
IMpart: A Partitioning-based Parallel Approach to
Accelerate Influence Maximization

Reet Barik
Washington State University

Pullman, WA, USA
reet.barik@wsu.edu

Marco Minutoli
Pacific Northwest National Laboratory

Richland, WA, USA
marco.minutoli@pnnl.gov

Mahantesh Halappanavar
Pacific Northwest National Laboratory

Richland, WA, USA
mahantesh.halappanavar@pnnl.gov

Ananth Kalyanaraman
Washington State University

Pullman, WA, USA
ananth@wsu.edu

Abstract—Influence maximization (IM) is a fundamental oper-
ation among graph problems that involve simulating a stochastic
diffusion process on real-world networks. Given a graph G(V,E),
the objective is to identify a small set of key influential “seeds”—
i.e., a fixed-size set of k nodes, which when influenced is likely
to lead to the maximum number of nodes in the network getting
influenced. The problem has numerous applications including
(but not limited to) viral marketing in social networks, epidemic
control in contact networks, and in finding influential proteins
in molecular networks. Despite its importance, application of
influence maximization at scale continues to pose significant chal-
lenges. While the problem is NP-hard, efficient approximation
algorithms that use greedy hill climbing are used in practice.
However those algorithms consume hours of multithreaded
execution time even on modest-sized inputs with hundreds of
thousands of nodes. In this paper, we present IMpart, a
partitioning-based approach to accelerate greedy hill climbing
based IM approaches on both shared and distributed memory
computers. In particular, we present two parallel algorithms—
one that uses graph partitioning (IMpart-metis) and another
that uses community-aware partitioning (IMpart-gratis)—
with provable guarantees on the quality of approximation.
Experimental results show that our approaches are able to deliver
two to three orders of magnitude speedup over a state-of-the-art
multithreaded hill climbing implementation with negligible loss in
quality. For instance, on one of the modest-sized inputs (Slashdot:
73K nodes; 905K edges), our partitioning-based shared memory
implementation yields 4610× speedup, reducing the runtime from
9h 36m to 7 seconds on 128 threads. Furthermore, our distributed
memory implementation enhances problem size reach to graph
inputs with ×106 nodes and ×108 edges and enables sub-minute
computation of IM solutions.

I. INTRODUCTION

Finding influential actors in a network is a fundamental
problem in many real-world applications—e.g., in viral mar-
keting on social networks [1], or finding important proteins in
a protein-protein interaction network [2]. Influence refers to
node activations that can be either deterministically or stochas-
tically simulated through a diffusion process. For instance in
networked epidemiology, compartmental Susceptible-Infected-
Recovered (SIR) models can be expressed as a diffusion
process over a network. The equivalent formulation considers
each node of the graph to be in one of the three states of

the SIR model by retaining their conventional semantics. The
additional constraint introduced is that an epidemic spreads
only through the edges of the contact (social) network. Such
models enable us to identify a small cohort of key actors who
optimize the underlying diffusion processes.

The computational problem of identifying such cohort of
actors in a social network is known as the Influence Max-
imization (or IM, for short) problem [3]. While IM has
been of significant interest due to an increase in networked
applications, it is also particularly interesting from a theoretical
stand point. Kempe et al. [4] showed that the problem is
NP-hard under two simple but generic diffusion models.
However, the objective function for IM has been shown to be
submodular, leading to a greedy hill climbing (GHC) algorithm
with (1− 1/e− ε)-approximation guarantee [4], where ε is a
parameter to control accuracy.

To avoid the high computational cost of approximation
algorithms, many heuristic schemes have been proposed in the
literature [5]. Several lines of work have attempted to identify
important vertices by leveraging centrality measures [6], [7] or
other cheaper heuristics based on topological traits of vertices
(e.g., degree count or bridges). Based on the intuition that
most vertices have a limited range of influence, another line
of research uses schemes to leverage the community structure
of the input network to identify the seed set [8]–[13].

Our work extends this latter line of work by taking a more
generic partition-based approach to IM. In particular, in this
paper, we explore the use of graph partitioning and graph
clustering—both individually and in combination—to devise
efficient parallel influence maximization implementations. In-
tuitively, decomposing the graph into internally well-connected
partitions can give seed candidates closer access to vertices
that they are more likely to influence. The objective functions
for graph partitioning aims to optimize for balanced partitions
of a graph such that the number of edges across two partitions
(cut edges) is minimized while those for graph clustering aims
to find subsets of vertices that are densely connected within a
partition (also called as a cluster or a community) and sparsely
with the rest of the graph. Both partitioning and clustering are

known to be NP-hard [14], [15].

1.0 1.1 1.2 1.3 1.4
Performance Relative to the Best Algorithm

0%

25%

50%

75%

100%

Fr
ac

tio
n

of
 d

at
as

et
s

IMpart-metis
IMpart-gratis
Co-FIM
Hajdu

Fig. 1: Performance chart showing the relative quality of solutions
achieved by two of our IMpart implementations and two state-of-
the-art community-based IM solutions. Here, quality is measured by
the expected influence of the solution computed. Each method was
run on 14 inputs for a range of k values: {10, 20, 30, 40, 50, 75,
100, 200, 400, 800}. The closer a tool is to the y-axis, and the longer
it stays along the y-axis, the more superior it is.

Contributions: In this paper, we propose a new parallel
framework, IMpart, to exploit partitioning and clustering
to approximate IM. We first partition a given graph using
partitioning, clustering or cluster-aware partitioning, and then
compute the seed set from the partitions, using greedy hill-
climbing. Under a partitioning assumption, we provide approx-
imation guarantees and other provable properties of the solu-
tion. Our algorithm is parallel and our implementations support
shared and distributed memory systems. We conducted an
extensive empirical evaluation of IMpart on numerous real-
world and synthetic graph inputs. Our results demonstrate that
IMpart achieves two to three orders of magnitude speedup
over a state-of-the-art multithreaded GHC implementation with
negligible loss in quality (§ V). For instance, on a modest-sized
input, the partitioning-based shared memory implementation
yields 4610× speedup, reducing the runtime from 9h 36m
to 7 seconds on 128 threads. We also demonstrate signif-
icantly better quality of solutions compared to state-of-the-
art approaches that use community detection for accelerating
IM. Fig. 1 shows a performance chart showing superiority of
IMpart over other approaches.

