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Abstract

De novo genome assembly is a fundamental problem in computational molecular biology
that aims to reconstruct an unknown genome sequence from a set of short DNA sequences
(or reads) obtained from the genome. High throughput sequencers could generate several
billions of such short reads in a single run. However, the relative ordering of the reads along
the target genome is not known a priori. This lack of information is one of the main
contributors to the increased complexity of the assembly process. Typically, state-of-the-art
approaches produce an ordering of the reads toward the end of the assembly process, making
it rather too late to benefit from the ordering information. In this paper, with the dual
objective of improving assembly quality as well as exposing a high degree of parallelism for
assemblers, we present a partitioning-based approach. Our framework—which we call BOA
(for bucket-order-assemble)—uses a bucketing alongside graph- and hypergraph-based
partitioning techniques to produce a partial ordering of the reads. This partial ordering
enables us to divide the read set into disjoint blocks that can be independently assembled in
parallel using any state-of-the-art serial assembler of choice. We tested the BOA framework
on a variety of genomes. Experimental results show that the hypergraph variant of our
approach, Hyper-BOA, consistently improves both the overall assembly quality and
performance. For the inputs tested, the Hyper-BOA framework consistently improves the
N50 values of the popular standalone MEGAHIT assembler by an average of 1.70× and up to
2.13×; while the largest alignment length improves 1.47× on average and up to 1.94×. The
time to solution also consistently improves between 3-4× for the system sizes tested.

1 Introduction 1

In de novo genome assembly, the relative ordering and orientation of the input reads along the 2

target genome is not known a priori. In fact it can be argued that one of the primary contributors 3

to the problem complexity is the lack of this information—i.e., if the ordering and orientation of 4

the reads is known at input then the genome assembly problem would reduce to a simpler (albeit 5

less exciting) problem of performing a linear sequence of pairwise alignments between adjacent 6

reads to produce the assembly. However, the DNA sequencers preserve neither the genomic 7

coordinates from where the reads were sequenced nor any significant relative ordering 8

information between the reads (except for paired end read information). Consequently, assembly 9

algorithms are left to infer an ordering and orientation along the course of their respective 10

computations. 11

Different assembly approaches vary on how much they rely on the read ordering and 12

orientation (henceforth abbreviated as OO for simplicity) information, and at what stages of their 13

2This author is currently at the National Center for Biotechnology Information (NCBI). The contributions to this
work was done during their affiliation with Pacific Northwest National Laboratory and is not associated with the NCBI.

3This publication describes work performed at the Georgia Institute of Technology and is not associated with Amazon.
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algorithm they try to infer it. De Bruijn graph assemblers [4, 17, 21], which now represent a 14

dominant segment of modern day short-read assemblers, use an approach that is largely 15

oblivious to OO information. This is because these assemblers use de Bruijn graphs that break 16

the reads into shorter fixed-length k-mers at the early stages of the algorithm. Therefore, the 17

information on how the reads are ordered/oriented along the target genome is typically not 18

recoverable until the end of the assembly pipeline (i.e., until after contigs are generated). On the 19

other hand, the more traditional overlap-layout-consensus (OLC) class of assemblers [16, 17, 22] 20

are more explicit in trying to infer the OO information in their assembly pipeline—as the overlap 21

phase aligns reads against one another with an intent to arrive at a read layout. And yet, because 22

the overlap phase is also the most time consuming step of the assembly pipeline for the OLC 23

assemblers, the OO information is practically not available until later stages of the assembly. 24

In this paper, we ask the simple question of what if either a total (ideal but not practical) or at 25

least a partial order information can be generated earlier in the assembly computation4. Could 26

that help improve performance and/or assembly quality? If so, what are some of the ways to 27

generate such OO information earlier in the assembly algorithmic stages and what are their 28

assembly efficacies? 29

Contributions. To address the above questions, we present a parallel assembly framework that 30

uses a graph partitioning-centric approach. Graph partitioning [8] is a classical optimization 31

problem in graph theory that aims to partition the set of vertices of an input graph into a 32

pre-determined number of partitions in a load balanced manner. The problem has seen decades 33

of research in development and application under numerous contexts including in the parallel 34

processing of graph workloads [10], as well as partitioning assembly graphs [19] and read 35

datasets [1, 12]. 36

In this paper, we exploit graph partitioning and its properties to produce a partial ordering of 37

reads and in the process also enable parallelization of the assembly workload. More specifically: 38

• We cast the assembly problem in two forms: a) one that uses graph partitioning, and b) 39

another that uses hypergraph partitioning. 40

• To enable the application for different types of partitioning, we propose a light-weight 41

bucketing algorithm that bins reads into buckets based on fixed-length exact matches and 42

uses the bins to generate graph/hypergraph representations suitable for partitioning. 43

• Once bucketed and partitioned, each individual part can be independently assembled. This 44

strategy allows the user to use any standalone (off-the-shelf) assembler of choice. 45

Consequently, we call our assembly framework BOA (stands for bucket-order-assemble). 46

