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Abstract—This paper investigates the problem of optimal
resource allocation for reconfigurable intelligent surface (RIS)
assisted dynamic wireless networks with uncertain time-varying
wireless channels. Recently, RIS has been considered as one
of the most promising techniques for enhancing dynamic wire-
less network quality, e.g. maximizing spectrum efficiency, etc.,
without increasing power consumption. However, conventional
resource allocation algorithms cannot be directly utilized for RIS-
assisted wireless networks especially when the wireless channels
among base station (BS), RIS, and users (UEs) are uncertain and
time varying. Hence, a novel online reinforcement learning based
optimal resource allocation algorithm has been developed in this
paper. Firstly, the RIS-assisted wireless communication network
with dynamic wireless channels has been represented as a state-
space model. Then, the optimal resource allocation problem
can be formulated as a finite-horizon joint optimal control of
users’ transmit powers and RIS phase shifts problem. Next,
since the wireless channel is time-varying and uncertain, a novel
online reinforcement learning technique, i.e. Actor-Critic design,
has been developed along with neural networks (NN) to learn
the optimal resource allocation policies in real-time. Eventually,
numerical simulations have been provided to demonstrate the
effectiveness of the developed scheme.

Index Terms—Reconfigurable intelligent surfaces, Optimal
resource allocation, dynamical channel model, RIS phase shift,
energy efficiency, Reinforcement Learning

I. INTRODUCTION

During the past decade, the significantly increased number
of wireless users with highly demanding data rate require-
ments lead to serious challenges for the next generation of
wireless communication networks. To address those chal-
lenges, Reconfigurable Intelligent Surface (RIS) [1] as an
emerging technique, has attracted enormous interest from both
research societies and industrial communities. Compared with
relay-enhanced networks [2], RIS-assisted wireless networks
can expand the network coverage and throughput without in-
creasing the installation cost by reflecting signals through RIS
passively. For instance, passive non-reconfigurable reflectors
and nearly passive smart surfaces have been studied in [3].

Moreover, the authors compared RIS-assisted communica-
tion with Amplify-and-Forward (AF) relay transmission and
discovered that RIS can increase the energy efficiency of
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Fig. 1: System Model for RIS-Assisted wireless Network.

wireless networks by reducing the power consumption [4]. In
[5], two energy efficiency (EE) maximization algorithms have
been developed for the RIS-assisted wireless networks. By
using alternating maximization along with adopting gradient
descent algorithm, RIS can be optimized to improve the energy
efficiency of wireless networks up to 300% higher. In [6],
the authors developed a fixed point iteration and manifold
optimization method to jointly optimize the beamform in the
base station as well as the continuous phase shift matrix
in the RIS that can maximize the sum rate for the original
wireless communication networks. The authors in [7] proposed
a hybrid beamforming algorithm which is a limited phase
shift optimization method for a multi-user RIS-assisted MIMO
networks that can maximize the overall data rate.

To pave the way for implementing RIS into practical wire-
less networks, there are still two challenges i.e. 1) optimizing
the resource allocation dynamically along with time, and 2)
adapting to the uncertain and dynamic environment, e.g. uncer-
tain time-varying wireless channels. The actor—critic method
belongs to the class of policy gradient methods. In these meth-
ods, and this feature makes it suitable for continuous action
spaces. The actor performs to find the policy lead to optimize



the object, and the critic takes the role of the value function
and evaluates the performance of the actor. Therefore, in this
paper, we developed a novel online actor-critic reinforcement
learning (RL) based optimal resource allocation algorithm for
RIS-assisted multi-user wireless network. The contributions of
this paper are summarized as follows.

e A state-space model has been developed to represent the
dynamic resource allocation in RIS-assisted wireless networks
with time-varying wireless channels.

e A finite horizon optimal resource allocation problem
has been formulated. Using dynamic programming [9], we
can obtain the optimal transmit power control and RIS phase
shift control solution to not only maximize the overall energy
efficiency but also minimize the total power consumption.

e A novel online actor-critic reinforcement learning al-
gorithm has been developed that can learn the optimal
transmit power control policy and optimal RIS phase shift
policy within finite time even under uncertain time-varying
wireless channels.

