
Garbled Circuits with Sublinear
Evaluator

Abida Haque1, David Heath2(B), Vladimir Kolesnikov2, Steve Lu3,
Rafail Ostrovsky4, and Akash Shah4

1 NC State, Raleigh, USA
ahaque3@ncsu.edu

2 Georgia Tech, Atlanta, USA
{heath.davidanthony,kolesnikov}@gatech.edu

3 Stealth Software Technologies, Inc., Los Angeles, USA
steve@stealthsoftwareinc.com

4 UCLA, Los Angeles, USA
rafail@cs.ucla.edu, akashshah08@ucla.edu

Abstract. A recent line of work, Stacked Garbled Circuit (SGC),
showed that Garbled Circuit (GC) can be improved for functions that
include conditional behavior. SGC relieves the communication bottleneck
of 2PC by only sending enough garbled material for a single branch out
of the b total branches. Hence, communication is sublinear in the circuit
size. However, both the evaluator and the generator pay in computation
and perform at least factor log b extra work as compared to standard GC.

We extend the sublinearity of SGC to also include the work performed
by the GC evaluator E; thus we achieve a fully sublinear E, which is
essential when optimizing for the online phase. We formalize our app-
roach as a garbling scheme called GCWise: GC WIth Sublinear Evaluator.

We show one attractive and immediate application, Garbled PIR, a
primitive that marries GC with Private Information Retrieval. Garbled
PIR allows the GC to non-interactively and sublinearly access a pri-
vately indexed element from a publicly known database, and then use
this element in continued GC evaluation.

1 Introduction

Garbled Circuit (GC) is a foundational cryptographic technique that allows two
parties to jointly compute arbitrary functions of their private inputs while reveal-
ing nothing but the outputs. GC allows the parties to securely compute while
using only constant rounds of communication. The technique requires that one
party, the GC generator G, send to the other party, the GC evaluator E, a large
“encryption” of a circuit that expresses the desired function. We refer to these
circuit encryptions as GC material. The bandwidth consumed when sending GC
material is typically understood to be the GC bottleneck.

A. Shah—Work partially done while at Microsoft Research, India.

c© International Association for Cryptologic Research 2022
O. Dunkelman and S. Dziembowski (Eds.): EUROCRYPT 2022, LNCS 13275, pp. 37–64, 2022.
https://doi.org/10.1007/978-3-031-06944-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06944-4_2&domain=pdf
https://doi.org/10.1007/978-3-031-06944-4_2

38 A. Haque et al.

Stacked Garbling [HK20a,HK21] – or Stacked GC, SGC – is a recent GC
improvement that reduces bandwidth consumption for functions with conditional
behavior. We review SGC in Sect. 3.1. In SGC, G sends material proportional
to only the single longest branch, not to the entire circuit. Thus, SGC achieves
sublinear communication for certain circuits.

Unfortunately, SGC’s improved communication comes at the cost of increased
computation. Let b denote the number of branches. The parties each incur
at least O(b log b) computation, as compared to O(b) when using standard
GC [HK21].

In this work, we focus on improving the SGC computation cost of E. We
mention two reasons why it is sensible to focus on E.

– Weak E. First, G and E may have different computational resources. We
argue that E will often have weaker hardware. GC offers built-in protection
against malicious E, but more sophisticated and expensive techniques are
needed to protect against malicious G, see e.g., [WRK17]. Thus, the more
trusted party should play G to avoid the cost of these techniques.
We argue that in many natural scenarios, the more trusted party (e.g., a
server, or a bank), is also computationally more powerful than the less trusted
one (e.g., bank’s client, a cell phone, an IoT device).
In such scenarios, E will have weaker hardware, and E’s computational power
will be the bottleneck.

– Online/offline 2PC. Second, GC naturally allows to offload most work to
an offline phase (i.e., before function inputs are available): G can construct
and transmit the GC in advance. However, E can only evaluate once inputs
become available in an online phase. Thus, E’s computation is essentially the
only cost in the online phase.

1.1 Our Contribution

We show that GC conditional branching can be achieved while incurring only
sublinear communication and sublinear computation cost for E. More precisely,
for a conditional with b branches, our construction requires that G send to
E material of size Õ(

√
b) and E uses Õ(

√
b) computation. Our G uses Õ(b)

computation. Importantly, the entire online phase has only Õ(
√

b) cost.
Our construction is formalized and proved secure as a garbling

scheme [BHR12] assuming one-way functions. (To compose our technique with
Free-XOR-based schemes, we need a stronger circular correlation-robust hash
function [CKKZ12].) Since it is a garbling scheme, our construction can be
plugged into GC protocols. We name our garbling scheme GCWise, for GC WIth
Sublinear Evaluator.

Our construction can be immediately used to build an efficient Garbled PIR,
described next in Sect. 1.2. Garbled PIR allows the GC to non-interactively and
sublinearly access a privately indexed element from a publicly known database,
and then use this element in continued GC evaluation.

Garbled Circuits with Sublinear Evaluator 39

1.2 Garbled PIR

Our construction is best applied when the target conditional has high branch-
ing factor. We mention an interesting application where high branching factor
naturally arises.

Suppose G and E agree on a public database with elements (x0, ..., xn−1).
They wish to include the database as part of their GC computation by reading
one of its elements. Namely, suppose the GC computes a garbled index i that
is known to neither party. The parties wish to efficiently recover the value xi

inside the GC such that the value can be used in further computation. Such
a capability is essentially Private Information Retrieval (PIR), but where the
selected index and the value are compatible with GC. One can view this as the
GC playing the PIR receiver and G and E jointly playing the PIR sender. We
emphasize that G and E must publicly agree on the contents of the database,
but they do not learn which element is accessed. For completeness, we include
the following formal definition of Garbled PIR:

Definition 1 (Garbling Scheme with PIR (Garbled PIR)). A garbling
scheme [BHR12] G is considered a garbling scheme with PIR if its circuits may
include the following Gpir gates:

Gpir [x0, ..., xn−1](i) �→ xi

Here Gpir is parameterized by the public constant array [x0, ..., xn−1], and the
gate input i is computed inside the evaluated circuit.

Constructing Garbled PIR from conditional branching. Efficient Garbled
PIR can be immediately constructed from conditional branching. In particular,
we define n conditionally composed circuits C0, ..., Cn−1 such that each circuit Ci

takes no inputs and outputs the constant xi.
We thus obtain Garbled PIR incurring only Õ(

√
n) communication and

Õ(
√

n) E computation.
Our Garbled PIR can be upgraded to store private data by using one non-

black-box PRF call per access. Indeed, each xi can be stored masked with Fk(i);
the GC simply accesses the i-th position, unmasks the computed PRF, and
proceeds with subsequent GC evaluation.

Comparison with Garbled RAM (GRAM). It is important (and easy) to
see that GRAM, introduced by [LO13], does not solve the problem of efficient
Garbled PIR. Indeed, GRAM performance is amortized over a sequence of RAM
queries. A single GRAM access will require players to jointly build and then
access a superlinear data structure, a far more expensive task than a simple linear
scan. Thus GRAM does not imply Garbled PIR with sublinear communication
and E computation.

1.3 Compact 2PC and Garbled PIR

For functions with conditional behavior, we achieve communication and compu-
tation for one of the parties that is sublinear in the size of the function descrip-

40 A. Haque et al.

tion (i.e., function’s circuit size). We find it convenient to assign a name to this
property. We call this double sublinearity compactness.

For example, Sect. 1.2 describes a compact Garbled PIR, and our garbling
scheme GCWise allows to achieve compact 2PC.

1.4 High-Level Intuition for Our Approach

Let b denote the number of branches in a conditional. Rather than sending
garbled material for each conditional branch, our G randomly organizes the
branches into Õ(

√
b) buckets and stacks the branches inside each bucket. Each

bucket contains Õ(
√

b) branches, with the constraint that each branch appears
at least once (with overwhelming probability). For each bucket, G stacks the
material for that bucket’s branches and sends the SGC to E. This achieves
sublinear Õ(

√
b) communication.

