
34

The Future of FPGA Acceleration in Datacenters and

the Cloud

CHRISTOPHE BOBDA and JOEL MANDEBI MBONGUE, University of Florida

PAUL CHOW, MOHAMMAD EWAIS, NAIF TARAFDAR, and JUAN CAMILO VEGA,

University of Toronto

KEN EGURO, Microsoft

DIRK KOCH, Manchester University

SURANGA HANDAGALA and MIRIAM LEESER, Northeastern University

MARTIN HERBORDT and HAFSAH SHAHZAD, Boston University

PETER HOFSTE, IBM POWER Systems Performance

BURKHARD RINGLEIN, IBM Research Europe

JAKUB SZEFER, Yale University

AHMED SANAULLAH, Red Hat, Inc

RUSSELL TESSIER, University of Massachusetts Amherst

In this article, we survey existing academic and commercial efforts to provide Field-Programmable Gate

Array (FPGA) acceleration in datacenters and the cloud. The goal is a critical review of existing systems

and a discussion of their evolution from single workstations with PCI-attached FPGAs in the early days of

reconfigurable computing to the integration of FPGA farms in large-scale computing infrastructures. From

the lessons learned, we discuss the future of FPGAs in datacenters and the cloud and assess the challenges

likely to be encountered along the way. The article explores current architectures and discusses scalability

and abstractions supported by operating systems, middleware, and virtualization. Hardware and software

security becomes critical when infrastructure is shared among tenants with disparate backgrounds. We

review the vulnerabilities of current systems and possible attack scenarios and discuss mitigation strategies,

some of which impact FPGA architecture and technology. The viability of these architectures for popular

applications is reviewed, with a particular focus on deep learning and scientific computing. This work draws

Authors’ addresses: C. Bobda and J. Mandebi Mbongue, University of Florida, Gainesville, FL 32611-6200; emails:

{cbobda, jmandebimbongue}@ece.ufl.edu; P. Chow, M. Ewais, N. Tarafdar, and J. C. Vega, University of Toronto, Toronto,

Ontario M5S 3G4 CANADA; emails: pc@eecg.toronto.edu, mewais@ece.utoronto.ca, naif.tarafdar@mail.utoronto.ca,

camilo.vega@mail.utoronto.ca; K. Eguro, Microsoft, Microsoft Corporation, One Microsoft Way, Redmond, Washington,

98052, United States of America; email: eguro@microsoft.com; D. Koch, University of Manchester, Oxford Road, M14 9LP

Manchester; email: dirk.koch@manchester.ac.uk; S. Handagala andM. Leeser, Northeastern University, 360 Huntington Av-

enue, Boston,Massachusetts 02115; emails: s.handagala@northeastern.edu, mel@ece.neu.edu;M. Herbordt andH. Shahzad,

Boston University, 333 Photonics Center Building, 8 Saint Mary’s Street Boston, MA 02215; emails: herbordt@bu.edu,

NGL@zurich.ibm.com; P. Hofste, IBM POWER Systems Performance, 11400 Burnet Rd Austin, TX 78758; email: hofs-

tee@us.ibm.com; B. Ringlein, IBM Research Europe, Zurich Research Laboratory, Säumerstrasse 4 CH-8803 Rüschlikon,

Switzerland; email: NGL@zurich.ibm.com; J. Szefer, Yale University, 10 Hillhouse Avenue New Haven, CT 06511; email:

jakub.szefer@yale.edu; A. Sanaullah, Red Hat, Inc; email: asanaull@redhat.com; R. Tessier, 134 Marston Hall, University

of Massachusetts, 130 Natural Resources Road Amherst, MA 01003-9293; email: tessier@umass.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1936-7406/2022/02-ART34 $15.00

https://doi.org/10.1145/3506713

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://orcid.org/0000-0002-9042-9470
https://orcid.org/0000-0002-9277-5043
https://orcid.org/0000-0002-0523-7117
https://orcid.org/0000-0002-5852-5577
https://orcid.org/0000-0001-5797-3661
https://orcid.org/0000-0002-2568-4432
https://orcid.org/0000-0002-5624-056X
https://orcid.org/0000-0002-7222-9539
mailto:permissions@acm.org
https://doi.org/10.1145/3506713

34:2 C. Bobda et al.

from workshop discussions, panel sessions including the participation of experts in the reconfigurable

computing field, and private discussions among these experts. These interactions have harmonized the

terminology, taxonomy, and the important topics covered in this manuscript.

CCS Concepts: •Hardware→ Reconfigurable logic and FPGAs; • Computer systems organization→
Cloud computing; • Security and privacy→ Systems security;

Additional Key Words and Phrases: Cloud, datacenter, FPGA, virtualization, security

ACM Reference format:

Christophe Bobda, Joel Mandebi Mbongue, Paul Chow, Mohammad Ewais, Naif Tarafdar, Juan Camilo Vega,

Ken Eguro, Dirk Koch, Suranga Handagala, Miriam Leeser, Martin Herbordt, Hafsah Shahzad, Peter Hofste,

Burkhard Ringlein, Jakub Szefer, Ahmed Sanaullah, and Russell Tessier. 2022. The Future of FPGA Accelera-

tion in Datacenters and the Cloud. ACM Trans. Reconfigurable Technol. Syst. 15, 3, Article 34 (February 2022),

42 pages.

https://doi.org/10.1145/3506713

1 INTRODUCTION

Since Microsoft published their work on Catapult in 2014 [115], Field-Programmable Gate Ar-
rays (FPGAs) have become more than an exotic and niche technology that can only be tamed by
the magicians of hardware. Major players such as Alibaba, Amazon, Baidu, Huawei, and Tencent
now expose FPGAs to application developers in their datacenter infrastructures. Others use FPGAs
to provide applications as a service (Microsoft [27] and Nimbix) or for internally developed appli-
cations. Furthermore, a growing number of projects are underway across the globe, in academia
and other research organizations, to provide the benefit of acceleration and flexibility remotely to
users. While FPGAs are increasingly available in datacenters, their long-term adoption in these
venues is not guaranteed. Several technologies must be provided for FPGAs to compete with their
peers—central processing units (CPUs), graphics processing units (GPUs)—and the flood of
artificial intelligence (AI)-specific processors currently deployed and in development.
Architecture and integration at the board and the system level must ensure that applications

harness the strengths of reconfiguration and mitigate its weaknesses. The provisioning of hard-
ware resources requires adequate middleware, hardware virtualization, and domain separation
mechanisms. Efficient and flexible hardware resource provisioning increases the possibility of
seamless integration, ideally with no redesign, in existing cloud management infrastructure. The
spatial sharing of FPGAs increases the complexity of cloud schedulers and resource managers.
Fortunately, the large body of work developed in the past decade can be leveraged in cloud task
schedulers currently in use in datacenters, such as the list-scheduling used in Amazon cloud.
Withmultiple users temporally or spatially sharing FPGAs in datacenters, the security of designs

must be guaranteed. It has recently been demonstrated that FPGAs can be used covertly for various
types of cybersecurity attacks in the cloud [117, 118, 145, 146]. Mitigation strategies have been
proposed [83, 113] and many more are currently in development. However, despite all best efforts,
current FPGA architectures may still be resistant to protection against cloud-based attacks.
Without applications, any architecture incorporating FPGAs will be of no use. Programming

languages and high-level design environments as well as efficient hardware/software mapping
strategies are necessary to facilitate the transition for software engineers. In this article, experts
from academia and industry evaluate the road previously traveled and the successes and failures
of current solutions. We open a window on the future of FPGA-accelerated datacenters, identify
opportunities and challenges, and discuss the path to success and broad adoption of FPGA
technology for computing.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://doi.org/10.1145/3506713

The Future of FPGA Acceleration in Datacenters and the Cloud 34:3

The remainder of the article is organized as follows: The next section briefly describes the
landscape of FPGA use in cloud infrastructure. A taxonomy of FPGA architecture integration is
provided in Section 3 followed by a detailed discussion of current architectural development and
trends. The integration of FPGA resources into operating systems (OS) and software is discussed
in Section 4. Topics include shell interfaces, middleware, and virtualization. In Section 5, we ex-
plore challenges in hardware and system security in single-user (tenant) and multi-tenant cloud
compute environments. A critical review of current FPGA architecture is provided and sugges-
tions to increase resiliency are offered. In Section 6, we review applications that can benefit from
cloud implementation. Deep learning is the main candidate, but image processing, sorting, and
database operations can also benefit. We conclude the article in Section 7 with a summary of the
opportunities and challenges of the paradigms discussed.