II. SYSTEM AND CHANNEL MODEL
A. System Model

Considering the RIS-assisted wireless network as shown in
Figure 1, there is one base station (BS) with N antennas,
one reconfigurable intelligent surface (RIS) with M element
units controlled electronically, and K single-antenna users
(UEs). This paper focuses on optimal resource allocation for
Multiple Input Single Output (MISO) BS-RIS-UEs downlink
communication networks.

Specifically, BS with N antennas needs to transmit data
to K users in a complex environment simultaneously. Due
to the harsh communication environment, direct signal links
between BS and users are assumed not to exist. The BS
has to transmit data through RIS to users as a two-hop
communication. Therefore, at time ¢, the received signal at
users k with £ = 1,2, ..., K can be represented as

yk(t) = hRU’k(t)‘I’(t)HBR’k(t)X(t) + ’I’Lk(t), (1)
where x(t) € CM*! denotes the transmitted signal over
the k-th subcarrier, yy(t) denotes the received signal, ng(t)
is the additive white noise following normal distribution
CN(()?UI%)’ HBR,k(t) S CMxN  and hRU,k(t) S cxM
represent channel gain matrix from BS to RIS and from RIS to
user respectively for two-hop RIS-assisted communication at
time ¢. Moreover,®(¢) is a diagonal matrix used for managing
effective phase shifts that applied by RIS reflecting elements.
Specifically, ®(t) for user k at time ¢ is defined as ®(t) =
diag[e?®(®) e102()  eifm(®)] ¢ CM*M In addition, the
transmitted signal x(t) at time ¢ can be further represented as
X(t) = 325y v/Pr()ag (£)sk(t) with pi(t), @i (¢), 51 (1) being
the transmit power, beamforming vector at BS and transmitted
data to user k respectively. Moreover, transmit power at BS is
limited and needs to satisfy the following constraints, i.e.

E[x[*®)] = tr(P)Q™ (1)Q(t)) < Praa )

where P,,,, denotes the maximum transmit power, Q(t) is
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defined as Q(t) = [qy(t),...,qx(t)] € CN*E and P(t) =
diaglp: (t), ..., px (t)] € CKXK.
B. RIS-assisted Wireless Channel Model

There are two types of dynamic wireless channels that
need to be modeled in RIS-assisted wireless communication
networks. It includes wireless channel between base station
(BS) to RIS, Hpg(t), and wireless channel from RIS to indi-
vidual user (UE), hry x(t) with k € [1,2, ..., K]. Specifically,
those two types of dynamic wireless channels can be modeled
mathematically as follows
BS-RIS wireless channel model:

Hpr(t) = /Ber(t) x a(drrs, Oris,t) x a (¢ps, Ops, t)
3
where /Bgr(t) denotes the time-varying BS-RIS channel
gain, a(¢ms,fss,t) and a(drrs,Orrs,t) represent the multi-
antenna array response vectors that used for data transmission
from BS to RIS respectively, with a(¢ps,0ps,t)
[al(gﬁBs,aBs,t),...,aN(QSBs,@Bs,t)]T S CN*1  and
a(or1s,Oris,t) = [a1(drr1s,Or1s, 1), ..., anr (Prrs, OrIs, t)]T €
CcM>*! | Since we consider one BS and one RIS in this paper,
BS-RIS wireless channel has been shared by all the users.
RIS — UE}, wireless channel model with k € [1, ..., K]:

hrui(t) = \/Bruk(t) x a” (9ruk, OrU K, 1)

“4)

where / t) describes the time-vary channel gain
from RIS t%m{ilsce(r)kz at time ¢, a(qSRU’k,gRU,k,t) isgthe

multi-antenna array response vector used for data trans-
mission from RIS to user k with a(¢ruk,Orus,t) =
[a1(¢rUks ORU K> E)s - ars (PRU K, ORU K, E)]T € CM*1. The
multi-antenna dynamic response vector a(¢, 6, t) is made up of
the response from individual antenna element, i.e. a,, (¢, 6,1).