To achieve E’s sublinear computation, we ensure that E needs to only con-
sider a single bucket, one (possibly of several) that contains the active branch.
E processes only the Õ(

√
b) circuits in this single bucket.

The GC simply reveals to E the ID of the active bucket and the IDs of the
inactive branches in it. E then unstacks the active branch material and evaluates
using the remaining material.

The above description elides many details. For instance, we must route GC
wire labels to 1-out-of-b circuits while maintaining sublinear communication and
E computation. Additionally, we must ensure that E does not learn the identity
of the active branch. We present a detailed overview of our approach in Sect. 4.

2 Related Work

Stacked Garbling. The most closely related works are those that developed
Stacked Garbled Circuit (SGC) [Kol18,HK20b,HK20a,HK21], a GC primitive
that reduces the communication cost of branching. We review the SGC technique
in Sect. 3.1.

Our construction builds on SGC. Like prior work, we also achieve communi-
cation sublinear in the number of branches. However, we also achieve sublinear
evaluation: our construction is compact. Prior SGC techniques are not compact.

Online-offline MPC. MPC of large functions can be expensive, and is unac-
ceptable for certain time-sensitive (e.g., real-time) applications. One often-
acceptable solution to this is to take advantage of the idle time before MPC
inputs are available (the offline phase) by performing input-independent com-
putation and data transfers. This often dramatically reduces the cost of the
online phase.

MPC with preprocessing, aka online/offline MPC, is widely seen as a central
setting for MPC, and is considered in many lines of work and protocol fami-
lies, such as SPDZ [DPSZ12,BNO19]. Our protocol is the first one to achieve
sublinear online phase for GC.

Garbled Circuits with Sublinear Evaluator 41

Other Garbled Circuit Optimizations. Originally, GCs required G send to
E four ciphertexts per fan-in two gate.

This number of needed ciphertexts has been improved by a long line of works.
While our emphasis is sublinear cost branching, not the efficiency of individual
GC gates, we review such works for completeness.

– [NPS99] introduced garbled row-reduction (GRR3), which reduced the cost
to three ciphertexts per gate.

– Much later, [KS08a] introduced the Free XOR technique which allows XOR
gates to be computed without extra ciphertexts.

– [PSSW09] introduced a polynomial interpolation-based technique that uses
only two ciphertexts per gate (GRR2).

– While GRR3 is compatible with Free XOR, GRR2 is not. This opened the
door to further improvements: [KMR14] generalized Free XOR into “fleXOR”,
a technique that uses heuristics to mix GRR2 with Free XOR and GRR3.

– [ZRE15] superceded prior improvements with their half-gates technique. Half-
gates consumes only two ciphertexts per AND gate and compatible with Free
XOR. [ZRE15] also gave a matching lower bound in a model that seemed
difficult to circumvent.

– Very recently – and quite suprisingly – [RR21] found a new approach outside
the [ZRE15] lower bound model. Their technique requires only 1.5 ciphertexts
per AND gate and is compatible with Free XOR.

This line of work improves the cost of individual gates; in contrast to our
work, the total cost remains proportional to the circuit size.

Garbled RAM (GRAM). Most GC constructions operate in the circuit model
of computation, rather than using Turing machines or RAM machines. Excep-
tions include the line of work on garbling schemes for RAM programs: Gar-
bled RAM (GRAM) [LO13], outsourced RAM [GKK+12], and the TM model
of [GKP+13]. RAM-based 2PC is motivated by the prohibitively expensive cost
of generic program-to-circuit unrolling.

GRAM and our Garbled PIR are incomparable: while GRAM achieves sub-
linear RAM, its costs are amortized. Meanwhile, Garbled PIR is less expressive,
but achieves sublinear cost without amortization.

Private Information Retrieval (PIR). Private information retrieval (PIR),
introduced by Chor et al. [CGKS95,CKGS98], allows a client to retrieve an
item from a public database stored at a server without revealing which item is
requested. The communication complexity of PIR is sublinear in the size n of
the database, and the computation of the server is linear in n. [KO97] designed a
PIR scheme with communication O(nε) for an arbitrary constant ε; subsequent
works achieved polylogarithmic communication.

We achieve Garbled PIR; i.e., private information retrieval that is compatible
with GC (Sect. 1.2).

42 A. Haque et al.

Table 1. Table of notation.

Symbol Denotation

κ Computational security parameter (e.g., 128)
C Function/circuit
Ĉ Garbled circuit on C (usesˆsymbol)
x, y Small Latin letters for plain inputs/outputs
X,Y Capital Latin letters for garbled inputs/outputs
G GC Generator (he/him)
E GC Evaluator (she/hers)
b Number of conditional branches
�, i Number of buckets � indexed by i

m, j Number of elements in a bucket indexed by j (bucket size)
α Active branch ID
β Active bucket ID
γ The index of active instance for Cα in active bucket Bβ (see Sect. 5.1)
n Number of gates in a branch
S Pseudorandom seed
K Encryption key

Compact 2PC from Fully Homomorphic Encryption (FHE). The break-
through work on FHE by Gentry [Gen09] and Brakerski and Vaikuntanathan
[BV11] can be used to achieve compact 2PC. Using FHE, one party encrypts its
input and sends it to the other party. The other party then computes the func-
tion homomorphically over these encrypted inputs and its own inputs. Hence,
the communication and computation complexity of one of the parties is pro-
portional to the size of its inputs and is independent of the size of the circuit.
Despite concrete improvements, e.g., [BV11,GSW13], FHE remain expensive in
practice, compared to GC.

3 Preliminaries

This section reviews stacked garbling [HK20a,HK20b] and introduces basic nota-
tion and concepts needed to understand our approach.

Notational Preliminaries. For an integer n, we use [n] to denote the set
{0, 1, . . . , n − 1}. PPT stands for probabilistic polynomial time. The base two
logarithm of x is denoted log x. We use c= to show two distributions are computa-
tionally indistinguishable. Table 1 lists various naming conventions used through-
out this work.

Garbled Circuits with Sublinear Evaluator 43

3.1 Reducing GC Communication

A recent line of works showed that GC communication can be asymptotically
improved for circuits with conditional behavior. This line began with ‘Free
If’ [Kol18]. To reduce communication, Kolesnikov decoupled the circuit topol-
ogy from the garbled circuit material. The topology is the circuit description,
describing how the gates are laid out as a graph. The material is the collection
of encrypted truth tables that support secure evaluation

Free If only works when G knows the identity of the active conditional branch
but ensures that E does not learn the active branch.

Building on the topology-decoupling idea, Heath and Kolesnikov showed
improvements both when only E knows the active branch [HK20b] and when
neither player knows the active branch [HK20a]. Both [HK20b] and [HK20a]
consume communication proportional to only the program’s longest execution
path rather than to the entire circuit.

By using these stacked garbling techniques (sometimes called stacked garbled
circuit, SGC), we need not send separate material for each conditional branch.
Instead, a single stacked (via bitwise XOR) string of material can be sent for all
branches. After receiving the stacked material, E is given enough information
to efficiently and locally reconstruct the material for each inactive branch. This
allows her to unstack (again, by bitwise XORing) the material for the single
active branch. E can then correctly execute the active branch. By stacking the
branch material, SGC greatly reduces bandwidth consumption.

[HK20b] Review. Like [HK20a], we target secure computation in the setting
where neither party knows the active branch. Thus, our setting is closest to
[HK20a]. While our approach is for general 2PC, our construction is more closely
related to that of [HK20b], which was used to improve GC-based zero knowl-
edge proofs [JKO13,FNO15]. The core idea given by [HK20b] does not require
the ZK setting; it simply requires that the GC evaluator E knows the identity
of each active conditional branch. Hence, we elide the ZK details and present
the [HK20b] technique as one for secure 2PC.

