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Demonstrating two-qubit gates at the quantum speed limit using superconducting qubits
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The speed of elementary quantum gates, particularly two-qubit gates, ultimately sets the limit on the speed
at which quantum circuits can operate. In this work, we experimentally demonstrate commonly used two-qubit
gates at nearly the fastest possible speed allowed by the physical interaction strength between two superconduct-
ing transmon qubits. We achieve this quantum speed limit by implementing experimental gates designed using a
machine learning inspired optimal control method. Importantly, our method only requires the single-qubit drive
strength to be moderately larger than the interaction strength to achieve an arbitrary two-qubit gate close to its
analytical speed limit with high fidelity. Thus, the method is applicable to a variety of platforms including those
with comparable single-qubit and two-qubit gate speeds, or those with always-on interactions.

Introduction.— Increasing the speed of elementary quan-
tum gates boosts the “clock speed” of a quantum computer.
For noisy, intermediate-scale quantum computers [1] with fi-
nite coherence times [2, 3], speeding up single- and two-qubit
quantum gates also increases the circuit depth needed for solv-
ing useful computational problems [4, 5]. In most experi-
mental platforms, single-qubit gates are achieved via electro-
magnetic fields that drive individual qubit transitions. The
maximum speed of these gates is limited by the strength of
the driving fields [6, 7] and is usually much faster than the de-
coherence rate of the qubit. A two-qubit entangling gate, nec-
essary for universal quantum gates, can however only operate
at a speed proportional to the interaction strength between the
qubits [8—10], which is typically much weaker than available
single-qubit drive strengths and cannot be easily increased.

Assuming a limited interaction strength, one can analyti-
cally obtain the maximum speed for any particular two-qubit
gate in the limit of arbitrarily fast single-qubit gates [11, 12].
In practice, all single-qubit gates have a finite speed, and in
some platforms, they are not much faster than two-qubit gates
[13—15]. The speed limits of two-qubit gates in such realis-
tic scenarios have not been studied. Therefore, we seek to
both theoretically and experimentally investigate these prac-
tical speed limits, which could guide the optimal design of
quantum gates in future quantum computers.

In this letter, we report a new method for designing two-
qubit gates that are speed optimized, and we demonstrate
the method experimentally using superconducting transmon
qubits. Importantly, we find that the protocol for achieving
fastest two-qubit gates in Refs. [11, 12] can be far from opti-
mal with a finite single-qubit gate time. Our method differs
from previous protocols [11-13] in that we apply single-qubit
drives simultaneously with the two-qubit interaction, a cru-
cial strategy for speed optimization. We optimize the pulse
shapes of the single-qubit drives using a method that com-
bines the well-known GRAPE algorithm [16, 17] with state-

of-art machine learning techniques. Remarkably, our method
can achieve maximally entangling two-qubit gates close to
their analytical speed limits found in Refs. [11, 12] with rather
modest single-qubit drive strengths, thus largely eliminat-
ing the impractical assumption of infinitely fast single-qubit
gates. Same applies to the SWAP gate we implemented, which
is crucial for remote quantum gates but notoriously hard to
achieve with a short gate sequence [18]. In addition, we do
not require the interaction to be turned off, making the method
suitable for platforms with always-on coupling [13-15]. Fi-
nally, our speed-optimized gates achieve the same level of fi-
delity as that achieved previously on the same hardware [13],
thus our method does not sacrifice gate fidelity for speed.

Experimental setup.—QOur experimental platform consists
of strongly-coupled fixed-frequency superconducting trans-
mon qubits with static capacitive couplings in a hanger read-
out geometry [19]. An intrinsic silicon substrate is used on
which aluminum oxide tunnel junctions are fabricated via an
overlap technique [20]. The remaining circuit components are
made of niobium. The full chip design and corresponding cir-
cuit model is shown in Fig. 1. The two transmon qubits’ tran-
sition frequencies are 5.10,5.26 MHz, anharmonicities are
270,320 MHz, T decay times are 40,21 us and T35 decay
times are 12, 10 us, respectively. In the rotating frame of the
two qubit frequencies and assuming /2 = 1, the static Hamil-
tonian of the two qubits can be written as [13, 21]

