large enough to achieve our desired security ensures that P can forge �y� only
by guessing yΔ − X, which only succeeds with probability 1

p−1 .

Opening shares. P must, at distinguished parts of the circuit, open her shares
to V. Let �x� be a valid authenticated sharing. When the two parties agree to
open a share, we require that V knows the expected value x. This information
is dictated by the circuit; thus P opening a share to V proves that the share
represents a specific constant value. To complete the opening, P sends her share
xΔ − X to V, and V checks that the share is indeed valid (recall, V knows Δ
and X). For complex proofs, P might open many shares to V. Thus, [HK20a]
adds a simple optimization: rather than sending each share separately, P instead
accumulates a hash digest of all opened shares and sends this to V. V can locally
reconstruct the same hash and check that the two are equal. Thus, P sends only
κ bits to open an arbitrary number of sharings.

Linear Operations. We can induce a vector space structure over authenticated
sharings where sharings are vectors and publicly agreed constants are scalars.
The vector space operations (addition, subtraction, and scaling by public con-
stants) allow the parties to locally perform linear operations over sharings:

– To compute an authenticated sharing of a sum of shares, parties locally add
their respective shares:

�x� + �y� = 〈X,xΔ − X〉 + 〈Y, yΔ − Y 〉
� 〈X + Y, (x + y)Δ − (X + Y)〉 = �x + y�

To authentically subtract sharings, parties subtract their respective shares.
– To authentically scale a sharing by a public constant, the parties locally

multiply their respective shares by the constant:

c�x� = c〈X,xΔ − X〉 � 〈cX, cxΔ − cX〉 = �cx�

The parties also have access to a unit vector:

�1� � 〈Δ, 0〉

Here, the sharing mask X is 0 − Δ. Note that the mask X is not known to
P because P does not know Δ. With this unit vector, the parties can locally
construct authenticated sharings of arbitrary publicly agreed values.

PrORAM 501

Vector-Scalar Multiplication. It is not sufficient to only consider linear oper-
ations. We also need a form of non-linear operation; we use a form of vector-scalar
multiplication where the scalar is known to be in {0, 1}, but is unknown to V.
(Vector-scalar multiplication where P chooses scalar a ∈ Zp can be achieved by
�log p� applications of this special form.)

Let x ∈ {0, 1} be held by P and let y1, ..., yn ∈ Zp be a vector of field
elements. Let the parties hold sharings �y1�, ..., �yn� and suppose they wish to
compute �xy1�, ..., �xyn� (while P’s input x is not authenticated, it could be
verified later by an appropriately applied opening). First, P locally multiplies
her shares by x. Thus the parties together hold:

〈Y1, xy1Δ − xY1〉, ..., 〈Yn, xynΔ − xYn〉

These intermediate sharings are invalid: the shares in the ith sharing do not sum
to yiΔ. To resolve this, the parties participate in a single 1-out-of-2 OT where V
acts as the sender. V uniformly draws n values Y ′

i ∈$ Zp and allows P to choose
between the following two vectors:

Y ′
1 , ..., Y

′
n Y ′

1 − Y1, ..., Y
′
n − Yn (1)

P chooses based on x and receives as output the vector Y ′
1 − xY1, ..., Y

′
n − xYn.

The parties can now compute a valid authenticated sharing for each vector index:

〈Y ′
i , xyiΔ − xYi − (Y ′

i − xYi)〉 = 〈Y ′
i , xyiΔ − Y ′

i 〉 = �xyi�

A vector-scalar multiplication of a length n vector requires a 1-out-of-2 OT of
n�log p�-bit secrets. In practice, we instantiate multiplication with the Ferret OT
technique [YWL+20].

4.2 Implementing Standard Circuit Gates

Typical circuits include multiplication gates, not special vector-scalar gates
where P chooses the scalar, as described above. There is a simple reduction from
standard multiplication gates to [HK20a]’s vector-scalar multiplication gates and
opening gates (an opening gate on input �x� simply requires P to open her
share to V, see Sect. 4.1): To authentically compute �ab� from inputs �a� and
�b�, instead compute a′�1, b� 	→ �a′, a′b� by vector-scalar multiplication where P
chooses a′ freely, and then check that the �a − a′� = �0� using an opening gate.
This check forces P to choose a′ = a, and prevents her from multiplying incor-
rectly. We choose to keep vector-scalar gates and opening gates because these
gates are highly efficient and because this reduction is simple. Each standard
multiplication gate uses one vector-scalar gate and one opening gate.

Vector-scalar gates also allow P to provide input bits. To input P’s private
bit x, the parties compute x�1� = �x� using a vector-scalar gate.

Other standard gates, e.g. addition and subtraction, are directly handled by
the construction and do not require opening gates.

502 D. Heath and V. Kolesnikov

4.3 Explicit-Mask Sharings

Section 4.1 introduced an algebra over authenticated sharings. In the algebra as
presented so far, we consider tuples of the form 〈X,xΔ − X〉 where X ∈$ Zp is
a uniform mask. For the purposes of our construction, it will be convenient to
also consider sharings that use a specific mask chosen by V. Thus, we introduce
new notation for a sharing masked by a particular value:

�x�M � 〈M,xΔ − M〉

That is, �x�M is a sharing of x where the parties use the specific mask M , rather
than an arbitrary mask.

We extend this notation to arrays: if A,B are equal-length arrays of Zp

elements, then �A�B denotes an authentic share of A where each mask is in B:

�A[i]�B = 〈B[i], A[i]Δ − B[i]〉

For convenience, we extend this notation so that we can mask a short array by
a long array: the above array notation holds even if B is longer than A.

4.4 Standard Additive Sharings

Our construction relies on the parties’ ability to manipulate secret masks chosen
by V and unknown to P. The algebra presented in Sect. 4.1 is not suitable,
because it only supports sharings where P knows in cleartext each semantic
value. We therefore also consider more traditional additive secret shares where
neither party knows the underlying value.

Let x ∈ Zp be an arbitrary value. In an additive share of x, V holds a uniform
mask M ∈ Zp and P holds x − M : together the parties hold 〈M,x − M〉. We
use the shorthand (|x|) to denote such a pair:

(|x|) � 〈X,x − X〉

The difference between authenticated sharings (Sect. 4.1) and additive sharings
is that P does not know semantic values corresponding to additive sharings.

The parties can operate over additive sharings in the same way they can
authenticated sharings: namely, we induce a vector space structure over addi-
tive sharings such that parties can add, subtract, multiply by public constants,
and construct sharings of constants. Additionally, the parties can operate non-
linearly by vector-scalar multiplication where P chooses the scalar. The needed
protocol is identical to the vector-scalar protocol reviewed in Sect. 4.1.

Finally, V can construct a sharing (|x|) for a value x ∈ Zp that he chooses.
To do so, V simply samples a uniform mask M ∈$ Zp and sends to P x − M .

4.5 Additive Sharing Permutations Programmed by P
In our construction, V chooses random masks that are used to authenticate the
RAM content. P is then given the opportunity to arrange these masks as she

PrORAM 503

likes so that she can implement the RAM access order. So, we need a capability
by which P can rearrange V’s chosen masks. The parties thus construct additive
shares of the masks which can then be manipulated by P.