Two implementations (i.e., concrete instantiations) of this framework are presented and 47

evaluated—one that uses a classical graph partitioner (ParMETIS [13]) and another that 48

uses a hypergraph partitioner (Zoltan [5]). 49

• To comparatively assess the assembly efficacy of the partitioning-based approach, we also 50

construct a benchmark Oracle assembly workflow that uses the correct read ordering 51

available from sequencing simulators. 52

Experimental results demonstrate that our partitioning-based implementations a) improve 53

parallel performance of assembly workloads; and b) improve assembly quality, consistently 54

under several qualitative measures. In fact the partitioning-based approaches yield results that 55

come closest in terms of quality to the Oracle assemblies produced. 56

The rest of this paper is organized as follows. In Section 2, we present relevant preliminaries 57

about graph partitioning and hypergraph partitioning. In Section 3, we present our BOA 58

assembly framework including details of our graph/hypergraph-based formulations. Section 4 59

presents an experimental evaluation of the BOA framework, comparing it with standalone short 60

read assemblers as well as the benchmark results. Section 5 concludes the paper. 61

4In this paper, the notion of a total ordering is used to imply that the relative ordering between every pair of reads is
established; while in a partial order, the relative ordering is established only for a subset of read pairs.
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2 Preliminaries and Notation 62

2.1 Strings and Genome Assembly 63

Let s denote an arbitrary string over a fixed alphabet Σ, and let |s| denote the length of the string. 64

Let s[i, j] denote the substring of s starting at index i and ending at index j. As a convention, we 65

index strings from 1, and the ith character of s is denoted by s[i]. A k-mer is a (sub)string of 66

length k. 67

Given a substring s[i, j] of s, we refer to the character immediately preceding the substring 68

in s to be its “left-character” or lchar (if one exists). More specifically, lchari = s[i− 1] if 69

1 < i ≤ |s|, and if i = 1, then lchari = B, where B /∈ Σ is used to represent a blank symbol. 70

The input to genome assembly is a set of n reads (denoted by R). Each read is a string over 71

the alphabet Σ = {a, c, g, t}. We denote the reverse complemented form of a read r as rc(r). If 72

reads are generated with paired-end information, then the two reads of the same pair are 73

assigned consecutive read IDs i and i+ 1, so that the odd read ID corresponds to the forward 74

strand read and the even read ID corresponds to the reverse strand read. We denote the set of all 75

forward (alternatively, reverse) reads as Rf (alternatively, Rr). Note that R = Rf ∪Rr, and 76

|Rf | = |Rr| = n
2 . 77

2.2 Graph Partitioning 78

A undirected graph G = (V, E) is defined by a set of vertices V and a set of edges E . An edge 79

ei,j is a pair of distinct vertices, i.e. eij = {vi, vj} , vi ∈ V , vj ∈ V . The degree di of a vertex vi 80

is defined as the number of edges incident to that vertex. Weights and costs can be assigned to 81

vertices and edges. W is used to represent the weight assignment for vertices, where wi is the 82

weight for the vertex vi ∈ V . C is the cost assignment for edges, where cij represents the cost 83

for the edge eij ∈ E . 84

A K-way partition of G, Π = {P1, · · · PK}, places each vertex of the graph into a part.
More concretely, Π is a K-way partition if each part Pi is a non-empty subset of V , each pair of
parts is disjoint, i.e., Pi ∩ Pj = ∅ for all 1 ≤ i ̸= j ≤ K, and the union of all parts recovers V ,
that is

⋃
1≤i≤K Pi = V . For a K-way partition Π, an edge eij = {vi, vj} is called external (or

cut) if vi ∈ Pa, vj ∈ Pb with a ̸= b, otherwise called internal (or uncut). EE is used to
represent the set of all external edges. The cost (or cutsize) χ of Π is defined as:
χ(Π) =

∑
eij∈EE

cij . A K-way partition, Π, is called balanced if the following holds:

∀i ∈ {1, . . . ,K} ,
∑

vj∈Pi

wj ≤ (1 + ε)Wavg (1)

where, Wavg =
(∑

vj∈V wj

)
/K, and ε is a given maximum imbalance ratio. 85

The graph partitioning problem is defined as follows: given a graph G = (V, E), vertex 86

weight and edge cost assignments W and C, a part number requirement K, and the maximum 87

allowed imbalance ratio ε, find a balanced K-way partitioning that minimizes the cost. The 88

graph partitioning problem is known to be NP-hard [7], even for seemingly easier problems such 89

as uniform weighted bipartitioning [8]. 90

2.3 Hypergraph Partitioning 91

A hypergraph H = (V,N ) contains a set of vertices, V , and a set of nets (hyperedges), N . 92

Hypergraph is a generalization of graph where each hyperedge can connect more than two 93

vertices, i.e., a net ni ∈ N is a subset of vertices V . The vertices in a net are called its pins, 94

represented by pins[ni]; and the size of the net is the number of its pins. The number of nets 95

incident on vi represents the vertex degree di. Similar with graphs, we use W and C as vertex 96
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describe these major components. In particular, we describe two instantiations of the 126

framework—one using classical graph partitioning (Section 3.3) and another using hypergraph 127

partitioning (Section 3.2). Both the initial bucketing step and final assembly step are common to 128

both instantiations. 129

3.1 Bucketing algorithm 130

Given the set of reads R, the bucketing algorithm computes set of buckets B, where each bucket 131

b ⊆ B corresponds to a k-mer in R. The bucketing algorithm assigns the reads in R to at most 132

|Σ|k buckets, for a fixed length k > 0. We define a bucket for each distinct k-mer present in R. 133