II. RELATED WORK

A. Influence Maximization

Domingos and Richardson [3] presented one of the first
known formulations and a heuristic for influence maximiza-
tion. The seminal work by Kempe et al. [4] formulated IM
as an optimization problem, and showed that IM is NP-hard
under two diffusion models, namely Independent Cascade (IC)
and Linear Threshold (LT). The IC model uses a transmission
probability p(e) along each edge. The vertices that become
active at time-step t have a single attempt at activating their
neighbors at time step t + 1. The LT model instead uses a
threshold for activating vertices, i.e., vertex i becomes active
when the sum of weights of its incident edges exceeds the
threshold. Kempe et al. [4] also proved that the expected influ-
ence function is a monotone non-negative submodular function
and leveraged its approximability cardinality constraints [16],

to present a greedy hill-climbing (GHC) strategy that provides
1 − 1/e − ε approximation guarantee. Subsequently, several
improvements to GHC were proposed [17]–[19]. Borgs et
al. [20] developed an alternative to GHC, by introducing
the concept of Reverse Influence Sampling (RIS) which is
rooted on the idea that highly influential vertices will appear
frequently in Random Reverse Reachable sets.

A central problem in these two approach is determining
the sampling effort (θ) to provide the stochastic space in
which to compute expected influence. While the existence of
tight bounds for the sampling complexity of GHC is still an
open question, the work of Tang et al. [21] built connections
between θ and the approximation parameter ε. In particular,
the IMM algorithm [21] leverages a practically efficient mar-
tingale strategy to determine the sampling effort.

Recently, parallel and scalable implementation of the IMM
algorithm have been developed [2], [22], [23] for shared
memory and distributed memory machines, as well as for
multi-GPU systems. While they are generally faster than GHC,
IMM requires that the diffusion process can be reformulated
in reverse settings, and also limits reuse of samples across
different (k, ε) experiments. GHC does not pose these two
limitations. Furthermore, GHC has broader applicability to
several other convex optimization applications [24]–[26]. The
state-of-the-art in parallel GHC for IM is [25], which we use
as the baseline for our experiments.

B. Community-based Influence Maximization

Real-world networks have known to exhibit community-
based organization [15]. Consequently, several approaches
have tried to exploit this community structure in order to effi-
ciently identify the seeds. Wang et al. [8] present a diffusion-
aware label propagation community detection algorithm to
mine the top-k influential nodes in mobile social networks.
The CIM method [9] uses a heat diffusion model alongside hi-
erarchical clustering to classify nodes as “homeless” (outliers
or hubs connecting different communities) or those belonging
to communities for the seed selection process. INCIM [10]
uses a two-step hierarchical approach, by combining a node’s
influence on a coarsened community graph and its local
influence at each community level to aid in seed selection.
Halappanavar et al. [11] allocate a seed budget to each
community based on the sizes of the communities prior to
computing seeds from each community. COFIM [12] uses a
fast heuristic to greedily select seeds based on the number of
distinct communities around the immediate neighborhood of a
vertex. The method by Hajdu et al. [13] computes overlapping
communities [27] in a preprocessing step, and uses those
vertices that belong to multiple communities as its seeds. Open
source implementations are available only for COFIM [12] and
Hajdu et al. [13]. As they also represent recent works, we use
these two tools as our state-of-the-art baselines for comparison.

The IMpart approach presented in this paper differs from
the current state-of-the-art reviewed above in several ways.
First, it takes a partitioning-based approach to accelerate influ-
ence maximization, making it more generic to the use of com-

munity detection or graph partitioning techniques. Partitioning
also helps in distributing the problem space making it more
amenable to parallel processing. Second, by using greedy hill
climbing at the partition-scale, the quality of approximation is
trivially maintained at the partition level. The challenge is in
establishing the quality of approximation over the entire graph,
for which we provide provable guarantees in §IV. Finally, our
method is parallel and supports implementations on shared and
distributed memory settings.

III. INFLUENCE MAXIMIZATION PRELIMINARIES

Let G = (V,E, ω) be a (di)graph where V is a set of
vertices, E is a set of (ordered) pairs (i, j) such that i, j ∈ V ,
and ω is a set of non-negative edge weights representing the
probability of vertex i influencing vertex j for an edge (i, j).

Definition III.1 (Influence Maximization (IM) Problem).
Given a (di)graph G, an integer k, and a model of diffusion
M , the Influence Maximization Problem is to identify a subset
S ⊆ V of size k such that the expected number of activated
vertices (E[IG(S)]) is maximized when the diffusion process
M starts from the vertices in S.

The greedy hill climbing algorithm for IM by Kempe et
al. provides an approximation guarantee of 1 − 1/e − ε. An
efficient parallelization scheme for this greedy hill-climbing
algorithm was proposed by Minutoli et al. and is summarized
in Algorithm 1. It starts by sampling the space of possible
realizations of the diffusion process M over G and obtains a
number (θ) of subgraphs Gi of G by retaining edges that trig-
gered activation under M. The samples are subsequently used
in seed selection (GetNextSeed) to construct an estimate
of the expected influence for each remaining seed candidate
(i.e., v ∈ V \S). This estimation procedure is implemented as
a Breadth First Search (BFS) over each sample, treating v as
the root and counting the number of new activations over all
samples. The algorithm has k iterations; with the ith iteration
selecting the ith seed by greedily picking the next vertex with
the largest marginal gain in expected influence.

