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Abstract

De novo genome assembly is a fundamental problem in computational molecular biology that aims to
reconstruct an unknown genome sequence from a set of short DNA sequences (or reads) obtained from the
genome. The relative ordering of the reads along the target genome is not known a priori, which is one of the
main contributors to the increased complexity of the assembly process. In this paper, with the dual objective
of improving assembly quality and exposing a high degree of parallelism, we present a partitioning-based
approach. Our framework, BOA (bucket-order-assemble), uses a bucketing alongside graph- and hypergraph-
based partitioning techniques to produce a partial ordering of the reads. This partial ordering enables us to
divide the read set into disjoint blocks that can be independently assembled in parallel using any state-of-
the-art serial assembler of choice. Experimental results show that BOA improves both the overall assembly
quality and performance.

1. Introduction

In de novo genome assembly, the relative ordering and orientation of the input reads along the target
genome is not known a priori. In fact it can be argued that one of the primary contributors to the problem
complexity is the lack of this information—i.e., if the ordering and orientation of the reads is known at input
then the genome assembly problem would reduce to a simpler (albeit less exciting) problem of performing
a linear sequence of pairwise alignments between adjacent reads to produce the assembly. However, the
DNA sequencers preserve neither the genomic coordinates from where the reads were sequenced nor any
significant relative ordering information between the reads (except for paired end read information). Conse-
quently, assembly algorithms are left to infer an ordering and orientation along the course of their respective
computations.

Different assembly approaches vary on how much they rely on the read ordering and orientation (hence-
forth abbreviated as OO for simplicity) information, and at what stages of their algorithm they try to infer
it. De Bruijn graph assemblers Compeau et al. (2011); Medvedev and Pop (2021); Pevzner et al. (2001),
which now represent a dominant segment of modern day short-read assemblers, use an approach that is
largely oblivious to OO information. This is because these assemblers use de Bruijn graphs that break
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the reads into shorter fixed-length k-mers at the early stages of the algorithm. Therefore, the information
on how the reads are ordered/oriented along the target genome is typically not recoverable until the end
of the assembly pipeline (i.e., until after contigs are generated). On the other hand, the more traditional
overlap-layout-consensus (OLC) class of assemblers Li et al. (2012); Medvedev and Pop (2021); Pop (2009)
are more explicit in trying to infer the OO information in their assembly pipeline—as the overlap phase
aligns reads against one another with an intent to arrive at a read layout. And yet, because the overlap phase
is also the most time consuming step of the assembly pipeline for the OLC assemblers, the OO information
is practically not available until later stages of the assembly.

In this paper, we ask the simple question of what if either a total (ideal but not practical) or at least a
partial order information can be generated earlier in the assembly computation5. Could that help improve
performance and/or assembly quality? If so, what are some of the ways to generate such OO information
earlier in the assembly algorithmic stages and what are their assembly efficacies?

Contributions.. To address the above questions, we present a parallel assembly framework that uses a graph
partitioning-centric approach. Graph partitioning Garey et al. (1974) is a classical optimization problem
in graph theory that aims to partition the set of vertices of an input graph into a pre-determined number
of partitions in a load balanced manner. The problem has seen decades of research in development and
application under numerous contexts including in the parallel processing of graph workloads Hendrickson
and Kolda (2000), as well as partitioning assembly graphs Pell et al. (2012) and read datasets Al-Okaily
(2016); Jammula et al. (2017).

In this paper, we exploit graph partitioning and its properties to produce a partial ordering of reads and
in the process also enable parallelization of the assembly workload. More specifically:

• We cast the assembly problem in two forms: a) one that uses graph partitioning, and b) another that
uses hypergraph partitioning.

• To enable the application for different types of partitioning, we propose a light-weight bucketing
algorithm that bins reads into buckets based on fixed-length exact matches and uses the bins to
generate graph/hypergraph representations suitable for partitioning.

• Once bucketed and partitioned, each individual part can be independently assembled. This strategy
allows the user to use any standalone (off-the-shelf) assembler of choice. Consequently, we call our
assembly framework BOA (stands for bucket-order-assemble). Two implementations (i.e., concrete in-
stantiations) of this framework are presented and evaluated—one that uses a classical graph partitioner
(ParMETIS Karypis et al. (1997)), Graph-BOA, and another that uses a hypergraph partitioner (Zoltan
Devine et al. (2006)), Hyper-BOA.

• To comparatively assess the assembly efficacy of the partitioning-based approach, we also construct
a benchmark Oracle assembly workflow that uses the correct read ordering available from sequencing
simulators.

Experimental results on simulated and real-word datasets demonstrate that our partitioning-based im-
plementations a) improve parallel performance of assembly workloads; and b) improve assembly quality,
consistently under several qualitative measures. In fact, on the simulated datasets, the partitioning-based
approaches yield results that come closest in terms of quality to the Oracle assemblies produced.

2. Experimental Results

Experimental evaluation was performed on a range of genome inputs—covering model organisms, to
human and plant chromosomal DNA—downloaded from NCBI Genbank Duke University School of Medicine

5In this paper, the notion of a total ordering is used to imply that the relative ordering between every pair of reads is
established; while in a partial order, the relative ordering is established only for a subset of read pairs.
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Table 1: The inputs used in our experiments.

Genome Size (bp) No. reads (=V) No. buckets No. pins (=N ) No. edges (=E)

C. elegans 100,286,401 100,286,100 409,957,423 6,389,329,498 9,342,286,308
D. melanogaster 143,726,002 142,426,015 555,183,926 8,250,921,240 11,757,427,193
Human chr 7 160,567,423 160,567,400 620,586,298 9,651,040,529 16,009,424,797
Human chr 8 146,259,322 146,259,300 574,127,869 8,923,132,914 13,977,225,241
Human chr 10 134,758,122 134,758,100 527,306,188 8,211,994,915 13,248,263,074
Maize chr 10 152,435,371 152,313,178 469,060,854 5,869,048,129 14,305,585,805
Betta splendens 456,232,186 394,258,510 1,610,294,923 25,105,195,932 36,509,423,159

(Last date accessed: November 2021). All inputs used are listed in Table 1. Short reads were generated
from these reference genomes using the ART sequencing simulator Huang et al. (2012) using an average
read length of 100bp, coverage of 100×, and with paired-end read information. For the Betta genome, the
ART sequencing run resulted in 86× coverage. An experiment on a real world data for D. melanogaster is
presented in Section 2.4. The QUAST Gurevich et al. (2013) tool was used to assess the quality of the output
assemblies.