For reference, Table 1 lists variables used to describe circuits and GCs.
Consider b branches C0, . . . , Cb−1 and let α denote the index of the active

branch. Let E know α. The [HK20b] approach is as follows: G selects b PRG seeds
S0, . . . , Sb−1 and uses each respective seed to derive all randomness used while
constructing a garbling of the respective branch. Let Ĉ0, . . . , Ĉb−1 denote the b
resultant GC materials (i.e., the collections of encrypted truth tables). Before
[HK20b], each of these b materials would be sent to E, requiring communication
proportional to the number of branches.

[HK20b] improves over this as follows: G pads the shorter materials with
extra 0s until each material has the same length. G computes Ĉ ← ⊕

i Ĉi and
sends Ĉ to E. G additionally conveys to E each seed Si�=α corresponding to the
b − 1 inactive branches.1 If E were to obtain all GC seeds, she could use them

1 [HK20b] use oblivious transfer to convey these seeds, but they can also be encrypted
according to the active branch GC labels in a GC gadget.

44 A. Haque et al.

to learn all circuit labels. This would not be secure since this would allow E
to decrypt intermediate circuit values. However, it is secure to send seeds to
E, so long as each seed is not used in an active branch [HK20b]. We ensure
this is secure by using garbled gadgets to enforce that no inactive branch holds
semantic values on its wires. Hence, there are no wire labels for E to illegally
decrypt.

E uses the b − 1 seeds to reconstruct the materials Ĉi�=α and then computes
Ĉα ← Ĉ ⊕ (

⊕
i�=α Ĉi), unstacking the active branch material. E uses this active

branch material and the appropriate input labels (which are conveyed separately)
to evaluate the active branch.

Although we consider the setting where neither E nor G know the active
branch, we leverage the above technique: we also stack GC material and reveal
to E to the stacked index of the active branch. Crucially, our approach decouples
the stacked index of the active branch from its index in the program. Thus,
learning the former does not break security by revealing the identity of the
active branch. We discuss our approach further in Sect. 4.

3.2 Universal and Set-Universal Circuits

To evaluate a circuit C inside the GC, E must both hold the material Ĉ and
know the topology for that circuit. However, we need to ensure that the differing
topology across branches does not leak the identity of the active branch. This
leakage can be prevented by using universal circuits (UC). A UC can hide the
structure of the evaluated circuit.

A UC can emulate any circuit with size up to a parameterized maximum
number of gates n. A UC takes as input the description of the desired circuit C
encoded as a programming string c. On input x and programming string c that
encodes C, a UC U computes U(c, x) = C(x).

Valiant [Val76] achieved the first UC construction, which was of size
O(n log n). More recent works have improved the constant overhead of UC con-
structions. The current best construction [LYZ+20] achieves UCs of size 3n log n.
A simpler construction with size O(n log2 n) also exists and is better for small
n [KS08b].

We note that UCs do not directly solve our compactness problem, since in
addition to the garbled UC itself we must convey a garbling of the UC program-
ming string. This programming string is proportional to the size of the UC. In
general, b programming strings are needed to encode the possibility of evaluating
any branch. Nevertheless, UCs are core to our approach.

Set-Universal Circuits. When we handle conditional branching, we know stat-
ically that the active branch is an element from the small set of circuits in the
conditional. Thus, using a general purpose UC that emulates any size n circuit
is overkill. Set-universal circuits [KKW17] construct a single circuit that can
emulate any circuit from a specific set of circuits S. A set-universal circuit can
be less costly than a full universal circuit.

Garbled Circuits with Sublinear Evaluator 45

Note that for Garbled PIR (Sect. 1.2), the relevant set-universal circuit is
incredibly simple: each “circuit” in Garbled PIR simply outputs a constant value.
Hence, all such circuits already share a fixed topology and the set-universal
topology is trivially constructed without overhead.

3.3 Garbled Circuit Formalization

Our approach achieves compact 2PC by using garbled circuits (GCs).
Yao [Yao86] first introduced garbled circuits, with subsequent works like Lin-
dell and Pinkas [LP09] and Bellare, Hoang, and Rogaway [BHR12] formalizing
the syntax, methods, and proofs. Garbled circuit techniques are often formalized
as garbling schemes, not as protocols. We take the same approach, formalizing
our technique as a garbling scheme in the framework given by [BHR12]. In prac-
tice, the parties G and E run these algorithms as part of a protocol that uses
the scheme as a black box. We present the [BHR12] garbling scheme definitions.

Definition 2 (Garbling Scheme). A garbling scheme G is a tuple of algo-
rithms:

G = (Gb,En,De,Ev, ev)

such that:

1. (Ĉ, e, d) ← Gb(1κ, C): Gb maps a function C : {0, 1}� → {0, 1}m to a triple
(Ĉ, e, d) such that De(d, ·) ◦ Ev(C, Ĉ, ·) ◦ En(e, ·) = C. We often make garbling
randomness explicit via pseudorandom seed S: (Ĉ, e, d) ← Gb(1κ, C;S)

2. X ← En(e, x): En maps a cleartext input x ∈ {0, 1}� to garbled labels X by
looking up labels from the encoding string e according to x.

3. y ← De(d, Y): De maps garbled output labels Y to the cleartext output y by
comparing values in Y to values in the decoding string d.

4. Y ← Ev(C, Ĉ,X): Ev securely evaluates a circuit C using its garbled material
Ĉ and garbled input X.

5. y ← ev(C, x): ev evaluates the function C on input x in cleartext and is used
to evaluate correctness. We sometimes instead write C(x) for simplicity.

We formally define the security notions of a garbling scheme and show that
our construction satisfies them in Sect. 6.

Projectivity. Our scheme only considers Boolean values and is projec-
tive [BHR12]. In a projective garbling scheme, each circuit wire is associated
with two labels that respectively encode zero and one. Projective schemes enjoy
simple definitions for En and De that map between GC labels and cleartext bits.

The encoding string e is a list of 2n tokens e = (X0
0 ,X1

0 , . . . , X0
n−1,X

1
n−1),

two for each bit of an input x ∈ {0, 1}n. For a given x = (x0, . . . , xn−1), En(e, x)
selects a subvector (Xx0

0 , . . . , X
xn−1
n−1) for the encoding. Similarly, the decryption

De compares output labels to the content of the decoding string d and outputs
appropriate cleartext values.

46 A. Haque et al.

3.4 Circuit Syntax

Traditionally, Boolean circuits refer to a collection of gates with specified con-
nections. Unfortunately, this notion does not make explicit the function’s con-
ditional behavior. Therefore, we follow [HK20a] and instead refer to the above
notion as a netlist. Our garbling scheme (Sect. 5.3) handles conditionals built
from a vector of netlists.

A circuit C is a vector of constituent netlists C0, . . . , Cb−1. As in [HK20a],
we leave the syntax of netlists unspecified. This allows us to plug different low-
level garbling techniques into our construction, even if the technique uses novel
gates. The only restriction we place on netlists is that given a vector of netlists
C0, . . . , Cb−1, it is possible to construct a universal netlist (see Sect. 3.2) that can
be programmed (e.g., by part of its input) as any branch Ci. By convention,
the first 	log b
 bits of input to a conditional are condition bits that encode the
active branch ID α. Semantically, on input (α, x), the conditional outputs Cα(x).

Sequentially composed conditionals. It is often useful to sequentially compose
multiple circuits, e.g., the output of one conditional is fed as input to another.
While our syntax does not directly handle sequential composition, such handling
can be easily laid on top of our approach, see e.g., [HK20a]. Thus, the fact that
we do not further discuss sequential composition simplifies presentation but does
not limit expressivity.

Nesting conditionals. We do not handle nested conditionals: it is not clear how to
express a universal circuit that captures arbitrary explicit conditional branching.
We note that in many cases it is possible to efficiently rewrite nested conditionals
as a single top-level conditional via safe program transformations.