Ho = g(of + 05 + 0703) M

where g ~ 27 x 1.75MHz represents a fixed Ising coupling
strength between the qubits. To interact with the qubits, we
deliver two microwave drives — resonant with each qubit’s
transition frequency — simultaneously through the feedline.
Each of the drive fields contain two adjustable quadratures (X
or Y), and can be described by the drive Hamiltonian.
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where ;Y (t) denotes the Rabi frequency of the drive res-
onant with qubit ¢’s transition in the X or Y quadrature at
time ¢. For perfect single-qubit drives &, = o. However,
due to the strong Ising coupling between the two qubits in
Hy, the drive strength on one qubit is dependent on the other
qubit’s state, resulting in 5 = o7 ® (|0)X0| + 72 |1)1|) and
a9 = (|0X0]+71 [1)}1]) ®¢7, with ry &~ 1.1 and 75 ~ 0.7 for
our current chip. We note that with a weaker coupling strength
or with a tunable coupler [22, 23], both 7; and 5 can be made
closer to or equal to 1.
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Figure 1. (a) Optical micrograph of the experimental chip includ-
ing qubits, readout resonators, test Josephson junctions, and test res-
onators. (b) Zoomed-in view of the two floating qubits. Each qubit
consists of two identical pads (red for the left qubit and blue for the
right qubit) and a Josephson junction connecting the two pads. Each
qubit is coupled to its own readout resonator (green). (c) Grounded
circuit model of the capacitively coupled qubits.

Analytical speed limit.—In the limit of arbitrarily strong
single-qubit drives, i.e. Qua = max|Q75(t)] — oo, one
can derive an analytical speed limit for any target two-qubit
unitary with the above-mentioned static Hamiltonian H, and
control Hamiltonian H;. Note that in this limit, the speed limit
is only well defined when r; = 7o = 1, since otherwise H;
will lead to arbitrarily strong interactions. As detailed in [12],
any two-qubit target unitary U can always be decomposed as

Uy = €7i Dy, s A0 @7

3)
where Uz, V; (Us, Vo) are some single-qubit gates on the first
(second) qubit, and A, . € [—F, §], with their exact val-
ues obtainable with the knowledge of U [24]. To obtain the
analytical speed limit, we assume that single qubit gates are
arbitrarily fast and thus take a negligible amount of time. The
total gate time for implementing U therefore reduces to the
time spent on realizing Uy, which is responsible for any en-
tanglement generation. Based on our Hj, together with in-
stantaneous single-qubit rotations, U, can be realized with a
minimum time of:

U= (U ®@Us)Ug(Vy @ Va),
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Eq. (4) is the analytical speed limit for a two-qubit gate U. Its
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values for the CNOT, SWAP, and v/ SWAP gate are also shown
in the equation (see [24] for detailed derivations).

Optimal control—In practice, single-qubit gate speeds are
limited by finite drive strengths and the analytical speed limit
in Eq. (4) does not apply. To our best knowledge, no analyt-
ical speed limit has been found with finite single-qubit gate
time. If we still follow Eq. (3) for realizing a target two-qubit
gate, the resulting gate time can be much longer than T},
especially for our system. To realize universal single-qubit
gates needed in Eq. (3), we use a two-axis gate (TAG) proto-
col first developed in Ref. [13], which employs an analytically
obtained 3-segment drive pulse for sz( ) to exactly cancel
the effects of static interaction for any values of r; and r5.
A single-qubit gate implemented this way has a gate time of
at least m/(2g) [21]. Apart from the controlled-Z gate that
can be directly realized via an evolution of Hj over a time
t =7/(4g) =~ 71.4ns [13, 25, 26], any two-qubit gate design
that involves the use of single-qubit gate(s) realized via TAG
requires a gate time of at least Ty, + 7/(2¢g) (since single-
qubit gates cannot shorten T}, ), and is thus far from optimal.