All our experiments were conducted on the NERSC Cori machine (Cray XC40), where each node has
128GB DDR4 memory and is equipped with dual 16-core 2.3 GHz Intel Haswell processors. The nodes are
interconnected with the Cray Aries network using a Dragonfly topology.

The BOA framework is a three-step pipeline: i) parallel bucketing of input reads; ii) parallel partitioning
the reads using either hypergraph partitioning (Hyper-BOA) or graph partitioning (Graph-BOA); and iii)
subsequently running a standalone assembler on each part (in parallel). For hypergraph partitioning, we
use Zoltan Devine et al. (2006), and for standard graph partitioning we use ParMETIS Karypis et al.
(1997). By default, for all our experiments we used k=31, l=8 and paired-end read information (Hyper-BOA,
Graph-BOA).

For the last step of BOA, any standalone assembler can be used. In our experiments, we used MEGAHIT

Li et al. (2015), Minia Chikhi and Rizk (2013) and IDBA-UD Peng et al. (2012) as three different options for
assembling each block partition in the last step with k=31. Hyper-BOA (minia) refers to the version that
uses Minia; Hyper-BOA (idba-ud) uses IDBA-UD; and Hyper-BOA (megahit) uses MEGAHIT.

As baselines for comparing our BOA assemblies, we also generated two other assemblies: 1) The Oracle

assembly was generated by: i) first recording the true and total read ordering along the genome (i.e., oracle
ordering) using the read coordinate information from the ART simulator; ii) then trivially block partitioning
the oracle ordering of the reads into roughly equal sized blocks (or parts), with the same block size (ρ) used
in the partitioning-based approaches; and iii) subsequently running Minia and MEGAHIT on each individual
block. 2) In addition, we ran Minia, IDBA-UD and MEGAHIT on the entire read set to enable direct comparison
of our partitioning based approach against a (partitioning-free, or K = 1) standalone assembler.

2.1. Qualitative Evaluation

We first present a qualitative evaluation of the BOA framework alongside comparisons to Minia, IDBA-UD,
and MEGAHIT standalone assemblies and the Oracle assembly. MEGAHIT and IDBA-UD runs were with paired-
end reads, and Minia does not support paired-end reads. Note that the Oracle assembly is not realizable
in practice and is used just as a theoretical benchmark for comparison purposes. The Minia, IDBA-UD,
and MEGAHIT assemblies are meant to be representative outputs from a typical state-of-the-art standalone
assembler. Table 2 shows the results with various qualitative measures including NGA50, N50, largest
alignment (in bp), genome coverage (in %), number of misassemblies, and duplication ratio. To enable a
fair comparison, we set the number of parts (K) to 400 for both Zoltan and ParMETIS runs.

The results show that Hyper-BOA implementations consistently outperform all other assemblers tested
by nearly all the qualitative measures, and for almost all inputs tested. Among the Hyper-BOA imple-
mentations, Hyper-BOA (megahit) is the best. Relative to the MEGAHIT standalone assembler, Hyper-BOA
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Table 2: Quality metrics for our test inputs across multiple assemblers. The target number of reads per part (ρ) for Graph-BOA

and Hyper-BOA was set to 500K. Also shown in parentheses (×) are the factor of improvements achieved by Hyper-BOA (megahit)

over the corresponding standalone MEGAHIT values. Boldface entries are best values.
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C. elegans Oracle (minia) 11,162 14,172 153,394 91.65 10 1.002
Oracle (megahit) 11,979 14,189 157,192 91.49 1.005
Minia 4,155 5,924 75,229 83.26 37 1.002
IDBA-UD 4,387 6,026 75,229 83.14 0 1.002
MEGAHIT 4,464 6,276 108,538 83.71 1 1.002
Graph-BOA (minia) 7,829 9,028 143,663 85.83 49 1.013
Hyper-BOA (minia) 11,977 12,715 158,433 89.96 19 1.013
Hyper-BOA (idba-ud) 11,116 13,404 158,433 89.91 5 1.014
Hyper-BOA (megahit) (2.5×)11,246 (1.2×)12,673 (1.3×)143,817 92.10 11 1.026

D. melanogaster Oracle (minia) 41,283 55,104 356,760 88.81 41 1.005
Oracle (megahit) 46,516 57,037 356,561 88.51 13 1.006
Minia 13,229 19,551 162,262 78.79 37 1.002
MEGAHIT 16,397 24,312 190,107 78.97 0 1.001
Graph-BOA (minia) 19,421 24,136 201,618 83.78 328 1.106
Hyper-BOA (minia) 38,923 42,048 295,288 86.16 299 1.081
Hyper-BOA (megahit) (2.4×)40,101 (1.7×)41,729 (1.8×)343,434 87.81 225 1.124

Human chr 7 Oracle (minia) 3,350 4,564 39,858 84.26 40 1.003
Oracle (megahit) 3,558 4,569 39,858 84.21 40 1.124
Minia 1,544 2,793 36,845 68.10 88 1.002
IDBA-UD 1,599 2,834 24,503 67.98 0 1.002
MEGAHIT 1,638 2,904 36,845 68.95 0 1.002
Hyper-BOA (minia) 4,124 4,385 39,314 79.54 58 1.008
Hyper-BOA (idba-ud) 3,285 4,585 39,352 79.87 0 1.010
Hyper-BOA (megahit) (2.0×)3,331 (1.5×)4,316 (1.2×)43,498 83.30 10 1.018

Human chr 8 Oracle (minia) 3,944 4,869 42,828 88.44 34 1.003
Oracle (megahit) 4,194 4,883 56,943 88.40 1 1.005
Minia 1,877 2,784 27,427 74.28 76 1.002
MEGAHIT 1,987 2,893 31,115 75.27 0 1.002
Hyper-BOA (minia) 4,379 4,569 37,028 86.02 29 1.010
Hyper-BOA (megahit) (2.0×)4,044 (1.6×)4,604 (1.5×)46,122 88.92 4 1.020

Human chr 10 Oracle (minia) 3,462 4,392 37,537 87.12 28 1.003
Oracle (megahit) 3,685 4,395 37,429 87.10 1 1.005
Minia 1,672 2,654 33,773 71.73 78 1.002
MEGAHIT 1,766 2,755 33,773 72.59 0 1.002
Hyper-BOA (minia) 3,942 4,149 42,959 83.02 41 1.007
Hyper-BOA (megahit) (1.9×)3,428 (1.5×)4,125 (1.3×)44,604 86.46 1 1.017