4 Technical Overview

In this section, we present our construction at a high level. Formal algorithms
and proofs are in Sects. 5 and 6. Consider b conditionally composed circuits Ci∈[b].
We call these circuits branches. Let α denote the index of the active branch, i.e.,
the branch whose output appears at the end of the conditional. Suppose that
neither G nor E knows α. Our goal is to securely compute and propagate the
output of Cα while using communication and E computation sublinear in the
number of branches.

Standard stacked garbling. To recap Sect. 3.1, in standard SGC [HK20a], G con-
structs for each branch Ci a garbling Ĉi from a seed Si and then sends to E the
stacked garbling

⊕
i Ĉi. At runtime, the GC conveys to E each seed Si�=α (via

a garbled gadget programmed by G). E uses these seeds to garble each inactive
branch and constructs the value

⊕
i�=α Ĉi. This value allows her to unstack the

material for the active branch:
(

⊕

i

Ĉi

)

⊕
⎛

⎝
⊕

i�=α

Ĉi

⎞

⎠ = Ĉα

Garbled Circuits with Sublinear Evaluator 47

She uses the resultant material to correctly evaluate the active branch Cα.
Unfortunately, the above procedure is not compact: E must garble each

branch, so her work is linear in b. We adopt a different strategy.

G’s handling. Instead of stacking all b garblings into a single stack of garbled
material, G constructs multiple stacks. Specifically, he considers a sublinear num-
ber � = Õ(

√
b) of buckets, each of which is simply a collection of some of the

branches. G fills each bucket with m = Õ(
√

b) branches via a garbled gadget
called the bucket table (see Sect. 5.1). The bucket table ensures that each branch
appears at least once with overwhelming probability. For each bucket Bi, G gar-
bles the m constituent branches using m distinct seeds and stacks the resultant
material. G separately sends to E the stacked material for each bucket Bi. At
runtime, E will consider only one of these buckets. Since the considered bucket
holds only Õ(

√
b) branches, E’s work is sublinear in b.

Terminology. In our construction, a particular branch may be stacked more than
once. Indeed, each branch may appear in multiple buckets and even multiple
times within the same bucket. Each copy of a branch is called an instance. There
are more instances than there are branches and (with overwhelming probability)
there exists at least one instance of each branch. All instances in the same bucket
are called siblings.

E need not evaluate all instances: many are dummies that prevent E from
learning the active branch ID. At runtime, E will evaluate a garbling of exactly
one instance of branch Cα. We call this evaluated instance the active instance.
The active instance resides in a bucket that we call the active bucket ; we denote
the active bucket ID by β.

E’s handling of buckets. Recall that the GC computes the value α and that
E holds stacked material for each bucket. The garbled material for the active
instance is in the active bucket Bβ . We proceed as follows: The GC reveals to E
the following information via the bucket table:

1. The identity of the active bucket β.
2. The identity of the active instance’s m − 1 siblings: i.e., which inactive

branches are in Bβ .
3. The m − 1 seeds used to garble the active instance’s siblings.

E, crucially, is not given information about any inactive buckets Bi�=β and is
not told the identity of the active instance. We show that the above information
can be compactly and securely computed by our carefully arranged bucket table
gadget (see Sect. 5.1).

With this information, E garbles each sibling instance and unstacks the active
instance’s material. Crucially, our bucket table ensures that the branches within
a single bucket are sampled with replacement, so even learning that branch Cj

is a sibling of the active instance does not allow E to rule out the fact that Cj

might be the active branch. From here, we would like E to evaluate the active
instance. However, one important problem remains: to evaluate, E needs both
the active instance’s material (which she has) and the active branch topology.

48 A. Haque et al.

As discussed so far, E cannot learn this topology, since this would immediately
imply the identity of the active branch.

Universal topology. To avoid the above problem, we ensure each branch Ci uses
the same topology. We achieve this by expressing each branch as the program-
ming of a universal circuit (UC) (see Sect. 3.2). Since each branch has the same
topology, E can evaluate the active branch without learning its identity.

This raises a question: Why not instead simply use one UC to directly express
the conditional instead of stacking garbled material? The crucial problem with
using UCs for conditional branching is that E must somehow obtain a garbled
programming string corresponding to the active branch. Standard techniques for
conveying 1-out-of-b programming strings require communication proportional
to b, and so are not compact.

In our approach, programming strings are sent efficiently: G incorporates
the programming string directly into each garbling. Thus, when E unstacks,
she obtains a garbling with the proper programming for the active branch, but
without learning the active branch ID and without needing to consider all b
possible functions.

Summary of our approach.

– G and E agree on a circuit U that is universal to each branch Ci.
– G considers Õ(

√
b) buckets and fills each bucket with Õ(

√
b) branch IDs.

– For each instance, G accordingly programs U and garbles programmed U . For
each bucket, G stacks the Õ(

√
b) materials.

– G sends Õ(
√

b) materials to E. The materials include the stacked garbling for
each bucket and the garbled gadgets, including the bucket table. The bucket
table tells E how to unstack the active instance.

– E evaluates the bucket table and learns the active bucket, the identities of
the siblings of the active instance, and seeds for these siblings.

– E considers only the active bucket, garbles the siblings, unstacks the active
instance material, and evaluates the active instance.

By running the above high-level procedure, E evaluates a conditional with b
branches, but while using only Õ(

√
b) communication and computation. The

technique does require a garbled bucket table gadget (and a demultiplexer and
multiplexer gadget), but we show that the gadgets can be constructed with size
sublinear in the number of branches. Hence, G and E obliviously execute a
conditional while using only sublinear communication and E computation: we
achieve compact 2PC.

5 Our Construction

In this section, we present our technique in detail. We start by describing the
bucket table gadget. Then we introduce our multiplexer (mux) and demultiplexer
(demux) gadgets. One key idea (similar to SGC) is different parts of the circuit

Garbled Circuits with Sublinear Evaluator 49

are garbled with different seeds. This creates the problem that different circuit
wires are associated with two different GC labels. Garbling even the same circuit
starting from a different seed will result in different GC wire labels: we say
that different GCs have different vocabularies. The mux/demux gadgets handle
a problem of vocabulary translation needed to evaluate one out of many different
garbled circuits.

Finally, we combine our gadgets and the high level ideas from Sect. 4 into a
garbling scheme [BHR12]. Section 6 then proves this garbling scheme is secure.

5.1 Bucket Table Gadget

In this section, we formalize the bucket table gadget, which is the garbled gadget
that tells E the information needed to evaluate the active branch Cα. Given
a garbled encoding of the branch id α, the bucket table gives the following
information to E:

– The active bucket’s identity, β.
– The identity of the siblings of Cα in Bβ .
– m − 1 seeds corresponding to the garbling of each sibling.
– A bucket key Kβ corresponding to the active bucket. Each bucket’s garbling is

encrypted by a distinct key that ensures E can only view the active bucket’s
garbling.

To implement the bucket table using only sublinear work, we use a key
insight: we only need to sample enough randomness for one bucket as we can
reuse this sampled randomness across buckets.

In our bucket table gadget, we sample m uniform offsets δi ∈ [b]. These m
offsets comprise the choices of branches for each bucket. Specifically, we place
each branch id (δi + j) mod b at the ith index of bucket Bj . That is, we use
the same m random offsets for each bucket but apply a deterministic per-bucket
linear shift. Figure 2 depicts the assignment of branches to buckets. As the ran-
dom choices are made with replacement, a branch may appear more than once
in a bucket. This approach is similar to a technique used to achieve PIR with
sublinear online time [CK20].

Besides assigning branches to buckets, the bucket table also samples m gar-
bling seeds Si and � encryption keys Kj uniformly at random. Each seed Si will
be used to garble the ith branch in every bucket Bj . Key Kj will be used to
encrypt the stacked material corresponding to bucket Bj (see Sect. 5.3).