2 THE LANDSCAPE

After decades of single-thread-driven performance growth for computing platforms, followed by
more than a decade where the majority of performance growth resulted from increases in the num-
bers of hardware threads, we have now entered a period where the majority of hardware-based
computational performance growth is expected to come from specializing hardware [50, 68, 127].
The most power-constrained platforms, such as cell phones, already have multiple types of spe-
cialized processing elements including GPUs, neural processors, and specialized signal processing,
media, and security engines. While some think of ARM [10] as an architecture that has instruc-
tion set architecture (ISA)-driven efficiency, the main reason ARM is gaining traction beyond
cell phones and embedded devices is that ARM provides a system-on-chip (SoC) ecosystem that
is thus far unmatched [53], enabling the rapid construction of more specialized and efficient SoCs.
One of the earliest successes in using FPGAs in the cloud was the Catapult project at Microsoft

being used for Bing searches [115]. This is an example of “provider application as a service” where
the user is not aware that FPGAs are being used to accelerate their applications. Subsequently,
Microsoft provided acceleration for Azure customers by offloading machine learning and host net-
working to hardware [47]. In the past few years, FPGAs in the cloud have been used for a variety of
different applications (see Section 6), including the acceleration of networking, privacy and secu-
rity, andmachine learning, and data analytics. As processing becomesmore heterogeneous, FPGAs
stand out as accelerators that can process data directly from the network and provide benefits to
users with or without their knowledge. Thus, their use is likely to grow dramatically in the future.
Of course, specialization is challenging primarily, because it intrinsically trades off flexibility for

efficiency, primarilymeasured in reduced chip area and improved energy per computation at equiv-
alent performance. This approach requires allocating hardware resources to the “right” priorities
for the platform and also requires ensuring that the platform comes with a software development
and runtime ecosystem that ensures the specialized elements are used to a sufficient degree to jus-
tify allocating the resources to these specialized rather than general-purpose functions. Platforms
that provide more extensive and prescriptive application development environments will be in the
lead in providing such specialization.
To date, most cloud providers have focused on more general-purpose platforms, renting out

standardized scalable infrastructure. Offerings are primarily differentiated on the number of
(virtual) cores and the amount of memory and network bandwidth per CPU and storage. Offerings
with more specialized hardware, primarily GPUs, are mostly separate specialized offerings,
e.g., for high-performance computing (HPC), rather than elements that provide the broad
underpinnings of a cloud platform architecture.
A number of cloud providers have started to use specialized hardware (including FPGAs) [27]

and even started to develop their own SoCs [50, 127] rather than rely on vendor silicon, which
opens the door to increased hardware-based platform differentiation. It is envisioned that as cloud

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:4 C. Bobda et al.

infrastructure progresses from infrastructure as a service (IaaS) to virtualized platforms and
then to microservices and function as a service (FaaS), cloud computing may also provide the
software ecosystems that enable the increased introduction of specialized hardware.
In the creation of specialized hardware, reconfigurable logic occupies an interesting middle

ground. Reconfigurable logic can be leveraged to create a wider set of specialized computational
elements from the same hardware that each can outperform and improve efficiency over a general-
purpose processor for a specific task or set of tasks. Many systems combine reconfigurable offer-
ings with highly flexible I/O, allowing a very large number of system configurations. At the same
time, for any fixed configuration of the FPGA supporting a fixed set of tasks, hardware that is not
(as) reconfigurable can be implemented significantly more efficiently.

Even if reconfigurable logic becomes ubiquitous, it still may not be programmed by a wide
audience. This does not necessarily mean the logic is not regularly reprogrammed. The logic con-
figuration is provided by the system vendor or cloud provider, and not by independent software
vendors or end users. There are a number of well-known reasons for this: the difficulty of pro-
viding and maintaining a software ecosystem, difficulty of ensuring system integrity, difficulty of
ensuring security, and the skills required to program the logic.
Before delving more into considerations specific to the deployment of reconfigurable logic in

clouds and datacenters, we take stock of some of the different ways in which reconfigurable logic
can be deployed and introduce some of the challenges within these contexts. Perhaps the tightest
way to integrate reconfigurable logic in a processor is to use it as a reprogrammable execution
unit sharing a register file with the remainder of the core. While not a common use of reconfig-
urable logic today, contemplating such a use illustrates some of the challenges. For example, a unit
could be configured to implement new instructions before they are directly supported in custom
hardware. In this case, the software ecosystem is essentially the same as for any other new (set
of) instruction(s). A more ambitious step would be to allow reprogramming and changing of the
performance profile but not the set of supported instructions. This approach requires a much more
complex software ecosystem, as compilers tend to be highly tuned to performance specifics. This
approach is also likely to require OS-level coordination, as schedulers would likely have to be-
come aware of these profile changes to ensure the right tasks are scheduled to the processors with
the appropriate performance profile. A next step might include support for different profiles with
different (vendor-defined) sets of instructions. This step now puts an even larger burden on the
software ecosystem but still leaves the responsibility with the hardware vendor. A final step would
be to allow cloud provider or end-user reprogramming of the embedded reconfigurable logic to cre-
ate user-defined instructions. Architectures such as RISC-V and OpenPOWER explicitly allow for
the introduction of implementation-specific instructions. It is not difficult to contemplate a cloud-
specific use of such a capability, for example to improve the performance of a specific encryption
or decryption algorithm that does not already have direct hardware support.
A first approachmight be to treat a processor with a customer-specific instruction as a customer-

specific processor to be verified in its entirety by the customer as if they had built a new processor
with a customer-specific instruction. Such an approach might not be satisfactory, but with cloud
providers now building their own SoCs it is perhaps not unrealistic. Beyond the software ecosys-
tem and system functionality, system integrity and system security are also issues, even for this
very restricted way of introducing reprogrammable functions. For example, one will want to en-
sure that reprogramming cannot result in physical damage to the system or affect reliability. The
issue is not far-fetched, as FPGAs can be configured with collections of ring oscillators with local
power densities that exceed normal design constraints [113]. Security could also be a concern, as
one would have to be very careful that a custom execution unit does not observe (and store) any
information from another user context or a context at a different privilege level. Clearly, much

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:5

Fig. 1. Example FPGA placement in datacenters.

work remains before general-purpose user-reprogramming of a reconfigurable unit integrated at
this level can be commonplace.
Next, we consider a reconfigurable unit that shares memory with other processors in the sys-

tem, either physically integrated in the same chip or on the same module or provided separately.
Bus protocols range from architecture-specific (QPI or UPI for example) to open standards such
as OpenCAPI, AXI [9], CCIX, and CXL. Standards at the protocol level have to be accompanied
by software standards at the system level. One common approach is for the native OS (or hypervi-
sor) to retain control over system resources and manage memory access to shared memory. This
provides a clear foundation for system organization, scheduling and security, as it can build on
the knowledge from other systems with heterogeneous processing elements. However, there are
special considerations for processing elements built from reconfigurable logic. To maintain system
integrity, the address translation and/or bus interface units typically must remain the responsibil-
ity of the processor or system vendor to ensure the accelerator operates in a virtual (effective)
address space instead of having physical addressing capabilities. This goal can be achieved if the
interfaces to the reconfigurable logic operate in a virtual (effective) address space, or any recon-
figurable logic provided by someone not responsible for the physical infrastructure is combined
(and verified to be combined) with logic that is. This can also raise an issue of trust. For example,
if the only way to guarantee integrity is to allow the system provider to do extensive checking of
the logic during the build process, then an end-user or independent software vendor who wants
to differentiate based on the reconfigurable logic they provide may be forced to expose that logic
to the system provider.
Another level is integration as a device, either for computational acceleration or to enhance

network or storage capabilities. A standard device does not have access to all system resources, and
it is easier to delineate the responsibilities. CXL supports device and shared memory accelerators
by providing a variety of protocol profiles. A typical use of reconfigurable logic in this context
might be the creation of “smart” storage or network devices, providing functions such as security,
data compression or decompression, or filtering. Smart networking or smart storage devices that
allow the combination of user-created reconfigurable logic within a network or storage controller
do again raise a set of concerns that must be addressed.
Finally, perhaps the most ambitious approach would be to develop a datacenter that consists of

(essentially) only FPGAs. Such an approach is made easier because FPGAs integrate increasingly
powerful CPU cores, (stacked) DRAM memory, and high-speed I/O. The software foundation for
such an infrastructure would build on the conventional notions underpinning conventional system
design.

3 FPGA CLOUD ARCHITECTURES

The computational capability and flexibility of a reconfigurable fabric, coupled with the perfor-
mance of ASICs for high speed I/O (e.g., SERDES units), allows FPGA-based systems to be deployed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:6 C. Bobda et al.

almost anywhere in the cloud to accelerate compute, networking, and storage. An example of this
versatility is illustrated in Figure 1, which shows two common, contrasting deployment models.
However, while the potential for arbitrary deployment certainly exists, FPGAs cannot be randomly
placed as part of any cloud infrastructure. The need for cost-effectiveness leads to an emphasis on
size, power, cooling, compatibility, and in-place upgradability—all while ensuring that the specific
performance, memory, server capability, and network connectivity needs of cloud workloads are
met. Thus, based on a system’s requirements, certain types of cloud FPGA architectures can have
substantially more benefit than others.
This section discusses architectural choices for the integration of FPGAs into cloud computing

infrastructures. Current architectures in use in academia and industry have distinctive character-
istics, the most important of which are listed below, that have helped shape them over the past
two decades.