More precisely, V chooses an array of random masks K ∈$ (Zs
p)

n, and the
random masks are shared such that the parties hold (|K|). Now, the parties
must compute (|π(K)|) for π chosen by P. To apply an arbitrary permutation,
we employ a particular circuit construction called a Waksman permutation net-
work [Wak68]. This recursively constructed circuit builds a permutation of n
elements from many permutations of two elements: i.e., from ‘swap’ gates. In
our context, a swap gate allows P to conditionally swap two shares (|a|) and (|b|)
based on her private bit r ∈ {0, 1}. Precisely, the gate is specified as follows:

swap(r, a, b) �
{

(a, b) if r = 0
(b, a) otherwise

To implement this gate, the parties compute a conditional difference (|δ|) �
r(|a − b|) and output the pair (|a − δ, b + δ|). A swap gate is computed by a single
vector-scalar multiplication and linear operations. The gate can be computed
even though P knows neither a nor b.

A permutation network on n elements (where n is a power of two) consumes
n log n − n + 1 swap gates; hence we use n log n − n + 1 oblivious transfers.

5 Technical Overview

In this section, we give high level intuition sufficient to understand our approach.
ORAM is an object implementing a persistent memory array. The RAM

is initialized and accessed by a computation, such as Boolean or arithmetic
circuit, or a CPU built from such circuits. ZK ORAM and the computation
must together realize a secure ZKP system. We formally specify the PrORAM
object and its access functions, and prove correctness of its operation in Sect. 6;
we prove security of our ZKP system in Sect. 7; we define (and prove) security
our ZK ORAM in Sect. 7.4.

Informally, there are three attacks P may attempt on the RAM: 1) modify
a memory value by forging an authentication code, 2) return a stale value, 3)
return a valid authenticated value from a wrong location. The last attack is
easily prevented by storing each array index as an authenticated value alongside
the corresponding RAM element, and checking it on each access, a standard
technique used, e.g., in [HK20a]. In this overview and in the formal constructions
we focus on issue 1) value modification. Preventing the return of stale values is
achieved by enforcing a key invariant that a valid authenticated element cannot
be stored in more than one place; we point this aspect out as we discuss how to
ensure value integrity.

As a thought experiment, suppose that V and P both know the array access
order; we will soon remove this restriction. That is, they know a priori the
locations of each array read and write. Further, suppose that each array element

504 D. Heath and V. Kolesnikov

is stored as an authenticated secret share (Sect. 4.1) held by both parties. That
is, for an array A, its value at each index i is formatted as follows:

�A[i]� = 〈K[i], A[i]Δ − K[i]〉,

where K[i] is a uniform mask chosen by V. Suppose on the jth array access, the
parties wish to access array slot i. This case is easy: each player can simply read
from RAM slot i in their local memory, and use the already-authenticated array
element as needed in the proof.

Of course, we want to access RAM in an order unknown to V. Here we run
into a problem: on an access of position i, P can still read A[i]Δ − K[i] from
her local array, but V does not have sufficient information to align the matching
mask K[i]. Further, V cannot be allowed to learn the accessed position i, since
this would give her information about the access order.

Instead of giving K[i] to V, we instead allow V to use a fresh mask M [j] and
convey the appropriate matching mask to P. Specifically, we arrange that P will
obtain K[i] − M [j]. Given this information, the parties compute:

〈M [j], (A[i]Δ − K[i]) + (K[i] − M [j])〉 = 〈M [j], A[i]Δ − M [j]〉 = �A[i]�

This authenticated secret share can be used as a wire in the ZK circuit.
The remaining task is to show how these mask differences are securely con-

veyed to P. We present our solution in several steps. First, we present solutions
that allow for RAMs with constrained access orders; these initial constructions
do not allow arbitrary RAM reads/writes. Then, we use these constrained con-
structions as building blocks upon which we achieve general purpose RAM.

Read-once RAM. As a simplifying assumption, consider an n-element RAM
that is preloaded with authenticated shares. Further, suppose the program will
read each RAM slot exactly once, though the order in which these reads occur
is unconstrained and is known to P. In this case, the RAM’s read order can be
described by a permutation π on n elements that maps the time of each access
to the accessed array index.

If we consider all n reads simultaneously, then our problem becomes one
of delivering to P a sequence of n mask differences K[i] − M [j], while hiding
the access order from V. To do so, V distributes to the two parties additive
secret shares of the elements of the array of masks K: the parties hold (|K|).
Let π specify the permutation on A defining the RAM access order. The parties
securely compute (|π(K)|) using the permutation protocol described in Sect. 4.5.
Informally, this permutation aligns the elements of K, which were originally in
array order, with the order of accesses.

If we recall the syntax of an additive share (|π(K)[j]|), we find that P’s share
has nearly the form that we need:

(|π(K)[j]|) = 〈Q[j], π(K)[j] − Q[j]〉 = 〈Q[j],K[i] − Q[j]〉,

where Q[j] is a uniform mask.

PrORAM 505

So far, the access masks M are unconstrained. Thus, V simply sets M [j] =
Q[j], and now each of P’s share of the permuted array has exactly the form
needed to align her share with that of V. This implements read-once RAM: the
parties can read an array of n elements in any order specified by P.

swordRAM. Read-once RAM assumes that the array is preloaded with values.
We also need a capability to write new RAM elements. Thus, we extend the
above read-once RAM to allow for writes. However, the write capability we add
is highly constrained : the parties must agree on and both know the order in
which the array contents are written. For concreteness, we use a sequential write
order, meaning that the jth write stores an element in the jth array slot. Array
reads and writes may be arbitrarily interspersed with the restriction that each
read occurs after the write to the accessed slot. As with our read-once RAM, we
enforce that the program must read each array slot exactly once. We call this
intermediate RAM a swordRAM (Sequential-Write, One-time ReaD RAM).

With the idea for read-once RAMs established, swordRAM is trivial. As
argued in the beginning of this section, if each party knows the RAM access
order, our task is easy: the parties trivially obtain matching authentication codes.
Thus, swordRAM writes are simple, since both parties agree that the elements
should be written sequentially, and hence the order is known to each. There is
one subtlety in aligning the authentication masks used in RAM writes with the
array slot masks K[i], but this is easily addressed. Specifically, V simply sends
the difference between the two masks to P on each RAM write.

General Purpose ZK ORAM. swordRAMs are highly restrictive. Neverthe-
less, there is an efficient reduction from general purpose RAM to swordRAM. We
call this reduction PrORAM. A PrORAM of n elements is built on a swordRAM
of 2n elements. There is no single one-to-one mapping from PrORAM slots to
swordRAM slots. Rather, the swordRAM should be viewed as a running log of
the PrORAM accesses; each PrORAM access corresponds to a single write and
a single read in the swordRAM. At all times, we ensure that there are exactly
n swordRAM slots that have been written to but not yet read, and it is exactly
these n slots that hold the current PrORAM content. To track the relationship
between PrORAM slots and swordRAM slots, the prover P maintains a clear-
text data structure that we refer to as the timetable. A timetable T maps each
PrORAM index i to the swordRAM slot where that element is currently stored.