In particular, a read r is assigned to all buckets corresponding to the list of k-mers it contains. 134

Therefore, a bucket is simply a set of read IDs with that k-mer. To account for bidirectionality of 135

reads, we take the lexicographically smaller variant of each k-mer and assign reads to that 136

bucket. This ensures that the read is either present in the bucket corresponding to the k-mer in its 137

direct form or its reverse complemented form (but not both). 138

Let B denote the collection of all buckets generated in this process, and b denote an arbitrary 139

member of B. Note that each b ⊆ R. We use kmer(b) to denote the k-mer that defines bucket b. 140

Note that it is possible for buckets to intersect in reads (given that the same read could have 141

multiple distinct k-mers). 142

3.2 The BOA Framework using Hypergraph Partitioning: Hyper-BOA 143

Hyper-BOA models the multi-way interaction between reads and buckets using a hypergraph. 144

We describe this hypergraph-based model first because it naturally follows from the bucketing 145

step. 146

Input to Hyper-BOA is the set of buckets B and output is the read-bucket hypergraph 147

H = (V,N ), where reads are represented as vertices, and buckets as nets. This step produces a 148

partitioning Π of H, which is a partitioning of reads. Each bucket b ∈ B contains the subset of 149

all reads in R that share the same k-mer (either in the direct or reverse complemented form). 150

With the hypothesis that this is a necessary—but not sufficient—condition for reads originating 151

in the same region of the target genome, we construct a hypergraph H = (V,N ) for two 152

possible scenarios. 153

No paired-end information available: If the input R does not contain paired-end 154

information, then we construct a hypergraph H = (V,N ) such that V = R and N = B. In 155

other words, we initialize a hypergraph where each read is represented by a vertex and each 156

bucket by a net. The pins of a net correspond to all the reads that are part of the corresponding 157

bucket. Since each vertex is a read and the subsequent assembly workload is not expected to 158

vary with similar sized reads, we assign unit weights to each vertex. One can use a cost function 159

to represent importance of a k-mer, but for this initial work we simply treat each k-mer equally 160

and thus assign unit costs to nets. 161

Paired-end information available: If the input read set R contains paired-end information, 162

then we construct our read-bucket hypergraph H = (V,N ) after post-processing the buckets as 163

follows. Recall that for paired-end reads, the two reads of a given pair are assigned consecutive 164

IDs i (odd) and i+ 1 (even). While these two reads of the pair can take part in different sets of 165

buckets, it is desirable to assign these two reads to the same block at the end of partitioning, so 166

that the subsequent assembly step can use the paired-end information. To force this block 167

assignment during partitioning, we fuse the two reads into a single vertex in the hypergraph—i.e., 168

the reads i and i+1 of a pair are both mapped to the same vertex in the hypergraph H, identified 169

by vertex ⌈ i
2⌉ (same as ⌈ i+1

2 ⌉). This can be achieved by simply scanning the list of read IDs in 170

each bucket and renumbering each using the above ceiling function5. Consequently, the new 171

hypergraph H will contain exactly n
2 vertices. The set of nets N is the updated set of buckets B 172

with the renumbered read IDs (as its pins). Each vertex and each net are assigned unit weights. 173

5In our implementation, we actually renumber the read IDs as they are entered into their buckets, so that a second
pass is unnecessary.
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Partitioning: Once the hypergraph H is constructed, we call the partition function on H 174

(described in Section 2.3) using the Zoltan hypergraph partitioner [5]. Partitioning takes as an 175

input parameter the number of output parts K. However, instead of fixing the number of parts 176

(or equivalently, output blocks) arbitrarily, we set a target for the output block size, i.e., for the 177

number of reads per part, denoted by ρ. Intuitively, since each output block is input to a 178

standalone assembler, it is important to keep related reads together so that contigs have a chance 179

to grow long (and not fragment the assembly). However, if the block size becomes too large, 180

then it may not only start including unrelated reads (from far regions of the genome) but also 181

would have a negative impact on the runtime performance. (Note that a single block 182

configuration (K = 1) is equivalent to running the standalone assembler on the entire input R.) 183

Therefore, we set a target ρ for the number of reads per block, and using ρ determine K 184

(≈ ⌈n
ρ ⌉). 185

To determine an appropriate ρ, we can use the longest contigs produced by state-of-the-art 186

assemblers as a lower-bound. The idea is to set a target for ρ so that the contigs produced from 187

each block have an opportunity to grow into a contig that is longer than this baseline length. For 188

instance, a block with 100K reads can produce only a contig that is as long as ∼100Kbp 189

(assuming 100bp read length and 100× genome sequencing coverage). So if our goal is to 190

surpass this baseline, then the block size has to reflect that—e.g., a constant factor more than 191

that baseline. Setting a high target for ρ as described above is not a guarantee for qualitative 192

improvement, but it provides a chance (to the per-block standalone assemblers). This approach 193

enables empirically calibrating the block size for assembly quality. 194

One last parameter in partitioning is the balance criterion. To achieve a similar workload 195

across all the individual block assembler runs, we prefer roughly similar sized blocks. However, 196

keeping this very tight might unnecessarily constrain the related reads that will need go into 197

same part. To strike a balance between these two goals we use a balanced constraint of ε = 1% 198