Algorithm 1: ParallelGHC(G, k, θ,D): Parallel
Greedy Hill Climbing for IM using Sampling
Data: G = (V,E,w), k, θ
Result: Seed set S of k vertices
// generate θ random samples
Sall← ∅
for i ∈ [1, θ] do in parallel
Gi ← Generate a random subgraph of G based on
the diffusion model D and add to Sall

end
S ← ∅; // init seed set
while |S| < k do

[s, gain]←GetNextSeed (G(V,E), S, Sall)
S ← S ∪ {s}

end
Return S

Function GetNextSeed (G(V,E, ω), S, Sall):
Initialize c[v]← 0, ∀v ∈ V
for each v ∈ V \ S do in parallel

for each Gi ∈Sall do
c[v]← c[v] + (IGi(S ∪ {v} − IGi(S))

end
end
s← argmaxv∈V \S c[v]
Return s, c[s]

IV. PARTITIONING-BASED APPROACHES TO ACCELERATE
INFLUENCE MAXIMIZATION

Our approach to accelerate IM takes a partitioned view.
Consequently it’s named IMpart, short for Influence
Maximization by partitioning. Figure 2 illustrates the main
workflow for IMpart. In what follows, we first describe the
partitioning step (§IV-A), and then we describe our paral-
lel greedy hill climbing algorithm that uses those partitions
(§IV-B).

A. Partitioning for IMpart

Intuitively, by partitioning the network a priori, we are
cutting the weak links that separate otherwise well-connected
parts of the network. The hypothesis is that those cut edges
seldom contribute to influence spread. This simple and yet
powerful idea can be effective in decomposing a large problem
instance into smaller subproblems (i.e., individual partitions)
without significantly impacting solution quality (as will be
shown in §V). However, the efficacy may depend on the
quality of the partitioning.

As noted in Section II-B, past approaches to partitioning a
network have heavily relied on community based structural in-
formation inherent in most real-world networks [28]. However,
there are also classical graph partitioning methods [14], [29]
that are yet to be explored for IM. While both these problems
divide the vertex set into a disjoint set of partitions, the
objectives are different: With community detection, the goal is
to identify a set of tightly-knit vertex groups (or communities)
that are not as strongly connected to the rest of the network by
using a clustering objective such as modularity [15] to partition
the graph into disjoint communities. Depending on the input
network, the number of communities and their individual sizes
can vary significantly—potentially posing challenges to load
balancing in a parallel setting.

On the other hand, graph partitioning aims to partition a
graph into a defined number (say m) of vertex partitions, each
with roughly equal load (measured by the sum of weights
of the respective edge or vertex sets in a partition). The
optimization objective function here is to minimize the number
of edges cut between partitions. Under a weighted setting, the
edge cuts are likely to include the weaker links of transmission.

In this paper, we present a unified framework, IMpart,
to explore both graph partitioning and community detection
to generate the partitions for IM. Given an input graph G,

Fig. 2: IMpart: A partitioning-based approach to accelerate Influence Maximization. The example shows four partitions being processed
on four MPI ranks. However, in general, this can be m partitions processed across on p processes, where m ≥ p.

IMpart first partitions the set of vertices into a disjoint set of
m partitions {P0, P1, . . . , Pm−1}, and subsequently processes
the partitions across p processes in a distributed manner. Here,
each Pi corresponds to a subgraph of G, such that the vertices
over all Pi cover V and no two vertex sets from any two
partitions intersect. A conceptual example of the workflow is
shown in Figure 2.
IMpart supports two implementations, namely,

IMpart-metis and IMpart-gratis.
a) IMpart-metis: This implementation uses a graph

partitioning tool to generate the partitions in the first step.
Since we use the METIS [14] shared memory parallel parti-
tioner, we call this implementation IMpart-metis. How-
ever, the framework allows the use of any graph partitioner of
choice [30]–[32]. Since the time for seed selection depends on
the number of edges, we partition the graph into m parts such
that the number of edges per partition is roughly balanced.
This is achieved by setting the vertex degree of each node
v ∈ V as its weight. METIS then uses this information to
generate an edge-balanced partitioning.

b) IMpart-gratis: As noted earlier, direct use of
community detection for partitioning may give rise to potential
imbalances across the partitions and also little control over
the number of partitions. However community detection has
the advantage of identifying tightly-knit groups of vertices
which has the advantage of keeping highly related vertices
(i.e., those that can mutually influence one another) within the
same partition. To address this tradeoff, we developed a hybrid
strategy that performs community-aware partitioning. We call
the resulting community approach, IMpart-gratis, named
after Grappolo-based community detection [33] followed by
Metis-based partitioning [14]. The framework itself is more
generic to allow use of other community detection tools. We
chose Grappolo because of its parallel support.

The major steps of IMpart-gratis are as follows (see
lower half of Figure 2 for an illustration).
S1) We first detect communities in G. Let C =
{C1, C2, . . . , Ct} denote the set of output communities.
In most cases we expect t ≥ m.

S2) Since the target is to generate m partitions, our next
step groups the t communities into m partitions. This
is achieved by first building a new “community graph”
Gc(Vc, Ec, ωc), where each community C ∈ C is repre-
sented as a vertex in Vc, and two communities Ci and Cj
sharing eij (inter-cluster) edges between them will create
an edge e ∈ Ec between the two corresponding nodes
with the edge weight eij . Every vertex Vc representing
community C ∈ C is weighted to reflect the size of C.

S3) Subsequently, we run METIS partitioner on Gc to gener-
ate m partitions.

B. The IMpart parallel approach
Next, we describe the parallel algorithm for IMpart.

We assume that the input graph has been partitioned by
the partitioning step (Section IV-A) into m partitions, P =
{P0, P1, . . . , Pm−1}. Let GP (VP , EP , ωP) be the subgraph
induced by partition P ∈ P . We use the notation � for
subgraphs—i.e., GP � G.