The PrORAM is maintained as follows:

– To initialize a size-n PrORAM we perform a sequence of n writes to a fresh
capacity-2n swordRAM. Correspondingly, P initializes T : at initialization,
each PrORAM slot i is stored in swordRAM slot i.

– To access RAM slot i, P first looks up T [i] and reads from the correspond-
ing swordRAM slot. Because of swordRAM’s tight restrictions, this read
‘exhausts’ the accessed swordRAM slot, and so the parties must write back
an element to the array. In the case of RAM write, the write-back element will
be the written element. In the case of a RAM read, the write-back element
will be the same element that was read. P then updates T , indicating that
PrORAM slot i is now stored in the newly written swordRAM slot.

506 D. Heath and V. Kolesnikov

Fig. 1. Initializing an empty capacity-n swordRAM. The parties output a swordRAM
that encodes an empty array and that is ready for n writes and n reads. The n reads
will happen as specified by the the access order π.

– Because the number of reads/writes to a swordRAM are bounded, we must
periodically refresh the PrORAM. Each PrORAM access consumes one
swordRAM read and one swordRAM write. After n PrORAM accesses, we
exhaust all 2n available swordRAM writes (recall, n writes were used to ini-
tialize) and n of the available 2n swordRAM reads. The remaining n reads
suffice for us to fetch the current PrORAM content and store it into a freshly
initialized swordRAM. By doing so, we “refresh” the PrORAM and are ready
for n more accesses.

The crucial point is that because P knows the entire PrORAM access order
O in advance, she can play out the above reduction “in her head” to obtain the
corresponding read order π for the underlying swordRAM. π is then used to
initialize a swordRAM that will precisely service the access order O.

Efficiency. PrORAM is efficient. Essentially the only cost is in permuting addi-
tive shares of the array K. For every n PrORAM accesses we initialize 2n swor-
dRAM reads and thus consume a permutation of 2n masks. A permutation of
2n elements costs 2n log 2n − 2n + 1 OTs via a permutation network, and hence
each PrORAM access consumes amortized 2 log n OTs.

The remainder of this paper presents the above in technical detail.

6 PrORAM Formal Constructions

In this section, we present PrORAM in formal detail. Section 7 formalizes our
construction’s security.

PrORAM 507

Fig. 2. Reading from a swordRAM. This procedure does not take an index as an
argument. Rather, the index is defined by the permutation π chosen at initialization
(cf. Fig. 1).

Fig. 3. Writing to a swordRAM. Recall that writes to swordRAM are sequential : the
shared element a is appended to the array A.

6.1 swordRAM

Recall from Sect. 5 that we decompose the problem of building a RAM into two
parts: first we construct a ‘sequential write, one-time read RAM’ (swordRAM)

508 D. Heath and V. Kolesnikov

that only supports one read and one write per RAM slot, and where writes
must occur in sequential order. Then we build a general purpose ORAM on
top of swordRAM. We therefore start by defining swordRAM. Syntactically, a
capacity-n swordRAM is a six-tuple:

(A, π, r,K, �A�K , (|π(K)|))

Each of these elements are as follows:

– A ∈ (Zs
p)

∗ denotes the cleartext array encoded by the swordRAM. As we
write to the swordRAM, A will grow in length. A is known only to P.

– π is a permutation on n elements. π denotes the read order of the swordRAM.
π is known only to P. Note, the read order does not fully specify the access
order, as writes may be arbitrarily interspersed with the constraint that each
element is written before it is read.

– r ∈ N denotes the number of swordRAM reads that have occurred so far. In
a valid swordRAM, r ≤ |A| ≤ n. Both P and V maintain local copies of r.

– K ∈$ (Zs
p)

n is an n-element array with slots of size s, i.e. each slot K holds
s values. K[i] stores uniform masks used as swordRAM authenticators. K[i]
is drawn uniformly by V and is unknown to P. We need more than one mask
per swordRAM slot to support arrays of more general objects. In particular,
in our RAMs we operate with value-index tuples (v, i), which allows us to
perform an index check, preventing P from providing an invalid permutation
and illegally substituting one RAM value for another.
Although we use s masks for a single RAM slot, we are careful that any
operations the parties perform are applied to the masks as a unit; hence,
there is no opportunity for a cheating P to ‘break apart’ the contents within
a single RAM slot.

– �A�K is the authenticated secret sharing of A masked by K. Informally, this
is the authenticated array. On a read, P indexes directly into this array and
then aligns her share with V’s (as described in Sect. 5).

– (|π(K)|) is an additive secret sharing of the array K permuted according to
π. These sharings are the values that P needs to align her shares with V’s (as
described in Sect. 5).

With syntax established, we describe operations over swordRAMs.

Initialize. Figure 1 lists the procedure for constructing a fresh swordRAM. At
initialization, the encoded array A is empty (i.e., has size 0), so most of the
swordRAM components are trivially initialized. The objective of initialization is
to prepare for all n future reads. To do so, P provides as input the read order
permutation π and V chooses a mask array K. The parties compute (|π(K)|) via
a permutation network (Sect. 4.5). This permutation provides to P the specific
values that she needs to align her shares with V’s on each read. We emphasize
that swordRAM permutations account for almost all of our ORAM’s cost.

PrORAM 509

Read. swordRAM reads (Fig. 2) are entirely local operations: indeed, initializa-
tion already properly arranged that P will receive the correct mask alignment
values on each read. P directly accesses the correct index of �A�K and then
aligns her share with V’s using (|π(K)|)[r].

Write. swordRAM writes (Fig. 3) append values to the array A. The swordRAM
authenticated array should be masked by the specific array K, but the parties
write an arbitrary share �a�. To properly store this value, V sends a difference
between the mask on �a� and the target mask in K. P uses this value to align
her share such that it can be properly appended.

As an aside, swordRAM performs no checking on the order in which P decides
to read values: P freely chooses the read-order π. However, we next will per-
form a reduction from general purpose RAM to swordRAM. In this reduction,
we explicitly include copies of each index identifier in the swordRAM. By this
mechanism, the reduction fully constrains the permutation π, since the parties
will check that each read yields the expected index identifier.

It will be convenient to abstract over some of the swordRAM detail. We give
a shorthand for a swordRAM that encodes an array A with r remaining reads
given by a read order π. Specifically we write ρ(A, π, r):

ρ(A, π, r) � (A, π, r,K, �A�K , (|π(K)|))

where K ∈$ (Zs
p)

n is uniform and the masks on (|π(K)|) are uniform.

6.2 swordRAM to PrORAM

Recall that we implement general purpose RAM by a reduction to swordRAM.
We call this reduction PrORAM.

At a high level, a PrORAM implementing a size-n array operates in blocks of
n accesses. Each block is handled by a distinct data structure, which is updated
on each of the n accesses. After n accesses, we create a fresh data structure
to support the next n accesses. We initialize the new structure by moving the
contents of the old one, and then we retire the old data structure, and so on.