Consequently, to approach the analytical speed limit with
finite Quax (or finite single qubit gate time), we adopt an
alternative approach that avoids the use of any single-qubit
gate and try to generate the target two-qubit gate directly.
Specifically, we directly optimizes the pulse shapes Q:fg (t)
in our control Hamiltonian H;(¢) in order to minimize the
gate time for achieving a certain target gate with sufficiently
high fidelity. For a given set of pulse shape functions
Q75(t), we numerically find the evolution operator U =

Te—iJo [Ho+H1(]dt where T denotes the time ordered inte-
gral and 7" denotes the total evolution time. Next, we calculate
the average gate fidelity between the target unitary U and the
evolution operator U using [27]

F:EJF—ZTr UUUUU U 5)

where U; € {07 ® 07} and 07 € {0%,0Y,0%,1}. For
efficient numerical optimization, we will assume Q7 (¢) is
an M-segment piece-wise function, ie. Q/(t) = Q] for
t € [2=LT, ILT]. Our goal is to maximize F over all possible
values of {2/, } subjected to the constraints [Q7 | < Qax
for a given time T'. The numerical speed limit 7T is then de-
fined as the minimum 7" that can achieve F' > 1 — ¢, where €
is the infidelity we can tolerate (set to 1% in the following).
Since F' is a highly nonlinear function of {Ql m ), simple
numerical optimization methods will not work well in finding
the global maximum of F. Here we develop a new method
that combines the standard GRAPE algorithm [17] with state-
of-art machine learning techniques. Using the backward prop-
agation method in the widely used machine learning library
PyTorch [28], we calculate the gradients of F' over each pulse
parameter Q7 automatically. We then perform a stochastic
gradient descent (SGD) algorithm with the Nesterov Momen-
tum method [29] to maximize F over the pulse parameters. To
avoid obtaining only a local maximum for F’, we repeat each



gradient descent process with a large number (up to 200) of
random seeds used for both initialization and SGD, and then
select the global maximum among all repetitions.

To benchmark our numerical optimization method, we
choose the target gate to be the CNOT gate and find the above-
mentioned numerical speed limit T for F' = 99% as a func-
tion of Q.. We set M = 16, which allows the calculation
to be done within a few hours on a small HPC cluster. Fur-
ther increasing M does not lead to noticeable improvements.
As shown in Fig. 2, we clearly see that as Q. /g increases,
T approaches the analytical speed limit T},, indicating that
the optimization succeeded in reaching the theoretical speed
limit. Importantly, the maximum single-qubit drive strength
Qmax does not need to be significantly larger than the interac-
tion strength g to get close to the analytical speed limit. For
example, setting (2.« = 3¢ already gives us a minimum gate
time of 1.05T i, with F' > 99%. We also note from Fig. 2 that
our method significantly outperforms the standard GRAPE al-
gorithm in the widely used QuTiP software [30].
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Figure 2. The minimum time 7= (in units of Tiin) it takes to achieve
a CNOT gate of F' > 99% as a function of Qyax (in units of g) using
either our optimization algorithm (blue curve) or the GRAPE algo-
rithm in QuTiP (red curve). Both algorithms use M = 16 segments
of the drive pulses and 200 random restarts. The GRAPE algorithm
in QuTiP can only reach F' > 99% for a small range of Qmax values,
and even for such values the minimum gate time achieved is notice-
ably longer than that from our algorithm.

Experimental Results— We now proceed to demonstrate
the speed limits of the two-qubit CNOT, SWAP, and v SWAP
gates experimentally. The procedure for this is as follows.
First, for each gate, the total evolution time 7" is varied from
0 to 2 Tin in 20 steps and the optimized pulse sequence is
obtained numerically for each value of 7'. Next, this pulse
sequence is applied to the transmon qubits experimentally by
modulating the microwave drive signals. Finally, the average
gate fidelity F' is measured at time 7' by performing a quan-
tum process tomography (QPT) [31]. Our QPT involves ap-
plying 36 different pre-rotations to an initial state with both
qubits in the state |0), applying the optimized pulse sequence
for time 7', and then measuring 9 different Pauli operator (see
[24] for details), resulting in 324 different experimental pro-
tocols, each of which is further repeated 500 times to ensure
low statistical errors. After correcting the state preparation
and measurement (SPAM) errors as well as performing a max-

imum likelihood estimation to ensure a completely positive
and trace-preserving quantum map [24], the QPT allows us to
find a Pauli transfer matrix [32] for the corresponding quan-
tum process, which can be further used to infer F' [24]. This
process allows us to find the value of 7" above which we can
get sufficiently high gate fidelity. Such T is the experimental
speed limit for the target gate.