At runtime, the bucket table takes as argument a garbling of the active
branch id α and computes, based on the list δi, the identity of the active bucket
β and an index γ within the active bucket that holds the active instance. In
this procedure, we must ensure that E learns no information about α. Since our
bucket table will often include multiple instances corresponding to active branch
Cα, we must choose among these instances uniformly. Moreover, we must make
this choice using work sublinear in the number of branches. We define the bucket
table procedure below:

50 A. Haque et al.

1. Identify each instance of the active branch Cα. To perform this in sublinear
time, iterate over the list of offsets δi∈[m] and build a list instances of those
indices i for which some bucket holds a garbling of Cα at position i. The
instances list can be built by computing

γi = (α − δi) mod b, for i ∈ [m].

If γi ∈ [�], then set instances[i] = 1, indicating that there is a bucket that holds
an instance of Cα at a position corresponding to γi; else set instances[i] = 0 to
indicate that there does not exist a bucket id j such that (δi + j) mod b = α.

2. Select a single active instance by uniformly sampling among the non-zero
indices of instances. This can be achieved as follows (1) Compute the hamming
weight HW(instances), (2) Select a large uniform value r (this can be done
outside the GC by G), (3) Compute t = r mod HW(instances) which, for
r � HW(instances) is statistically indistinguishable from uniform, and (4)
Linearly scan the list δi to select the tth non-zero index of instances which is
denoted by γ. Select the value δγ via a linear scan over each δi.

3. Identify the active bucket β ← (α − δγ) mod B. The index of the active
instance within the active bucket is γ.

4. Compute each sibling yi�=γ = δi�=γ +β, each sibling seed Si�=γ , and the bucket
key Kβ : each of these values is computed by linearly scanning lists of offsets
δi∈[m], garbling seeds Si∈[m], and encryption keys Kj∈[�] respectively, with
respect to β and γ.

Let Cbt denote the circuit that computes the above procedure. To summarize,
Cbt takes as input the active branch id α and outputs the active bucket id β ∈ [�],
the index of active instance in that bucket γ ∈ [m], the siblings of the active
instance yi�=γ , the seeds Si�=γ , and the encryption key Kβ . Observe that Cbt has
size Õ(� + m) as it only consists of linear scans of lists of length � and m.

Let BT.Gb denote the procedure that takes as input lists of offsets δi∈[m],
garbling seeds Si∈[m], encryption keys Kj∈[�], the GC vocabulary for the possible
active branch labels γ̂ and constructs a garbled circuit Ĉbt for circuit Cbt. Let
BT.Ev denote the evaluation procedure that takes as input the garbled circuit
Ĉbt and an encoding of the active branch id α̂ and outputs Cbt(α).

We define an additional subprocedure ProcBkt which G uses to sample nec-
essary random values used in the bucket table. Specifically, ProcBkt samples (1)
samples the m offsets δi∈[m], (2) assigns branches to each of the buckets, (3)
samples the m garbling seeds Si∈[m], and (4) samples � encryption keys Kj∈[�].
ProcBkt is described in Fig. 1. In Lemma 1, we prove that by setting � and m
to Õ(

√
b), all branches appear with overwhelming probability. Hence, the size of

circuit Cbt is Õ(
√

b).

Lemma 1. If � = Õ(
√

b) and m = Õ(
√

b), then the bucket table (Fig. 1) places
each branch Cη (for η ∈ [b]) into a bucket with overwhelming probability.

Garbled Circuits with Sublinear Evaluator 51

Fig. 1. Procedure to construct bucket table, ProcBkt.

Table 2. The Bucket Table assigns branches to buckets. Each branch id (δi +j) mod b
is placed at index i of bucket Bj .

Bucket B0 δ0 . . . δi . . . δm−1

...
Bucket Bj δ0 + j . . . δi + j . . . δm−1 + j
...
Bucket B�−1 δ0 + � − 1 . . . δi + � − 1 . . . δm−1 + � − 1

All arithmetic operations are in Zb.

Proof. Let m =
√

bκ and � =
√

b. We analyze the probability that branch η ∈ [b]
does not belong to any of the � buckets Bj∈[�]. Let γj = η − δj mod b, where
j ∈ [m]. Since each δj is uniform at random,

Pr[γj /∈ [�]] = 1 − �

b
.

Moreover, since each δj is independent:

Pr[η /∈ B1 ∧ · · · ∧ η /∈ B�] = Pr[γ1 /∈ [�] ∧ · · · ∧ γm /∈ [�]]

=
(

1 − �

b

)m

=

(

1 −
√

b

b

)√
bκ

=
1
eκ

= negl(κ).

�

5.2 Demultiplexer and Multiplexer

The bucket table allows E to unstack material for the active instance γ in the
active bucket β, but it does not suffice to route inputs to (resp. outputs from)
the active instance. E needs more information to evaluate the active branch Cα.

In general, the conditional composition of b branches can occur in the middle
of a circuit, with sequentially composed circuits occurring before and after the
conditional. To route input and output GC labels to enter and exit the condi-
tional, we design an additional demultiplexer (demux) and multiplexer (mux)
gadget.

52 A. Haque et al.

The demux and mux map the vocabulary of the surrounding circuit (i.e., the
circuit that holds the conditional branch) to the vocabulary of each instance.
Both the demux and mux operate at the level of a particular bucket: they trans-
late the vocabulary of the surrounding circuit to the vocabulary of one instance
in that bucket. Thus, the demux and mux are compact, since their size is pro-
portional to the number of elements in a bucket. We can reuse the same demux
and mux across all buckets, and hence our vocabulary translation for the full
conditional is compact.

The demultiplexer computes the following function for each input wire to the
conditional x and each bucket index i:

demux(x, i, γ) =

{
x if i = γ

⊥ otherwise

where ⊥ indicates that the demultiplexer makes no promise if the instance is
inactive. In other words, the demultiplexer delivers valid labels to the active
instance, but not to any inactive instance. In the GC, the demux is an encrypted
truth table that maps each input label X to a corresponding label Xi for each
ith instance. The truth table is encrypted by the GC labels that encode γ such
that E can only decrypt valid input labels for the active instance Xγ , and not
for any inactive instance.

Similarly, the multiplexer computes the following simple function that selects
outputs from the active instance

mux(y1, ..., yb, γ) = yγ

In the GC, the mux is, again, built by encrypted truth tables that map each
output label from each ith instance Yi to an output label for the surrounding
circuit Y . Again, this truth table is encrypted according to GC labels that encode
γ such that E can only translate outputs labels Yγ of the active instance, not
any inactive instance.

Both the demultiplexer and multiplexer can be built as simple garbled gad-
gets that use encrypted truth tables, like techniques used in [HK20a]. However,
one crucial observation ensures both gadgets are compact: it is sufficient to sam-
ple only m total garbling seeds Si. These same m seeds can be reused across the
� buckets. Because the buckets reuse the seeds and every circuit uses the same
universal topology, there are only m total vocabularies: each ith garbling in a
given bucket is garbled starting from the ith seed Si, so the ith circuits across
all buckets share the same vocabulary. This fact means that the demultiplexer
(resp. multiplexer) need only translate to (resp. from) m different vocabularies,
and so is compact.

Our construction uses four procedures:

– demux.Gb garbles the demux. It takes as arguments (1) the input vocabulary
for each ith instance ei and (2) the GC label vocabulary for the active instance
id γ. It outputs (1) the input vocabulary from the overall conditional e and (2)
a garbled circuit Ĉdem that encodes the demux procedure. demux.Gb samples

Garbled Circuits with Sublinear Evaluator 53

the input encoding string e uniformly, with the exception that each pair of
labels for a given label have differing least significant bits.

– demux.Ev evaluates the demux. It takes as arguments (1) a GC Ĉdem, (2) GC
labels that encode the active branch id γ, and (3) surrounding circuit inputs
X. It outputs inputs for the active instance Xγ .