Each data structure is a capacity-2n swordRAM (with accompanying meta-
data), which is initialized to contain the (current state of the) array A in the
canonical order A[0], ..., A[n − 1]. Of course, to initialize a swordRAM, we need
an appropriate read order π. This permutation π must achieve two tasks: (1) it
must encode the order of the next n accesses and (2) it must encode the order
of the n reads needed to copy its content into the next swordRAM block in
canonical order before being retired. That is, the first n (of the 2n total) reads
of the capacity-2n swordRAM service the n PrORAM requests for data, and the
next n accesses read the array A as part of moving to the next PrORAM data
structure. In total, there are 2n swordRAM reads, which can be encoded in a
permutation π over 2n elements. We formally describe how to construct π based
on the array’s access order in Sect. 6.3.

510 D. Heath and V. Kolesnikov

PrORAM Syntax. We denote a PrORAM that encodes a cleartext array A
with access order O by writing A, O . A size-n PrORAM is a four-tuple:

A, O � (A,O, ρ(H,π, r), T)

These elements are as follows:

– A ∈ (Zs
p)

n is the cleartext content of the PrORAM. A is known only to P.
– O is a list of all indexes accessed by the RAM and is known as the access order.

O is maintained in cleartext by P and is unknown to V. P can precompute
O by running the proof in cleartext and logging all RAM accesses.
For simplicity, assume O initially has length that is a multiple of n. P can
pad O with extra zeros to reach the next multiple of n.
As we perform accesses, the access order shrinks: each access removes the first
element of O to reflect that the access has already been handled.

– ρ(H,π, r) is a capacity-2n swordRAM over an array H that we refer to as the
log. Informally, the swordRAM logs each PrORAM access. The swordRAM’s
remaining reads π[r..] correspond to O. ρ(H,π, r) is the authenticated compo-
nent of PrORAM, and PrORAM’s array accesses are ultimately authenticated
via the mechanisms of this swordRAM.

– T is the timetable maintained in cleartext by P. The timetable maps each
array index to the last timestep when that index was accessed. That is, for
each array index i, T [i] is a pointer into the log denoting where A[i] was last
logged. The timetable is unknown to V.

6.3 Scheduling the Underlying swordRAM

Recall, we are working with an n-element PrORAM that facilitates operations on
an n-element array A. In this section, we formally describe how to derive a swor-
dRAM read order π given a length-n PrORAM access order. Recall from Sect. 6.2
that the permutation π must account both for the block of the next n PrORAM
accesses and for the reads needed to copy array contents to a fresh PrORAM
such that we can support more accesses.

Figure 4 presents schedule, an algorithm that computes π, the order in which
the underlying swordRAM will obliviously read the elements of the log. schedule
takes as input the given access order O. swordRAM writes are sequential, and
need not be scheduled, though the read schedule does depend on writes.

As explained in Sect. 6.2, each PrORAM data structure A, O is initialized
with the array A in canonical order (initialization is discussed in Sect. 6.5).

To explain schedule, we first discuss how a single PrORAM access is mapped
to the swordRAM. At initialization, the underlying capacity-2n swordRAM
stores all n elements of A in its first n available slots; the remaining n slots
are not yet written and no reads have yet been used. Suppose that P wishes
to read PrORAM slot A[i]. The swordRAM’s read order permutation π should
reflect this access: the first entry of π should indicate that slot i is read at time
0 (i.e., π[0] = i). Recall that swordRAM slots can be read only once. Therefore,

PrORAM 511

Fig. 4. Scheduling swordRAM accesses. schedule takes as an argument a PrORAM
access order O and outputs a corresponding swordRAM read order permutation π.
PrORAM supports schedules of arbitrary length, but schedule only sets up the next n
accesses in the schedule, and hence only looks at the first n entries of O.
schedule delegates to a more general procedure schedule − suffix which generates a
length r + n suffix of a read order permutation. While this more general call is never
exercised in our execution (except directly via schedule), we use it to define validity of
a general PrORAM state, in which some accesses may have occurred: a valid PrORAM
must have a schedule equal to one (correctly) generated by schedule − suffix.

to allow the PrORAM slot A[i] to be read a second time, we must write back
a value to the swordRAM. Because swordRAM writes occur sequentially, this
write will place the new value into slot n. To account for this write, we should
keep track of the new location of A[i] which is done using a timetable T . As a
side remark, T is initialized to [0, 1, ..., n − 1], reflecting the fact that initially
each element of A is stored in the swordRAM in canonical order.

Scheduling many accesses simply repeatedly applies the following basic pro-
cedure for accesses j = 0, 1, . . . , n−1: Let i be the queried index on access j. We

512 D. Heath and V. Kolesnikov

(1) look up the location of element i in the swordRAM based on T , (2) update
π such that slot i is read at time j (i.e., π[j] = i), (3) allocate the next available
swordRAM write slot as the fresh location for element i, (4) update T to record
that element i is stored in the fresh location.

schedule (Fig. 4) implements this procedure. schedule accepts an access order
O and outputs a permutation on 2n elements (encoded as an array) suitable for
a swordRAM.

After allocating reads for the n accesses, schedule indicates that the last n
entries in the permutation should match the current timetable. This detail is
used to move the contents of an old data structure into a new one: after n
accesses, we read the array contents in canonical order. The order of these last
n reads is exactly what is stored in the final state of T .

schedule highlights the key points of the reduction from RAM to swordRAM:
map each array access to a swordRAM slot and continually update which array
element is where. Of course, the reader must keep in mind the duality of our pre-
sentation as an iterative processing in response to queries, and the precomputed
non-interactive one-shot schedule chosen before each block of n accesses.

6.4 PrORAM Validity

Before we specify PrORAM operations, we establish a validity condition that
connects the PrORAM to its underlying swordRAM. This condition is the invari-
ant that allows us to prove PrORAM is correct over many accesses.

As explained in Sect. 5, the swordRAM should be viewed as a log of the
accesses to the PrORAM. PrORAM validity ensures that its swordRAM both
(1) stores a log that properly reflects the PrORAM’s current content and (2)
has a read order that reflects PrORAM’s future accesses.

Definition 1 (PrORAM Validity). Let A, O = (A,O, ρ(H π, r), T) be a
size-n PrORAM. We say that this PrORAM is valid if:
1. For each PrORAM index i:

H[T [i]] = (A[i], i)

2. Let w � |H| be the number of elements written to the underlying swordRAM:

schedule − suffix(O, T , n − w) = π[r..]

Less formally, these two conditions ensure the following:
1. If we look up each element’s location in the timetable and then find each

location in the log, then we recover the array A. This ensures that the swor-
dRAM properly stores the array A. Note, we store each element A[i] in a
pair with its index i. This allows RAM accesses to check that the queried
index matches the stored index, ensuring that P cannot substitute one RAM
element for another.

2. If we construct a partial swordRAM schedule from the access order and the
current timetable, then we obtain a new copy of the remaining swordRAM
read order. This ensures that the remaining swordRAM reads properly reflect
the array access order O.

PrORAM 513

6.5 PrORAM Operations

Figures 5, 6 and 7 list the operations over PrORAMs:

– Figure 5 indicates how a new PrORAM is initialized. The parties select an
array of n sharings �A� as the initial array state, then sequentially write these
elements into a fresh swordRAM. The procedure also sets up the swordRAM
schedule and P’s timetable T . The swordRAM schedule is set using schedule,
and at initialization each PrORAM slot lives in the corresponding swordRAM
slot: T is initialized to [0, 1, ..., n − 1].