• Very large scale, with (potentially) millions of nodes;
• Mature, having evolved through many generations;
• Highly competitive, with several vendors offering similar products, yet with high value in
differentiation;
• Diverse evolving workloads, but with some emerging high-performance applications;
• System upgrades are always partial placing a premium on compatibility through several
generations;
• Heterogeneity, with different sets of nodes for different types of users.

We hypothesize that future organizations will only slightly evolve from existing architectures,
depending on the devices and integration technology. A radical break is not expected. In the next
subsection, we begin with a taxonomy of system organizations, followed by a review and discus-
sion of existing architectures.

3.1 Taxonomy

This subsection presents a set of high-level attributes that define cloud FPGA systems. These taxo-
nomic categories provide an effective means to not only analyze the relationships between design
choices and system constraints, but also to describe and compare different cloud FPGA architec-
tures. We continue with an overview of mainstream FPGA cloud systems, both in production and
research, and conclude by analyzing architectural trends in these systems in the context of the
proposed taxonomy.
The taxonomy is based on the critical aspects of any cloud FPGA system: (A) Type of FPGA

boards, (B) Placement of FPGAs in the system, (C) Network Connectivity, (D) Intra-node
Connectivity, and (E) Use Cases. Note that these taxonomic categories are neither mutually
exclusive nor comprehensive: It is possible for systems to have multiple sub-categories and for
new sub-categories to be added later to encapsulate future innovation.
Figure 2 illustrates common architectures. These architectures, and a sample benefit, are as

follows:

(1) Bump-in-the-Wire: Large-scale compute, network and storage acceleration;
(2) Co Processor: Local compute acceleration;
(3) Storage attached: Local storage acceleration;
(4) Back-end: Ultra low latency, rack scale FPGA-FPGA communication;
(5) Smart NIC: Local network acceleration;
(6) Network HW: Flexible routing/switching protocols;
(7) Local Cluster: Multi-accelerator system;

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:7

Fig. 2. Common FPGA architectures. Note that Accelerator Model and Peer Model from Figure 1(b) are

illustrated here as Co Processor and Disaggregated, respectively.

(8) Shared Memory: Cache coherent acceleration;
(9) Disaggregated: High infrastructure utilization.

3.1.1 Type of FPGA Boards. Given that cloud providers do not currently create their own
FPGAs, the smallest unit of differentiation is the FPGA board; both (a) Off-the-shelf and
(b) Custom are possible. Economic advantages depend on the scale of deployment and provider
development infrastructure. Given the latter, custom boards still have higher start-up and upgrade
costs, but may be cheaper in large quantities. But the advantage of scale also affects off-the-shelf
economics, as the provider has the market power to affect price and board features.
With custom FPGA boards, just about any attribute can be varied, such as num-

ber/types/bandwidths of I/O ports, FPGA family, off-chip memory type and size, form factor, and
other on-board devices. This ensures that the boards closely match the specifications/requirements
of the target system, from computation to cooling. Nonetheless, off-the-shelf boards are available
for every (currently) sizable usage domain, including SoCs, node-level networking, NoCs, data
center switches, and storage.

3.1.2 Placement of FPGAs. FPGAs can be placed in either a (a) distributed or b) (centralized
manner. Having a distributed FPGA placement means that compute/storage nodes have their own
FPGAs, and thus do not have to compete for the resource. This leads to more offload capability,
greater reliability, since FPGA failure does not affect other compute/storage nodes, and reduces
security concerns, since offloads for different nodes can be isolated. It is also possible to place
FPGAs in a centralized manner, typically inside the networking nodes (e.g., in switches as ASIC-
FPGA, CPU-FPGA, or FPGA only circuits). Substantially fewer FPGAs are needed for such a de-
ployment; this typically translates to easier management, lower power consumption, lower total
cost of ownership (TCO), smaller average node sizes, and potentially higher performance, since
expensive high-end FPGAs can be used (and upgraded more frequently).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:8 C. Bobda et al.

3.1.3 Network Connectivity. Within each node, it is possible for FPGAs to be (a) not connected
to any network or connected to (b) the primary network and/or (c) a secondary network.
Being connected to the primary data center network enables FPGAs to intercept/accelerate
network traffic to the node, as well as achieve data-center-wide scalability for FPGA workloads,
since multiple FPGAs can directly communicate with each other. However, the circuitry needed
to support this FPGA position can consume a significant portion of FPGA resources. This includes
circuits to support high resiliency, since the FPGAs can be a single point-of-failure: An entire node
can become unstable in the case of an FPGA error. In the case of secondary network connectivity,
FPGAs can communicate across nodes with significantly more flexibility in the topology used
(e.g., mesh, torus, switched), as well as the communication protocol, all of which can lead to
ultra-low latencies. However, using a custom network configuration means that complex router
hardware, routing algorithms, and switch arbitration policies may need to be implemented on
each FPGA. Moreover, complex cabling may be required, which can add a significant burden to
the overall data center architecture [27].

3.1.4 Intra-node Connectivity. FPGAs within a node can be (a) not connected to any other
significant device (i.e., be a Disaggregated resource) or connected to one or more devices;
(b) connected to CPUs, e.g., through PCIe and possibly with cache coherence using inter-
connects such as CCIX, CXL, or CAPI; (c) connected to other FPGAs, e.g., through a PCIe
switch and/or using direct and programmable interconnects; (d) connected to GPUs, e.g.,
through a PCIe switch; (e) connected to ASICs, e.g., through multiple potential forms of con-
nectivity depending on the ASIC and nature of coupling such as a NIC or tensor processor;
(f) connected to storage devices through the device-specific interface, e.g., SPI for flash and
DDR for SDRAM.

3.1.5 Use Cases. Use cases have a substantial impact on architecture, since cloud providers
must ensure workload requirements are met (e.g., performance) without compromising on
core aspects (e.g., security, reliability). Here, we look at some common cloud FPGA use cases.
(a) Customer applications: Customers can develop, simulate, debug and compile their custom
FPGA logic, as well as scale their infrastructure and change resources according to their workload
demands. A wide pool of applications can be deployed, e.g., in genomics, financial analytics,
computational fluid dynamics, video processing, transcoding, and security. Several development
environments are available so users do not need to write their own HDL code. (b) Provider
Application as a Service (AaaS): The cloud provider supports a limited set of customer applica-
tions by developing the FPGA design themselves: Only the necessary APIs and high-level design
parameters are exposed. This model ensures high performance and resilience at the expense of
reducing customer access to the entire FPGA. (c) Provider applications: In this case, cloud
providers use FPGAs to accelerate their internal workloads, e.g., software defined networking
(SDN), as well as save CPU resources that can then be rented to the customer.

3.2 Production Architectures

In this subsection, we discuss what can be referred to as core or mainstream production cloud
FPGA systems that are either in widespread or large-scale use.
Perhaps the most unique and widely deployed production system is Microsoft’s Catapult v2 [27],

which has FPGAs in most Azure and Bing stock keeping units (SKUs) in a bump-in-the-wire con-
figuration: An FPGA sits between the top-of-rack switch (TOR),network interface card (NIC),
ASIC, and CPU, hence enabling data-center wide communication within tens of microseconds of
latency. These hundreds of thousands of FPGAs (or more) are used for both internal (e.g., network

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:9

packet processing and Bing search [33]) and external workloads (e.g., machine learning inference
as a service [33]).
Another type of a widespread production system is the single node accelerator model, which

leverages FPGAs in either a Co-Processor configuration, or as a Local Cluster where devices are
connected either via a PCIe switch or using direct FPGA-FPGA interconnects. A number of cloud
providers such as AWS, Huawei, Baidu, Tencent, Nimbix, and Alibaba use this model. These sys-
tems are used by customers to run a wide pool of cloud native applications such as genomics,
financial analytics, data acquisition, computational fluid dynamics, video processing, image pro-
cessing, transcoding, security, and AI workloads. There are also examples of these FPGAs being
used by providers for their own workloads. Baidu uses FPGAs to accelerate its cloud-based stor-
age, SQL queries, data security, search engine, and AI workloads. FPGA-based AI chips—such as
Baidu’s Kunlun for AI, Alibaba’s Ouroboros for speech recognition, and Alibaba’s Hanguang 800
for inference operations—are deployed in their cloud data centers [43]. Alibaba has reported 75%
savings in TCO by using FPGAs to oversee product images on its e-commerce site [161]. In 2018
it reported over $30 billion retail on its website in a single day (compared to $5 billion on all US
online and in-store retail on Black Friday 2017); this was possible with its data center FPGAs being
used to accelerate transactions and provide recommendations to users [48].
There are also systems that arewidely deployed, but where there is insufficient publicly available

information for analysis. Amazon has announced AQUA (Advanced Query Accelerator) nodes
for its Redshift data warehouse, available through the RA3.16XL and RA3.4XL instances. These
nodes use FPGAs to accelerate dataset filtering and aggregation. Baidu uses Smart NICs to improve
virtualization andworkload performance. OVHCloud also uses Smart NICs, but for network packet
processing tomitigate distributed-denial-of-service (DDoS) attacks in its cloud traffic. Scaleflux
CSD2000 SSDs are deployed by over 40 data centers globally. An example is the Alibaba cloud,
which uses Scaleflux CSD20004 in place of traditional solid state drives (SSDs) on their storage
nodes to accelerate applications such as MySQL, Aerospike, Oracle, and PostGreSQL. Samsung
Smart SSDs are deployed in the Nimbix cloudwhere they accelerate Apache Spark, running queries
up to 6× faster when using software from Bigstream. Eideticom’s computational storage processor
has been implemented in Barreleye G2 servers on Rackspace.