Algorithm 2 shows the distributed memory parallel algo-
rithm of IMpart (with multithreading enabled within each
process). We use p to denote the number of processes, r to
denote the local process rank, and Pr to denote the subset of
partitions in P that rank r is responsible for. The partitions are
loaded in a distributed manner such that each process gets ap-
proximately dmp e partitions. Let Gr(Vr, Er, ωr) � G(V,E, ω)
denote the subgraph induced by Pr. Each process r only loads
its local subgraph Gr. The key steps are as follows.
S1) The partitions are evenly loaded in a distributed man-

ner across all processes, such that each process loads

Algorithm 2: IMpart(Gr, k, θ,M,P): Parallel
partition-based Greedy Hill Climbing (at rank r)

Data: Gr: subgraph at rank r, k: no. seeds, θ: no.
samples, M : model, P: set of m partitions

Result: Seed set S of k vertices
Pr : {Pr∗size, . . . , P(r+1)∗size−1}, where size = dmp e
Initialize samples Sr ← ∅
for i ∈ [1, θ] do in parallel

Generate a random sample from Gr based on
model M and add sample to set Sr

end
Initialize status[P]← active, ∀P ∈ Pr
Initialize an empty heap Hr of size k
repeat

for P ∈ Pr do in parallel
continue if status[P] = terminated
[snew, gain]← GetNextSeed(Gr,Hr, Sr)
if GetMin(Hr) < gain then

Pmin ← Hr.DeleteMin().partid
status[Pmin]← terminated
Hr.push(gain,< snew, P >)

end
else

status[P]← terminated
end

end
until no active partitions;
S ← Allreduce Hlocal to the k global best seeds
Return S

approximately the same number of partitions (and more
specifically, the subgraphs induced by them). Using Pr,
each process constructs its local subgraph Gr.

S2) Next, each process generates θ samples but only using
subgraph Gr. This step is multithreaded within each
process. Let Sr be the resulting sample set.

S3) Each partition is assigned a flag to indicate it is active
initially. The process also initializes an empty local heap
Hr with maximum capacity k.

S4) Each process then starts multiple rounds until there are
no more active partitions left in Pr. At each round,
all partitions that are still active are visited and using
the GetNextSeed(.) function, the next best seed
candidate (say, snew) is nominated. However, for the
nomination to succeed (i.e., to get inserted into Hr), the
contribution of snew to the expected influence should
exceed the smallest expected influence of any seed in Hr;
let us refer this minimum seed in the heap as smin. If
nomination is successful, then smin is removed from Hr
and snew is inserted. Furthermore, the flag corresponding
to partition (Pmin) containing smin is changed to termi-
nated—effectively shutting it down from contributing any
further seeds in the subsequent rounds. Locks are used to
ensure thread-safe insertion into Hr.

S5) In the final step, we perform a single Allreduce

operation on the heaps to select the top k global best
seeds from p individual local heaps.

For the shared memory-only implementation, the same algo-
rithm applies with the exception that there is only one shared
global heap that all threads use. Secondly, our implementation
also supports nested thread parallelism to enable a group of
threads to work on a single partition, while multiple partitions
are concurrently being processed.

C. Algorithmic properties and guarantees
We now prove that IMpart computes a 1/m-approximate

solution with respect to the solution computed by GHC. An
important assumption for the proof is that partitioning of the
graph is done in such a manner that a vertex exerts maximal
influence on its own partition compared to any other partition.
While in theory there exist worst-cases that would break this
assumption, we argue that this is not a limiting assumption
and that for most practical cases we expect the assumption to
hold if we use a high quality partitioner such as METIS. This
is because a good graph partitioner (or a community detection
objective such as modularity) would nearly always try to place
a vertex in a partition where it shares most of its neighbors.
Consequently, much of the vertex’ influence is also likely to be
concentrated locally in that partition. To test the assumption
we conducted an experiment on an arbitrarily chosen set of
inputs and compared the influence of the top seed chosen
by GHC on its owning partition versus the seed’s maximum
influence on any of the m partitions. Results are shown in Fig.
3. We observed that the influence on the assigned partition is
generally within 90% of the maximum.

Fig. 3: The expected influence of the top seed by GHC on its local
partition, as a fraction of its maximum influence on any partition.

We use σH(u) to denote the expected influence of a vertex
u on any graph H . Now, let us consider the input graph
G = (V,E) with m partitions (P) as partitioned by IMpart.
Note that each partition in P represents a subgraph in G. The
partitioning assumption for P is such that for any vertex u
located in partition p ∈ P , σp(u) ≥ σq(u), where q ∈ P \{p}
(i.e., maximal local influence). In what follows, we prove the
approximation guarantee for IMpart.

Lemma IV.1. Given input G = (V,E), let S1
imp and S1

ghc be
the first seeds computed by IMpart and GHC, respectively.
Then σG(S1

imp) ≥ σG(S1
ghc)/m.

Proof. We consider the non-trivial case where S1
imp 6= S1

ghc.
Let seeds S1

imp and S1
ghc come from the partitions p and

q respectively. Irrespective of whether p = q, σp(S1
imp) ≥

σq(S
1
ghc), as otherwise IMpart would have also selected

S1
ghc. However, it is possible that σG(S1

imp) < σG(S
1
ghc) if

GHC selects a seed that has additional influence on the other
partitions while the influence of IMpart’s seed is limited
to its partition p. This is illustrated through a worst-case
example in Figure 4, where the influence of S1

imp on its
local partition p (denoted by c) is also equal to its influence
on the entire graph G; whereas S1

ghc has influence on all
partitions including its local partition q. However, because of
the partitioning assumption for maximal local influence, the
overall influence of S1

ghc on G cannot exceed m × c. Thus,
σG(S

1
imp) ≥ σG(S1

ghc)/m.

Partition q

Partition p

Simp

Sghc

σG(Sghc) ≤ c ≤ c

≤ c≤ c

σG(Simp) = c

1

1

1

1

Fig. 4: Worst-case scenario for IMpart during the first seed selec-
tion. IMpart selects S1

imp which has influence only within partition
p, while GHC selects S1

ghc with influence on multiple partitions.

Lemma IV.2. Given a subgraph GP = (VP , EP) correspond-
ing to a partition P ∈ P , the solution SP (local set of seeds)
computed by IMpart is submodular.