– Figure 6 indicates how the parties access a PrORAM index. To access element
i, the parties first read from the underlying swordRAM and retrieve a pair
�A[i], i′�. The parties check that i = i′ by opening P’s share of i − i′. This
check ensures that P cannot substitute one array value for another.

– Figure 7 is a helper procedure that allows the parties to refresh the PrORAM
after every n accesses. To perform this refresh, the parties read the latest
copy of every RAM slot from the swordRAM, then write these values back
into a fresh swordRAM. We call the refresh procedure once every n accesses.

Crucially, each PrORAM operation preserves validity. We argue this formally
in our proof of correctness.

Fig. 5. The PrORAM initialization procedure initialize. initialize takes as arguments (1)
an authenticated size-n array �A� and (2) an access order O. initialize outputs a fresh
PrORAM A, O .

514 D. Heath and V. Kolesnikov

Fig. 6. PrORAM access procedure access. access performs the following functions: (1) it
looks up and outputs the queried element �A[i]�, (2) it computes �f(A[i]� for arbitrary
circuit-encoded function f , and (3) it writes �f(A[i]� back to the array. If O[0] �= i
(that is, if P tries to use a bad read order), then V will abort.

Fig. 7. PrORAM refresh procedure. PrORAM is built on top of swordRAM which
allows only a bounded number of reads/writes. To allow many PrORAM accesses,
we periodically refresh. The refresh procedure simply reads the content of the old
swordRAM into an array, then initializes a fresh PrORAM with the result.

PrORAM 515

Implementing Read and Write. access takes a general function f as an
argument; accessing A[i] also writes back f(A[i]). We quickly show that this is
sufficient to implement the standard read and write array operations:

read(A, O , �i�) � access(A, O , �i�, �x� 	→ �x�)

write(A, O , �i�, �y�) � access(A, O , �i�, �x� 	→ �y�)

To implement read, we call access with the identity function: read simply writes
back the read element. To implement write, we call access with a constant func-
tion that ignores the read element and returns the written element y.

Taking an arbitrary function is flexible. For example, we can implement an
increment function that in-place updates an array slot:

increment(A, O , �i�) � access(A, O , �i�, �x� 	→ �x + 1�)

Thus, we can mutate an array value without using two RAM accesses.

6.6 PrORAM Formal Properties

In this section, we state PrORAM’s formal properties. Due to lack of space, we
defer full proofs of these properties to Supplementary Material.

initialize and access maintain validity:

Theorem 1 (Initialize Correctness). Let �A� be an authenticated share of
an array of n elements and let O be an arbitrary access order over n elements.

initialize(�A�,O) = A, O

where A, O is a valid PrORAM.

Theorem 2 (Access Correctness). Let A, O be a valid n-element PrO-
RAM. Let j � O[0]. Let �i� be a shared RAM index, and let f be a publicly
agreed function. If i = j (i.e., if the shared RAM index matches the access
order), then the following holds:

access(A, O , �i�, f) = (�A[i]�, A[i := f(A[i])], O[1..]),

where A[i := f(A[i])], O[1..] is a valid PrORAM.

In short, we show that the operations update the timetable/schedule and
appropriately make use of swordRAM such that validity is maintained.

PrORAM is also concretely efficient:

Theorem 3 (Access Cost). The procedure access (Fig. 6) invoked on a size-n
PrORAM consumes amortized 2 log n oblivious transfers of length 2σ secrets.
Additionally, each access transmits amortized 8σ bits.

In short, we inspect the PrORAM algorithms for communication cost, then
amortize costs across each block of n accesses.

516 D. Heath and V. Kolesnikov

7 A Complete ZKP System and Security Proofs

Our approach to defining and proving security. PrORAM naturally inte-
grates with ZKP systems based on authenticated shares, such as the ZKP system
of [HK20a]. To define and prove security of a ZK ORAM construction, including
our PrORAM, one needs to set up a general ZK proof environment which can
generate arbitrary RAM query patterns. The ZKP system of [HK20a] provides
a simple, general, and efficient environment. We embed PrORAM directly into
this protocol, and state and prove the security properties of the resulting system.

We list the following benefits from taking this route:

1. We construct a complete PrORAM-based ZKP system.
2. [HK20a], and hence our complete system, is concretely efficient.
3. As discussed next, we can reuse the clean and powerful GC-based ZK frame-

work of [JKO13,FNO15] to compile a garbling scheme into a ZKP system.
4. We obtain a simple formalism that can be easily generalized/plugged in other

systems (separate proofs are required, but often may be modeled on our proof
blueprint).

ZK-ORAM Definition. We stress that while we do not define ZK ORAM
in full generality, a natural and generalizable ORAM definition emerges
(see Sect. 7.4).

7.1 Casting as a Garbling Scheme

Like [HK20a], we cast our system as a Garbling Scheme (GS), and thus are able
to reuse the convenient and powerful framework of [JKO13]. Their framework
plugs a custom GS (satisfying certain requirements) into their protocol; the
instantiated constant round protocol is a malicious-verifier ZKP system.

In the following, we derive notation from [BHR12], but include changes pro-
posed by recent works that separate the circuit’s logical description from GC
material [HK20c,HK20b]. We explicitly include both the GC material M and
the computed circuit C as arguments to our GS functions.

Before continuing, we discuss the correspondence of our system to a garbling
scheme, as this correspondence may a priori be unintuitive; after all, we do not
construct encryptions of logical gates which are the hallmark of garbled circuits.
Nevertheless, our construction does have components that map cleanly to a GS:

Garbled input labels. In a GS, the GC evaluator receives garbled input labels.
These labels are typically encryption keys that correspond to the logical values on
the input wires. The collection of all input labels is called the encoding (denoted
e), and in most protocols the parties run OTs to send a selection of input labels (a
subset corresponding to the player’s input) from the encoding to the evaluator.
Our labels are more naturally understood as authentication keys, rather than
encryption keys. We send particular authentication mask differences via OT to
enable the authentic multiplication of shares (see Sect. 4.1). The collection of all
OT messages used for multiplications forms our encoding e.

PrORAM 517

Garbled material. In a GS, the GC evaluator receives an extra string that
does not depend on her input and is used to evaluate the GC. This string is
called the material (denoted M), and is typically a collection of encrypted truth
tables. While we do not encrypt truth tables, we do send fixed values from V to
P to initialize additive shares and to execute writes to swordRAMs (see Fig. 3).
The collection of these extra messages is our material M .

Garbled output label. Similar to the input encoding e, GSs also require an
output decoding (denoted d). In the [JKO13] framework, d is a single, unforge-
able value that indicates a proof; V simply checks that P indeed constructed d
to become convinced. In our construction, the string d is the hash digest of all
of P’s opened shares (see Sect. 4.1).