3.3 Research Architectures

In this subsection, we discuss systems that are presently in research and development and repre-
sent the most technologically plausible candidates for widespread future deployment.
One of themost commonly used research architectures is the cluster of Back-End tightly coupled

FPGAs that deploy a secondary network using direct and programmable interconnects to connect
FPGAs across nodes. Microsoft’s Catapult v1 was a back-end system that connectedmultiple nodes
in 6 × 8 tori [115]. It was demonstrated using Microsoft’s Bing workloads; it is not clear whether
it was ever part of a production cloud. Other research examples include Maxwell [14], Novo-G#
[55], Noctua system at the Paderborn Center for Parallel Computing [112], andAlbireo nodes of the
Cygnus supercomputer system at University of Tsukuba. Although this approach can substantially
reduce FPGA-FPGA latency, it is difficult to scale beyond a single rack due to wiring requirements;
in the general case it also requires each FPGA to implement a router to support the communication.
Currently no such example can be found operating in the production cloud.
Another research area proposed in References [51, 80] involves Channel-over-Ethernet (CoE);

a back-end, inter-FPGA Ethernet communication network using the OpenCL kernel programming.
The results demonstrate the feasibility of such a configuration as the system achieves a latency of
0.99 μs for inter-FPGA communication via the secondary Ethernet switch as compared to 29.03 μs

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:10 C. Bobda et al.

Table 1. Classification for Production and Research FPGA Cloud Architectures Based on the

Taxonomic Categories Discussed in Section 3.1

Board Type Placement Network Intra-node Use Case
Connectivity Connectivity

PRODUCTION SYSTEMS
Alibaba Custom Distributed None FPGA, CPU, Storage Customer, Provider
Baidu Custom Distributed None CPU, Storage Customer, Provider
Microsoft Catapult v2 [27] Custom Distributed Primary CPU, ASIC, Storage AaaS, Provider
Amazon AWS F1 Custom Distributed None FPGA, CPU, Storage Customer
Huawei Custom Distributed None FPGA, CPU, Storage Customer, Provider
Nimbix Off-the-shelf Distributed None CPU, Storage AaaS
Tencent Off-the-shelf Distributed None CPU, Storage Customer

RESEARCH SYSTEMS
Microsoft Catapult v1 [115] Custom Distributed Secondary CPU, Storage Research
Enzian Custom Distributed Secondary CPU, Storage Research
Cygnus Off-the-shelf Distributed Secondary FPGA, CPU, GPU, Storage Research
IBM CloudFPGA [3] Custom Distributed Primary Storage Research
Maxwell [14] Off-the-shelf Distributed Secondary CPU, Storage Research
NARC [35] Off-the-shelf Distributed None CPU, Storage Research
Noctua Off-the-shelf Distributed Secondary FPGA, CPU, Storage Research
Novo-G [54] Off-the-shelf Distributed None FPGA, CPU, Storage Research
Novo-G# [55] Off-the-shelf Distributed Secondary FPGA, CPU, Storage Research
IBM Power8 + CAPI Off-the-shelf Distributed None FPGA, CPU, GPU, Storage Research
IBM SuperVessel Off-the-shelf Distributed None CPU, Storage Research
SAVI [86] Off-the-shelf Distributed Primary CPU, Storage Research

Though all systems place FPGAs in a “Distributed” manner, the placement column is still shown to highlight

this trend. It is further discussed in Section 3.4.2.

via the host CPU. A drawback is that data are sent as packets and that there is additional overhead,
such as IP addresses and flags, that reduce the effective data rate [152].
Other research architectures include systems that support a Local Cluster, but where the

communication scaling via direct interconnects is limited to a single node. An example includes
Novo-G (a former version of Novo-G#) [54]. Other examples include the research systems
currently deployed at the IBM SuperVessel Cloud and the IBM Power8+CAPI cluster at the
University of Texas, Austin that use a Shared Memory cache coherency model.
A different approach is to directly connect FPGAs to the datacenter network as a standalone

resource. Each FPGA can be accessed by a CPU or another FPGA resulting in good scalability.
CloudFPGA by IBM Zurich Research Lab is one example [121, 122, 157–159]. The authors have
built a prototype with multiple chassis for data center scale, capable of hosting 1024 FPGAs per
rack [3]. A drawback of such an architecture may be that FPGA-CPU communication is necessarily
among separate nodes and has high latency. Another consideration is the increase in the number
of TOR connections.
The University of Toronto SAVI testbed connects FPGAs to the primary network [140]. The

authors in References [26, 138] have demonstrated that virtualizing FPGA resources on the SAVI
testbed enables multiple regions within an FPGA device to support different designs using APIs
such as OpenStack. Enzian at ETHZurich employs an FPGA as a node connected to the network on
one end and coherently attached to a large server-class SoC on another node. Unlike Microsoft’s
bump-in-the-wire, this system allows CPUs to either connect directly to the network or via the
FPGA. Unlike other cache coherent systems, it allows the FPGA side of the cache coherency pro-
tocol to be extended and tailored [6]. The Gator Reconfigurable Cloud infrastructure (Gator-
Recc) provides a platform to exploremulti-tenancy FPGAusage in cloud applications, using virtual
instances (CPU+FPGA) and managed by Openstack[100].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:11

3.4 Architectures Trends

Table 1 classifies production and research cloud FPGA architectures based on the taxonomy
in Section 3.1. As we can see, research systems generally explore different varieties of cloud
architecture options. While production systems are bounded by factors such as total-cost-of-
ownership (TCO), power-usage-effectiveness (PUE), performance, resilience, modularity,
scalability, and security, research systems tend to enjoy greater degrees of freedom. To effectively
analyze these architectures, we highlight trends in their architectures based on the following
categories: (1) Boards, (2) Placement, (3) Network Connectivity and Use Cases, and (4) Intra-node
Connectivity.

3.4.1 Boards. Table 1 shows that a majority of production cloud vendors have used custom
boards in their deployments. For Microsoft in particular, this was necessary, since requirements
for placing FPGAs in special HPC SKUs “constrained power to 35W, the physical size to roughly a
half-height half-length PCIe expansion card (80mm × 140 mm), and tolerance to an inlet air tem-
perature of 70 °C at 160 lfm airflow” [27]. Custom boards are not required, however: Nimbix and
Tencent both use off-the-shelf boards. For research systems, custom boards are preferred if the pro-
posed systems are Disaggregated, network attached (e.g., Enzian), and like IBM CloudFPGA. Also,
for earlier Back-end systems, such as Catapult v1 and Novo-G#, a customized board allowed the
system to increase transceiver count. However, we can see that recent Back-end and Local Clus-
ter systems mostly use off-the-shelf boards. Systems with no inter-node communication network
almost always use off-the-shelf boards.

3.4.2 Placement. Table 1 shows that all these systems deploy FPGAs in a distributed fashion.
This is because: (i) FPGA resources are easier to orchestrate, (ii) FPGAs can be offered as bare-metal
resources, which simplifies the tooling needed, and (iii) FPGA failure only affects local resources,
as opposed to potentially millions of nodes.

3.4.3 Network Connectivity - Use Cases. Table 1 shows two important trends. First, none of the
production systems uses a secondary network. This is likely because of: (i) the cost and complexity
of wiring a second network for potentially millions of nodes and additional networking hardware,
(ii) the potentially limited scalability if direct FPGA-FPGA connectivity is supported, and (iii) high
chip resource usage for building routers and securing the system. The second important trend is
the relationship between network connectivity and use cases. Specifically, due to security and reli-
ability constraints, systems that allow customers to offload their own applications do not support
any direct network connectivity. Rather, this connectivity is only available if workloads are either
internal or if the offering is an application where only a limited set of APIs are exposed to the
customer. Research systems are distributed evenly across the different network connectivity op-
tions. We also note that newer research systems almost always have network connectivity, either
primary or secondary. This helps scale the application across multiple FPGAs and achieve lower
latency.

3.4.4 Intra-node Connectivity. Table 1 shows four major trends. First, in all systems with the ex-
ception of IBMCloudFPGA, FPGAs communicatewith the CPU over the PCIe slot. This emphasizes
the role of the CPU as being the core computational resource, whereas the FPGA is a complexity
offload engine managed by the CPU. Second, FPGAs are almost always connected to some form of
off-chip storage; typically, a DDR memory chip on the same board. Third, no production system
currently offers instances with FPGA-GPU connectivity. To the best of our knowledge, none of the
cloud providers has placed GPUs and FPGAswithin the same node. For research systems, GPUs are
being employed on the same node as FPGAs, especially for highly parallel, SIMD-like workloads

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:12 C. Bobda et al.

and communication occurs over a PCIe switch. Fourth, in terms of FPGA-ASIC connectivity, only
Microsoft v2 supports this approach, since the FPGA must transparently process packets for the
traditional NIC. None of the research architectures connect an ASIC with an FPGA on the same
node.