Maize chr 10 Oracle (minia) 841 3,906 35,657 56.33 4 1.003
Oracle (megahit) 904 3,903 35,657 56.33 0 1.005
Minia - 2,058 15,644 17.08 29 1.003
MEGAHIT - 2,134 15,645 17.34 0 1.003
Hyper-BOA (minia) - 3,629 30,306 34.23 178 1.056
Hyper-BOA (megahit) - (1.2×)2,559 (2.0×)30,664 39.64 86 1.1024



(megahit)consistently improves the NGA50 values by an average of 2× and up to 2.5×; the N50 values by
an average of 1.70× and up to 2.13×; while the largest alignment length improves 1.47× on average and up
to 1.94×. Hyper-BOA (minia) also improves the assembly quality of its standalone counterpart Minia by
similar margins. Intuitively, partitioning can help reduce noise within blocks but there is no guarantee for
it as the bucketing step still uses exact matches to group the reads. Repetitive k-mers could still confound
the partitioning process. We see the effect of these possibly noisy k-mers in the misassemblies reported by
the Hyper-BOA implementations. Yet, the choice of the standalone assembler at the end of the partitioning
pipeline provides certain degree of control over these misassemblies, with IDBA-UD typically resulting in
fewer missassemblies than the other assemblers.

From Table 2, we also observe that Hyper-BOA results consistently come within 90% or more reach of
the quality values produced by the corresponding Oracle assembly. For instance, on average Hyper-BOA

(megahit) reaches within 93% of the corresponding Oracle (megahit) NGA50 values, and within 100%
of the respective largest alignment values on average. The largest gap is seen in Human chr 8, where
Hyper-BOA (megahit)’s largest alignment is only 81% of the Oracle’s value. Even in this case, however,
the Hyper-BOA’s largest alignment is considerably larger (1.48×) than that of standalone MEGAHIT value.

Interestingly we also note in Table 2 that for two inputs, Human chr 10 and C. elegans, the largest align-
ment values produced by Hyper-BOA (minia) are marginally better than that of the Oracle values. This
can sometimes happen since after all, the assembly quality is ultimately a function of the block composition
that is fed into the final stage of BOA assembly; and the composition between the blocks for Hyper-BOA could
have favored longer growth of the longest contig (relative to the Oracle). NGA50 for Hyper-BOA (minia) is
also consistently better than Oracle (minia). Overall, these results show that partitioning helps in closing
the gap toward the theoretically achievable peaks in total read order-aware assemblies.

Hyper-BOA vs. Graph-BOA.. In our results we observed that in general, Hyper-BOA significantly outperforms
Graph-BOA. For C. elegans and D. melanogaster, where both results are available, we see from Table 2 that
Hyper-BOA implementations outperform Graph-BOA by all qualitative measures. This is to be expected as
the input graph into Graph-BOA, are not weighted (see related discussion in Section 7.3.6). Note that for
the remaining four inputs tested, Graph-BOA could not complete because of lack of memory. As described
in Section 7.3.6, read-overlap graphs can have a higher memory complexity.

2.2. Runtime Performance Evaluation

Table 3 shows the runtime performance for Hyper-BOA and Graph-BOA implementations, alongside stan-
dalone Minia and MEGAHIT. The bucketing and partitioning steps are parallel, and therefore we report their
parallel runtimes. For the assembly step, we report the mean processing time per block partition.

The results in Table 3 show that the BOA implementations are significantly faster than the standalone
Minia and MEGAHIT executions. For instance, for the MEGAHIT runs, Hyper-BOA (megahit) delivers speedups
consistently between 3 and 4× over standalone MEGAHIT. The speedups for the Minia runs are larger.

2.3. Large-scale experiment

As one large-scale experiment, we tested our Hyper-BOA (megahit) on the full assembly of the 456Mbp
Betta splendens (Siamese fighting fish). Table 4 shows the key results. Consistent with the results on
smaller genomes, the Hyper-BOA implementations outperform their respective standalone assemblers—e.g.,
Hyper-BOA (megahit) yields 1.3× improvement on both NGA50 and N50, 1.7× improvement on largest
alignment, and 1.1× improvement in genome coverage over standalone MEGAHIT. Hyper-BOA implementations
also significantly reduce time to solution—e.g., it took 2h 52m for the standalone MEGAHIT to assemble the
Betta genome, whereas this only took 30m for Hyper-BOA (megahit) (i.e., 5.69× speedup).

2.4. Real world experiment

We evaluated Hyper-BOA with real world data. More specifically, we ran Hyper-BOA (megahit) and
MEGAHIT on a D. melanogaster read set (SRA accession SRX13859210) and compared the results. This is
an Illumina HiSeq 4000 data set (average read length 150bp), containing 40.4M paired-end reads totaling

5



Table 3: Runtime performance of the different assemblers. The BOA implementations were run on the NERSC Cori machine
with 256 cores (i.e. on 32 nodes with 8 processes per node), while the standalone Minia and Betta splendens baselines run in
multithreaded mode on a single node with 32 cores. All times reported are in seconds.

Input Assembler
Parallel

bucketing
(sec): max

Parallel
partitioning
(sec): max

Assembly
(sec): avg

Total time (sec)

C. elegans
Graph-BOA (minia) 51 180 150 381
Hyper-BOA (minia) 33 536 39 608
Hyper-BOA (megahit) 33 536 13 582
Minia 1,364
MEGAHIT 2,000

D. melanogaster
Graph-BOA (minia) 81 195 51 327
Hyper-BOA (minia) 57 867 39 963
Hyper-BOA (megahit) 57 867 18 942
Minia 2,444
MEGAHIT 2,845

Human chr 7
Hyper-BOA (minia) 70 967 86 1,123
Hyper-BOA (megahit) 70 967 16 1,053
Minia 2,569
MEGAHIT 3,377

Human chr 8
Hyper-BOA (minia) 67 826 61 954
Hyper-BOA (megahit) 67 826 26 919
Minia 2,518
MEGAHIT 3,134

Human chr 10
Hyper-BOA (minia) 61 844 115 1,020
Hyper-BOA (megahit) 61 844 18 923
Minia 2,027
MEGAHIT 2,970

Maize chr 10
Hyper-BOA (minia) 51 745 220 1,016
Hyper-BOA (megahit) 51 745 19 815
Minia 3,625
MEGAHIT 3,670
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Table 4: Quality and runtime performance for Betta splendens assembly. Parallel bucketing and partitioning was performed
across 512 cores of NERSC Cori (64 nodes x 8 cores per node) with 1024 partitions. The runs for baseline (standalone) Minia

and MEGAHIT were executed on a shared memory node with 32 cores. (∗ indicates that these timings could not be collected in
time on the same system.)
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Oracle (megahit) 5,551 7,830 84,290 89.58 1,132 1.005 ∗