Next, considering non-line of sight (NLOS) data communi-
cation in RIS-assisted wireless communication networks, the
time-varying Signal-to-Interference-plus-Noise Ratio (SINR)
at the user k with k € (1,..., K) can be obtained as

et = i)l (hruk () @k (O Hp Rk (1)) 4x (1)

Zjl;k pi ()R i (t) 8y (O Hp Rk (1)), (82 + 07
)
Furthermore, the real-time network Spectral Efficiency(SE)
in bps/Hz can be represented as

K
R(t) = loga(1+(t)),

(6)

k=1
Different from most_ existing works [.10], this paper focus
on optimizing dynamic RIS-assisted wireless networks with

uncertain wireless channel rather than deterministic and fully
known wireless channel. The details are given in the next
section.
III. FINITE HORIZON OPTIMAL RESOURCE
ALLOCATION PROBLEM FORMULATION

A. Total Power Consumption and Energy Efficiency in RIS-
assisted Wireless Networks

The total power cost for transmission between BS to user
k in the RIS-assisted wireless networks includes the transmit



power at the base station for user k, i.e. py, hardware static
power at BS and RIS represented as Ppg and Pgrrg, as well
as at power cost at user equipment defined as Py g ;. Mathe-
matically, the power consumption for link BS — RIS —UE},
can be represented as

Pi(t) =& - pi(t) + Pupk(t) + Pes(t) + Pris(t) @)

where £ = v with v being the efficiency of the trans-
mit power amplifier. The power consumption at RIS with
M identical antenna elements can be further described as
Prrs = M P,,(b), with P,,(b) being the power consumption
of each RIS unit having b-bit resolution [8], [11]. Considering
the RIS-assisted wireless networks have K wusers in total,
the overall power consumption on the RIS-assisted downlink
multi-user networks can be represented as

Protar(t) = Y _(£-pr(t)+ Pupr(t)) + Pos(t) + MPn(b(t)) (8)
k=1

Similar to [15], we can define the energy efficiency (EE)
of RIS-assisted multi-user wireless networks as ngg(t) =
(B - R(t))/Piotai(t) with B being the network Bandwidth.
According to equation (6) and (8), energy efficiency ngg(t)
can be further represented as

_ B ¥y loga(1+ k(1)
S (Epr(t) + Pup(t) + Ps(t) + MEn(b(2))
The goal of optimal resource allocation is to find the best
power allocation and RIS phase shifts to maximize energy ef-
ficiency ngg(t) and minimize the overall power consumption
Protai(t) within finite time.

neE(t)

B. Finite Horizon Optimal Problem Formulation

Considering the transmit power P(t) = diag[p1(t), p2(t),
...Pi(t)] and RIS phase shifts ®(t) = [®1(t),...Da(¢)] as
two system state in the RIS-assisted wireless network, the
network resource allocation dynamics can be described as

P(t+1) = P(¢) + up(t) (10)

B(t+1)=®(t) + ua(t) 11

with P € CEXK & ¢ CM*M being RIS-assisted wireless
system states, and up € CEXE yg € CM*M being resource
allocation control policy, i.e. transmit power control policy
and RIS phase shifts control policy. Next, to optimize the
RIS-assisted wireless network, the resource allocation finite
horizon cost function can be defined as

Tp

V(P,®,t) = r(P,®,up,uq,7)
7r . 1 (12)
= ; {@r(P(M)Q(T)"Q(1))) + 155 (P, B, 7)

+ u,T:(T)RpuP(T) + ug(T)qu@ (m)}

where 7(P, ®,up,ug,t) = L(P,®,t) + uL(t)Rpup(t) +
ul(t)Rouqs(t) is positive definite finite horizon cost-
to-go function includes L(P,®,¢) represent the trans-
mit power cost as well as energy efficiency cost and
ub(t)Rpup(t),ul (t)Reus(t) represent the cost of trans-
mit power control and RIS phase shifts control respectively,
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nee (P, ®,t) is positive energy efficiency function that defined
in Equ. (9), Rp, Rg are positive definite weighting matrices
for transmit power control and RIS phase shifts control, and
T is the finite final time.

According to Bellman’s principle of optimality [14], the
finite horizon optimal cost function can be represented dy-
namically as

V*(P,®,t) = min {r(P,®,t)} + V*(P,®,t+1) (13)
ug,up

Eq. (13) is also well-known as Bellman Equation. Using

Bellman Equation along with optimal control theory [12],

optimal transmit power control and RIS phase shift control

can be solved by using dynamic programming [9] as

10V P, & t+1)

T 2P aP(t 1) (1
.1 ovE(P,®,t+1)
Yo =5 e T Hg 1) (15)

Remark 1: According to optimal control theory [12] and
dynamic programming [9], the optimal transmit power control
and RIS phase shifts control can be obtained by solving
Bellman Equation. However, based on Egs. (13), Bellman
Equation needs to be solved backward-in-time. Also, due
to the nonlinearity in the cost function, it is very difficult
and even impossible to solve Bellman Equation in real-
time. To overcome this challenge, we will use the emerging
Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL) technique [13] along with Neural Networks (NNs)
to learn the solution of the Bellman or HJB Equation, and
further obtain the optimal control policies for RIS-assisted
wireless networks. The details are given next.