(see Eq. (1)). 199

3.3 The BOA Framework using Graph Partitioning: Graph-BOA 200

Graph-BOA models the interaction among reads using a graph. Input to Graph-BOA is the 201

set of buckets B and output is the read-overlap graph G = (V, E) where reads are represented as 202

vertices, and edges represent alignment-free, exact match overlaps between pairs of reads, 203

identified by bucketing phase. This phase produces a partitioning Π of G, which is a partitioning 204

of reads. 205

Given a set R of n input reads, we first construct a read-overlap graph G = (V, E) where
V = R and {ri, rj} ∈ E if the two reads ri and rj share at least one maximal match6 of length
≥ k, for some integer constant k > 0. In other words, the set of edges E is generated by
enumerating all pairs of reads sharing at least one maximal match α of length ≥ k. Let this set
of pairs be denoted by P . Then E = P , and it is given by:

P = {{ri, rj} | ri, rj ∈ R such that i ̸= j, and ∃ α of length ≥ k between ri and rj}

The focus on maximal matches is due to the following performance consideration. While 206

buckets are defined based on k-mers, two reads that share a longer exact match of length t could 207

appear in up to t− k + 1 distinct buckets. Instead of detecting the same pair {ri, rj} multiple 208

times in those many buckets, our algorithm detects it only once per maximal match that contains 209

all those shared k-mers. Note that once all pairs are generated, each bucket b containing m reads 210

would have effectively contributed
(
m
2

)
pairs to P—i.e., a clique of size m in G. The above 211

maximal match trick is mainly to avoid duplicate detection of any edge in the clique. 212

Pair Generation: Let α denote a maximal match of length ≥ k, that is present in two or more 213

reads denoted by the read subset Contains(α) ⊆ R. Then, the bucket b with 214

kmer(b) = α[1, k] will be the only bucket that will be held responsible to detect all pairs of 215

6A maximal match is a nonempty exact match between two strings that cannot be extended in either direction.
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reads {ri, rj} that share α as a maximal match between them. In other words, the pairs 216

contributed by b will include: P(α) = {{ri, rj} | ∀ri, rj ∈ Contains(α)} and P =
⋃

α P(α) 217

However, the set of all maximal matches α is not known a priori. To generate P completely, 218

from across all the buckets, and without prior knowledge of P , our algorithm deploys a two-step 219

strategy as described below. 220

a) Left-maximality: Consider the read collection covered by bucket b. For each read r ∈ b, let
ψ(r, b) denote the set of suffix positions in read r that have kmer(b) as their prefix; and let
Lchars(r, b) ∈ Σ ∪ {B} denote the set of all characters that immediately precede those
suffix positions in r. For example, if r = tttaccgttgaccgt, α = accg, and kmer(b) = acc,
then ψ(r, b) are the suffix positions {4, 11} and the corresponding left characters are
r[3] = t and r[10] = g (i.e., Lchars(r, b) = {t, g}). Using Lchars(r, b), we generate a bit
vector Lr of length |Σ|+ 1 as follows:

Lr[x] =

{
1, if x ∈ Lchars(r, b)

0, otherwise

b) Pairing: Subsequently, we use the Lr-arrays for all reads r ∈ b to generate the pairs of reads
from that bucket b. The set of pairs contributed by bucket b, denoted by P(b), is given by:

P(b) = {{ri, rj} | ri, rj ∈ b, ∃x ∈ Σ∪{B} s.t. Lri [x]⊕Lrj [x] = 1 or Lri [B]∨Lrj [B] = 1}

Here, ⊕ and ∨ are the bitwise XOR and OR operators respectively. Intuitively, a pair of reads 221

is generated at a bucket b only if there exists a pair of suffixes in those reads that differ in 222

their left-characters (thereby guaranteeing left-maximality of the match detected). Note that 223

right-maximality of the match in a pair detected is implicitly guaranteed as the suffixes in 224

those two reads will have to differentiate at some point past the k-mer prefix. Therefore this 225

algorithm is able to report only one instance of a read pair {ri, rj} for each maximal match 226

α they share. 227

Similar to Hyper-BOA, we assign unit weights to vertices and edges, and create one of two 228

different variants of the read-overlap graph G depending on whether paired-end read information 229

is available or not. More specifically, if paired-end information is available, then we follow the 230

same fuse strategy described under Hyper-BOA, by representing both reads of a pair by a 231

single vertex in V of G. This is achieved by renumbering the read IDs within each input bucket b 232

prior to generating pairs. 233

Partitioning: Once the read-overlap graph G is constructed, then we call the partition 234

function on G (described in Section 2.2) using the ParMETIS graph partitioner [13]. Here again, 235

we use the number of reads per output block (ρ) as our guide to determine the number of blocks 236

K and set the balanced constraint ε as 1%. 237

3.3.1 Graph-BOA and Hyper-BOA 238

There are a few important connections as well as differences between the graph-based approach 239

(Graph-BOA) and hypergraph-based approach (Hyper-BOA) within our BOA framework that 240

are worth noting. 241

First, from the assembly problem formulation standpoint, Graph-BOA is very similar to the 242

OLC assembler model with the key difference being the “overlaps” in the read-overlap graph are 243

detected using lightweight exact match-based criteria (as described in the bucketing step). 244

Therefore our approach is alignment-free. The read-bucket hypergraphs we construct under 245

Hyper-BOA, are also alignment-free. Furthermore, they can be viewed as a generalization of 246

the read-overlap graphs (from edges to nets; i.e., read pairs to read subsets). 247