Minia 3,425 5,571 59,787 81.85 878 1.002 5,415
MEGAHIT 4,253 5,765 59,789 82.05 676 1.002 10,313
Graph-BOA (megahit) 4,253 6,516 76,575 84.13 916 1.010 640 663
Hyper-BOA (minia) 5,362 7,458 96,553 88.75 1,254 1.012 2,159 3,017
Hyper-BOA (megahit) 5,427 7,474 101,570 89.88 1,140 1.016 1,791 1,812

Table 5: Assembly quality and runtime performance for the real world read set SRA accession SRX13859210. Parallel bucketing
and partitioning was performed across 256 cores of NERSC Cori (32 nodes x 8 cores per node) with 400 partitions. The runs
for baseline (standalone) MEGAHIT were executed on a shared memory node with 32 cores.
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MEGAHIT 1,566 2,651 82,462 74.29 22 1.001 1,498
Hyper-BOA (megahit) 2,147 2,668 79,365 78.62 226 1.124 227 233

6.1Gbp in size. Similar to previous studies with real world data sets Li et al. (2015); Chikhi and Rizk
(2013), we retained only the reads that align to the reference genome. We used minimap2 Li (2018) for
the alignment. Following this step, we were left with 31M reads totaling 4.6G base pairs. The setting
of Hyper-BOA (megahit) is the same as the simulated D. melanogaster dataset. The results in Table 5
show Hyper-BOA (megahit) generated an assembly comparable to the standalone MEGAHIT in N50 length
and largest alignment length, while achieving 1.4× improvement in NGA50 length and 7× improvement in
runtime performance.

3. Discussion

We presented a parallel assembly framework named BOA that leverages a graph/hypergraph partitioning-
based approach to enforce a partial ordering and orientation of the input reads. Our experiments using three
different off-the-shelf assemblers on a variety of inputs, demonstrate that our Hyper-BOA implementations
consistently (and significantly) improve both the assembly quality and performance of the standalone assem-
blers. This work has opened up further research avenues for future exploration including: a) understanding
the effect of varying the block (or partition) sizes and modelling that as a space-time-performance quality
trade-off problem, b) scaling up to much larger inputs and metagenomic inputs, c) incorporation of long
reads as a way to guide the partitioning step, d) extensions of the BOA framework for long read assemblies
or hybrid assembly workflows; e) extension of the partitioning-based assembly approach to generate contigs
that fall between block boundaries; and f) exploration of alternative partitioning strategies that exploit
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auxiliary information (e.g., sequence) information.

4. Limitations of Study

Long reads have become increasing available and have shown to significantly improve assembly quality. As
a framework that uses partitioning, BOA can be potentially applied to different read lengths or technologies.
But the original design reported in this paper was restricted to short reads, as it is important to first
demonstrate the utility of the partitioning idea on the more mature problem of short read assembly. In this
regard, there are some non-trivial extensions that have been planned and we believe those extensions (for
long reads) would have to be part of a future manuscript.

Another limitation of BOA is the larger memory footprint incurred during the partitioning phase. One
of the primary motivations for developing a distributed memory implementation was to be able to scale up
the input size by scaling up the available memory in the distributed setting. However we note that it is
also the space required by the graph/hypergraph partitioner that needs to be factored in while determining
memory requirements. To scale to larger inputs on the current evaluation system (64 compute nodes),
further optimizations focused on memory will be needed.

Our current implementation does not have the capability of extending the contigs beyond the boundaries
of a block, while doing so could potentially improve the assembly quality even further. The limitation with
the current implementation is because traditional partitioning approaches, by default, generate a disjoint
partitioning (of the reads in this case). To grow a contig beyond block boundaries, it will be important to
take into account potential overlaps between reads that fall into genomically adjacent partitioned blocks.
For this, we would have to sort or at least generate an approximate ordering among the blocks in order
to detect potentially adjacent blocks as per (the unknown) genome. The challenge is to ensure such an
ordering is done without introducing a chance/risk of a misassembly. Hence, this is a part of our future
work/extension.
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6. Main figure titles and legends

• Figure 1. Schematic illustration of the BOA framework.

• Figure 2. An illustrative example of our pair generation algorithm. On the left are shown four reads
and two maximal matches shared among them (shown underlined). Let k=3. The right panel shows
a selected subset of buckets relevant to the maximal matches (along each column), and the division of
the respective read sets across the different left character sets Lchar (along each row). For instance,
read r1 appears in the Lchar set for t under column acc because the k-mer acc in read r1 has t as its
left character. The pairs generated from each bucket are shown in the bottom panel.
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7. STAR METHODS

7.1. Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

C. elegans C. elegans Sequencing Consor-
tium

NCBI GenBank assembly acces-
sion GCA 000002985.3

D. melanogaster The FlyBase Consor-
tium/Berkeley Drosophila
Genome Project/Celera Ge-
nomics

NCBI GenBank assembly acces-
sion GCA 000001215.4

Human chr 7 T2T Consortium NCBI GenBank assembly ac-
cession GCA 009914755.2, Gen-
Bank sequence CP068271.1

Human chr 8 T2T Consortium NCBI GenBank assembly ac-
cession GCA 009914755.2, Gen-
Bank sequence CP068270.1

Human chr 8 T2T Consortium NCBI GenBank assembly ac-
cession GCA 009914755.2, Gen-
Bank sequence CP068268.1

Maize chr 10 MaizeGDB NCBI GenBank assembly ac-
cession GCA 902167145.1, Gen-
Bank sequence LR618883.1

Betta splendens BGI NCBI GenBank assembly acces-
sion GCA 003650155.1

Real world read set Duke University NCBI SRA, accession number
SRX13859210

Software and algorithms

ART Illumina v 2.8.5 Huang et al. (2012) Huang et al.
(2012)

https://www.niehs.

nih.gov/research/

resources/assets/docs/

artbinmountrainier2016.06.

05linux64.tgz

Megahit v 1.2.9 Li et al. (2015) Li et al. (2015) https://github.com/voutcn/

megahit/releases/download/

v1.2.9/MEGAHIT-1.2.

9-Linux-x86_64-static.

tar.gz

Minia v 0.0.102 Chikhi et al. (2013) Chikhi and
Rizk (2013)

https://github.com/GATB/

minia/releases/download/

v0.0.102/minia-v0.0.