Achieving verifiability. The [JKO13] framework requires a GS to be verifiable.
Informally, this provides for a way to “open” the garbled function to prove that
it was constructed correctly. One natural way to achieve this, which we adopt,
is for all of V’s randomness be derived from a seed S. Revealing S allows P to
verify the garbled function. GSs and the [JKO13] framework do not provide a
side channel for V to deliver S to P. Therefore, we use e for this purpose: we
simply XOR secret share S and append the shares to the labels of wire 1 of the
circuit. This way, S remains protected until it is opened by V.

7.2 The [JKO13] ZK Framework

To plug a construction into [JKO13]’s ZK protocol, we must prove that the
construction is a verifiable garbling scheme. A verifiable garbling scheme is a
tuple of six algorithms (see [BHR12,JKO13] for precise syntax and formalization
details):

(ev,Gb,En,Ev,De,Ve)

The first five algorithms define a garbling scheme [BHR12], while the sixth adds
verifiability [JKO13].

A garbling scheme specifies the functionality computed by V and P. V uses
Gb to construct material M , input encoding e, and output decoding d. Gb is
computed by walking through the agreed proof circuit C gate-by-gate. In our
construction, we simplify Gb by ensuring that all random values are chosen
according to a single pseudorandom seed. Next, V uses OT to encode P’s witness
according to e. En specifies what these OTs should accomplish: it maps P’s input
space to a concrete choice of encoding, specifying the particular values in e that
P should receive for each of her inputs. Upon receiving material M and an
encoded witness, P uses Ev to authentically compute the circuit gate-by-gate.
At the end of a ZK proof, P constructs a particular output value which is first
committed and later sent to V. V then calls De, which checks that the received
value is exactly equal to the output decoding d; if not, V aborts.

The steps described so far do not protect P from a cheating V, who might
maliciously construct e and M in order to leak P’s input. Therefore, before

518 D. Heath and V. Kolesnikov

opening her commitment, P rebuilds M , e, and d according to V’s seed (which
is sent after the commitment). P uses these reconstructed values to check that
the messages received from V were honestly constructed. If so, she opens her
commitment; if not, she aborts. Ve describes how P should reconstruct M , e,
and d and how she should check that V did not cheat.

Finally, ev provides a specification against which the correctness of the gar-
bling scheme can be checked: ev describes the cleartext semantics of the circuits
manipulated by the GS.

A verifiable garbling scheme must be correct, sound, and verifiable (defi-
nitions are in Sect. 7).

7.3 Our Garbling Scheme, Its Security, and Our Main Theorem

Our garbling scheme is the arithmetic garbling scheme of [HK20a] augmented
with PrORAM. The arithmetic circuit may arbitrarily issue calls to PrORAM’s
initialize and access functionalities (Figs. 5 and 6).

Construction 1 (Our Garbling Scheme). Our garbling scheme is the six
tuple of algorithms:

(ev,Gb,En,Ev,De,Ve)

described below. Circuits handled by the garbling scheme allow (1) publicly agreed
constant wire values, (2) addition gates, (3) subtraction gates, (4) scalar gates
(which multiply a value by a public constant), (5) vector-scalar multiplication
gates (where the scalar is chosen by P), (6) opening gates (which force P to
prove a share represents a specific constant), (7) array initialization gates, and
(8) array access gates. Circuits thus include two types of wires: (1) algebraic
wires that hold values in Zp and (2) array wires that hold arrays of values in Zp.

Our circuits do not include standard multiplication gates, but recall (from
Sect. 4.2) that standard multiplication gates are easily implemented on top of
vector-scalar multiplication gates and opening gates.

We describe each of our garbling scheme procedures:
ev evaluates the ZK relation in cleartext and implicitly specifies the cleartext

semantics of each gate type. Our gate types have natural semantics, for example
addition gates indeed add their inputs.

Gb processes the circuit gate-by-gate. As it goes, it generates random values,
obtained from expansion of a pseudorandom seed S. The procedure generates
the mask differences that are V’s OT inputs (i.e. the encoding e). Additionally,
Gb generates the material M : when V constructs additive sharings and on swor-
dRAM writes, Gb appends the ‘sent’ component of the sharing to accumulated
string of material. To handle opening gates, the algorithm also accumulates, as
it goes, the hash of the expected opened shares (that V expects from P). The
final value of this hash is decoding secret d.

Gb processes arithmetic gates according to the [HK20a] protocol
(see Sect. 4.1). Array access gates are processed with our ORAM construction
(Figs. 5 and 6). Each of these gates is handled by running V’s procedure.

PrORAM 519

As an additional detail, Gb includes in e two XOR secret shares of the pseu-
dorandom seed S. We discuss this in Sect. 7.1 under achieving verifiability.

En describes which mask differences (for vector-scalar multiplication gates)
P should receive according to her input. Looking at the procedure for vector-
scalar multiplication (Sect. 4.1), En is the trivial mapping that indicates P should
receive the left OT secret if her input is zero and the right OT secret otherwise
(cf. Eq. 1 in Sect. 4.1).

Ev is complementary to Gb. Like Gb, it processes the circuit gate-by-gate.
On vector-scalar multiplication gates, Ev consumes encoded input delivered by
En. On the construction of additive sharings/swordRAM writes Ev consumes
material in M . On opening gates, Ev accumulates a hash of opened shares.

Ev handles each gate by running P’s procedures as described in Sect. 4.1 and
Figs. 5 and 6.

De is a simple comparison: if the expected output d is equal to the provided
hash, then the procedure accepts; otherwise it rejects (and V aborts).

Ve is implemented in the same manner as Gb: it uses the pseudorandom seed
(included in e, see Sect. 7.1) to replay the actions of Gb. As it goes, it checks that
the generated encoding e, material M , and decoding d are equal to the given
values. If all values are equal, Ve accepts; otherwise it rejects (and P aborts).

We next formalize that Construction 1 is correct, sound, and verifiable.
Due to lack of space, we defer full proofs of these properties to Supplementary
Material. These theorems, combined with Theorem 2 from [JKO13] and theorems
in Sect. 6 imply the following:

Theorem 4 (Main Theorem). In the OT-hybrid model, assuming collision-
resistant hash, and statistical security parameter σ, the framework of [JKO13]
instantiated with Construction 1 is a (malicious-verifier) ZKP system with
soundness O(2−σ). Circuits in the resulting system may construct and access
random-access arrays, and each access to an array of size n consumes amortized
2 log n OTs of length 2σ secrets.

Definition 2 (Correctness). A garbling scheme is correct if for all circuits
C and all inputs i such that C(i) = 1:

(e,M, d) = Gb(1σ, C) =⇒ Ev(C,M,En(e, i), i) = d

Correctness enforces that GS correctly implements the specification ev.

Theorem 5. Construction 1 is correct.

In short, correctness follows from the correctness of [HK20a]’s arithmetic proto-
col and from the correctness of PrORAM (Theorems 1 and 2).

Definition 3 (Soundness). A garbling scheme is sound if for all circuits C,
all inputs i such that C(i) = 0, and all probabilistic polynomial time adversaries
A the following probability is negligible in σ:

Pr(A(C,M,En(e, i)) = d : (e,M, d) ← Gb(1σ, C))

520 D. Heath and V. Kolesnikov

Soundness ensures that a cheating P cannot forge a convincing proof.

Theorem 6 (Soundness). Assuming the existence of collision-resistant hash
functions, Construction 1 is sound.