Secondly, from a method standpoint, intuitively both graph and hypergraph approaches try to 248

put reads that are strongly connected to each other into the same part. In hypergraph model, each 249

bucket (i.e., k-mer) is uniquely represented by a net. If two reads share multiple k-mers, they 250

7/14

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492973doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492973
http://creativecommons.org/licenses/by-nd/4.0/


will be incident in multiple nets, hence representing how strong their connection is. In the graph 251

model, each edge does not represent a unique relation. An edge between two reads might come 252

from different overlaps (or buckets). Hence, one would need an aggregation function to 253

represent that accurately. In our current implementation of Graph-BOA, the edges established 254

between any two reads are unweighted (or equivalently, unit weight). This is in contrast with 255

alignment-based OLC assemblers, which typically use an alignment-based weight along an edge. 256

While edge weights would help guide partitioning decisions, for Graph-BOA there is a tradeoff 257

with performance. One approach to calculate an edge weight between a pair of reads is based on 258

the length of maximal matches that led to detection of that edge. However, in our pair generation 259

algorithm, we only detect the presence of a maximal match for pairing two reads, without 260

explicitly determining the match itself or its length (as it will become more expensive to 261

compute the matches). An alternative strategy is to count the number of buckets a pair of reads 262

co-occurs to use as the corresponding edge weight. However, this also implies detecting and 263

storing a count for each pair—which could become expensive both for runtime and memory. As 264

a compromise, we have used an unweighted representation for Graph-BOA. 265

Another point of difference between Hyper-BOA and Graph-BOA is their space and run 266

time complexities. For Hyper-BOA, the k-mer based buckets are used to construct the 267

hypergraph. Every bucket with say m distinct reads in it, induces a net with m pins. Whereas, 268

under Graph-BOA, extra computation is needed to establish pairwise connections between 269

reads as described in Section 3.3—i.e., every bucket with m reads contributes
(
m
2

)
edges. This 270

leads to higher memory usage for Graph-BOA. For example, to assemble the genome C. 271

elegans, the maximum memory usage per MPI rank for Graph-BOA is 8.3 GBytes while it’s 272

5.3 GBytes for Hyper-BOA. While in the partitioning phase, Graph-BOA is much ligher than 273

Hyper-BOA as shown in Section 4.2. 274

3.4 Parallelization 275

The BOA pipeline is comprised of three phases: 276

1) Parallel Bucketing: In this step, the algorithm first loads the input FASTA file(s) in a 277

distributed manner such that each process receives roughly the same amount of sequence data 278

≈ |R|
p , where p is the total number of processes. This is achieved by each process loading a 279

chunk of reads using MPI-IO functions [18], such that no read is split among processes. Each 280

read is assigned a distinct read id. We use MPI Scan to determine the read offset at each process. 281

Next we generate k-mers by sliding a window of length k (k = 31 in our experiments) over each 282

read, as elaborated in Section 3.1. For parallel bucketing, an owner process that collects the read 283

IDs for each bucket is assigned. To identify the owner, we use an approach based on 284

minimizers [2]. In particular, for each k-mer bucket, a minimizer of length l (l < k; l=8 in our 285

experiments) is identified. We use the least frequently occurring l-mer within that k-mer as the 286

minimizer. Subsequently, a hash function is used to map the minimizer to its owner process. The 287

idea of using minimizers for this assignment step is to increase the probability that adjacent 288

k-mers in a read are assigned the same owning process for the corresponding buckets (thereby 289

reducing communication latency). Collective aggregation of the read IDs corresponding to each 290

bucket is carried out through an MPI Alltoallv primitive [18]. Any bucket with 200 or more 291

distinct reads represented is pruned (to account for repeat complexity). 292

2) Parallel Partitioning: In this step at first we generate the input read-overlap graph (G) or 293

read-bucket hypergraph (H), for Graph-BOA or Hyper-BOA, respectively. For Hyper-BOA, 294

we provide Zoltan’s hypergraph generating function, a list of all distinct sorted read IDs for each 295

k-mer bucket assigned to a process. For Graph-BOA, each process enumerates edges between 296

pairs of reads sharing at least one maximal match (Section 3.3) in parallel and then sends the 297

edge lists to the owner processes of the vertices through MPI Alltoallv . We provide 298

ParMETIS the CSR (Compressed Sparse Row) format graph. We then call the partitioning 299

function, providing as input the generated hypergraph or graph, the number of block partitions 300
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Table 1. The inputs used in our experiments.
Genome Size (bp) No. reads (=V) No. buckets No. pins (=N ) No. edges (=E)

C. elegans 100,286,401 100,286,100 409,957,423 6,389,329,498 9,342,286,308
D. melanogaster 143,726,002 142,426,015 555,183,926 8,250,921,240 11,757,427,193
Human chr 7 160,567,423 160,567,400 620,586,298 9,651,040,529 16,009,424,797
Human chr 8 146,259,322 146,259,300 574,127,869 8,923,132,914 13,977,225,241
Human chr 10 134,758,122 134,758,100 527,306,188 8,211,994,915 13,248,263,074
Maize chr 10 152,435,371 152,313,178 469,060,854 5,869,048,129 14,305,585,805
Betta splendens 456,232,186 394,258,510 1,610,294,923 25,105,195,932 36,509,423,159

