

B25C-1456 - Carbon dioxide Uptake Fluxes in Coastal Salt Marshes Reveal Ecological Similitudes and Environmental Regimes

Tuesday, 14 December 2021

17:00 - 19:00

Convention Center - Poster Hall, D-F

Abstract

We tested the hypothesis that carbon dioxide (CO_2) uptake fluxes in coastal salt marshes follow ecological similitudes (parameter reductions) and distinct environmental regimes. The hypothesis was evaluated utilizing data from four salt marshes in Waquoit Bay, MA, USA collected during May-October 2013. Using dimensional analysis method from fluid mechanics and engineering, we reduced five flux and ecological variables (CO_2 uptake, light, soil temperature, salinity, and atmospheric pressure) into two mechanistically meaningful dimensionless groups: (a) light use efficiency number ($\text{LUE} = \text{CO}_2$ uptake normalized by daylight) and (b) biogeochemical number ($\text{BGC} = \text{interactions among soil temperature, salinity, and atmospheric pressure}$). Graphical exploration of the dimensionless numbers with the observed data revealed an emergent pattern that was distinctly characterized by high, transitional, and low LUE regimes. Transitions among the identified regimes were dictated by thresholds of soil temperature and salinity. Low LUE regime corresponded to unfavorable environmental conditions (soil temperature $\leq 17^\circ\text{C}$ and salinity $> 30\text{ppt}$), whereas high LUE regime was governed by favorable conditions (soil temperature $> 17^\circ\text{C}$ and salinity $\leq 30\text{ppt}$). The identified emergent pattern and environmental thresholds would provide key insights into the underlying organizing principles of CO_2 uptake and the major environmental drivers in coastal salt marshes.

First Author

Z

Mohammed T. Zaki

West Virginia University

Authors

A

Omar I. Abdul-Aziz

West Virginia University

I

Khandker S. Ishtiaq

Florida International University

View Related

B25C - Coastal Wetland Carbon and Nitrogen Cycles: Recent Advances in Measurements, Modeling, and Syntheses II Poster

Omar I. Abdul-Aziz, West Virginia University, Civil and Environmental Engineering, Morgantown, WV, United States, **Jianwu Tang**, MBL, The Ecosystems Center, Woods Hole, MA, United States, **Kevin D Kroeger**, USGS, Woods Hole, MA, United States and **Lisamarie Windham-Myers**, USGS - National Research Program, Menlo Park, CA, United States

Tuesday, 14 December 2021

17:00 - 19:00

Convention Center - Poster Hall, D-F

Biogeosciences

Similar

Seasonal Changes in Subsurface Hydrology Influence Nutrient Cycling in a Salt Marsh

Maya Montalvo¹, Emilio Grande¹, Margaret A Zimmer¹, Anna Elizabeth Braswell², John C. Haskins³, Charlie Endris⁴, Fuller Gerbi⁵, Corianne Tatariw⁶, Bhavna Arora⁷, Ate Visser⁸, Erin Cedar Seybold⁹, Warren Caldwell¹⁰ and Elliot D Grunewald¹¹, (1)University of California Santa Cruz, Earth and Planetary Sciences, Santa Cruz, CA, United States, (2)University of Florida, Gainesville, FL, United States, (3)Elkhorn Slough National Estuarine Research Reserve, Moss Landing, CA, United States, (4)Elkhorn Slough National Estuarine Research Reserve, Watsonville, United States, (5)Moss Landing Marine Laboratories, Moss Landing, CA, United States, (6)University of Alabama, Tuscaloosa, AL, United States, (7)Lawrence Berkeley National Laboratory, Earth and Environmental Sciences Area, Berkeley, CA, United States, (8)Lawrence Livermore National Laboratory, Nuclear and Chemical Sciences Division, Livermore, CA, United States, (9)Kansas Geological Survey, University of Kansas, Lawrence, KS, United States, (10)Vista Clara Inc., Mukilteo, United States, (11)Vista Clara Inc., Mukilteo, WA, United States

How will increases in temperature and nutrient loading impact greenhouse gas fluxes and nitrogen processing in salt marsh soils across a climatic gradient?

Sophie Comer-Warner¹, Sami Ullah¹, Camille LaFosse Stagg², Tracy E Quirk³, Christopher Swarzenski⁴, Ashley N Bulseco⁵ and Gail L Chmura⁶, (1)University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham, B15, United Kingdom, (2)U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, United States, (3)Louisiana State University, Department of Oceanography and Coastal Sciences, Baton Rouge, LA, United States, (4)United States Geological Survey, Lower Mississippi Gulf Water Science Center, Baton Rouge, LA, United States, (5)The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, United States, (6)McGill Univ, Montreal, QC, Canada

The influence of elevated temperature and carbon dioxide on salt marsh plant communities

Kerrie Sendall¹, Roy Rich², J. Megonigal² and **Cyd Meléndez-Muñoz**¹, (1)Rider University, Department of Biology, Lawrenceville, NJ, United States, (2)Smithsonian Environmental Research Center, Edgewater, MD, United States

Historical and Contemporary Controls on Methane and Carbon Dioxide Fluxes in Temperate Forest Soils

Natalie A. White¹, Clarice R Perryman¹, Angelica M Dziurzynski² and Ruth K Varner¹, (1)University of New Hampshire Main Campus, Durham, NH, United States, (2)University of New Hampshire Main Campus, Durham, United States

Methane and Carbon Dioxide Fluxes in a Temperate Salt Marsh: Comparisons Between Plot, Ecosystem and Component Measurements

Andrew Hill and Rodrigo Vargas, University of Delaware, Newark, DE, United States

[REGISTER](#)

[HOUSING](#)

[ATTEND](#)

[COVID-19 PROTOCOLS](#)

AGU supports 130,000 enthusiasts to experts worldwide in Earth and space sciences.

© 2021 American Geophysical Union. All Rights Reserved.