– mux.Gb garbles the mux. It takes as arguments (1) the output vocabulary for
each ith instance di and (2) the GC label vocabulary for the active instance
id γ. It outputs (1) the output vocabulary from the overall conditional d and
(2) a garbled circuit Ĉmux that encodes the mux procedure. mux.Gb samples
the output decoding string d uniformly, with the exception that each pair of
labels for a given label have differing least significant bits.

– mux.Ev evaluates the mux. It takes as arguments (1) a GC Ĉmux, (2) GC
labels that encode the active branch id γ, and (3) GC output labels from the
active instance Yγ . It outputs output labels for the overall conditional Y .

5.3 Our Garbling Scheme

Following our syntax from Definition 2, we construct our garbling scheme
GCWise:

Construction 1 (GCWise Garbling Scheme). Let Base be an underlying gar-
bling scheme that satisfies the GC properties of correctness, obliviousness, pri-
vacy, authenticity, and sequential composability (see Sect. 3.3). Then GCWise
is the five tuple of algorithms:

(GCWise.Gb,GCWise.En,GCWise.De,GCWise.Ev,GCWise.ev)

as defined in Fig. 2.

Construction 1 supports compact 2PC for conditional circuits. Specifically,
for a conditional with b branches each with n gates, GCWise.Gb outputs a mate-
rial of size Õ(

√
b · n) and GCWise.Ev runs in Õ(

√
b · n) time.

Construction 1 is the relatively straightforward formalization of our tech-
nique as explained in Sect. 4. The key algorithmic details arise from our garbled
gadgets, particularly the bucket table, and were formalized in Sects. 5.1 and 5.2.

We note some of the interesting details of Construction 1:

– Our garbling scheme is projective [BHR12]. As discussed in Sect. 3.3, a pro-
jective garbling scheme has a simplified input and output vocabulary, so we
can use standard algorithms to implement GCWise.En and GCWise.De. We
simply reuse the encoding and decoding algorithms of Base.

– Our algorithms GCWise.Gb and GCWise.Ev formalize the core of our approach
as explained in Sect. 4.

– Notice that we call Base.Gb with an additional seed argument. Recall from
Definition 2 that this denotes that we configure the randomness of the pro-
cedure with an explicit seed.

54 A. Haque et al.

– Our scheme passes the universal circuit U to both Base.Gb and Base.Ev. In
the former case we write U [Ci] to denote that Gb hardcodes the programming
string inputs based on Ci. This ensures that the garbled material Ĉi includes
the garbled programming string for the UC. In the latter case, therefore, E
can evaluate U without knowing Cα.

6 Security

In this section, we first introduce the security notions of a garbling
scheme [BHR12], then formally prove that Construction 1 satisfies these notions.

Informally, the GC security notions are as follows:

– Privacy: (Ĉ,X, d) reveals no more about x than C(x). Formally, there must
exist a simulator Simpr that takes the input (1κ, C, C(x)) and produces an
output that is indistinguishable from (Ĉ,X, d).

– Obliviousness: (Ĉ,X) reveals no information about x. Formally, there must
exist a simulator Simob that takes input (1κ, C) and produces an output that
is indistinguishable from (Ĉ,X).

– Authenticity: Given only (Ĉ,X) no adversary should be able to produce Y ′ �=
Ev(Ĉ,X) such that De(d, Y ′) �= ⊥ except with negligible probability.

The games for privacy and obliviousness are illustrated in Fig. 3.

Definition 3 (Correctness). For C ∈ {0, 1}∗, κ ∈ N, and x ∈ {0, 1}n, and
(Ĉ, e, d) ← Gb(1κ, C):

De(d,Ev(C, Ĉ,En(e, x))) = C(x).

Definition 4 (Obliviousness). A garbling scheme G is oblivious if for all λ
large enough, there exists a polynomial-time simulator Sim such that for any
PPT adversary A:

Pr[ObvSimA
G,Sim(1κ) = 1] ≤ negl(κ).

Definition 5 (Privacy). A garbling scheme G is private if for all λ large
enough, there exists a polynomial-time simulator Sim such that for any PPT
adversary A:

Pr[PrivSimA
G,Sim(1κ) = 1] ≤ negl(κ).

Definition 6 (Authenticity). A garbling scheme G is authentic if for all
sufficiently large λ and for any polynomial time adversary A:

Pr[A wins AuthGame(1λ)] ≤ negl(κ)

Garbled Circuits with Sublinear Evaluator 55

Fig. 2. Our garbling scheme GCWise. Recall from Sect. 3.4 that our scheme considers
the conditional composition of b netlists. Let U be a circuit universal to C0, ..., Cb−1;
U [Ci] denotes hardcoding the programming string of U according to the circuit descrip-
tion Ci. Since GCWise is a projective garbling scheme [BHR12], procedures GCWise.En
and GCWise.De are standard constructions that implement straightforward mappings
between cleartext Boolean values and GC labels (see Sect. 3.3). The semantic function
GCWise.ev gives the straightforward semantics of a conditional and is defined as follows:
GCWise.ev(C0, ..., Cb−1, α, x) �→ Cα(x). Our construction uses our three garbled gadgets:
the bucket table BT (see Sect. 5.1) as well as the demux and mux (see Sect. 5.2). Our
scheme is parameterized over an underlying garbling scheme Base which we use to
handle the individual conditional branches.

56 A. Haque et al.

Fig. 3. Games for ObvSimA
G,Sim and PrivSimA

G,Sim. The steps in boxes only apply to
ObvSim, and the highlighted steps only apply to PrivSim. Unmarked text means the
steps appear in both games.

Fig. 4. Game for AuthGameAG .

Garbled Circuits with Sublinear Evaluator 57

Sequential Composability. As explained in Sect. 3.4, we do not directly manage
the low level handling of individual gates. We instead adopt an approach given
by [HK20a], where we leave the handling of netlists to a parameterized under-
lying garbling scheme. Arbitrary garbling schemes are not candidates for the
underlying scheme because they do not export the format of their GC labels.
To interface with the underlying scheme, we need to build garbled gadgets such
that we can route wire labels into and out of conditional branches. Therefore, we
define a concept of sequentially composable garbling schemes, a weakening of the
strong stackability property given by [HK21]. Informally, sequential composabil-
ity requires the garbling scheme to export the format of its labels such that they
can be directly manipulated (i.e., used as PRF keys) by higher level garbling
schemes. A sequentially composable scheme is projective and has a color and
key function colorPart and keyPart. Many traditional garbling schemes, such as
the classic 4-row Yao scheme, or the more recent half-gates [ZRE15], are sequen-
tially composable or can be trivially adjusted (in a formal sense, meaning that
only syntactic changes are needed) to meet the requirements.

As with [HK20a], we use the output labels of the underlying scheme as keys in
subsequent garbled gadgets. We explain these gadgets in Sect. 5.2, but basically,
they are implemented as garbled rows. The keyPart procedure gives us a key for
each label. The colorPart procedure tells us the bits to instruct E as to which
garbled row to decrypt. We ‘split’ each output label into a key and a color.

Definition 7 (Sequential Composability). A garbling scheme is sequen-
tially composable if:

1. The scheme is projective, including with respect to decoding. I.e., the output
decoding string d is a vector of pairs of labels, and the procedure De(d, Y) is a
simple comparison that, for each output label Yi ∈ Y , computes the following
output bit:

⎧
⎪⎨

⎪⎩

0 if Yi = d0i
1 if Yi = d1i
⊥ otherwise

2. There exists an efficient deterministic procedure colorPart that maps bitstrings
to {0, 1} such that for all projective label pairs X0,X1 ∈ d:

colorPart(X0) �= colorPart(X1)

for the projective label pairs of the garbling scheme.
3. There exists an efficient deterministic function keyPart that maps bitstrings

to {0, 1}κ. Let k be the concatenation of the result of applying keyPart to each
label in the output decoding string d. Let R ∈$ {0, 1}|k| be a uniform string:

k
c= R

58 A. Haque et al.

Note that the definition discusses the output decoding string d. Normally,
d is used at the final layer of the GC to reveal outputs to E. This is not our
intent here. We will not reveal the underlying scheme’s d to E. Rather, we use d
as a hook by which our garbling scheme can syntactically manipulate the labels
of the underlying scheme to glue the output of the underlying scheme with the
next layer of gates.