In short, soundness follows from the authenticity of secret shares. P cannot forge
RAM values because each is masked by a distinct value chosen by V.

Definition 4 (Verifiability). A garbling scheme is verifiable if for all cir-
cuits C, all inputs i such that C(i) = 1, and all probabilistic polynomial time
adversaries A there exists an expected polynomial time algorithm Ext such that
the following probability is negligible in σ:

Pr (Ext(C,M, e) �= Ev(C,M,En(e, i)) : (e,M) ← A(1σ, C),Ve(C,M, e) = 1)

At a high level, in the [JKO13] protocol, P receives and evaluates GC and
commits to her proof message. Then she is given V’s private randomness used
to construct the GC. P uses this randomness to check messages sent by V.
Verifiability ensures that this check is reliable in the following sense: V will
learn nothing from the opened proof message because P’s proof message can be
reconstructed in polytime by Ext without P’s witness. Altogether, verifiability
ensures that the ZK protocol is secure against a malicious verifier.

Our construction takes a natural approach and derives all of V’s randomness
from a seed S, and then reveal S as part of the verification procedure Ve. To
syntactically fit the conveyance of S into the [JKO13] framework, we include
S in e. See discussion accompanying the protocol specification Construction 1.
Note, opening all of V’s private randomness is a natural protocol design decision,
but is not required by the definition of verifiability (Definition 4).

Theorem 7 (Verifiability). Construction 1 is verifiable.

In short, verifiability follows relatively trivially from the fact that V chooses all
randomness starting from a pseudorandom seed.

7.4 Defining ZK ORAM

As discussed before, we do not aim to define ZK ORAM in utmost generality. So
far, we proved (Theorem 4) that PrORAM, integrated with the (quite general)
GC-based ZKP CPU [HK20a], which can generate an arbitrary sequence of RAM
accesses, results in secure and correct ZKP system. Here we explain why this
is a reasonable framework to also define ZK ORAM with respect to specific
execution environments.

Recall, MPC ORAM is often defined as a compiler that translates logical
RAM/array accesses to physical memory accesses; its obliviousness property is
defined by the indistinguishability of physical RAM accesses of any two programs
of equal length (or, alternatively, via simulation), executed in some well-defined
RAM Execution Environment (REE). The programs in a REE, e.g., can simply

PrORAM 521

be defined as arbitrary sequences of logical RAM accesses. Again, MPC ORAM
is said to be correct and secure, if the REE execution of the RAM program
satisfies formally defined security and correctness properties.

We can follow the same definitional approach in defining ZK ORAM: We
specify a REE (the GC-based ZKP CPU [HK20a]) which interfaces with the
ORAM protocol using initialize and access commands and which can generate
arbitrary access sequences. We then require that the REE execution of any RAM
program results in a secure ZKP system.

Hence, PrORAM is proven secure with respect to the GC-based ZKP CPU
of [HK20a] according to the following definition.

Definition 5 (ZK ORAM for a REE). Let RAM Execution Environment
EnvRAM be a pair of interactive Turing machines P, V, which operate with arrays
by making calls to initialize and access as described above. We say that a protocol
Z supporting calls to initialize and access from EnvRAM, is a secure ZK ORAM,
if the protocol obtained by composition of EnvRAM and Z is a secure ZKP system
(in particular, secure against malicious verifier V).

8 Instantiation

We implemented PrORAM in 1300 lines of C++. Our implementation uses the
recent and efficient correlated Ferret OT technique [YWL+20]. Note, Ferret
requires additional cryptographic assumptions: (1) learning parity with noise
(LPN), (2) a tweakable correlation-robust hash function, and (3) a random oracle
(RO). We use statistical security parameter σ = 40 and accordingly instantiate
our prime field with modulus p = 240 − 87, the largest 40 bit prime.

In the following section, we discuss an experimental evaluation of our imple-
mentation. All experiments were performed on a MacBook Pro laptop with an
Intel Dual-Core i5 3.1 GHz processor and 8 GB of RAM. We ran our experiments
on a simulated LAN network featuring 1 Gbps of bandwidth and 2 ms latency.

9 Evaluation

Fig. 8. Performance comparison of PrORAM against [HK20a]’s BubbleRAM. We plot
performance as a function of the size of RAM n. Each experiment accessed the RAM
220 times. We plot (1) the amortized communication cost of each access (left), (2) the
amortized wall-clock time per access (center), and (3) the number of accesses performed
per second (right). Center and right are different views of the same information.

522 D. Heath and V. Kolesnikov

In this section, we illustrate the performance of PrORAM by experimental evalu-
ation. For comparison, we also ran BubbleRAM, a circuit-based ZK ORAM that
was implemented as part of [HK20a]’s ZK construction. Since their construction
is built on the same underlying arithmetic protocol, the comparison is direct.
We emphasize that we implement both constructions in the same protocol and
use the same underlying OT protocol (Ferret [YWL+20]); thus our experiments
directly compare the ORAM techniques, not the environments they run in. Our
comparison highlights the low asymptotic and concrete costs of PrORAM.

We implemented both PrORAM and BubbleRAM and used them to evaluate
a circuit which accesses an array 220 times on random indexes. Of course, a more
realistic use case would use the RAM in the context of a more complex circuit,
but our goal is only to measure performance. We varied the size of the RAM
n between 23 slots and 220 slots. Each RAM slot holds a single Zp element;
recall that, internally, the PrORAM also reserves an extra slot to store the index
identifier. Hence, internally the PrORAM slots have width two; BubbleRAM uses
the same trick and hence also has slots of width two. We measured both the total
communication transmitted between P and V and the wall-clock time needed to
complete the entire proof. Figure 8 plots the results of these experiments.

Communication improvement. Our communication improvement follows
naturally from our improved asymptotics: BubbleRAM incurs 1/2 log2 n OTs
per access while we incur only 2 log n. In addition to the OTs, our V also sends
an additional eight Zp elements per RAM access: four to convey shares of K to
P before permuting and four for the two swordRAM writes.

PrORAM outperforms BubbleRAM for n > 25. At n = 220, communication
is improved by 4.36×.

Wall-clock time improvement. Our wall-clock time improvement is far more
dramatic than our communication improvement.

Both BubbleRAM and PrORAM primarily involve applying Waksman per-
mutation networks to an array of shared values. However, PrORAM applies only
a single permutation to prepare for n accesses. In contrast, BubbleRAM applies
a permutation on each access (though the permutations vary in size). Waksman
networks are not cache friendly. The network involves swapping (via algebra)
data between disparate locations in the array of shares. Thus, computing the
network causes many cache misses and is expensive. Because we significantly
reduce the number of permutations, we see a corresponding performance boost.
At n = 220, we improve over BubbleRAM by 10.6×.

Comparison with BubbleCache. Above, we compared PrORAM to Bub-
bleRAM. [HYDK21] gave a practical improvement to BubbleRAM called Bub-
bleCache. Here, we analytically compare PrORAM and BubbleCache.

BubbleCache improves BubbleRAM by exploiting data locality and by intro-
ducing the possibility of cache misses. BubbleCache incurs only O(log n) commu-
nication overhead per access, matching the asymptotic complexity of PrORAM.