IV. ONLINE ACTOR-CRITIC REINFORCEMENT
LEARNING BASED OPTIMAL RESOURCE
ALLOCATION DESIGN

A. The Structure of Actor Critic Reinforcement Learning

Adopting the general Actor-Critic reinforcement learning
structure for optimal resource allocation, we will design one
Critic component along with two Actor components as
Critic (Cost Function): To learn the optimal cost function
V*(P,®,t) along with time by using the real-time RIS-
wireless system state P(¢), ®(¢). The Critic component will be
tuned through Bellman Equation since optimal cost function
is the unique solution to maintain the Bellman Equation.
Actor 1 (Transmit Power Control): To learn the optimal
transmit power control u}(¢) along with time by using Eq.
(14) along with the learnt optimal cost function from Critic.
Actor 2 (RIS phase shifts Control): To learn the optimal
RIS phase shifts control u},(¢) along with time by using Eq.
(15) along with the learnt optimal cost function from Critic.

The developed Actor-Critic RL for optimal resource allo-
cation design in RIS-assisted wireless network is shown as
Figure 2. Along with time, the RIS-assisted wireless system
provides real-time system states to both Critic and Two



Actor Components. Then, the Critic can update the learned
cost function value to further hold the Bellman Equation.
Meanwhile, the updated optimal cost function value from
Critic is delivered to two Actor components. The estimated
optimal transmit power and RIS phase shifts control policies
can be updated. Note that the estimated transmit power and
RIS phase shifts control policies can converge to optimal
solutions while learned cost function value is converging to
optimal cost function value.

[ Critic N:l
/ ’r- VieWy P
V("
/
Actor NN 2 Ua,i RIS-assisted [P, @]

wireless network

A

| = 0
g i<Wy i Vuoi

v

Up

Fig. 2: Actor-Critic Reinforcement Learning Structure.

B. Actor-Critic Neural Network based Optimal Resource Al-
location Design

To learn the optimal cost function as well as optimal
transmit power control policy and optimal RIS phase shifts
control policy, Neural Networks have been used along with the
Actor-Critic RL algorithm. Specifically, according to universal
approximation theorem [16], NN can be used to presented the
time based functions V*(P, ®,t), uh(t), uj(¢t) as

VP, ®,t) = Wiy (P, ®,1) + ey (16)
uh(P,®,t) = WfﬁP\Il%p(P,@,t) + €up (17)
up(P,®,t) =W, 0, o(P,®,1) + €40 (18)

with Wy, € CZVXI, Wu’p € (Cl“*PXK, Wu’q> € ChluexM
being the target NN weights for Critic NN and Two Actor
NNs respectively, Wy (t) € Chv>1, v, p(t) € Clw.Px K|
¥, 5(t) € Clwe*M being NNs activation functions, and
ev(t) € C, eup(t) € CE x K, €,0(t) € CM*M being
NNs reconstruction errors. Since those optimal values cannot
be obtained directly, we estimate them through Critic NN and
two Actor NNs as

V(P ®,t) = Wi (t)hy (P, @, 1) (19)
ip(P,®,t) = W, p(t) W, p(P,®,1) (20)
g (P, ®,) = W,, ()T, o(P, B, 1) Q1)

where Wy (t) € Cv*1, W, p(t) € Cr*K W, 4(t) €
ClwexM being the estimated NN weights for Critic NN
and Two Actor NNs respectively. To ensure the estimated
values from NNs can converge to ideal optimal solutions, the
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appropriate NN update laws are needed to force the estimated
NN weights to converge to targets.

According to classic optimal control theory [12], the optimal
cost function is the unique solution to maintain the Bellman
Equation, i.e.