3.5 Potential Future Innovation

We identify areas of potential novelty that can be derived by traversing the categories in the tax-
onomy and by comparing different sub-categories with what is already present in Table 1.

Type of Boards: Potential novelty here is with modular boards that lie at the intersection of
custom and commodity. Similar to what is commonly done with micro-controllers, semi-custom
boards can be built by buying and connecting together off-the-shelf modules for different FPGA
chips, memory chips, and interfaces (QSFP+, PCIe, etc.). This would allow providers to tailor boards
to their specific requirements, reduce the penalties of designing a custom board (development costs,
upgrade costs, probability of failure, time to market), and easily replace specific modules as needed
(due to hardware failure or for regular upgrades).

Placement of FPGAs: While FPGAs have been used in high-end network switches, their role is
typically limited to providing the performance and flexibility needed to support changing proto-
cols. However, there is currently no system that leverages TOR switches where FPGAs are respon-
sible for implementing the entire switch hardware.
Supporting such an architecture has a number of benefits. (i) Customer offloads: Customers

could use these TOR FPGAs to compute in the network, e.g., for doing collective operations such
MPI All-Reduce and Broadcast. (ii) Provider offloads: Providers could leverage these FPGAs to
implement services such as metering, accounting, analytics, and packet filtering. (iii) Flexible net-
working: By combining FPGA based TORs with Bump-in-the-Wire FPGAs, a data-center-wide
network could be created that does not rely on a standard protocol for communication. As a re-
sult, the communication latency could be reduced substantially. Alternatively, it may be possible
to dynamically switch between different standard protocols based on the target workload.

Network Connectivity: A potential novelty here would be to support both Primary and
Secondary network connectivity, either within the same FPGA, or through multiple tightly
coupled FPGAs within the same node. This would effectively combine key benefits of Microsoft’s
Catapult v1 and v2, i.e., having ultra-low latency for rack scale communications through custom
interconnects and still supporting data-center scale FPGA-FPGA connectivity.

Intra-node connectivity and Use cases: The connectivity between FPGAs and CPUs is typically
done using the PCIe bus. This is because existing use cases define the role of the FPGA as an
offload engine for the CPU. However, a potential novelty here is supporting sufficient low-level
electrical coupling, such as the FPGA has read-modify-write access to the CPUs Baseboard
Management Controller and firmware. This would effectively turn the FPGA into a management
and security controller for the CPU and enable new system administrator use cases such as CPU
firmware attestation.

4 USABILITY, SCALABILITY, AND PORTABILITY

Datacenters have become the enablers of many technologies and services. Search engines,
personal assistants, streaming, video conferences, 5G, and telecommunications, along with the
newly popular infrastructure as a service (IaaS) are all examples of such services. With the
scale of these applications and services, deployment, provisioning of resources, and isolation all
become tricky, especially with the loads of these services becoming more dynamic. For example,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:13

in cellular networks there may be a significant increase in peer-to-peer telephone or SMS traffic
during holidays, but then during large sporting events there may be a spike in video streaming
and cellular data use. Even if the total load is the same, different types of traffic must be processed
differently making the load on individual functions dynamic. Furthermore, the principle of elastic
computing assumes that instantaneous load is not constant over time [91], creating opportunities
to scale down compute resources, putting excess resources in a low power state, or quickly
scale up when high usage resumes. Similar examples of dynamic usage profiles exist in most
datacenter use cases and have led to multiple studies into load balancing, traffic control, and
usage forecasting to improve performance and minimize energy consumption [13, 76, 108, 131].

We start this section with an overview of the singularity of integrating FPGAs for elastic com-
puting in datacenters. We briefly survey existing commercial systems, then dive into the details
of the tools needed to program and deploy FPGA in the cloud. We discuss programmability of
single node, integration of design in vendor cloud using shell, then virtualization. We then survey
current development and discuss the outlook.

4.0.1 Resource Provisioning and Reconfigurability. The problem of datacenter provisioning has
motivated deployment and orchestration platforms that allow datacenter managers to monitor
their network and modify in real time the amount of compute resources given to each function.
They make use of platforms such as Openstack [129] and Kubernetes [16], which instantiate, pro-
vision, and reconfigure datacenter resources in real time. These tools orchestrate the entire data-
center, but require individual components on each node to provision its resources. These tools im-
plement resource provisioning in the cloud in several steps, including admission control, capacity
allocation, load balancing, energy optimization, and quality of service guarantees. Unfortunately,
these tools are currently only limited to provisioning CPU resources. For FPGA-accelerated clouds,
they must be extended or re-engineered to include FPGA resource management. Besides the spa-
tial nature of computing in FPGAs, reconfiguration along with bitstream management must be
taken into account.
FPGAs are becoming more popular within the datacenter, as discussed earlier. But a critical as-

pect of FPGAs is their configurability, which could play amajor role in making them suitable for ac-
celerating such dynamic tasks, as their reconfigurability could naturally allow for the deployment
and scaling these applications within the datacenter. Extending the typical datacenter orchestra-
tion tools with compatibility to FPGAs is thus natural, as it minimizes the required changes data-
center operators have to sustain. However, the bulk of thework needed for this supportwill happen
on the FPGA virtualization side to make FPGAs compatible with orchestration tools, especially to
support FPGAs as primary resources in the datacenter like CPUs, rather than just accelerators.
This includes the ability to remotely provision the FPGA resources, split and isolate them between
tenants, configure their network interfaces, and virtualize these network connections as needed.
FPGA programming is typically performed via an attached CPU. This is suitable with the current

programming model of FPGAs as function accelerators for CPUs but is not suitable for standalone
FPGA compute nodes as we envision in a datacenter. Depending on the FPGA type, the current
programming interface is usually either JTAG, popular among PCIe attached FPGAs, or through an
AXI memory mapped interface, as is typically the case in Xilinx MPSoC configurations. If FPGAs
are to be primary compute resources in the datacenter, then their programming model requires
more flexibility.
In a datacenter architecture where part of, or entire, racks are made up of FPGA boards, while

others are made up of CPU based servers (Figure 1), it should be possible for independent FPGAs to
receive partial or full bitstreams over the network. This ability is not new and has been previously
proposed [69, 122, 150], though this would come with, among other things, security challenges

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:14 C. Bobda et al.

that have not yet been overcome, and many of these alternate programming approaches come at
the cost of area and or performance.
FPGA network configuration and virtualization can be achieved using a variety of ways, each

with its benefits and downsides. The simplest solution would be to statically plan the network
connections between FPGAs in a deployment, along with assigning their correct network
configurations (i.e., IPs and MAC addresses). Static network configuration is used by various
current datacenter FPGA implementations such as Microsoft’s Catapult [27, 115] or Galapa-
gos [139–141]. This requires prior knowledge about the deployment and lacks the ability to scale
the deployment up or down if needed, and the flexibility of deploying these applications alongside
others, which may cause conflicts between the network configurations, for example. Another
possible solution is to use some common chaining protocols like VXLAN [94], MPLS [12], and
Segment Routing (SR) [2]. These protocols may or may not (in the case of VXLAN) require the
active participation of the switch as well as requiring modifications to the network interfaces at
the compute nodes. These protocols can create virtual network connections over top the existing
physical network architecture. This approach is reconfigurable, allowing a change of the virtual
network whenever needed. However, a few drawbacks of these approaches are that they apply
additional routing restrictions, latency overheads, and they require larger packet headers affecting
throughput. These protocols could be merged into the underlying FPGA Shells used in the datacen-
ter, but allowing these Shells (along with the switches, if needed) to receive and apply the virtual
network configuration will be required. A third approach is similar to that followed by orches-
tration tools with CPUs today, which configures the network interfaces in a non-virtualized way,
but instead has to keep each resource informed about the network interfaces of other resources
(i.e., using a DNS table) and update them in the case of redeployment or scaling. This approach
is not restrictive and allows any resource to connect to any other resource within its deployment.
However, this approach is more complex in terms of implementation and integration in an FPGA
Shell. Regardless of the approach adopted, MPSoC-based FPGAs are very appealing candidates,
since the CPU on the MPSoC can act as an accelerator to the FPGA itself, offloading most of the
network configuration tasks, along with interfacing with the central datacenter orchestration.
Existing datacenters circumvent these issues in a variety of ways. Microsoft Catapult, for in-

stance, rebuilt the database infrastructure from scratch fitting FPGAs into the picture [27, 115].
However, this system lacks the quick reconfigurability that is possible in other scenarios, and
complete rebuilding of datacenters, as they have done, is extremely costly and may be infeasible.
Also, the wiring is built and optimized for their physical layout with no virtualization in the node
functions or their networking. Instead, it would be ideal to be able to add FPGAs to existing infras-
tructures and reap their benefits without the upfront cost of a datacenter overhaul for widespread
FPGA adoption to work. While this showed significant performance benefits without the orches-
tration or virtualization, this improvement is limited to one type of application and can cost more
in the long run for changing the supported applications.
Amazon’s AWS adds FPGAs to an existing infrastructure. It does not directly connect FPGAs

to their datacenter network. Packets instead travel through the software layers of a PCIe-attached
CPU before being forwarded to the network, and incoming packets need to traverse this stack in
reverse. Similar frameworks are utilized by Huawei and Alibaba cloud infrastructures [155]. This
approach resolves all the networking and virtual routing issues, as well as some security issues
with network attached FPGAs, although this practice heavily limits throughput and increments
latency. Even in full pass-through mode where the CPU is not asked to perform any processing
or encapsulation, these architectures have network throughputs capped at about 40 Gbps [155].
However, it is possible to reconfigure what each FPGA compute node is capable of doing and can
even offer FPGAs as a service by temporarily lending FPGA nodes.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:15