Free XOR [KS08a] based schemes (e.g., [ZRE15]) might appear to violate
sequential composability: in Free XOR, each pair of internal wire labels is related
by single global constant. Note, Free XOR-based schemes must not use the
global constant as an offset for the output decoding string d, since otherwise the
scheme would clearly fail to satisfy privacy (Definition 5). To resolve this issue,
Free XOR-based schemes usually apply a hash function H to break correlation
between labels inside the De function. To meet the letter of Definition 7, we
simply push these hash function calls into the Ev function. Thus, these schemes
effectively do generate output labels that are indistinguishable from uniformly
random strings (i.e., that meet requirement 3 of Definition 7). This syntactic
reinterpretation does not imply semantic change in [KS08a,ZRE15].

6.1 Proofs

In this section, we prove that GCWise satisfies the above garbled circuit security
notions. Recall that Base is the underlying garbling scheme used to handle the
content of individual branches. Our theorems have the form “If Base satisfies
property X and sequential composability (Definition 7), then GCWise satisfies
property X.” The additional assumption of sequential composability is needed
to so our garbling scheme can manipulate the GC labels of Base. Specifically,
the sequential composability property allows us to use the colorPart and keyPart
procedures to construct encrypted truth tables.

We first prove a lemma that our scheme is itself sequentially composable.
This lemma can be used to embed GCWise inside a higher level scheme such that,
for example, many conditionals can be sequentially composed (see discussion in
Sect. 3.4).

Lemma 2. GCWise is sequentially composable (Definition 7).

Proof. The sequential composability of our scheme follows trivially from the
definition of mux.Gb (Sect. 5.2). This procedure samples a uniform projective
decoding string d with the constraint that the least significant bit of each label
pair differs. Thus, we can use the least significant bit of each label as its color
and the remaining bits as the key.
�

We next prove our scheme satisfies the properties of correctness, authenticity,
obliviousness, and privacy. By satisfying these properties we ensure that our
scheme can be securely plugged into GC protocols that use garbling schemes as
a black box.

Theorem 1. If the underlying garbling scheme Base is correct and sequentially
composable then GCWise is correct.

Garbled Circuits with Sublinear Evaluator 59

Proof. Correctness follows from (1) the discussion in Sect. 4, (2) the correct-
ness of Base, and (3) the correctness of our garbled gadgets, as implied by the
sequential composability of Base.

Let C0, ..., Cb−1 be a vector of arbitrary circuits. Each branch Ci is garbled
using Base. By construction, the Ci is stacked in buckets, and E obtains the
material only for the active branch Cα.

Going in steps, the bucket table (Sect. 5.1) first reveals to E the information
needed to extract material for the active instance:

– The identity of the active bucket, β.
– The identity of the siblings of Cα in Bβ .
– m − 1 seeds corresponding to the garbling of each sibling.
– A bucket key Kβ corresponding to the active bucket.

E uses this information to decrypt and unstack the material Ĉα and properly
translate the encoding into the encoding for Ĉα.

The demux gadget routes GC label inputs to the active branch. The demux
is implemented as a garbled gadget that properly translates the encoding of the
input. Now, since E holds a GC for the UC U (programmed as Cα) and holds
inputs Xγ , she can evaluate. As Base is correct, this yields the appropriate output
labels Yγ . Finally, the mux properly translates the output; this translation table
can be correctly constructed thanks to the sequential composability of Base.
Therefore, GCWise is correct.
�
Theorem 2. If Base is oblivious and sequentially composable then GCWise is
oblivious.

Proof. By construction of a simulator Sobv.
The goal of the simulator is to produce a tuple (C, Ĉ′,X ′) such that:

(C, Ĉ′,X ′) c= (C, Ĉ,X)

where Ĉ and X arise in the real world execution.
Our simulator uses Base’s obliviousness simulator as a black box. There is one

crucial detail in this use: we have carefully ensured that there is only one univer-
sal topology U . Hence, the call to Base.Sobv(1κ,U) indistinguishably simulates
any of the conditional branches.

Our definition of Sobv closely matches the definition of Ev (Fig. 2). Specifi-
cally, Sobv proceeds as follows:

– Simulate the input string X by drawing uniform bits. This is trivially indistin-
guishable from real, since our input encoding string e is also chosen uniformly.

– Parse X as (α̂,X ′).
– Simulate the bucket table and its garbled material Ĉbt by calling a modular

simulator Simbt(α̂) (described later). Let (β, γ, γ̂, (Bβ \ γ), Si∈[m]\γ ,Kβ) be
the simulated output.

60 A. Haque et al.

– Simulate each stack of material Mj �=β by a uniform string. This is indistin-
guishable from real: E obtains the decryption key Kβ , but does not obtain
any decryption key Kj �=β , so in the real world she cannot decrypt. Simulating
the active bucket is more nuanced.

– Simulate the demultiplexer and its garbled material Ĉdemux via a modular
simulator Simdemux(γ̂, X ′) (described later). Let Xγ be the simulated output.

– Proceed by garbling each of the (simulated) m−1 siblings as described in Ev.
Stack each material into Mβ .

– Simulate the material for the active instance by calling Base’s obliviousness
simulator: Ĉα ← Base.Sobv(1κ,U). Stack Ĉ into Mβ to complete the simula-
tion of Mβ . We argue indistinguishability shortly.

– Evaluate the active instance normally: Yγ ← Base.Ev(U , Ĉα,Xγ).
– Simulate the multiplexer and its garbled material Ĉmux via a modular simu-

lator Simdemux(γ̂, Yγ) (described later).
– Output all simulated GC material.

First, note that the simulated stacked material for the active bucket Mβ

is indistinguishable from real. This is because (1) the materials for the m − 1
siblings are generated by garbling, which matches the real world and hence
are clearly indistinguishable, and (2) the material for the active instance Ĉα is
generated by Base’s obliviousness simulator. By assumption, Base is oblivious,
so this additional simulated material is indistinguishable from real.

Now, the above simulation refers to three modular simulators for our GC
gadgets: Simbt, Simdemux, and Simmux. Each of these gadgets are implemented
from typical GC techniques: namely, encrypting output values by masking the
output value with a PRF applied to the correct input value. These techniques are
simple and well known, so we do not fully flesh out these component simulators.
However, there are two important points which we must address.

Simulation of information revealed by the bucket table. The bucket table
gadget reveals information in cleartext to E: E sees the active bucket ID β and
the active instance id γ. These values must be simulated.

We argue that Simbt (1) can simulate β by uniformly sampling a value from [�]
and (2) can simulate γ by uniformly sampling a value from [m]. This simulation
is valid because in the real world (1) we sample each offset value δi uniformly
at random, and (2) we uniformly choose the active instance from the set of all
candidate instances (see discussion in Sect. 5.1). This means that a given branch
ID is equally likely to reside in each bucket. Moreover, we sample among each
of these instances uniformly, so each bucket is equally likely to be the active
bucket. Hence uniformly sampling β and γ is a good simulation.

Security of using a PRF on labels from Base. Our multiplexer gadget
(Sect. 5.2) takes as input output labels from the underlying scheme Base. Our
multiplexer is a typical gadget that encrypts garbled rows using a PRF. Hence,
we must be careful: we use output labels from Base as PRF keys. To simulate,
the PRF definition requires PRF keys to be chosen uniformly. Here is where we
make use of sequential composability (Definition 7). Sequential composability

Garbled Circuits with Sublinear Evaluator 61

insists that all output labels, even jointly, are uniformly random. Thus, we can
use the output labels as PRF keys without breaking the security of the PRF.

GCWise is oblivious.
�
Theorem 3. If Base is oblivious and sequentially composable then GCWise is
private.