102-bin-Linux.tar.gz

IDBA v 1.1.3 Peng et al. (2012) Peng et al.
(2012)

https://github.com/

loneknightpy/idba/

releases/download/1.1.

3/idba-1.1.3.tar.gz

ParMetis v 4.0.3 Karypis et al. (1997) Karypis
et al. (1997)

http://glaros.dtc.umn.edu/

gkhome/fetch/sw/parmetis/

parmetis-4.0.3.tar.gz

Zoltan v 3.83 Devine et al. (2006) Devine
et al. (2006)

https://github.com/

sandialabs/Zoltan/archive/

refs/tags/v3.83.tar.gz

QUAST v 5.1.0rc1 Gurevich et al. (2013) Gurevich
et al. (2013)

https://github.com/ablab/

quast

Minimap2 v 2.24 Heng et al. (2013) Li (2018) https://github.com/

lh3/minimap2/releases/

download/v2.24/minimap2-2.

24_x64-linux.tar.bz2
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7.2. Resource Availability
7.2.1. Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead
Contact, Xiaojing An (anxiaojing@gatech.edu)

7.2.2. Materials availability

This study did not generate new unique reagents.

7.2.3. Data and code availability

• The paper analyzes existing,currently available data. The accession identifiers for the datasets are
listed in the Key resources table.

• BOA is publicly available online from https://github.com/GT-TDAlab/BOA.

• Any additional information required to reanalyze the data reported in this paper is available from the
lead contact upon request.

7.3. Method Details
7.3.1. Preliminaries and Notation

Strings and Genome Assembly. Let s denote an arbitrary string over a fixed alphabet Σ, and let |s| denote
the length of the string. Let s[i, j] denote the substring of s starting at index i and ending at index j. As a
convention, we index strings from 1, and the ith character of s is denoted by s[i]. A k-mer is a (sub)string
of length k.

Given a substring s[i, j] of s, we refer to the character immediately preceding the substring in s to be its
“left-character” or lchar (if one exists). More specifically, lchari = s[i− 1] if 1 < i ≤ |s|, and if i = 1, then
lchari = B, where B /∈ Σ is used to represent a blank symbol.

The input to genome assembly is a set of n reads (denoted by R). Each read is a string over the alphabet
Σ = {a, c, g, t}. We denote the reverse complemented form of a read r as rc(r). If reads are generated with
paired-end information, then the two reads of the same pair are assigned consecutive read IDs i and i + 1,
so that the odd read ID corresponds to the forward strand read and the even read ID corresponds to the
reverse strand read. We denote the set of all forward (alternatively, reverse) reads as Rf (alternatively, Rr).
Note that R = Rf ∪Rr, and |Rf | = |Rr| = n

2 .

Graph Partitioning. A undirected graph G = (V, E) is defined by a set of vertices V and a set of edges E .
An edge ei,j is a pair of distinct vertices, i.e. eij = {vi, vj} , vi ∈ V , vj ∈ V . The degree di of a vertex vi
is defined as the number of edges incident to that vertex. Weights and costs can be assigned to vertices
and edges. W is used to represent the weight assignment for vertices, where wi is the weight for the vertex
vi ∈ V . C is the cost assignment for edges, where cij represents the cost for the edge eij ∈ E .

A K-way partition of G, Π = {P1, · · · PK}, places each vertex of the graph into a part. More concretely, Π
is a K-way partition if each part Pi is a non-empty subset of V, each pair of parts is disjoint, i.e., Pi∩Pj = ∅
for all 1 ≤ i 6= j ≤ K, and the union of all parts recovers V, that is

⋃
1≤i≤K Pi = V. For a K-way partition

Π, an edge eij = {vi, vj} is called external (or cut) if vi ∈ Pa, vj ∈ Pb with a 6= b, otherwise called internal
(or uncut). EE is used to represent the set of all external edges. The cost (or cutsize) χ of Π is defined as:
A K-way partition, Π, is called balanced if the following holds:

∀i ∈ {1, . . . ,K} ,
∑
vj∈Pi

wj ≤ (1 + ε)Wavg (1)

where, Wavg =
(∑

vj∈V wj

)
/K, and ε is a given maximum imbalance ratio.

The graph partitioning problem is defined as follows: given a graph G = (V, E), vertex weight and edge
cost assignments W and C, a part number requirement K, and the maximum allowed imbalance ratio ε,
find a balanced K-way partitioning that minimizes the cost. The graph partitioning problem is known
to be NP-hard Garey and Johnson (1979), even for seemingly easier problems such as uniform weighted
bipartitioning Garey et al. (1974).
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Figure 1: Schematic illustration of the BOA framework.

Hypergraph Partitioning. A hypergraph H = (V,N ) contains a set of vertices, V, and a set of nets (hy-
peredges), N . Hypergraph is a generalization of graph where each hyperedge can connect more than two
vertices, i.e., a net ni ∈ N is a subset of vertices V. The vertices in a net are called its pins, represented
by pins[ni]; and the size of the net is the number of its pins. The number of nets incident on vi represents
the vertex degree di. Similar with graphs, we use W and C as vertex weight and net cost assignments, wi
to represent the weight of a vertex vi ∈ V and cj to represent the cost of a net nj ∈ N .

The K-way partitioning of a hypergraph is similar to that of a standard graph. The main difference
comes from the definition of partitioning cost. A net is connected to a part if at least one of its pins is in
that part. The connectivity set Λj of net nj is all the parts that the net connects to. The size of Λj is
denoted λj , i.e. λj = |Λj |. A net nj is external (or cut), if it connects to more than one part, i.e. λj > 1,
otherwise, the net is called internal (or uncut). The set of all external nets for a partition Π is represented
as NE . There are multiple definitions of cost χ of a partitioning Π, in this work we will use connectivity−1
metric, defined as: The hypergraph partitioning problem is known to be NP-hard as well Lengauer (2012).

7.3.2. The BOA Assembly Framework Overview

The BOA framework hinges on the key idea of block partitioning the reads so that each block is expected
to contain reads from neighboring regions of the (unknown) target genome. This blocking mechanism is a
proxy to obtaining a fully ordered sequence of reads. After block partitioning, each block can be assembled
using any standalone assembler of choice, and the combined set of contigs generated across all the blocks
represent the final output assembly. This partitioning-based strategy has several advantages:

• The quality of the output assembly can potentially see improvements if the block partitioning of reads
is faithful to the origins of the reads along the genome (i.e., reads mapping to neighboring genomic
regions are assigned to the same block, while unrelated reads are kept separated across blocks).