Proof. Follows directly from the fact that IMpart calls GHC
on GP , and therefore the (1 − 1/e − ε)-approximation and
submodular property provided by Kempe et al. [4] on G also
extend to GP .

Lemma IV.3. Let G = {G1∪G2 . . .∪Gm} represent the graph
from the union of m partitions. The solution SG computed by
IMpart is submodular.

Proof. Follows from Lemma IV.2, and the fact that seed
selection in IMpart picks the best from m partitions at each
step, and that it uses GHC within each partition to compute
marginal gains of influence.

Note that G represents the original graph G with its inter-
partition edges removed.

Theorem IV.4. Consider input G with m partitions. Let Simp
and Sghc be the solutions computed by IMpart and GHC,
respectively. The condition σG(Simp) ≥ σG(Sghc)/m holds.

Proof. Intuitively, the proof works by showing that for every
seed x selected by GHC there is a corresponding vertex a that
is selected by IMpart such that σG(a) ≥ σG(x)/m.
Base case: Let x1 and a1 denote the first seeds selected by
GHC and IMpart respectively. The condition that σG(a1) ≥
σG(x1)/m for m partitions holds from Lemma IV.1.
Step k − 1: Assume that the condition holds true for the first
k − 1 seeds selected by both schemes. Due to submodularity,
we know that: for GHC, σG(x1) ≥ σG(x2) . . . ≥ σG(xk−1),
and for IMpart, σG(a1) ≥ σG(a2) . . . ≥ σG(ak−1). From
Lemma IV.3, the following also hold: σG(a1) ≥ σG(x1)/m,
σG(a2) ≥ σG(x2)/m, . . .σG(ak−1) ≥ σG(xk−1)/m.
Step k: Let xk and ak denote the kth seeds selected by GHC
and IMpart respectively. While GHC selects xk based on the
marginal gain w.r.t. x . . . xk−1 in G, IMpart selects ak based
on the marginal gain w.r.t. a . . . ak−1 in G. Therefore, it does
not matter from which partition ak is selected from, it will be
guaranteed that σG(ak) ≥ σG(xk)/m, whether ak and xk are
the same vertex or not.

Since the approximation ratio holds for every single seed
chosen by IMpart w.r.t. GHC, the summation of expected in-
fluence over the seed set is: σG(SI) ≥ σG(SG)/m. Therefore,
IMpart computes 1/m-approximate solutions w.r.t. GHC.

Theorem IV.5. Let IMpart partition an input graph G into
m partitions, to output k seeds. Then, the number of rounds
taken to terminate by the IMpart algorithm (Algorithm 2) is
at most (k + 1).

Proof. The number of rounds refers to the repeat-until
loop in Algorithm 2. Recall that the size of the local heap
Hlocal at each process is k. Let m′ denote the number of local
partitions held by a process. If m′ ≤ k, then the algorithm
would take at most d km′ e rounds. If m′ > k, then after the first
round, (m′ − k) local partitions will get terminated (because
|Hlocal| is limited to k). At each subsequent round, at least
one of the remaining partitions will get terminated. This upper
bounds the number of rounds to (k + 1).

Complexity analysis: For G(V,E), in the standard GHC
algorithm, each edge in E can be present in at most θ samples.
The same is applicable to the IMpart framework irrespective
of how G is partitioned—except that the total number of edges
being considered can only be less than in G. As a result the
sum of sample sizes across partitions is upper-bounded by the
sample size of GHC.

Next, we analyze the runtime complexity of parallel
IMpart (Algorithm 2). Let p and t denote the number of
processes and number of threads per process respectively.
Thus, the number of cores used is (p · t). For the purpose
of analysis, we assume m ≥ p. In Algorithm 2, the cost
of sampling is the product of the number of samples and
the generation cost per sample, i.e., O(θ·|E|p·t). As for seed
selection, the number of rounds is bounded by (k + 1)
(by Theorem IV.5). Within each round, ∼mp partitions are
processed using t threads per process. For each part, BFS
takes O(|E|m) time, and there are θ samples, each with |V |

worst-case number of BFS roots. This yields an overall time
complexity for seed selection as O(k·θ·|E|·|V |m·p·t). The time to
reduce the global heap is O(τ log p+µk), where τ and µ are
network latency and bandwidth. Therefore, the overall time is
dominated by the cost of seed selection.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Test platforms: All shared memory experiments were con-
ducted on a 128-core system with AMD EPYC 7502 CPUs
(2.5 GHz), and 256 GB of octa-channel DDR4-3200 memory.
The distributed memory experiments were conducted on the
Haswell partition of the NERSC Cori supercomputer, which is
a 2,388-node Cray® XC40™ machine with the Cray® XC™
series interconnect (Cray® Aries™ with Dragonfly topology).
Each node has two sockets, and a socket is equipped with
Intel® Xeon™ E5-2698v3 CPUs (16 cores at 2.3 GHz), 128
GB DDR4 2133 MHz memory, 40 MB L3 cache/socket.
Input data: We use a total of 18 input graphs for evaluation, as
summarized in Table I. We use: i) 14 real-world inputs (from
SNAP [34]) to assess quality and performance on the shared
memory platforms; and ii) in addition, 4 synthetic inputs to
evaluate performance on distributed memory platforms. These
graphs were generated using the GTgraph synthetic graph
generator suite [35] with power-law degree distributions and
small-world characteristics according to the R-MAT graph
model [36].

TABLE I: Input datasets. ∆ is the maximum degree, and Column
5 lists the standard deviation of the vertex degrees.