Proof. By construction of a simulator Sprv.
By Theorem 2, GCWise is oblivious, so there exists an obliviousness simulator

Sobv. Sprv first runs Sobv(1κ, C) and obtains (C, Ĉ′,X ′). From here, Sprv must
simulate an output decoding string d′ such that

(Ĉ,X, d) c= (Ĉ′,X ′, d′)

Sprv computes Y ′ ← Ev(C,M ′,X ′, t). Now, Sprv constructs d′ in a straight-
forward manner: for each wire y, Sprv fills one of the two labels in d′ with Y ′

at position y such that decoding the label results in cleartext output y. The
other label is set to be uniform with the restriction that its least significant bit
differs from Y ′. This simulation is indistinguishable from the real execution. The
simulated d′ decodes the true output y and is indistinguishable from d.
�
Theorem 4. If the underlying garbling scheme Base is oblivious and sequen-
tially composable then GCWise is authentic.

Proof. Authenticity (Fig. 4) demands that an adversary A with only Ĉ and X
cannot construct a garbled output Y ′ that is different from the one allowed by
X and Ĉ, i.e., where Y ′ �= Ev(Ĉ,X) and De(d, Y) �= ⊥, except with negligible
probability.

Our authenticity proof is like existing GC proofs, e.g., [ZRE15].
Authenticity follows from the definition of the privacy simulator Sprv, from

our choice of output decoding string d, and from De. Assume, to reach a contra-
diction, that a polytime A can indeed forge a proof. We demonstrate that such
an adversary allows a privacy distinguisher. Specifically, on input (Ĉ,X, d) the
distinguisher (1) evaluates the GC normally to obtain Y , (2) forges an output
Y ′ by invoking A, and (3) outputs 1 if and only if Y �= Y ′ and both Y and Y ′

successfully decode.
If we give to this distinguisher a circuit garbling produced by Sprv, the dis-

tinguisher will output one with negliglible probability. Indeed, A must guess
Y ′ �= Y that successfully decodes. However, for each bit in d, Sprv uniformly
samples the inactive decoding string. Thus A must simply guess such a value,
since these uniformly drawn values are independent of the adversary’s view. This
only succeeds with probability 1

2κ .
Hence, if the A can succeed on a real garbling with non-negligible probability,

then we indeed have distinguisher. But GCWise is private, so the distinguisher
should not exist, and we have a contradiction.

GCWise is authentic.
�

62 A. Haque et al.

Acknowledgements. This work was supported in part by NSF award #1909769, by
a Facebook research award, a Cisco research award, and by Georgia Tech’s IISP cyber-
security seed funding (CSF) award. This material is also based upon work supported in
part by DARPA under Contract No. HR001120C0087. This work is also supported by
DARPA under Cooperative Agreement HR0011-20-2-0025, NSF grant CNS-2001096,
CNS-1764025, CNS-1718074, US-Israel BSF grant 2015782, Google Faculty Award, JP
Morgan Faculty Award, IBM Faculty Research Award, Xerox Faculty Research Award,
OKAWA Foundation Research Award, B. John Garrick Foundation Award, Teradata
Research Award, Lockheed-Martin Research Award and Sunday Group. The views and
conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of DARPA, the
Department of Defense, or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for governmental purposes not withstanding any
copyright annotation therein.

References

[BHR12] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits.
In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796.
ACM Press, October 2012

[BNO19] Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: double your online
SPDZ! improving SPDZ using function dependent preprocessing. In: Deng,
R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 2019. LNCS,
vol. 11464, pp. 530–549. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21568-2 26

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, pp. 97–106.
IEEE Computer Society Press, October 2011

[CGKS95] Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information
retrieval. In: 36th Annual Symposium on Foundations of Computer Sci-
ence, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 41–50. IEEE
Computer Society (1995)

[CK20] Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear
online time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS,
vol. 12105, pp. 44–75. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-45721-1 3

[CKGS98] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. J. ACM 45(6), 965–981 (1998)

[CKKZ12] Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of
the “Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 39–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28914-9 3

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32009-5 38

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits
with applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46803-6 7

https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-030-21568-2_26
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-28914-9_3
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-46803-6_7

Garbled Circuits with Sublinear Evaluator 63

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June
2009

[GKK+12] Dov Gordon, S., et al.: Secure two-party computation in sublinear (amor-
tized) time. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012,
pp. 513–524. ACM Press, October 2012

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: How to run turing machines on encrypted data. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40084-1 30

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–
92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-
4 5

[HK20a] Heath, D., Kolesnikov, V.: Stacked garbling. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 763–792. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56880-1 27

[HK20b] Heath, D., Kolesnikov, V.: Stacked garbling for disjunctive zero-knowledge
proofs. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 569–598. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-45727-3 19

[HK21] Heath, D., Kolesnikov, V.: LogStack: stacked garbling with O(b log b) com-
putation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
LNCS, vol. 12698, pp. 3–32. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-77883-5 1

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.-
R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 955–966. ACM
Press, November 2013

[KKW17] Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying conditional cir-
cuit clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10625, pp. 499–528. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 18

[KMR14] Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for
XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44381-1 25

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE
database, computationally-private information retrieval. In: 38th FOCS,
pp. 364–373. IEEE Computer Society Press, October 1997

[Kol18] Kolesnikov, V.: Free IF : how to omit inactive branches and implement
S-universal garbled circuit (almost) for free. In: Peyrin, T., Galbraith, S.
(eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 34–58. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03332-3 2

[KS08a] Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates
and applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol.
5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-70583-3 40

https://doi.org/10.1007/978-3-642-40084-1_30
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-030-56880-1_27
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1007/978-3-030-77883-5_1
https://doi.org/10.1007/978-3-319-70697-9_18
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-030-03332-3_2
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40

64 A. Haque et al.

[KS08b] Kolesnikov, V., Schneider, T.: A practical universal circuit construction
and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008.
LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85230-8 7

[LO13] Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
719–734. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38348-9 42

[LP09] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party
computation. J. Cryptol. 22(2), 161–188 (2009)

[LYZ+20] Liu, H., Yu, Y., Zhao, S., Zhang, J., Liu, W.: Pushing the limits of valiant’s
universal circuits: simpler, tighter and more compact. Cryptology ePrint
Archive, Report 2020/161 (2020). https://eprint.iacr.org/2020/161

[NPS99] Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mech-
anism design. In: Proceedings of the 1st ACM Conference on Elec-
tronic Commerce, EC 1999, pp. 129–139, 1999. Association for Computing
Machinery, New York (1999)

[PSSW09] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party
computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 15

[RR21] Rosulek, M., Roy, L.: Three halves make a whole? beating the half-gates
lower bound for garbled circuits. In: Malkin, T., Peikert, C. (eds.) CRYPTO
2021. LNCS, vol. 12825, pp. 94–124. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84242-0 5

[Val76] Valiant, L.G.: Universal circuits (preliminary report). In: STOC, pp. 196–
203. ACM Press, New York (1976)

[WRK17] Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and effi-
cient maliciously secure two-party computation. In: Thuraisingham, B.M.,
Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 21–37. ACM
Press, October/November 2017

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

[ZRE15] Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-642-38348-9_42
https://eprint.iacr.org/2020/161
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-030-84242-0_5
https://doi.org/10.1007/978-3-662-46803-6_8

	Garbled Circuits with Sublinear Evaluator
	1 Introduction
	1.1 Our Contribution
	1.2 Garbled PIR
	1.3 Compact 2PC and Garbled PIR
	1.4 High-Level Intuition for Our Approach

	2 Related Work
	3 Preliminaries
	3.1 Reducing GC Communication
	3.2 Universal and Set-Universal Circuits
	3.3 Garbled Circuit Formalization
	3.4 Circuit Syntax

	4 Technical Overview
	5 Our Construction
	5.1 Bucket Table Gadget
	5.2 Demultiplexer and Multiplexer
	5.3 Our Garbling Scheme

	6 Security
	6.1 Proofs

	References