There are several experimental limitations in this proce-
dure. First, as strong microwave drives can heat up the su-
perconducting qubits and cause decoherence, we only send
microwave pulses of at most 27 x 6 MHz in Rabi frequency,
roughly 3 times the coupling strength g. But as we have shown
in Fig.?2, this limitation should not prevent us from getting
very close to the analytical speed limit. A more noticeable
limitation is that we can only generate smoothly varying pulse
shapes that approximate the segmented (and thus discontinu-
ous) pulse shapes used in the numerical optimization. As the
number of segments M increases, this approximation dete-
riorates while the gate speed increases (and eventually con-
verges). For our setup, we choose M = 4 for the experiment
as a sweet spot for balancing the error and speed. We note
that this limitation can be addressed by numerically optimiz-
ing smooth pulse shape functions (such as a train of Gaus-
sian envelopes), although such optimization is computation-
ally challenging. Finally, with 1,75 # 1 experimentally, our
single-qubit drives will induce a small amount of extra inter-
action that would in principle allow us to go above the ana-
lytical speed limit for sufficiently large {2,.x. Our numerical
optimizer accounts for this artifact. The amount of speedup
over the scenario of 71 o = 1 varies for different target gates.

Our experimental results are shown in Fig. 3. The measured
gate fidelity F' (red curves) closely matches the one obtained
from the numerical simulation of the experiment with no er-
ror (blue curves). The deviations between the two grow as
the gate fidelity gets close to 1 for reasons we discuss in the
next section. For the CNOT gate, we were able to achieve
F ~ 96.5% experimentally with a gate time of T" ~ 1.32T s
(Fig. 3a). We emphasize that this outperforms the CNOT gate
implemented using the SWIPHT protocol [33] performed on
the same hardware (F' =~ 94.6% for a gate time of 1.87T i,
[13]), which is a specially optimized protocol for our hard-
ware. The highest fidelity we achieve is F' ~ 98.3% at time
T =~ 1.84T,, with F' =~ 99.8% theoretically.

For the SWAP and +/SWAP gates, the extra interactions
caused by non-unity r; and r2 values noticeably speed up the
gates beyond the analytical speed limits in Eq.(4). For the
SWAP gate (Fig. 3b), we obtain an experimental gate fidelity
of F' ~ 94.8% at T ~ 0.82T,,, where theoretically we can
obtain F' = 99.9%. The highest fidelity we can achieve exper-
imentally is F = 95.9% at T' & 1.017T i, where theoretically
F ~99.997%. A SWAP gate with such a short time is hard to
achieve via a traditional gate sequence using a universal gate
set, making our method particularly useful given the impor-
tance of SWAP gates in many quantum algorithms [18].

Finally, for the vV SWAP gate (Fig.3c), we obtain an ex-
perimental gate fidelity of ' ~ 95.4% at T =~ 1.03Tpn,
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Figure 3. Experimental measurements of the average gate fidelity F' using optimized 4-segment drive pulses , with the target gate being (a)
CNOT, (b) SWAP, and (c) vV SWAP. The red curves represent experimental measurements while the blue curves represent the exact numerical
calculation of F' without considering any experimental error. {2m,x = 6MHz for the CNOT gate and Qmax = 5MHz for SWAP and v SWAP
gate. The error bars represent a upper bound on the statistical error of the mean for 500 repeated measurements at each point [24].

where theoretically F' ~ 98.9%. The highest fidelity we can scaling speedups can be obtained in performing remote quan-
achieve experimentally is F' ~ 97.0% at T' ~ 1.18T\,,, with  tum gates or preparing useful many-body entangled states
F = 99.999% in theory. For all gates, the demonstrated ex- [34, 35] with long-range interacting qubits. However, ques-
perimental speed limits are reasonably close to the analytical ~ tions regarding the speed limit of entangling gates when in-
speed limits. Higher experimental fidelities can be achieved teractions are strongly long-ranged are still largely open [36].