Input #Vertices #Edges ∆ Std Dev
Small Instances for Analysis Against Hill-Climbing

AstroPh 18,772 198,110 504 30.6
musae facebook 22,470 171,002 709 26.4
CondMat 23,133 93,497 281 10.6
HepTh 27,770 352,807 2468 45.3
EU Deezer 28,281 92,752 172 7.9
HepPh 34,546 421,578 846 30.9
email enron 36,692 183,831 1383 36.1
musae github 37,700 289,003 9458 80.8
RO Deezer 41,773 125,826 112 5.5
HU Deezer 47,538 222,887 112 7.4
HR Deezer 54,573 498,202 420 17.9
Epinions 75,879 508,837 3079 52.7
Slashdot 77,360 905,468 5048 73.2
DBLP 317,080 1,049,866 343 10.1

Large Instances of Synthetic R-MAT graphs
SynGraph1 0.52E+06 0.34E+08 4880 136.4
SynGraph2 1.05E+06 0.69E+08 6138 141.6
SynGraph3 2.10E+06 1.39E+08 7550 147.2
SynGraph4 4.19E+06 2.77E+08 9808 152.5

Software and tools: IMpart was implemented using
MPI+OpenMP programming model. The results reported from
our experiment were obtained by compiling our implemen-
tation with GCC 11.2.0 with -O3 and -mtune=native
compilation flags and using Openmpi 4.1.2 in our distributed
memory experiments. We consider three variants of IMpart:
IMpart-metis: Partitions are obtained by using the

METIS partitioner before seed selection.

IMpart-gratis: A community-based coarsened graph is
obtained by using Grappolo on the input graph, which
is then partitioned by METIS.

IMpart-grappolo: We also include results from treating
the community outputs by Grappolo as the partitions.

For experiments in this paper, we used the IC diffusion model,
as it is more computationally challenging relative to LT and
has wider use in applications [25]. The edge probabilities were
drawn from a normal distribution with a mean value of 0.5 and
variance of 0.5, resulting in values in the range of [0,1].

B. Qualitative evaluation

1) Comparison against state-of-the-art IM tools: We com-
pared IMpart against the state-of-the-art parallel implemen-
tation of classical GHC [25], as well as two other recent
community-based IM tools: Co-FIM [12], and Hajdu et al.
[13]. For these experiments, we set k = 100. Quality of the
seeds computed is quantified using the expected number of
activations at the end of the diffusion process. Our experiments
measured the average number of activations obtained from five
simulations. For the partitioning-based approaches, the number
of partitions was varied from four to 64 for the smaller inputs,
and up to 256 for the three medium-sized inputs.

Fig. 5 presents the results of this comparative study. The
results are presented as a percentage gain with respect to the
GHC baseline of [25]. The results show that the quality of
influence achieved by IMpart is highly comparable, if not
better (green cells) than the GHC baseline [25]—with over
8% improvement in some cases. In cases where IMpart
implementations degrade quality (red cells) relative to the
GHC baseline, the loss is mostly negligible, with only a few
cases leading to about 2% (for IMpart-grappolo) or
5% (for IMpart-metis) or 3% (for IMpart-gratis).
In comparison, the other two community detection based
IM methods—CoFIM and Hajdu et al.—consistently show
significant loss in quality (up to 21%) compared to the GHC
baseline. These results demonstrate the qualitative superior-
ity of IMpart. Among the IMpart variants, we observe
that all three implementations yield comparable quality, with
IMpart-gratis marginally outperforming the other two.

2) Effect of seed set size on quality: Next, we study the
impact of the number of seeds on quality. We varied k from
10 to 800, and ran IMpart-metis and IMpart-gratis,
keeping the number of partitions at 64. With four methods
running on ten values of k and 14 inputs, we evaluate a
total of 140 executions per method. We also ran the two
other community detection methods for comparison. Fig. 1
summarizes the results in the form of a performance chart.
This chart denotes the fraction of inputs (y-axis) over the
140 executions for each method, for which the performance
of a method deviates from the best performing method (x-
axis) at that level. The results show that IMpart-metis
and IMpart-gratis are clearly better than the other two
tools by a significant margin, with IMpart-gratis outper-
forming all other methods in well over 75% of the input cases.

Fig. 5: Qualitative evaluation of IMpart implementations compared to the state-of-the-art parallel GHC implementation (column 2), and
two other community detection based methods (last two columns). All values are shown as a percentage net improvement over the baseline.
Metis-m denotes the number of partitions m used, and similarly for IMpart-gratis. All experiments used k = 100.

In cases where it is not the best, it is still only within 1.1×
away from the best performing method.

Fig. 6: Edgecut analysis of DBLP when partitioned by METIS : The
left plot shows the distribution of weights over the edges before vs.
after removal of edges post-partitioning. The plot on the right shows
the histogram of the edges dropped over the probability values.

3) Edge-cut analysis: As IMpart discards inter-partition
edges, it is effectively a way to gain performance by potentially
trading off quality (by losing edge information) compared to
the GHC baseline. Ideally, partitioning should remove edges
that are less important for influence spread. To test this
hypothesis, we examined the edge weight distribution before
and after partitioning for the DBLP input. The results shown
in Fig. 6 (left) validate this hypothesis with much of the larger
weight distribution retained after edge removals. Moreover, the
histogram of the dropped edges shows that more edges were
removed from the lower probability spectrum, which explains
the negligible loss in quality by IMpart in Fig. 5.

C. Performance evaluation

Next, we analyze performance of IMpart implementations.
First we evaluate it on a 128-core shared memory platform.
Fig. 7 shows the speedups achieved by IMpart over the state-
of-the-art parallel GHC baseline [25]. All experiments were
performed with k = 100.

The results show anywhere between one to three or-
ders of magnitude performance improvement over the GHC
baseline. Among the variants, IMpart-metis delivers
the best speedups, followed by IMpart-gratis and
IMpart-grappolo. These results demonstrate significant
acceleration of time-to-solution. For instance, on Slashdot
(73K nodes, 905K edges), our partitioning-based shared mem-
ory implementation yields 4,610× speedup, reducing the

runtime from 9h 36m to 7 seconds on 128 threads. We
also observe that the speedup generally increases with in-
creasing number of partitions for both IMpart-metis and
IMpart-gratis. We note that the cost of preprocessing
time (partitioning, community detection) was low compared
to the total time. For instance, to partition DBLP into 256
partitions, IMpart-metis and IMpart-gratis took 0.8
and 0.4 seconds respectively while the rest of the algorithm
took 10 and 26 seconds respectively.