0=r(P* & 1)+ V*P,®,t+1)— VP, & t) (22

However, by substituting the estimated cost function from
Critic NN into Bellman Equation, Eq. (23) will not hold and
lead to residual error epp(t) defined as

epp(t) =r(P,®,t) + V(P, & t+1) — V(P,®,t)
=1r(P, ®,t) + Wy (t) Apy, (P, @, 1)
with Ay, (P, ®,t) = ¢, (P, ®,t + 1) — 9y, (P, D, 1).
To force the estimated cost function to converge to the
optimal cost function, the estimated Critic NN should be
updated to reduce the residual error. Hence, using the gradient

descent algorithm, the update law for Critic NN can be
designed as

(23)

A\va(P7 @,t){eBE — T(F’7 @,t)}T
L+ ATy (P, @, 1)

WV (t—‘rl) = WV (f)—‘rav

(24)
where ay is the Critic NN tuning parameter with 0 < ay < 1.
Using the estimated cost function from Critic NN as well

as Egs. (14) and (15), two Actor NN estimation errors can be
defined as

~ T

oV (P, ®,t+1
ewp(t+1) =W, p(t)¥.r(P, 2,1) 10V (P, @t +1)

1
T afte OP(t + 1)
(25)

eva(t+1) :Wf@(t)q;;u,P(p’q)’t) 10V (P, @t +1)

1 _
T ofte o®(t+1)
(26)

Using two Actor NN estimation errors, the related NN
weights can be updated as

lI’(P7 (I)v t)ezj:,P(t + 1)
Qy
P14, p (P, @, 1)

W, p(t+1) =W, p(t) —
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U (P, &, t)el ,(t+1)

o ,
T [P @1
where o, p, o, ¢ are two Actor NNs tuning parameters with

0 < au,p, ay,e < 1. Next, the details of the developed Actor-
Critic RL algorithm is given as follow.

W, o(t+1) =W, u(t) —

(28)

V. SIMULATION RESULTS
A. Simulation Scenario Setting and Benchmarks

In the simulation, the channel matrix Hpp j and hgy j, are
following dynamic Rayleigh distribution [17]. The parameters
used in the RIS-assisted wireless networks are shown in Table
I. The input for the actor 1 NN and actor 2 NN are selected
as the expansion of (3., z;)” where z; represents one input
of a neural network, which are controlled power vector and
units vector of RIS here, and n represents the number of



Algorithm 1 Actor-Critic RL based online optimal power
allocation and RIS phase shift control

1: Acquire agent number ¢

2: Initialize NN weights Wv,i,Wu, Piis Wu,.:p’i randomly
3: Initialize €BE,i» €u,P,i> €u,®,; O be oo

4: while True do

5:  Update critic NN weights by solving Eq. 24, i.e.,
N N AUy {epri—1i}"
Wy, =Wy +av : .
L+ [[ATv|?
6:  Update power actor NN weights by solving Eq. 27, i.e.,
~ ~ \I’Z‘eT P.i
Wu,P,i = Wu,P,i - auiP,i+ﬂ
' 1+||‘I,u,P,iH2
7. Update Phase actor NN weights by solving Eq. 28, i.e.,
N ~ \IlieT‘I} .
W i = WL i — gy i Lot
u, ¥, w, Ui (2T % 1+ H‘I’u,P,i||2
. o T
8  Up; W%P,i\I’%PJ
9: lAl<1>77; — Wu,q>7i‘1’u,<1>,i
10:  Execute @p;, iip,; and observe new transmitter power

p; and phase shift ®;
11: end while

TABLE I: Parameters Descriptions

Parameter Description Value
BW Transmission bandwidth 180kHz
nv learning rate for critic network 0.001
Nu learning rate for actor network 0.001
Pps circuit dissipated power at BS 9dBW

I3 circuit dissipated power coefficients at BS 1.2
Prax maximum transmit power at BS 20dBW
Pyg dissipated power at each user 10dBm
Py, (b) dissipated power at the m-th RIS element | 10dBm

inputs of that neural network. These Actor NNs are used
to solve the estimation functions (20) and (21). To better
demonstrate the effectiveness of the developed Actor-Critic RL
based optimal resource allocation, we compare our developed
RL-based algorithm with two widely used algorithms, i.e.
deep deterministic policy gradient (DDPG) algorithm [18] and
joint transmit beamforming and phase shift design method
in [19]. It is important to note that both DDPG and joint
power and phase shifts design in [18] need to know the full
knowledge of channel state information (CSI) whereas our
developed algorithm does not need CSI. Moreover, the existing
two algorithms in [18] and [19] cannot optimize the wireless
network performance within finite time especially when the
wireless channels are uncertain and dynamic. However, our
developed Actor-Critic RL algorithm can learn the optimal
transmit power control policy and RIS phase shifts control
policy in real-time even with uncertain and dynamic wireless
channels. The performance of our online Actor-Critic RL
optimal resource allocation algorithm in comparison with two
existing algorithms in [18] and [19] are illustrated in the
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following section.