with future hardware improvements. Such interactions play important roles in quantum informa-
Error analysis.— We have calculated the fidelity between tion scrambling [37] and the development of fully-connected
the experimental process and the exact time evolution opera- quantum computers [38]. Another interesting direction is to

tor U for each point in Fig. 3, which is in general > 95% [24]. study the speed limit of entangling gates when higher excited
As seen from Fig. 3, the experimental errors get larger at large states outside the qubit subspace are utilized [39], where ex-
values of T'. This is possibly due to the following reasons. perimental and analytical results are both lacking.

First, the qubits decohere as time increases. This is evidenced ) o )
by our measurement of a dark evolution fidelity that drops This work is jointly supervised by MS and ZXG. We thank
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In this supplementary material, we provide additional details on our experimental hardware, how to obtain the analytical speed
limits, our quantum process tomography, and the error analysis.

I. EXPERIMENTAL HARDWARE, CALIBRATION, AND CHARACTERIZATION

Our experimental device is operated at 10mK in an Bluefors LD dilution refrigerator. Full schematics of the experimental
setup are shown in Fig. 1. All qubit drive and readout microwave tones are delivered via the feedline, which has an output
amplification chain of a Raytheon BBN Josephson parametric amplifier (JPA) preamp at base, high-electron-mobility transistor
(HEMT) amplifier at 4K, and a high-gain room-temperature amplifier.

Each experimental cycle consists of a state initialization, a time evolution under the engineered Hamiltonian flanked by process
tomography rotations [1] and followed by a heterodyne state readout (see Fig. 1). The state initialization occurs by waiting
500us ~ 1273 between two experimental cycles, which is long enough to guarantee that each qubit is in the |0) state. All gates
consist of microwave tones from a Holzworth HS9008B pulse shaped by a BBN arbitrary pulse sequencer (APS) quadrature
modulation scheme. Readout consists of a simultaneous 2us probe (Agilent N5183Ms) of the two readout resonators to detect
shifts in their frequencies due to their respective qubit states. The I/Q components of the readout signal shift are extracted
via down conversion and a digital lock-in routine with a reference tone. They are then used to identify the two-qubit states
as |00),]01),]10),|11) via a classification algorithm using support vector machines. Total state preparation and measurement
errors, quantified by the basis-state preparation confusion matrix [1] stayed under 5%, with the errors dominated by readout
errors associated with qubit state relaxation during the measurement.

The computational subspace spectrum of the transmons was determined via a combination of spectroscopy (directly probing
excitations with a 10us square pulse) and Ramsey experiments (driving 2 MHz off-resonant, running a typical Ramsey sequence,
and noting the deviation of the fitted frequency from 2MHz) [2]. The strength of the drive fields on the qubits was inferred from
the frequency of Rabi oscillations of the excited state population incurred by driving at uniform strength for a linearly increasing
duration. The linearity of the pulse shaping quadrature channels on the pulse sequencer was characterized by measuring the Rabi
oscillation frequency resulting from a sweep over pulse amplitudes, analyzing it via Fourier filtering [3], and correcting for it at
the software level.

II. OBTAINING ANALYTICAL SPEED LIMITS

We provide details on how to obtain the analytical speed limit T}, defined in Eq. (4) of the main text. Given a two-qubit
unitary operator U, the key step is to find the decomposition of U into (U ® U)Uy(V1 ® Vo) where Uy = e 1 L= y,z A0 B
with Ay, . € [—g, g], and Uy, V1 (Us, V5) are some single-qubit gates on the first (second) qubit. This decomposition is non-
trivial, and the detailed procedure can be found in Ref. [4]. Here we provide the results of the decomposition for the three target
gates we studied in the table below. The values of A, , . directly lead to Tp,, values for the three target gates shown in Eq. (4)
of the main text. Note that an overall phase difference is tolerated for the decomposition of U.