K and the balanced constriant ε. 301

3) Assembly: The final phase of the pipeline takes the K partitions generated by the 302

partitioner and launches K concurrent assembly instances using a standalone assembler on each 303

of the K parts (or equivalently, blocks). 304

We are working on open-source release of our BOA framework. Current version is available 305

at https://doi.org/10.5281/zenodo.6050770. 306

4 Experimental Results 307

Experimental evaluation was performed on a range of genome inputs—covering model 308

organisms, to human and plant chromosomal DNA—downloaded from NCBI Genbank [6]. All 309

inputs used are listed in Table 1. Short reads were generated from these reference genomes using 310

the ART sequencing simulator [11] using an average read length of 100bp, coverage of 100×, 311

and with paired-end read information. For the Betta genome, the ART sequencing run resulted 312

in 86× coverage. The QUAST [9] tool was used to assess the quality of the output assemblies. 313

All our experiments were conducted on the NERSC Cori machine (Cray XC40), where each 314

node has 128GB DDR4 memory and is equipped with dual 16-core 2.3 GHz Intel Haswell 315

processors. The nodes are interconnected with the Cray Aries network using a Dragonfly 316

topology. 317

The BOA framework is a three-step pipeline: i) parallel bucketing of input reads; ii) parallel 318

partitioning the reads using either hypergraph partitioning (Hyper-BOA) or graph partitioning 319

(Graph-BOA); and iii) subsequently running a standalone assembler on each part (in parallel). 320

For hypergraph partitioning, we use Zoltan [5], and for standard graph partitioning we use 321

ParMETIS [13]. By default, for all our experiments we used k=31, l=8 and paired-end read 322

information (Hyper-BOA, Graph-BOA). 323

For the last step of BOA, any standalone assembler can be used. In our experiments, we used 324

MEGAHIT [15], Minia [3] and IDBA-UD [20] as three different options for assembling each 325

block partition in the last step with k=31. Hyper-BOA (minia) refers to the version that 326

uses Minia; Hyper-BOA (idba-ud) uses IDBA-UD; and Hyper-BOA (megahit) 327

uses MEGAHIT. 328

As baselines for comparing our BOA assemblies, we also generated two other assemblies: 329

1) The Oracle assembly was generated by: i) first recording the true and total read ordering 330

along the genome (i.e., oracle ordering) using the read coordinate information from the ART 331

simulator; ii) then trivially block partitioning the oracle ordering of the reads into roughly equal 332

sized blocks (or parts), with the same block size (ρ) used in the partitioning-based approaches; 333

and iii) subsequently running Minia and MEGAHIT on each individual block. 2) In addition, 334

we ran Minia, IDBA-UD and MEGAHIT on the entire read set to enable direct comparison of 335

our partitioning based approach against a (partitioning-free, or K = 1) standalone assembler. 336

4.1 Qualitative Evaluation 337

We first present a qualitative evaluation of the BOA framework alongside comparisons to Minia, 338

IDBA-UD, and MEGAHIT standalone assemblies and the Oracle assembly. MEGAHIT and 339

IDBA-UD runs were with paired-end reads, and Minia does not support paired-end reads. 340
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Table 2. Quality metrics for our test inputs across multiple assemblers. The target number of
reads per part (ρ) for Graph-BOA and Hyper-BOA was set to 500K. Also shown in paren-
theses (×) are the factor of improvements achieved by Hyper-BOA (megahit) over the
corresponding standalone MEGAHIT values. Boldface entries are best values.

Input Assembler N50
Largest

Alignment
(bp)

Genome
Coverage % Missassemblies Duplication

Ratio

C. elegans Oracle (minia) 14,172 153,394 91.65 10 1.002
Oracle (megahit) 14,189 157,192 91.49 1.005
Minia 5,924 75,229 83.26 37 1.002
IDBA-UD 6,026 75,229 83.14 0 1.002
MEGAHIT 6,276 108,538 83.71 1 1.002
Graph-BOA (minia) 9,028 143,663 85.83 49 1.013
Hyper-BOA (minia) 12,715 158,433 89.96 19 1.013
Hyper-BOA (idba-ud) 13,404 158,433 89.91 5 1.014
Hyper-BOA (megahit) (2.13×) 13,370 (1.46×) 158,435 90.00 6 1.000

D. melanogaster Oracle (minia) 55,104 356,760 88.81 41 1.005
Oracle (megahit) 57,037 356,561 88.51 13 1.006
Minia 19,551 162,262 78.79 37 1.002
MEGAHIT 24,312 190,107 78.97 0 1.001
Graph-BOA (minia) 24,136 201,618 83.78 328 1.106
Hyper-BOA (minia) 42,048 295,288 86.16 299 1.081
Hyper-BOA (megahit) (1.93×) 46,921 (1.61×) 305,527 85.87 159 1.071

Human chr 7 Oracle (minia) 4,564 39,858 84.26 40 1.003
Oracle (megahit) 4,569 39,858 84.21 40 1.003
Minia 2,793 36,845 68.10 88 1.002
IDBA-UD 2,834 24,503 67.98 0 1.002
MEGAHIT 2,904 36,845 68.95 0 1.002
Hyper-BOA (minia) 4,385 39,314 79.54 58 1.008
Hyper-BOA (idba-ud) 4,585 39,352 79.87 0 1.010
Hyper-BOA (megahit) (1.58×) 4,580 (1.07×) 39,354 80.49 3 1.009