4.0.2 FPGA Programming. Designing for FPGA consists of creating hardware circuits that will
operate on the FPGA, using basic resources available on the device. The process uses Hardware
Description Languages (HDL) such as VHDL and Verilog. It involves substantial hand and
tedious work to implement all of the I/O functionality for the target board for data exchange. The
migration of a design to a different FPGA board requires a complete redesign of the I/O handling.
There have been many early attempts to create software-like programming environments that

were commercially available circa 2000, such as Handel-C and Impulse C [142]. These environ-
ments used a subset of C with some language extensions, data types, and functions that could be
synthesized to hardware running on supported FPGA boards. They provided an abstraction that
hides most of the hardware complexities from the application developer. Maxeler developed its
Data Flow Engine (DFE) data flow programming model based on an extended Java called MaxJ
and provided a full stack from the hardware layer to a software runtime and application layer
interfaces. Again, the goal was to provide a software development flow that runs on CPU and
FPGA platforms. The FPGA vendors have now developed their own programming environments,
such as those using OpenCL, and are now moving towards more integrated environments that
provide support for several languages and libraries for application spaces such as Vitis from Xil-
inx and Intel’s oneAPI Toolkit. There are also efforts to build more of an open middleware stack
such as the Intel Open FPGA Stack and the Open Programmable Acceleration Engine (OPAE)
Technology.

Supporting computing environments for FPGAs and making them more usable for application
developers are important steps, but they still do not enable the use of FPGAs at the scale of clouds
and datacenters.

4.0.3 Design Deployment: The Shell-role Architecture. The emergence of FPGAs as compute ac-
celerators in the Cloud and other multi-user environments inevitably led to a split of the FPGA de-
sign into a user application programmed by the developers and a platform-specific part controlled
by the infrastructure provider. This split of FPGA logic into a cloud service provider (CSP) con-
trolled Shell and a user-controlled Role1 allows the necessary introduction of different privilege
levels within an FPGA design and potentially improves re-usability of user applications [122].
The general principle of the Shell Role Architecture (SRA) is depicted in Figure 3(a). Usually,

the Shell contains all necessary I/O and control logic for data exchange between the user’s
hardware design and the rest of the system. On the one hand, this abstraction prevents the
user from dealing with cumbersome I/O details. On the other hand, the central control of the
infrastructure by the CSP simplifies the management and allows the CSP to implement resource
allocation, isolation, and necessary security guarantees. Consequently, SRAs allow the CSP to stay
in control of the Shell, while application logic is controlled by the user [122]. This SRA pattern is
widely used across different FPGA platforms [27, 44, 122], each with its own level of details.

However, despite their simplicity and wide-usage, SRAs generate new problems when used at
scale: The important character of the interface between Shell and Role “freezes” this interface
after its release. To tackle this strong dependency while preserving the advantages of SRAs, recent
research developed the notion of a three-layer architecture [121]. The general idea is to introduce
an “adapter” layer between Shell and Role to provide forward and backward compatibility between
Shell and Role. The authors call this middle layer Mantle and their overall idea is sketched in
Figure 3(b).

1The terms Shell and Role were first introduced by Putnam et al. [115] and are now commonly used. Sometimes, the term

Hypervisor is used instead of Shell because of a loose correspondence to the functionality of hypervisors in the software

systems stack.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:16 C. Bobda et al.

Fig. 3. Shell Role and Mantle architecture principles.

4.1 FPGA Resource Virtualization

While the shell-role architecture can be seen as a bare-metal deployment of design in FPGAs, the
integration of resource management, including enforcement of elasticity in datacenter, requires
some form of resource virtualization, particularly FPGA resources. This section discusses the
issue of virtualization in datacenters that use FPGA. We discuss virtualization from two different
perspectives. The first one is the hardware resource virtualization on FPGA devices, and the
second one is the integration in hypervisors used to span new virtual instances in the cloud.
Virtualization essentially consists of creating abstraction layers over hardware components such

as processors, memory, storage, and so on, with the goal of enabling resource sharing at the soft-
ware level. While the introduced abstraction layers may decrease native performance, they hide
hardware complexity, improve the flexibility and programmability of the underlying hardware and
make the integration in cloud manage tool.
Processor virtualization is well investigated and currently relies either on instruction set transla-

tion or hardware support with technologies such as Intel VT [106]. Memory and disk virtualization
essentially map the virtual space to physical locations in the physical space [132]. FPGAs differ
from the previous types of hardware in that they do not execute sequential programs, instructions
after instruction, but rather implement parallel circuits. Traditional virtualization techniques used
in software are therefore not applicable to FPGAs. Abstracting FPGA resources at higher levels
requires a new approach. FPGAs consist of configurable computing resources, storage, and inter-
connect, all immersed in a programmable interconnect infrastructure. Programming is achieved
with HDLs. The long synthesis time makes it impossible to achieve binary translation needed in
most virtualization frameworks today.
Abstractions are provided in FPGAs using two different approaches: Slot-based allocation and

FPGA overlays. Slot-based allocation divides the FPGA into blocks where pre-synthesized circuits
can be mapped at runtime, while overlays use processor-like configuration, which makes them
more convenient for traditional virtualization.

4.1.1 Slot-based Allocation. Slot-based FPGA resource management [22] has been around since
the early days of partial reconfiguration. The goal is to allocate FPGA area for the execution of pre-
synthesized circuits at runtime through partial reconfiguration. The FPGA is divided into fixed ar-
eas, also called virtual regions, that will accommodate pre-synthesized circuits at runtime through

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:17

Table 2. Study of Recent Research in FPGA Virtualization Architectures for Cloud Infrastructure

Shell Area
Overhead

FPGA
regions

Spatial
Sharing

On-chip
Comm.
Support

Data
Width
(bits)

Fmax
(MHz)

Access
Method

PCIe
Version

Network
Specification

Fahmy et al. [45] 7% 4 Yes No 256 250 PCIe Gen 3x8 -
Vesper et al. [151] 18% 4 Yes Yes 32–256 variable PCIe Gen 3x8 -
Weerasinghe et al. [159] 21.7% 1 No No 64 156.25 Network - 10 GbE
Tarafdar et al. [140] 27% 1 No No 43 125 Network - 10 GbE
Mbongue et al. [98] 1% 4 Yes Yes - 227 PCIe Gen3x16 -
Catapult [115] 23% 1 No No 16–48 200 PCIe & Network - 10 Gb SAS
Byma et al. [26] 19% - Yes No 256 160 Network - 10 GbE
Feniks [167] 13% - Yes No - - PCIe Gen3x8 -
Mandebi et al.[103] 0.1% 6 Yes Yes 32–256 1500 PCIe & Network - Fast Ethernet
Chen et al. [29] 6.46% 4 Yes No - 100 PCIe Gen2x8 -
Asiatici et al. [11] - 3 Yes No - - PCIe - -

partial reconfiguration. The slot-based allocation is extended for cloud FPGA resource manage-
ment in References [4, 36, 141, 168]. These works leverage partial reconfiguration at the FPGA
level and provide packages for integration in cloud management infrastructure. Table 2 lists some
of the recently published research work in this direction. Companies such as VMAccell and Inaccel
provide commercial frameworks to achieve the same goal.
The table classifies the architectures based on the shell area overhead, the number of virtualized

regions per FPGA, whether spatial sharing is enabled or not, the presence or absence of on-chip
communication support, the data width, the maximum frequency, and the access method to the
virtual resources on the FPGA. For example, Chen et al. [29] divide each FPGA into four locations or
“virtual FPGAs.” The architecture multiplexes FPGAs in space and provisions hardware resources
over PCIe. However, this architecture is limited in that it only allows the use of pre-built hardware
functions without support for direct on-chip communication between accelerators. This results in
middleware copy overhead for data movement between the accelerators of a user.
To minimize the data movement overhead, an on-chip interconnect can be used between vir-

tualized hardware regions as a support to hardware elasticity [98, 103]. It increases the on-chip
throughput and enables pipelined processing within the hardware domain of cloud and data-
center applications. Reference [101] evaluates the IO bottleneck in multi-tenant cloud FPGAs.
Weerasinghe et al. [159] observe that network-attached FPGAs may offer lower latency and higher
throughput compared to accessing accelerators over PCIe. Catapult [115], Tarafdar [140], and
Weerasinghe [159] do not support spatial sharing of FPGA components between the workloads
of multiple cloud users. They focus on FPGA time sharing. Table 2 also shows that the hardware
footprint of the resource overhead that supports the virtualization is less than 30%. Since Shells oc-
cupy a small area on the FPGA, and considering the increasing size of FPGA devices, this overhead
will become negligible.