The above results also highlight a performance-quality
trade-off between IMpart-metis and IMpart-gratis.
While IMpart-gratis is better in quality (Fig. 5),
IMpart-metis is better in performance (Fig. 7). To un-
derstand why this happens, we examined edge-cuts. In Fig. 8,
we show the correlation between the fraction of edges dropped
versus: a) the percent change in quality, and b) the speedup,
for both implementations. Intuitively, with a larger edge-cut,
speedups should improve (as there is less work during sam-
pling). This is what we see in Fig. 8b, with IMpart-metis
pruning more edges and hence delivering better performance.
However, by removing edges we also run the risk of poten-
tially degrading solution quality. While this is to some extent
observable in Fig. 8a, it can be seen that the loss is slightly
more for IMpart-metis.

To further understand the performance-quality trade-off, we
examined examples (based on Fig. 7) where IMpart-metis
provides significantly more speedup than IMpart-gratis
for m = 64 and cases where the speedups were comparable.
We observed that IMpart-metis tends to partition an input
graph into roughly uniform sizes; while IMpart-gratis
sometimes generates uneven partition workloads due to skew-
ness in community sizes like in Epinions and Slashdot. As
a result the seed selection algorithm on the larger partitions
become bottlenecks. Whereas for examples like HepPh and
DBLP, the IMpart-gratis partitions are more balanced
and as a result show comparable speedups when compared
against IMpart-metis.

Fig. 7: Performance speedups achieved by the IMpart implementations over the state-of-the-art parallel GHC baseline [25] on a shared
memory machine with 128 cores.

(a) Edge-cut vs Quality

(b) Edge-cut vs Speedup

Fig. 8: Effect of edge-cuts on quality (part a) and performance
speedup (part b). Each point corresponds to an execution with a
unique [method, input, no. partitions] combination.

D. IMpart-metis: Distributed executions

We present scaling results with up to 8 nodes by fixing
k as 100. The weak scaling results are shown in Table II.
Results show near-perfect weak scaling where with doubling
of processes and doubling of partitions (graph size), parallel
runtime is maintained.

We also investigated strong scaling for IMpart-metis.
Table III shows a strong scaling study for Orkut-group (|V | =
8.7M, |E| = 327M) partitioned into 4096 pieces by METIS.
We observe linear scaling as we vary the number of cores

from 32 to 128. Subsequently, no performance improvement
is observed because of reduced work per process.

TABLE II: Weak scaling on GTgraph inputs.

Input #parts #Processes (#cores) Exec. time (s)
SynGraph1 512 1 (32) 38.98
SynGraph2 1024 2 (64) 37.44
SynGraph3 2048 4 (128) 32.68
SynGraph4 4096 8 (256) 35.77

TABLE III: Strong scaling on Orkut-group dataset.

Input #Processes (#cores) Execution time (s)
Orkut group 1 (32) 327.29
#Vertices = 8.7M 2 (64) 186.19
#Edges = 327M 4 (128) 91.69
#partitions = 4096 8 (256) 130.99
(METIS) 16 (512) 100.44

VI. CONCLUSION

We introduced a partitioning-based approach (IMpart) to
accelerate and scale influence maximization (IM) on shared
and distributed memory systems. We demonstrated significant
speedups, reducing runtime from 10 hours to 7 seconds
without noticeable loss in the quality of solution. While our
approximation bound of 1/m for m partitions is a loose bound,
it provides insight for careful partitioning of the graph to
minimize the impact of information loss from cut edges. Our
empirical results corroborate this observation and demonstrate
superior performance over state-of-the-art methods.

In our future work, we intend to design a scalable distributed
framework for IM that is not limited by the loss of infor-
mation for performance improvements via theoretically sound
sparsification and sketching techniques. We will also study
the impact of partitioning enforced from requirements such
as fairness, information privacy and memory-scaling or as a
preprocessing step to induce a vertex ordering that improves
memory latency of the distributed IM framework. Given its
importance, we believe that our work will advance not only
algorithmic development but also wider adoption of IM in
diverse applications and data science pipelines.

ACKNOWLEDGEMENT

The research was in part supported by NSF awards CCF
1919122 and OAC 1910213.

REFERENCES

[1] P. Domingos, “Mining social networks for viral marketing,”
IEEE Intelligent Systems, vol. 20, no. 1, pp. 80–82, 2005.

[2] M. Minutoli, M. Halappanavar, A. Kalyanaraman, A. Satha-
nur, R. Mcclure, and J. McDermott, “Fast and scalable
implementations of influence maximization algorithms,” in
2019 IEEE International Conference on Cluster Computing
(CLUSTER), IEEE, 2019, pp. 1–12.

[3] P. Domingos and M. Richardson, “Mining the network value
of customers,” in Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data
mining, 2001, pp. 57–66.

[4] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the
spread of influence through a social network,” in Proceed-
ings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2003, pp. 137–146.

[5] X. Li, X. Cheng, S. Su, and C. Sun, “Community-based seeds
selection algorithm for location aware influence maximiza-
tion,” Neurocomputing, vol. 275, pp. 1601–1613, 2018.

[6] S. Kundu, C. Murthy, and S. K. Pal, “A new centrality
measure for influence maximization in social networks,” in
International conference on pattern recognition and machine
intelligence, Springer, 2011, pp. 242–247.

[7] S. K. Pal, S. Kundu, and C. Murthy, “Centrality measures,
upper bound, and influence maximization in large scale di-
rected social networks,” Fundamenta Informaticae, vol. 130,
no. 3, pp. 317–342, 2014.

[8] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based
greedy algorithm for mining top-k influential nodes in mobile
social networks,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’10, Washington, DC, USA: Association for
Computing Machinery, 2010, pp. 1039–1048. DOI: 10.1145/
1835804.1835935.

[9] Y.-C. Chen, W.-Y. Zhu, W.-C. Peng, W.-C. Lee, and S.-Y. Lee,
“CIM: Community-based influence maximization in social
networks,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 5, no. 2, pp. 1–31, 2014.