Human chr 8 Oracle (minia) 4,869 42,828 88.44 34 1.003
Oracle (megahit) 4,883 56,943 88.40 1 1.005
Minia 2,784 27,427 74.28 76 1.002
MEGAHIT 2,893 31,115 75.27 0 1.002
Hyper-BOA (minia) 4,569 37,028 86.02 29 1.010
Hyper-BOA (megahit) (1.65×) 4,779 (1.26×) 39,350 86.89 8 1.012

Human chr 10 Oracle (minia) 4,392 37,537 87.12 28 1.003
Oracle (megahit) 4,395 37,429 87.10 1 1.005
Minia 2,654 33,773 71.73 78 1.002
MEGAHIT 2,755 33,773 72.59 0 1.002
Hyper-BOA (minia) 4,149 42,959 83.02 41 1.007
Hyper-BOA (megahit) (1.57×) 4,316 (1.28×) 43,074 83.92 2 1.010

Maize chr 10 Oracle (minia) 3,906 35,657 56.33 4 1.003
Oracle (megahit) 3,903 35,657 56.33 0 1.005
Minia 2,058 15,644 17.08 29 1.003
MEGAHIT 2,134 15,645 17.34 0 1.003
Hyper-BOA (minia) 3,629 30,306 34.23 178 1.056
Hyper-BOA (megahit) (1.69×) 3,613 (1.94×) 30,308 34.37 42 1.041

Note that the Oracle assembly is not realizable in practice and is used just as a theoretical 341

benchmark for comparison purposes. The Minia, IDBA-UD, and MEGAHIT assemblies are 342

meant to be representative outputs from a typical state-of-the-art standalone assembler. Table 2 343

shows the results with various qualitative measures including N50, largest alignment (in bp), 344

genome coverage (in %), number of misassemblies, and duplication ratio. To enable a fair 345

comparison, we set the number of parts (K) to 400 for both Zoltan and ParMETIS runs. 346

The results show that Hyper-BOA implementations consistently outperform all other 347

assemblers tested by nearly all the qualitative measures, and for almost all inputs tested. Among 348

the Hyper-BOA implementations, Hyper-BOA (megahit) is the best. Relative to the 349

popular MEGAHIT standalone assembler, it consistently improves the N50 values by an average 350

of 1.70× and up to 2.13×; while the largest alignment length improves 1.47× on average and 351

up to 1.94×. Hyper-BOA (minia) also improves the assembly quality of its standalone 352

counterpart Minia by similar margins. The results also show the Hyper-BOA 353

implementations are able to reduce misassemblies for most inputs except D. melanogaster and 354
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Maize chr 10. Intuitively, partitioning can help reduce noise within blocks but there is no 355

guarantee for it as the bucketing step still uses exact matches to group the reads. Repetitive 356

k-mers could still confound the partitioning process. 357

From Table 2, we also observe that Hyper-BOA results consistently come within 90% or 358

more reach of the quality values produced by the corresponding Oracle assembly. For 359

instance, on average Hyper-BOA (megahit) reaches within 94.86% of the corresponding 360

Oracle (megahit) N50 values, and within 96.41% of the respective largest alignment 361

values on average. The largest gap is seen in Human chr 8, where Hyper-BOA (megahit)’s 362

largest alignment is only 69.10% of the Oracle’s value. Even in this case, however, the 363

Hyper-BOA’s largest alignment is considerably larger (1.26×) than that of standalone 364

MEGAHIT value. 365

Interestingly we also note in Table 2 that for two inputs, Human chr 10 and C. elegans, the 366

largest alignment values produced by Hyper-BOA (minia) are marginally better than that 367

of the Oracle values. This can sometimes happen since after all, the assembly quality is 368

ultimately a function of the block composition that is fed into the final stage of BOA assembly; 369

and the composition between the blocks for Hyper-BOA could have favored longer growth of 370

the longest contig (relative to the Oracle). Overall, these results show that partitioning helps in 371

closing the gap toward the theoretically achievable peaks in total read order-aware assemblies. 372

Hyper-BOA vs. Graph-BOA. In our results we observed that in general, Hyper-BOA 373

significantly outperforms Graph-BOA. For C. elegans and D. melanogaster, where both results 374

are available, we see from Table 2 that Hyper-BOA implementations outperform Graph-BOA 375

by all qualitative measures. This is to be expected as the input graph into Graph-BOA, are not 376

weighted (see related discussion in Section 3.3.1). Note that for the remaining four inputs tested, 377

Graph-BOA could not complete because of lack of memory. As described in Section 3.3.1, 378

read-overlap graphs can have a higher memory complexity. 379

4.2 Runtime Performance Evaluation 380

Table 3 shows the runtime performance for Hyper-BOA and Graph-BOA implementations, 381

alongside standalone Minia and MEGAHIT. The bucketing and partitioning steps are parallel, 382

and therefore we report their parallel runtimes. For the assembly step, we report the mean 383

processing time per block partition. 384

The results in Table 3 show that the BOA implementations are significantly faster than the 385

standalone Minia and MEGAHIT executions. For instance, for the MEGAHIT runs, 386

Hyper-BOA (megahit) delivers speedups consistently between 3 and 4× over standalone 387