• From the performance standpoint, block partitioning can provide significant leverage in controlling
the degree of parallelism as each block is independently processed.
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• Finally, the BOA framework is oblivious to and allows the use of any standalone assembler of choice
downstream. Instead, the framework shifts the focus on keeping related reads together, unrelated
reads separate, and keeping the block sizes reasonably small so as to enable fast parallel assemblies.

Figure 1 illustrates the BOA framework with its different components. In what follows, we describe these
major components. In particular, we describe two instantiations of the framework—one using classical
graph partitioning (Section 7.3.5) and another using hypergraph partitioning (Section 7.3.4). Both the
initial bucketing step and final assembly step are common to both instantiations.

7.3.3. Bucketing algorithm

Given the set of reads R, the bucketing algorithm computes set of buckets B, where each bucket b ∈ B
corresponds to a k-mer in R. The bucketing algorithm assigns the reads in R to at most |Σ|k buckets, for
a fixed length k > 0. We define a bucket for each distinct k-mer present in R. In particular, a read r is
assigned to all buckets corresponding to the list of k-mers it contains. Therefore, a bucket is simply a set
of read IDs with that k-mer. To account for bidirectionality of reads, we take the lexicographically smaller
variant of each k-mer and assign reads to that bucket. This ensures that the read is either present in the
bucket corresponding to the k-mer in its direct form or its reverse complemented form (but not both).

Let B denote the collection of all buckets generated in this process, and b denote an arbitrary member
of B. Note that each b ⊆ R. We use kmer(b) to denote the k-mer that defines bucket b. Note that it is
possible for buckets to intersect in reads (given that the same read could have multiple distinct k-mers).

7.3.4. The BOA Framework using Hypergraph Partitioning: Hyper-BOA

Hyper-BOA models the multi-way interaction between reads and buckets using a hypergraph. We describe
this hypergraph-based model first because it naturally follows from the bucketing step.

Input to Hyper-BOA is the set of buckets B and output is the read-bucket hypergraph H = (V,N ), where
reads are represented as vertices, and buckets as nets. This step produces a partitioning Π of H, which
is a partitioning of reads. Each bucket b ∈ B contains the subset of all reads in R that share the same
k-mer (either in the direct or reverse complemented form). With the hypothesis that this is a necessary—
but not sufficient—condition for reads originating in the same region of the target genome, we construct a
hypergraph H = (V,N ) for two possible scenarios.

No paired-end information available: If the input R does not contain paired-end information, then we
construct a hypergraph H = (V,N ) such that V = R and N = B. In other words, we initialize a hypergraph
where each read is represented by a vertex and each bucket by a net. The pins of a net correspond to all the
reads that are part of the corresponding bucket. Since each vertex is a read and the subsequent assembly
workload is not expected to vary with similar sized reads, we assign unit weights to each vertex. One can
use a cost function to represent importance of a k-mer, but for this initial work we simply treat each k-mer
equally and thus assign unit costs to nets.

Paired-end information available: If the input read set R contains paired-end information, then we con-
struct our read-bucket hypergraph H = (V,N ) after post-processing the buckets as follows. Recall that for
paired-end reads, the two reads of a given pair are assigned consecutive IDs i (odd) and i+ 1 (even). While
these two reads of the pair can take part in different sets of buckets, it is desirable to assign these two reads
to the same block at the end of partitioning, so that the subsequent assembly step can use the paired-end
information. To force this block assignment during partitioning, we fuse the two reads into a single vertex in
the hypergraph—i.e., the reads i and i+ 1 of a pair are both mapped to the same vertex in the hypergraph
H, identified by vertex d i2e (same as d i+1

2 e). This can be achieved by simply scanning the list of read IDs
in each bucket and renumbering each using the above ceiling function6. Consequently, the new hypergraph
H will contain exactly n

2 vertices. The set of nets N is the updated set of buckets B with the renumbered
read IDs (as its pins). Each vertex and each net are assigned unit weights.

6In our implementation, we actually renumber the read IDs as they are entered into their buckets, so that a second pass is
unnecessary.
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Partitioning: Once the hypergraph H is constructed, we call the partition function on H (described in
Section 7.3.1) using the Zoltan hypergraph partitioner Devine et al. (2006). Partitioning takes as an input
parameter the number of output parts K. However, instead of fixing the number of parts (or equivalently,
output blocks) arbitrarily, we set a target for the output block size, i.e., for the number of reads per part,
denoted by ρ. Intuitively, since each output block is input to a standalone assembler, it is important to
keep related reads together so that contigs have a chance to grow long (and not fragment the assembly).
However, if the block size becomes too large, then it may not only start including unrelated reads (from far
regions of the genome) but also would have a negative impact on the runtime performance. (Note that a
single block configuration (K = 1) is equivalent to running the standalone assembler on the entire input R.)
Therefore, we set a target ρ for the number of reads per block, and using ρ determine K (≈ dnρ e).

To determine an appropriate ρ, we can use the longest contigs produced by state-of-the-art assemblers
as a lower-bound. The idea is to set a target for ρ so that the contigs produced from each block have an
opportunity to grow into a contig that is longer than this baseline length. For instance, a block with 100K
reads can produce only a contig that is as long as ∼100Kbp (assuming 100bp read length and 100× genome
sequencing coverage). So if our goal is to surpass this baseline, then the block size has to reflect that—e.g., a
constant factor more than that baseline. Setting a high target for ρ as described above is not a guarantee for
qualitative improvement, but it provides a chance (to the per-block standalone assemblers). This approach
enables empirically calibrating the block size for assembly quality.

One last parameter in partitioning is the balance criterion. To achieve a similar workload across all the
individual block assembler runs, we prefer roughly similar sized blocks. However, keeping this very tight
might unnecessarily constrain the related reads that will need go into same part. To strike a balance between
these two goals we use a balanced constraint of ε = 1% (see Eq. (1)).

7.3.5. The BOA Framework using Graph Partitioning: Graph-BOA

Graph-BOA models the interaction among reads using a graph. Input to Graph-BOA is the set of buckets B
and output is the read-overlap graph G = (V, E) where reads are represented as vertices, and edges represent
alignment-free, exact match overlaps between pairs of reads, identified by bucketing phase. This phase
produces a partitioning Π of G, which is a partitioning of reads.