4.1.2 FPGA Overlays. FPGA overlays have been developed as a promising way to increase
FPGA programmability and productivity [133]. The approach commonly consists of designing
a layer above the fine-grained FPGAs resources, thus hiding the complexity associated with pro-
gramming low-level hardware components such as look-up tables (LUTs), flip flops (FFs), sig-
nal processing blocks (DSPs), and so on. Moreover, it considerably increases productivity as it
mitigates the long compilation time inherent in FPGA design flows. In general, FPGA overlays use
coarse-grained reconfigurable arrays (CGRA) of processors that are programmed at runtime
through software-level function calls. At the architecture level, FPGA overlays usually implement
interconnect topologies allowing parallel processing and data exchange among processing cores
[25, 65, 77, 85, 95, 97]. The software programmability of the coarse-grained processors makes it pos-
sible to develop efficient compilers for automatic mapping of sequential applications to overlays

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:18 C. Bobda et al.

[1, 92, 99, 160]. Beyond standalone utilization of FPGAs and FPGA overlays, cloud and datacenter
architectures offer the opportunity to exploit FPGAs at a higher level of abstraction. FPGA overlays
are most often immersed in the Shell to provision reconfigurable resources to cloud users.

4.1.3 Operating System Extensions for FPGA Virtualization. The integration of hardware re-
source, including those on FPGAs into virtual instances, assumes some sort of operating system
support resources and protocols. There is a sizeable body on FPGA and integration in conventional
operating system. While these work do not directly address cloud and datacenter, the low-level
protocols developed would facilitate the integration of FPGA resources in hypervisor and virtual
machines. Ma et al. [90] propose OPTIMUS, a hypervisor for a scalable shared system between
cloud FPGAs and host CPUs. It implements efficient virtual DMA isolation via page table slicing,
resulting in up to 7× improved throughput. FPGAVirt uses VirtIO for efficient communication be-
tween virtual machine and FPGA through in-kernel network stack [98]. Korolija et al. explore the
application of traditional operating system resource abstraction to FPGAs [82]. The authors imple-
ment Coyote, an open source, portable, and configurable shell for FPGAs. It supports secure spatial
and temporal FPGA multiplexing, virtual memory, communication, and memory management in-
side an uniform execution environment. Hategekimana et al. extends Security-Enhanced Linux
(SELinux) security context to hardware IPs on multi-tenant cloud FPGAs [67]. This capability al-
lows system security policies to propagate access control privileges expressed at the hypervisor
level down to individual FPGA accelerators at runtime. Though operating system-level concerns
such as abstraction and scheduling are being investigated in the literature, there is still need for
operating system support for FPGA multi-tenancy in the cloud. Therefore, Khawaja et al. detail
AmorphOS as a solution [78]. It enables cross-domain protection and replaces fixed slot-based
allocation with elastic resource management to increase utilization and throughput. Moreover, re-
cent research also addresses the compilation and execution of FPGA accelerators in cloud-based
systems. As example, Landgraf et al. present SYNERGY, an FPGA compiler tool capable of gen-
erating controls to software execution, necessary to support core virtualization primitives such
as suspend, resume, and program migration on FPGA [84]. Fumero et al. introduce TornadoVM,
a virtual machine for applications acceleration on heterogeneous hardware at runtime [52]. It re-
lies on JIT compilation to map kernels to adequate hardware accelerators. Using computer vision
workloads, the authors show that TornadoVM allows achieving 7.7× speedup in an heterogeneous
platform provisioning CPUs, FPGAs, and GPUs.

4.2 Using and Scaling of FPGA Clusters

Besides providing easy-to-use abstractions or virtualization of a single FPGA in a datacenter
environment, the problem of programming and deploying multiple FPGAs is important as well
for making FPGAs a scaling-up solution. The first problem of programming a cluster of FPGAs
includes the question of how to abstract and use the communication links between the FPGAs
and also how to link the kernels on multiple FPGAs together. The second problem of deploying an
FPGA cluster contains the question of how to distribute, orchestrate, and manage an multi-FPGA
application once it is built. In the following, we summarize major academic and commercial
approaches tackling these problems.

4.2.1 The Galapagos Research Project: Providing a Middleware for Communication, Build, and

Deployment. The Shell–Role interface simplifies using a single FPGA. At a cloud level, IP core
placement within and across devices is needed. The Galapagos infrastructure [139–141] provides
multiple layers of abstraction including a Middleware. The responsibility of the Middleware is to
provide an easy abstraction for users to deploy an application across many FPGAs. This entails
providing an abstraction for users to describe clusters, scale and replicate IP cores, as well as

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:19

Fig. 4. The logical view of the cluster from the user’s perspective is transformed with the Galapagos Middle-

ware into a multi-FPGA implementation [140].

Fig. 5. Bridges and routers generated by the Middleware placed on each FPGA.

to make the routing simple between IP cores, agnostic to their placement. The agnostic routing
removes the headache the user would have when designing IP cores and also gives the Middleware
layer the flexibility to place IP cores anywhere. This flexibility is leveraged to provide reliability,
as IP cores can be migrated between different physical locations, scalability as these IP cores can
be replicated, and even ease of development as users can implement their IP core (that is part of a
large multi-FPGA deployment) in software and incrementally migrate parts of their multi-FPGA
application from software to hardware.
The Galapagos Middleware standardizes the interface between IP cores through AXI-Stream [9],

a standard streaming protocol used by ARM and Xilinx IP cores. This streaming protocol is typ-
ically used within single FPGA systems in the Xilinx environment, with an optional bit-width
configurable destination side-channel. This side-channel is used to route packets between on-chip
AXI-stream IP cores. Galapagos Middleware takes this established streaming protocol for on-chip
IP cores and expands this to multiple FPGAs. By leveraging standard AXI-stream, IP-cores do not
need to be aware of the location of their destination IP cores. Figure 4 represents the user’s view
of the cluster versus what is actually implemented. The user-provided IP cores are unaware of the
physical placement of these kernels.
The logical to physical translation is implemented by first performing a partitioning of IP cores

across different FPGAs. The first iteration of this partitioning is simple, as a greedy algorithm is
used. It attempts to fit as many IP cores on one FPGA before allocating another FPGA. This par-
titioner is a first implementation and can be improved independent of the rest of the Galapagos
stack. Once a partitioning of all IP cores in the cluster has been established, the middleware gen-
erates the routers and bridges to connect all the IP cores within the cluster. Figure 5 shows the
bridges used to establish on-chip and off-chip connections between IP cores. Since the formation
of the bridges is automated through the middleware, user-provided IP cores can remain agnostic
to the placement of all the other IP cores within the cluster. The autogenerated router on each

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:20 C. Bobda et al.

FPGA is aware of the placement of all IP cores in the cluster and can route packets to an IP core
on the same FPGA or to a different FPGA through a network bridge. A network bridge translates
AXI-stream packets to off-chip network packets. The network protocol is configurable to be any
off-chip protocol the user wants as long as there is a bridge available to translate AXI-stream
packets into network packets. Currently, bridges are available for Layer 2 Ethernet, UDP, and
TCP/IP. However, as long as the user supplies the bridge this can support any off-chip protocol.

To support heterogeneous interaction between CPUs and FPGAs, a software library, called lib-
Galapagos [137] has been created. The library provides software interfaces that exactly match the
streaming interfaces used in hardware Galapagos kernels. Any software kernel that uses these in-
terfaces can interact directly with any hardware Galapagos kernels, making it easy for a software
kernel on a CPU to communicate with a hardware kernel on an FPGA. One benefit of this capabil-
ity is that if a Galapagos kernel is described using HLS-synthesizable C++, then that HLS code can
be wrapped using libGalapagos so it can be run purely in software. This enables a co-simulation
environment where all the hardware kernels can be first tested in software to debug functional-
ity. Once functionality is achieved, the HLS kernels can then be synthesized and run as hardware
without any code changes. Whether such a kernel is run in software or in hardware is determined
by specifying the version in a Galapagos configuration file.

4.2.2 The ZRLMPI Prototype: Providing a Programming Model for FPGA Clusters. Besides ab-
stracting and managing the communication between different FPGA kernels, the behavior of this
type of concurrency needs to be programmed as well, so a programming model for FPGA clus-
ters is needed. In the past decade, there have been numerous approaches for this question (among
others, References [37, 44, 55]), but there is no convergence to a common standard yet.