MEGAHIT. The speedups for the Minia runs are larger. 388

Large-scale experiment: As one large-scale experiment, we tested our Hyper-BOA 389

(megahit) on the full assembly of the 456Mbp Betta splendens (Siamese fighting fish). 390

Table 4 shows the key results. Consistent with the results on smaller genomes, the Hyper-BOA 391

implementations outperform their respective standalone assemblers—e.g., Hyper-BOA 392

(megahit) yields 1.3× improvement on N50, 1.7× improvement on largest alignment, and 393

1.07× improvement in genome coverage over standalone MEGAHIT. Hyper-BOA 394

implementations also significantly reduce time to solution—e.g., it took 2h 52m for the 395

standalone MEGAHIT to assemble the Betta genome, whereas this only took 30m for 396

Hyper-BOA (megahit) (i.e., 5.69× speedup). 397

5 Conclusion 398

We presented a parallel assembly framework named BOA that leverages a graph/hypergraph 399

partitioning-based approach to enforce a partial ordering and orientation of the input reads. Our 400

experiments using three different off-the-shelf assemblers on a variety of inputs, demonstrate 401

that our Hyper-BOA implementations consistently (and significantly) improve both the 402

assembly quality and performance of the standalone assemblers. This work has opened up 403
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Table 3. Runtime performance of the different assemblers. The BOA implementations were run
on the NERSC Cori machine with 256 cores (i.e. on 32 nodes with 8 processes per node), while
the standalone Minia and Betta splendens baselines run in multithreaded mode on a single node
with 32 cores. All times reported are in seconds.

Input Assembler
Parallel

bucketing
(sec): max

Parallel
partitioning
(sec): max

Assembly
(sec): avg Total time (sec)

C. elegans
Graph-BOA (minia) 51 180 150 381
Hyper-BOA (minia) 33 536 39 608
Hyper-BOA (megahit) 33 536 13 582
Minia 1,364
MEGAHIT 2,000

D. melanogaster
Graph-BOA (minia) 81 195 51 327
Hyper-BOA (minia) 57 867 39 963
Hyper-BOA (megahit) 57 867 18 942
Minia 2,444
MEGAHIT 2,845

Human chr 7 Hyper-BOA (minia) 70 967 86 1,123
Hyper-BOA (megahit) 70 967 16 1,053
Minia 2,569
MEGAHIT 3,377

Human chr 8 Hyper-BOA (minia) 67 826 61 954
Hyper-BOA (megahit) 67 826 26 919
Minia 2,518
MEGAHIT 3,134

Human chr 10 Hyper-BOA (minia) 61 844 115 1,020
Hyper-BOA (megahit) 61 844 18 923
Minia 2,027
MEGAHIT 2,970

Maize chr 10 Hyper-BOA (minia) 51 745 220 1,016
Hyper-BOA (megahit) 51 745 19 815
Minia 3,625
MEGAHIT 3,670

Table 4. Quality and runtime performance for Betta splendens assembly. Parallel bucketing and
partitioning was performed across 512 cores of NERSC Cori (64 nodes x 8 cores per node) with
1024 partitions. The runs for baseline (standalone) Minia and MEGAHIT were executed on a
shared memory node with 32 cores.
(∗ indicates that these timings could not be collected in time on the same system.)

N50
Largest
Alignment
(in bp)

Genome
Coverage
(in %)

Misas-
semblies

Dup.
Ratio

Total
time
Avg.
(secs)

Total
time
Max.
(secs)

Minia 5,571 59,787 81.85 878 1.002 5,415
MEGAHIT 5,765 59,789 82.05 676 1.002 10,313
Oracle (megahit) 7,830 84,290 89.58 1,132 1.005 ∗

Hyper-BOA (minia) 7,458 96,553 88.75 1,254 1.012 2,159 3,017
Hyper-BOA (megahit) 7,725 101,570 88.13 1,052 1.01 1,791 1,812
Graph-BOA (megahit) 6,516 76,575 84.13 916 1.01 640 663

further research avenues for future exploration including: a) understanding the effect of varying 404

the block (or partition) sizes and modelling that as a space-time-performance quality trade-off 405

problem, b) scaling up to much larger inputs and metagenomic inputs, c) incorporation of long 406

reads as a way to guide the partitioning step, and d) exploration of other alternative approaches 407

for graph/hypergraph construction as well as faster partitioning mechanisms. 408

12/14

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.22.492973doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.22.492973
http://creativecommons.org/licenses/by-nd/4.0/


References 409

1. Al-Okaily, A.A.: Hga: de novo genome assembly method for bacterial genomes using 410

high coverage short sequencing reads. BMC genomics 17(1), 1–11 (2016) 411

2. Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P.: On the 412

representation of de bruijn graphs. In: International conference on Research in 413

computational molecular biology. pp. 35–55 (2014) 414

3. Chikhi, R., Rizk, G.: Space-efficient and exact de bruijn graph representation based on a 415

bloom filter. Algorithms for Molecular Biology 8(1), 1–9 (2013) 416

4. Compeau, P.E., Pevzner, P.A., Tesler, G.: How to apply de bruijn graphs to genome 417

assembly. Nature biotechnology 29(11), 987–991 (2011) 418

5. Devine, K., Boman, E.G., Heaphy, R., Bisseling, R., Çatalyürek, U.V.: Parallel 419
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