B. Comparisons With Benchmark Optimal Resource Alloca-
tion Algorithms

1) Average SE and EE compared with benchmarks

Considering the parameters used in the simulation are N
= 16, M = 8§, K = 8. Figure 3 shows the comparison of
energy efficiency in three algorithms, our developed algorithm
is competitive compared to the other two. Since our algorithm
also aims to minimize the power consumption, the spectrum
efficiency (SE) reaches its limit even with increasing the
maximum energy provided.

o RIS_SFP_N=16 M=8.K=8 #-0-0-0-60004
RIS_DDPG_N=16_M=8 K=8
—4— RIS_DRL_N=16_M=8 K=8

5 10 15 20 25
P

—e— RIS_SFP_N=16"

Average EE(Kbit/joule)
Average SE(bps/Hz)

v o

30 35 40 45 50 5 0 10
Bm)

(dBm)

(a) Average EE for N=16, M=8, K=8 (b) Average SE for N=16, M=8, K=8

40 50

20 30
Prnax(dBm)

Fig. 3: Average SE and EE compared with benchmarks for N=16, M=8, K=8.

2) Energy Efficiency versus Number of RIS elements Fig-
ure 4 presents the EE versus number of RIS elements for
P(t) = 20dB, N = 16, K = 8. It is observed that the
developed online actor-critic reinforcement learning based
optimal resource allocation can deliver much better energy
efficiency than the other two even with different numbers of
RIS units. It is because the developed design can effectively
adapt to the dynamic environment in real-time whereas the
other two cannot.

—— WMMSE
SFP
—e— Proposed DRL Alogrithm

27.54

25.01

22.51

Average EE(Kbit/Joule)

15 20 25 30 35 40 45 50
Number of elements in RIS

0 5 10

Fig. 4: Average SE versus Number of elements in RIS for P,, 4, = 20dBm, N=16,
K=8.

3) Online Learning Performance Then, the energy efficiency
(EE) and spectrum efficiency (SE) learning process versus
time steps has been evaluated. Figures 5 and 6, EE and SE can
be increased along with time step, and the developed Actor-
Critic RL based optimal resource allocation algorithm is able
to learn the optimal solution within finite time even under
dynamic wireless channels.



Average EE(Kbit/joule)

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
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(a) Instant EE versus time steps under Py, q 2 (b) Average EE versus time steps under Py, g 2
=20dBm, 22dBm, 24dBm. =20dBm, 22dBm, 24dBm.

Fig. 5: The instant EE and average EE versus time steps

Instant SE(bps/Hz)
Average SE(bps/Hz)

o o

o 2000 000 6000 8000, 10000 [ 2000 4000 6000 8000 10000
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(a) Instant SE versus time steps under (b) Average SE versus time steps under
Ppyaz =20dBm. Ppyaz =20dBm.

100

Instant SE(bps/Hz)
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(C) Instant SE versus time steps under (d) Average SE versus time steps under Py, ¢ o
Praz =22dBm. =22dBm.

Instant SE(bps/Hz)

o 2000 4000 6000 8000 10000 o 2000 4000 6000 8000 10000
Steps

(e) Instant SE versus time steps under (ﬂ Average SE versus time steps under
Pypaa =24dBm. Prpag =24dBm.
Fig. 6: The instant SE and average SE versus time steps

VI. CONCLUSION

In this paper, a novel online Actor-Critic Reinforcement
Learning algorithm has been developed to optimize the RIS-
assisted dynamic wireless network within a finite time. Com-
pared with other existing algorithms, the developed method
cannot only online learn the optimal transmit power control
and RIS phase shifts control jointly even under uncertain
and dynamic wireless channels but also relax the requirement
of full knowledge of channel state information. By using a
Critic Neural Network (NN), the optimal cost function of
RIS-assisted wireless networks resource allocation can be
learned. Then, using the learned optimal cost function from
Critic NN, two Actor NNs can learn the optimal transmit
power control and optimal RIS phase shifts control policy in
real-time. Through comparing with existing algorithms in the
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simulation, the effectiveness of our developed algorithm has
been demonstrated.
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