* msingh@mines.edu
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FIG. 1. Our experimental setup composed of qubit drives and heterodyne state readout. Each qubit drive (green section) is shaped via
quadrature modulation by a BBN APS1 and Polyphase Microwave AM4080A. Readout (orange) consists of digitally locking in the signal
passing through the device with a reference and extracting I/Q shifts used to classify the ground/excited states.
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III. PROCESS TOMOGRAPHY AND SPAM ERROR CORRECTION

We perform a two-qubit quantum process tomography (QPT) via a standard protocol [1, 5] based on the measurement of a

Pauli transfer matrix R defined as
,R,zﬂETI'[P#‘j(FZ)]7 PZE{I,X,KZ}®{I7X,Y,Z} (1)
where £(+) denotes a quantum map of the process being measured.

For an ideal two-qubit gate U, we can calculate the 16 x 16 Pauli transfer matrix R numerically using Eq. (1) (see Fig. 2 for
examples). To measure R experimentally, we need to perform single-qubit rotations before and after the quantum process [6].
Here we apply 9 post-rotations Ry, € {1, X_ /s, Yﬂ/2}®2 and 36 pre-rotations 1y € {Yy /2, Y_r/2, X_7/2, Xz /2,1, X, %2 5],
for a total of 324 different sequences, each of which is repeated for 500 times to suppress statistical noise in the measurement.
The single-qubit rotations here are achieved via the ‘two-axis gate’ protocol [3], and they are fined tuned to ensure single-qubit
gate fidelities up t0 99.1% [7].

Each single experiment returns a measurement outcome as one of the four two-qubit basis states |j) € {|00),]01),[10),|11)}.
We then group the outcomes of all 162,000 experiments using a tensor nx; which counts the number of measurement outcome
state |7) for the k** post-rotation and I*" pre-rotation. To take into account possible measurement errors, we separately measure
a 4 x 4 confusion matrix P where P; ; denotes the probability of obtaining measurement outcome as the state |¢) if we initialize
the two qubits in state |5).

To infer the Pauli transfer matrix R from the measurement outcomes tensor 75, we further invoke a maximum likelihood
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FIG. 2. Quantum Process Tomography based on the Pauli transfer matrix for the three target gates we performed experimentally. Top row
from left to right: Pauli transfer matrices for an ideal CNOT gate, SWAP gate, and v SWAP gate. Bottom row from left to right: Examples of
SPAM-error-corrected Pauli transfer matrices obtained experimentally for the CNOT , SWAP, and v SWAP gates, with average gate fidelities
being 95.6%, 93.1%, and 95.7% respectively.

estimation (MLE) method with the following log-likelihood function of R [1]:

15
log L(R) = Z njkilog ( Z Bjklmann> @)
.k, m,n=0
15 3
Biimn = >3 Py (7| P i) (R (R0 s Tr(Prr o) 3)

m’,n'=03'=0

where Ry, and R; are the Pauli transfer matrices for the above-defined post-rotation unitary Ry and pre-rotation unitary R;
respectively. pg = |00)(00| is our initial state and P, , P, are defined in Eq.(1). The experimental Pauli transfer matrix
R is then obtained by maximizing log L(R) under the constraint that R represents a trace-preserving and completely positive
quantum map [1, 5].

Before we perform QPT for the speed-optimized two-qubit gates, we first perform the above QPT procedure for a zero-
time evolution to obtain a Pauli transfer matrix R;", which without state preparation and measurement (SPAM) errors should
represent an identity quantum map. The measured R" can be used to correct the SPAM errors for a quantum process we
perform with nonzero time evolution, whose measured Pauli transfer matrix is denoted by Ry for a target unitary U.