Given a set R of n input reads, we construct a read-overlap graph G = (V, E) where V = R and {ri, rj} ∈
E if the two reads ri and rj share at least one maximal match7 of length ≥ k, for some integer constant
k > 0. In other words, the set of edges E is generated by enumerating all pairs of reads sharing at least one
maximal match α of length ≥ k. Let P denote the set of pairs, given by:

P = {{ri, rj} | ri, rj ∈ R, i 6= j, and ∃ a maximal match of length ≥ k between ri and rj}

For example, two reads r1 = cagcca and r2 = tgagcc share substring agcc as a maximal match, and if
k = 3 there will exist an edge between the nodes corresponding to r1 and r2 in G. The focus on maximal
matches is due to the following performance consideration. While buckets are defined based on k-mers, two
reads that share a longer exact match of length t could appear in up to t− k + 1 distinct buckets. Instead
of detecting the same pair {ri, rj} multiple times in those many buckets, our algorithm detects it only once
due to the leftmost common k-mer in the maximal matching. In the above example of r1 and r2, the pair
is detected due to the leftmost k-mer agc in the maximal match.

Note that once all pairs are generated, each bucket b containingm reads would have effectively contributed(
m
2

)
pairs to P—i.e., a clique of size m in G. The above maximal match trick is mainly to avoid duplicate

detection of any edge in the clique.
Pair Generation: To generate P using all the buckets, our algorithm deploys a two-step strategy as

described below. Intuitively, we use the two characters (if present) flanking the maximal match to its
left and right. A maximal match is a substring that is both left-maximal (i.e., left characters on both
reads mismatch) and right-maximal (i.e., right characters on both reads mismatch). The only exception is

7A maximal match is a nonempty exact match between two strings that cannot be extended in either direction.
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when there is no flanking character on any one of the read. In such a case, we use the blank character B
for maximality. Note that two reads that have B as their respective left characters are left-maximal. Our
algorithm exploits the bucketing information for right maximality and instead checks only for left maximality
(while still guaranteeing maximality). The details of the algorithm are described below.
a) Left-maximality: Consider the read collection covered by bucket b. For each read r ∈ b, let ψ(r, b) denote

the set of suffix positions in read r that have kmer(b) as their prefix; and let Lchars(r, b) ∈ Σ ∪ {B}
denote the set of all characters that immediately precede those suffix positions in r. Using Lchars(r, b),
we generate a bit vector Lr of length |Σ|+ 1 as follows:

Lr[x] =

{
1, if x ∈ Lchars(r, b)
0, otherwise

Example 1. Consider a read r = accttacc and the bucket b for 2-mer ac. Then ψ(r, b) are the suffix
positions {1, 6} and the corresponding left characters are r[0] = B and r[5] = t (i.e., Lchars(r, b) =
{B, t}). Therefore the bit vector Lr for the bucket corresponding 2-mer ac is [1, 0, 0, 0, 1] for left
characters [B, a, c, g, t] respectively.

Remark 1. As noted in §7.3.3, k-mers are indexed by their lexicographically smaller variant to account
for bidirectionality. If a given k-mer in a read r is not in its lexicographically smaller form, we use
character following the k-mer in its complemented form, for the purpose of left character lists (Lchars).
This is to capture the reversal in direction.

Example 2. Consider a read r = atgcgttg and the bucket b for 2-mer tg (or equivalently, its smaller
form ca). Then, the Lchars(r, b) = {g,B} as they are the corresponding left characters in the reverse
complemented form for r. Therefore the bit vector Lr for the bucket corresponding 2-mer tg (or
equivalently, ca) is [1, 0, 0, 1, 0] for left characters [B, a, c, g, t] respectively.

b) Pairing: Subsequently, we use the Lr-arrays for all reads r ∈ b to generate the pairs of reads from that
bucket b. The set of pairs contributed by bucket b, denoted by P(b), is given by:

P(b) = {{ri, rj} | ri, rj ∈ b, ∃x ∈ Σ ∪ {B} s.t. Lri [x]⊕ Lrj [x] = 1 or Lri [B] ∨ Lrj [B] = 1}

Here, ⊕ and ∨ are the bitwise XOR and OR operators respectively. Intuitively, a pair of reads is generated
at a bucket b only if there exists a pair of suffixes in those reads that differ in their left-characters (thereby
guaranteeing left-maximality of the match detected). Note that right-maximality of the match in a pair
detected is implicitly guaranteed as the suffixes in those two reads will have to eventually differentiate at
some point past the k-mer prefix. Therefore this algorithm is able to report only one instance of a read
pair {ri, rj} for the leftmost matching k-mer of a maximal match.

Example 3. Figure 2 presents an example to illustrate our pair generation algorithm. This example
shows two maximal matches (accgc and aagg) appearing among four reads. As highlighted in the orange,
r1, r2 and r3 share the maximum matching accgc. This match contains multiple 3-mers: acc, ccg and
cgc, and therefore the corresponding reads will appear in all those buckets (shown in orange colored
buckets in the table). The rows show the left character lists (Lchar) that each read will appear within
a given bucket. Our pair generation algorithm will generate pairs from each bucket by performing a
cross-product across the different Lchar lists. The only exception is the B list, where reads appearing
in that list are left-maximal and so will yield pairs. Pairs generated from each bucket are shown in
the bottom panel. The second maximal match in the example aagg (in green), shows a case where the
pairing could happen between a read and the reverse complement of another read. In this example, reads
r3 and the reverse complement of r4 share the maximal match aagg, and therefore will be generated
from the bucket corresponding to aag that is the lexicographically smaller of the two variants (aag, ctt).
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Figure 2: An illustrative example of our pair generation algorithm. On the left are shown four reads and two maximal matches
shared among them (shown underlined). Let k=3. The right panel shows a selected subset of buckets relevant to the maximal
matches (along each column), and the division of the respective read sets across the different left character sets Lchar (along
each row). For instance, read r1 appears in the Lchar set for t under column acc because the k-mer acc in read r1 has t as its
left character. The pairs generated from each bucket are shown in the bottom panel.

BOA has an optional modification dealing with a specific boundary case where edges may be missed
between reads, at a cost of increased memory and runtime. Specifically, consider when:

• The maximum matching α has length > k.

• The leftmost k-mer in α is lexicographically larger than its reverse complement, and.

• The rightmost k-mer is lexicographically smaller than its reverse complement.

In this case, for the k-mers in both ends, the leftmost character recorded for the corresponding k-mer
in the read is a character within the maximum matching α. BOA does not look outside of the maximum
matching in the read to be able to recognize the end of the maximum matching and generate the read pair.

Example 4. Consider the example of two reads r1 = r2 = ctac and k = 2. Read r1 will be in the
following buckets: ag, ta, ac with leftmost character as t, c, t respectively. The assignment is the same
with r2. Thus, the baseline algorithm would miss detecting the pair (r1, r2).