PrORAM 523

Indeed, if we ignore the cost of cache misses, BubbleCache is slightly cheaper
than PrORAM. E.g., for a RAM with 217 words of memory, BubbleCache con-
sumes ≈20 OTs per access while PrORAM consumes 34.

However, if there is insufficient data locality in the program execution, Bub-
bleCache will be unable to fetch a needed data item, and the RAM will be forced
to issue a cache miss. These cache misses must be handled by the surrounding
ZK circuitry. PrORAM does not issue cache misses and implements a simple
array interface.

This difference between the two RAMs is both quantitative and qualitative:

– Suppose we plug both RAMs into a CPU-based architecture. When using
BubbleCache, we must pay overhead on the CPU cycle circuit corresponding
to the cache miss rate. For example, in the [HYDK21] processor, each CPU
cycle costs ≈270 OTs and reads/writes memory once. [HYDK21] found that
a cache miss rate of ≈10% was relatively normal. Thus, we can allocate the
extra 0.1 × 270 = 27 OTs to each BubbleCache read. Already, PrORAM is
thus superior. Moreover, the CPU cycle circuit could be simplified since it no
longer needs to account for cache misses.

– Consider implementing a proof via a specialized circuit with array accesses.
I.e., suppose we do not implement a ZK CPU. Notice that it is not clear how
cache misses should be handled. Indeed, a cache-missing RAM seems to force
the designer to adopt a circuit structure that repeatedly performs the same
computation over and over (i.e., a CPU). PrORAM, which cannot miss, can
be used easily alongside simple circuits.

Acknowledgments. This work was supported in part by NSF award #1909769, by
a Facebook research award, by Georgia Tech’s IISP cybersecurity seed funding (CSF)
award. This material is also based upon work supported in part by DARPA under Con-
tract No. HR001120C0087. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the
views of DARPA.

References

[AHIV17] Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero:
lightweight sublinear arguments without a trusted setup. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp.
2087–2104. ACM Press, October/November 2017

[AKL+20] Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.:
OptORAMa: optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 403–432. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 14

[BBHR18] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transpar-
ent, and post-quantum secure computational integrity. Cryptology ePrint
Archive, Report 2018/046 (2018). https://eprint.iacr.org/2018/046

https://doi.org/10.1007/978-3-030-45724-2_14
https://eprint.iacr.org/2018/046

524 D. Heath and V. Kolesnikov

[BCG+13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs
for C: verifying program executions succinctly and in zero knowledge. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043,
pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40084-1 6

[BCG+19] Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators: silent OT extension and more. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol.
11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26954-8 16

[BCGT13] Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems: extended
abstract. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 401–414. ACM, January
2013

[BFH+20] Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, R.,
Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: Ligatti, J., Ou,
X., Katz, J., Vigna, G. (ed.) ACM CCS 20, pp. 2025–2038. ACM Press,
November 2020

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

[CDG+17] Chase, M., et al. Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin,
T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press, Octo-
ber/November 2017

[CFH+15] Costello, C., et al: Geppetto: versatile verifiable computation. In: 2015
IEEE Symposium on Security and Privacy, pp. 253–270. IEEE Computer
Society Press, May 2015

[Ds17] Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017,
pp. 523–535. ACM Press, October/November 2017

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 191–219.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-
6 7

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–
304. ACM Press, May 1985

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proof systems.
J. ACM 38(3), 690–728 (1991)

[GO96] Goldreich, O., Ostrovsky, R.: Software protection and simulation on obliv-
ious rams. J. ACM 43, 01 (1996)

[HK20a] Heath, D., Kolesnikov, V.: A 2.1 KHz zero-knowledge processor with Bub-
bleRAM. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 20,
pp. 2055–2074. ACM Press, November 2020

[HK20b] Heath, D., Kolesnikov, V.: Stacked garbling. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 763–792.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1 27

https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-030-26954-8_16
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-030-56880-1_27

PrORAM 525

[HK20c] Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge
proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III.
LNCS, vol. 12107, pp. 569–598. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 19

[HMR15] Hu, Z., Mohassel, P., Rosulek, M.: Efficient zero-knowledge proofs of
non-algebraic statements with sublinear amortized cost. In: Gennaro,
R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol. 9216, pp.
150–169. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
48000-7 8

[HYDK21] Heath, D., Yang, Y., Devecsery, D., Kolesnikov, V.: Zero knowledge for
everything and everyone: fast ZK processor with cached ORAM for ANSI
C programs. In: 2021 2021 IEEE Symposium on Security and Privacy
(SP), Los Alamitos, CA, USA, pp. 1538–1556. IEEE Computer Society,
May 2021

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from
secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th
ACM STOC, pp. 21–30. ACM Press, June 2007

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM Press,
November 2013

[KKW18] Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowl-
edge with applications to post-quantum signatures. In: Lie, D., Mannan,
M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM
Press, October 2018

[KOS15] Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with opti-
mal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part
I. LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47989-6 35

[MRS17] Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge argu-
ments for RAM programs. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017, Part I. LNCS, vol. 10210, pp. 501–531. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56620-7 18

[RS19] Raskin, M., Simkin, M.: Perfectly secure oblivious RAM with sublinear
bandwidth overhead. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT
2019, Part II. LNCS, vol. 11922, pp. 537–563. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34621-8 19

[SvS+13] Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM
protocol. In: Sadeghi, A., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013,
pp. 299–310. ACM Press, November 2013

[Wak68] Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)
[WYKW20] Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and

communication-efficient zero-knowledge proofs for Boolean and arithmetic
circuits. Cryptology ePrint Archive, Report 2020/925 (2020). https://
eprint.iacr.org/2020/925

[YWL+20] Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension
for correlated OT with small communication. In: Ligatti, J., Ou, X., Katz,
J., Vigna, G. (eds.) ACM CCS 20, pp. 1607–1626. ACM Press, November
2020

https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-662-48000-7_8
https://doi.org/10.1007/978-3-662-48000-7_8
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-030-34621-8_19
https://eprint.iacr.org/2020/925
https://eprint.iacr.org/2020/925

	PrORAM
	1 Introduction
	1.1 High Level Intuition of Our Approach
	1.2 Contribution

	2 Related Work
	3 Notation
	4 Preliminaries
	4.1 Authenticated Share Algebra
	4.2 Implementing Standard Circuit Gates
	4.3 Explicit-Mask Sharings
	4.4 Standard Additive Sharings
	4.5 Additive Sharing Permutations Programmed by P

	5 Technical Overview
	6 PrORAM Formal Constructions
	6.1 swordRAM
	6.2 swordRAM to PrORAM
	6.3 Scheduling the Underlying swordRAM
	6.4 PrORAM Validity
	6.5 PrORAM Operations
	6.6 PrORAM Formal Properties

	7 A Complete ZKP System and Security Proofs
	7.1 Casting as a Garbling Scheme
	7.2 The ch17CCS:JawKerOrl13 ZK Framework
	7.3 Our Garbling Scheme, Its Security, and Our Main Theorem
	7.4 Defining ZK ORAM

	8 Instantiation
	9 Evaluation
	References