[10] A. Bozorgi, H. Haghighi, M. S. Zahedi, and M. Rezvani, “IN-
CIM: A community-based algorithm for influence maximiza-
tion problem under the linear threshold model,” Information
Processing & Management, vol. 52, no. 6, pp. 1188–1199,
2016.

[11] M. Halappanavar, A. V. Sathanur, and A. K. Nandi, “Accel-
erating the mining of influential nodes in complex networks
through community detection,” in Proceedings of the ACM
International Conference on Computing Frontiers, ser. CF ’16,
Como, Italy: Association for Computing Machinery, 2016,
pp. 64–71, ISBN: 9781450341288. DOI: 10 .1145 /2903150 .
2903181. [Online]. Available: https : / / doi . org / 10 . 1145 /
2903150.2903181.

[12] J. Shang, S. Zhou, X. Li, L. Liu, and H. Wu, “CoFIM: A
community-based framework for influence maximization on
large-scale networks,” Knowledge-Based Systems, vol. 117,
pp. 88–100, 2017.

[13] L. Hajdu, M. Krész, and A. Bóta, “Evaluating the role of
community detection in improving influence maximization
heuristics,” Social Network Analysis and Mining, vol. 11,
no. 1, pp. 1–11, 2021.

[14] G. Karypis and V. Kumar, “Multilevel k-way partitioning
scheme for irregular graphs,” Journal of Parallel and Dis-
tributed computing, vol. 48, no. 1, pp. 96–129, 1998.

[15] M. Girvan and M. E. Newman, “Community structure in
social and biological networks,” Proceedings of the national
academy of sciences, vol. 99, no. 12, pp. 7821–7826, 2002.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An
analysis of approximations for maximizing submodular set
functions—I,” Mathematical programming, vol. 14, no. 1,
pp. 265–294, 1978.

[17] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Van-
Briesen, and N. Glance, “Cost-effective outbreak detection
in networks,” in Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 2007, pp. 420–429.

[18] A. Goyal, W. Lu, and L. V. Lakshmanan, “CELF++: Optimiz-
ing the greedy algorithm for influence maximization in social
networks,” in Proceedings of the 20th international conference
companion on World wide web, 2011, pp. 47–48.

[19] G. Göktürk and K. Kaya, “Boosting parallel influence-
maximization kernels for undirected networks with fusing and
vectorization,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 5, pp. 1001–1013, 2020.

[20] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing
social influence in nearly optimal time,” in Proceedings of
the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, SIAM, 2014, pp. 946–957.

[21] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-
linear time: A martingale approach,” in Proceedings of the
2015 ACM SIGMOD international conference on management
of data, 2015, pp. 1539–1554.

[22] M. Minutoli, M. Drocco, M. Halappanavar, A. Tumeo, and A.
Kalyanaraman, “CuRipples: Influence maximization on multi-
gpu systems,” in Proceedings of the 34th ACM International
Conference on Supercomputing, 2020, pp. 1–11.

[23] S. Shahrouz, S. Salehkaleybar, and M. Hashemi, “Gim:
Gpu accelerated ris-based influence maximization algorithm,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 10, pp. 2386–2399, 2021.

[24] J. Tang, X. Tang, A. Lim, K. Han, C. Li, and J. Yuan, “Re-
visiting modified greedy algorithm for monotone submodular
maximization with a knapsack constraint,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems,
vol. 5, no. 1, pp. 1–22, 2021.

[25] M. Minutoli, P. Sambaturu, M. Halappanavar, A. Tumeo,
A. Kalyananaraman, and A. Vullikanti, “PREEMPT: Scal-
able epidemic interventions using submodular optimization
on multi-gpu systems,” in SC20: International Conference
for High Performance Computing, Networking, Storage and
Analysis, IEEE, 2020, pp. 1–15.

[26] Y. Liu, E. K. Chong, A. Pezeshki, and Z. Zhang, “Submod-
ular optimization problems and greedy strategies: A survey,”
Discrete Event Dynamic Systems, vol. 30, no. 3, pp. 381–412,
2020.

[27] J. Xie, B. K. Szymanski, and X. Liu, “SLPA: Uncovering
overlapping communities in social networks via a speaker-
listener interaction dynamic process,” in 2011 ieee 11th inter-
national conference on data mining workshops, IEEE, 2011,
pp. 344–349.

[28] M. E. Newman and M. Girvan, “Finding and evaluating
community structure in networks,” Physical review E, vol. 69,
no. 2, p. 026 113, 2004.

[29] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling,
and U. V. Catalyurek, “Parallel hypergraph partitioning for
scientific computing,” in Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium, IEEE, 2006,
10–pp.

[30] S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C.
Schulz, and P. Sanders, “High-quality hypergraph partition-
ing,” ACM J. Exp. Algorithmics, Mar. 2022. DOI: 10.1145/

3529090. [Online]. Available: https : / / doi . org / 10 . 1145 /
3529090.

[31] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph
partitioning for complex networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 9, pp. 2625–
2638, 2017.

[32] “Partitioning tool for hypergraphs (patoh),” in Encyclopedia
of Parallel Computing, D. Padua, Ed. Boston, MA: Springer
US, 2011, pp. 1487–1487, ISBN: 978-0-387-09766-4. DOI: 10.
1007/978- 0- 387- 09766- 4 2197. [Online]. Available: https:
//doi.org/10.1007/978-0-387-09766-4 2197.

[33] H. Lu, M. Halappanavar, and A. Kalyanaraman, “Parallel
heuristics for scalable community detection,” Parallel Com-
puting, vol. 47, pp. 19–37, 2015.

[34] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large
network dataset collection, http : / / snap . stanford . edu / data,
Jun. 2014.

[35] D. A. Bader and K. Madduri, “GTgraph: A synthetic graph
generator suite,” Atlanta, GA, February, vol. 38, 2006.

[36] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A
recursive model for graph mining,” in Proceedings of the 2004
SIAM International Conference on Data Mining, SIAM, 2004,
pp. 442–446.