The algorithm can be easily modified to avoid this boundary case. More specifically, the method can
store both the leftmost and rightmost characters for each k-mer in the following way: each bucket has
two groups of sub-buckets: a−, t−, g−, c−, B− for leftmost character and −a,−t,−g,−c,−B for rightmost
character. Edges are generated only within each group of sub-buckets and not among the groups. Note that
this solution comes with a slight increase in cost: each length k or greater maximum matching between two
reads will produce two of the same read pairs even if the length of the maximum matching is k. For this
reason and as BOA is a heuristic, we have not implemented this change in practice but note that in theory
we can address it.

Similar to Hyper-BOA, we assign unit weights to vertices and edges, and create one of two different
variants of the read-overlap graph G depending on whether paired-end read information is available or not.
More specifically, if paired-end information is available, then we follow the same fuse strategy described
under Hyper-BOA, by representing both reads of a pair by a single vertex in V of G. This is achieved by
renumbering the read IDs within each input bucket b prior to generating pairs.

Partitioning: Once the read-overlap graph G is constructed, then we call the partition function on G
(described in Section 7.3.1) using the ParMETIS graph partitioner Karypis et al. (1997). Here again, we
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use the number of reads per output block (ρ) as our guide to determine the number of blocks K and set the
balanced constraint ε as 1%.

7.3.6. Graph-BOA and Hyper-BOA

There are a few important connections as well as differences between the graph-based approach (Graph-BOA)
and hypergraph-based approach (Hyper-BOA) within our BOA framework that are worth noting.

First, from the assembly problem formulation standpoint, Graph-BOA is very similar to the OLC assembler
model with the key difference being the “overlaps” in the read-overlap graph are detected using lightweight
exact match-based criteria (as described in the bucketing step). Therefore our approach is alignment-free.
The read-bucket hypergraphs we construct under Hyper-BOA, are also alignment-free. Furthermore, they
can be viewed as a generalization of the read-overlap graphs (from edges to nets; i.e., read pairs to read
subsets).

Secondly, from a method standpoint, intuitively both graph and hypergraph approaches try to put reads
that are strongly connected to each other into the same part. In hypergraph model, each bucket (i.e., k-mer)
is uniquely represented by a net. If two reads share multiple k-mers, they will be incident in multiple nets,
hence representing how strong their connection is. In the graph model, each edge does not represent a unique
relation. An edge between two reads might come from different overlaps (or buckets). Hence, one would
need an aggregation function to represent that accurately. In our current implementation of Graph-BOA, the
edges established between any two reads are unweighted (or equivalently, unit weight). This is in contrast
with alignment-based OLC assemblers, which typically use an alignment-based weight along an edge. While
edge weights would help guide partitioning decisions, for Graph-BOA there is a tradeoff with performance.
One approach to calculate an edge weight between a pair of reads is based on the length of maximal matches
that led to detection of that edge. However, in our pair generation algorithm, we only detect the presence
of a maximal match for pairing two reads, without explicitly determining the match itself or its length (as
it will become more expensive to compute the matches). An alternative strategy is to count the number
of buckets a pair of reads co-occurs to use as the corresponding edge weight. However, this also implies
detecting and storing a count for each pair—which could become expensive both for runtime and memory.
As a compromise, we have used an unweighted representation for Graph-BOA.

Another point of difference between Hyper-BOA and Graph-BOA is their space and run time complexities.
For Hyper-BOA, the k-mer based buckets are used to construct the hypergraph. Every bucket with say m
distinct reads in it, induces a net with m pins. Whereas, under Graph-BOA, extra computation is needed
to establish pairwise connections between reads as described in Section 7.3.5—i.e., every bucket with m
reads contributes

(
m
2

)
edges. This leads to higher memory usage for Graph-BOA. For example, in case

of C. elegans, the peak memory usage per MPI rank for Graph-BOA in the bucketing phase is 8.3 GB in
comparison to 5.3 GB for Hyper-BOA. While in the partitioning phase, Graph-BOA is much lighter in runtime
than Hyper-BOA as shown in Section 2.2.

7.3.7. Parallelization

The BOA pipeline is comprised of three phases:
1) Parallel Bucketing : In this step, the algorithm first loads the input FASTA file(s) in a distributed

manner such that each process receives roughly the same amount of sequence data ≈ |R|
p , where p is the

total number of processes. This is achieved by each process loading a chunk of reads using MPI-IO functions
MPI Forum (2020), such that no read is split among processes. Each read is assigned a distinct read id. We
use MPI Scan to determine the read offset at each process. Next we generate k-mers by sliding a window of
length k (k = 31 in our experiments) over each read, as elaborated in the bucketing step (Section 7.3.3).
For parallel bucketing, an owner process that collects the read IDs for each bucket is assigned. To identify
the owner, we use an approach based on minimizers Chikhi et al. (2014). In particular, for each k-mer
bucket, a minimizer of length l (l < k; l=8 in our experiments) is identified. We use the least frequently
occurring l-mer within that k-mer as the minimizer. Subsequently, a hash function is used to map the
minimizer to its owner process. The idea of using minimizers for this assignment step is to increase the
probability that adjacent k-mers in a read are assigned the same owning process for the corresponding
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buckets (thereby reducing communication latency). Collective aggregation of the read IDs corresponding
to each bucket is carried out through an MPI Alltoallv primitive MPI Forum (2020). Any bucket with 200
or more distinct reads represented is pruned. This pruning step is to account for over-representation in the
buckets corresponding to repetitive regions.

2) Parallel Partitioning : In this step at first we generate the input read-overlap graph (G) or read-
bucket hypergraph (H), for Graph-BOA or Hyper-BOA, respectively. For Hyper-BOA, we provide Zoltan’s
hypergraph generating function, a list of all distinct sorted read IDs for each k-mer bucket assigned to a
process. For Graph-BOA, each process enumerates edges between pairs of reads sharing at least one maximal
match (Section 7.3.5) in parallel and then sends the edge lists to the owner processes of the vertices through
MPI Alltoallv . We provide ParMETIS the CSR (Compressed Sparse Row) format graph. We then call the
partitioning function, providing as input the generated hypergraph or graph, the number of block partitions
K and the balanced constraint ε.

3) Assembly : The final phase of the pipeline takes the K partitions generated by the partitioner and
launches K concurrent assembly instances using a standalone assembler on each of the K parts (or equiva-
lently, blocks).

Our BOA framework is available at https://github.com/GT-TDAlab/BOA.
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