To achieve SPAM error correction, we first obtain the process matrix X577 and xg;" for the corresponding Pauli transfer
matrix R} and R{;” respectively (by inverting Eq. (5) below) [6]. The process matrix for a quantum map & is defined via
E(p) = Zm n XmnPmpP, with P, P, defined in Eq. (1). Second, we obtain the SPAM error corrected process matrix gorrected
for the target process using

Xg})rrecled _ Tfl(TXZ(pTT o VX?PVT + X‘}xp)(T}L),l, (4)
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FIG. 3. Average gate fidelity I (blue curves) between the experimental quantum process and the corresponding exact time evolution operator
generated by the optimized pulse shapes for a gate time 7', with the target gate being CNOT (a), SWAP (b), and v SWAP (c). The horizontal
axis is normalized by the corresponding analytical speed limit for each target gate (see Eq. (4) of the main text). The red curves (identical
among the subplots but with different time ranges) reveal the average gate fidelity between a dark evolution quantum process over time 7' and
the corresponding exact time evolution operator without error and dissipation.

where Ty, = Tr (P, P,UT) /4 and Vyy,,, = Tr(Py, P, ) /4 [8]. Finally, we convert the error corrected process matrix x§™“? to
the error corrected Pauli transfer matrix ’R%}’”“wd via

15
Rij = Z Xmn Tr{PiPijP”}' ©

m,n=0

Examples of such error-corrected Pauli transfer matrix ’R%}’”“‘ed for U being the CNOT, SWAP, or /SWAP gate are shown in
Fig. 2. Finally, R¢o™ctd allows us to find the average gate fidelity F to the target gate U via [9]
_ 4Ty (R%})rrectedRigeal) +1

3 .

F

(6)

where Ri,}eal represents the Pauli transfer matrix of the ideal target gate U'.

IV. ADDITIONAL ERROR ANALYSIS

One error source shared among all our data points is the statistical error due to quantum measurements. To quantify this
error, we simulate additional measurements by adding a Gaussian distributed random noise with zero mean and unity standard
deviation on each Pauli operator measured during our QPT. This allows us to set an upper bound on the statistical error of the
mean that would be obtained on re-performing the full experiment with all other error sources held fixed. As shown in Fig. 3 of
the main text, this statistical error on the measured F' is less than 1% in all cases.

To better quantify and understand other experimental errors in Fig. 3 of the main text, we calculated the average gate fidelity F'
between the experimental quantum process and the corresponding exact unitary generated by the engineered Hamiltonian with
optimized pulse shapes for each value of gate time 7" and each target gate demonstrated. As shown by the blue curves in Fig. 3,
the infidelity due to experimental error sources are in general within 5%, and we observe a general trend of increasing error as
we increase 7. To find out potential error sources, we first performed quantum process tomography for the dark evolution of the
system (i.e. only under the static Hamiltonian H, in the main text) with varying evolution time T and calculate the average gate
fidelity of such process with regard to the exact evolution operator e ~*/0T", We find such fidelity also decreases as T increases
(see red curves in Fig. 3), from about 99% at T' = 0 to about 95% at the longest gate time (1.275"AP) we explored. We attribute
the error sources due to the dark evolution to state relaxation (due to finite 77 and 75 times), imperfect calibration or fluctuations
of the coupling strength g in Hy, and the fact that H is only an approximation of the actual superconducting circuit [3].

To explain why the fidelity in Fig.3 is noticeably lower when driving the qubits, we numerically simulate the effects of
imperfect calibration or noises on the optimized pulse shapes (either for amplitudes or phases) by adding random perturbations
to each optimized pulse parameter 2], = (see main text). We expect such perturbations to be present in our experimental setup
with magnitudes of a few percent of Omax. The simulated average gate fidelity F' is shown in Fig. 4, where all other parameters
are identical to the exact F' curves in Fig. 3 of the main text. We see that our optimization method is robust to small amount (1%)
of noises on the pulse shapes, but for larger noises (5%), we can lose a few percent of fidelity compared to the exact cases, and
the fidelity lost is larger when F' approaches unity, consistent with the behavior of the experimentally measured F' in Fig. 3 of
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FIG. 4. Average gate fidelity F' calculated using the optimized pulse shapes in Fig. 3 of the main text but with random Gaussian noise added

to each pulse shape parameter sz (see main text) with the target gate being CNOT (a), SWAP (b), and v/SWAP (c). The blue (red) curves
correspond to a standard deviation of the Gaussian noise at 0.012max (0.052max).

the main text. We suspect that the combined effects of the error sources in the dark evolution and the engineered pulse shapes,
as well as errors caused by leakage to non-qubit states, account for the majority of experimental errors we observe.
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