The trend towards network-attached FPGAs and thus the development of the FPGA from a
co-processor to an “equal” stand-alone node, caused the community to revisit this search for a
programming model for FPGA clusters. The ZRLMPI prototype [123, 124] tries to end this search
by proposing to port MPI, the de facto standard for HPC, to FPGA clusters.
Bringing MPI to a heterogeneous cluster of FPGAs and CPUs involves two steps: First, a com-

piler is needed to compile a given program to different hardware. Second, a runtime environment
is required, which implements the MPI APIs, start, stop, and synchronizes the execution between
the nodes. ZRLMPI provides both. On the one hand, it provides a transpiler—or cross-compiler—
that splits and optimizes an input MPI program to multiple programs, one for each physical node.
This split breaks with the “Single Program, Multiple Data” (SPMD) notion of MPI, but this is
necessary due to two reasons: First, in opposition to software, unused program parts for individ-
ual nodes results in wasted logic for FPGAs. Second, CPU and FPGA parts of the program need
different compilers to build the binaries. On the other hand, ZRLMPI implements a runtime envi-
ronment for FPGA and CPU nodes that ensures the synchronous message processing independent
of the executing hardware. Hence, the CPU-FPGA cluster can be programmed and managed like
a pure CPU cluster and existing programs could be ported easily to such heterogeneous clusters.

4.2.3 Commercial Programming Model: Maxeler’s Dataflow Engines. Maxeler, a pioneer in
FPGA-based high-performance computing, provides an entire infrastructure consisting of hard-
ware and software for dataflow applications. Its MaxCloud provides cloud implementation of a
high-performance dataflow computing system. MaxCloud runs on Maxeler MPT compute nodes
that consist of multi-core x86 CPUs with multiple MaxelerDataflow Engines (DFEs), large mem-
ory systems, and fast disks. It runs an industry standard Linux distribution. The DFEs are FPGA-
boards attached to the CPU through PCIe.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:21

Fig. 6. Shell Role Architecture shares many common concepts.

4.2.4 Commercial Deployment Platforms: InAccel and VMAccel. InAccel offers a general-
purpose accelerator orchestrator capable of integrating FPGAs from various vendors to simplify
the deployment, scaling, and resource management of FPGA clusters. Their Coral software
contains high-level APIs in C/C++, Java, and Python and a unified engine that supports every
heterogeneous multi-accelerator platform. InAccel also provides a runtime specification that ven-
dors can use to advertise system hardware resources to Coral. It aims to specify the configuration,
and execution interface for the efficient management of any FPGA hardware resource, without
customizing the code for Coral itself. In Coral, client applications may call accelerators on a local
FPGA or remotely with their arguments and configuration parameters. Coral orchestrates the
execution on a variety of execution environments, from bare-metal Linux servers to containers
inside a Kubernetes cluster.
VMAccel, a company in stealth before January 2021, operates a large, multi-tenant FPGA IAAS

cloud platform based on Openstack, Docker, and Kubernetes. This platform supports virtual ma-
chines, bare metal, and containerized FPGA acceleration options. VMAccel’s cluster consists of
over 1,000 FPGAs and is designed from the ground up with FPGAs in mind. VMAccel removes
restrictions on hardware and offers direct access to JTAG and QSFP interfaces for clients; their
offering is designed to be customizable and flexible to accommodate varying user needs and work-
loads. The company plans to implement disaggregation technology by Q4 2021 to offer users even
more flexibility in hardware composition.

4.3 Cloud FPGA Usability – Current Needs and Outlook

Considering the usability, scalability, and portability, we notice the progress that has been made in
the past years to decrease the barriers of leveraging FPGAs in datacenter and cloud environments,
but we also see the need to further improvements. In particular, we identify two areas: First, to
enable “seamless” portability, the application interfaces within the FPGAs need to be standard-
ized. Second, FPGAs should be integrated further into classical software stacks and debugging of
(distributed) FPGA applications has to become simpler. Both areas are addressed below.

4.3.1 Enabling Portability: Standardizing the Application Interface. From a general point of view,
FPGA applications do not exist in empty space: They are part of a more or less complex commu-
nication schema with other FPGAs or CPUs, as discussed in Sections 3 and 4.0.2. If we analyze all
the earlier mentioned SRAs from this perspective, then we find some general patterns, besides the
pure split of logic into a Shell and a Role. This high-level generic design of SRA platforms is shown
in Figure 6. Every Role is controlled by some configuration and control registers or signals such as
start and stop, node_id or virtual I/O pins. Besides this, two types of communication channels
can be found:

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:22 C. Bobda et al.

(1) Address-based communication: Every data belongs to an address in an address space. This
address space is at least partially shared with the CPU. So, the content of the data can be
interpreted based on the address the data belongs to. This communication type is used by
PCIe-attached or memory-synchronized FPGAs such as openCAPI systems or OpenCL plat-
forms.

(2) Stream-based communication: Here, every data belongs to a stream of data without fur-
ther meta data such as addresses. In some cases, the data stream is accompanied by other
streams that indicate the origin or destination of this stream. Consequently, the data can be
interpreted only with the knowledge of the specific physical connection the data came from
and to some extent, the content of parallel meta data streams. This type of communication is
used by network-attached FPGAs—such as the IBM cloudFPGA project [3] or the Galapagos
cluster [44]—or for some fabric abstractions.

The synchronization between these FPGAs and the other devices, e.g., the CPU is up to the
“magic” protocol of this platform, as sketched in the middle of Figure 6. “Magic” in the sense
that the details of this synchronization are not important for FPGA application developers. FPGA
application developers are more concerned with the high-level capabilities (what can be done) as
opposed to the low-level implementation details (how the synchronization between FPGAs and
CPUs is done).
Therefore, since most FPGA cloud platforms share the same architectural pattern with the SRA

and due to the observation that interfaces of the data path are more important to users of cloud
FPGAs than the details of how the data path ends up in the FPGA, we think it is possible to describe
a standard interface for cloud FPGA applications at this level and leave the details of the “magic”
to each individual platform. The SRA architecture has been around since the early days of FPGA
integration in desktop systems. Examples include the ESM [22], Walder and Platzner OS [153], and
the Celoxica series 1000PP and 2000 [21], and many more. This standard interface can also apply
to extensions like the Mantle architecture [121], because the adapter could be “below” or “above” a
common interface. There is no reason to doubt that progress will continue in this direction and that
future systemswill rely on amore portable, standardized SRA as interface for seamless deployment
of design in the cloud.
Every system designer has implemented a variation with a library on the hardware and software

side to facilitate the development of hardware and software systems. A semblance of standardiza-
tion has been developed over the years by FPGA vendors in the form of board support packages
and libraries. While these packages simplify the design and integration of a single FPGA in a
desktop or standalone mode, extension to cloud computing platforms has yet to be achieved. In-
creased adoption of FPGA infrastructure requirements in the cloud will help achieve this goal. In
this direction, we are starting to see new CSP players such as VMAccell and Inaccel that pro-
vide tools and architectures to seamlessly expose FPGAs to users in numerous possible cloud
computing paradigms. This progress will continue with companies offering more flexible, effi-
cient solutions that increase resource usage, with single or multiple tenants. The Cyborg project
discussed in Section 4.3.2 is an effort by the opensource community to facilitate the integration of
non-conventional processors such as FPGA, GPUs in datacenters. We expect these developments
to gain traction and lead to better design tools and efficient management frameworks that will
accelerate adoption of FPGA in datacenters.

4.3.2 Cyborg Project: Managing FPGA Accelerators in OpenStack Clouds. OpenStack is a free
and open standard for cloud computing platforms. It allows easy deployment and management
of infrastructure-as-a-service for public and private clouds. The development of OpenStack is
organized into projects. The Cyborg project specifically addresses the integration and general

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:23

management of hardware accelerators such as FPGAs, GPUs, SoCs, and so on, in OpenStack,
enabling the provision of hardware acceleration as a service. Cyborg provides REST APIs to list,
create, update, and delete devices hardware devices in a cloud infrastructure. Enabling FPGA
acceleration in OpenStack opens opportunities for researchers to explore use cases of FPGA
technology in the cloud. In addition, it enables cloud providers with the ability to provision
heterogeneous architectures with minimal effort and cost. However, services still need to be
developed to program devices at runtime, manage bitstreams, update and migrate shells, enable
debugging designs with the insertion of probes, monitor on-chip sensors, and so on.

4.3.3 Simplifying Usability: Increase FPGA Integration and DevOps Support. Besides the limited
portability of FPGA applications, which leads to strong dependencies to specific hardware and
cloud vendors [121], FPGA applications need still be developed from scratch, most of the time.
Usually, one needs to write a new FPGA application in a tool that depends on the used FPGA plat-
form. In addition, debugging is often still done with debug-probes at “wire-level.” This is in strong
contrast to the usability of other accelerator platforms, where in the best case, the application de-
veloper does not notice the usage of heterogeneous hardware by the toolchain. For example, if
using today’s deep-learning frameworks, then GPUs are seamlessly integrated and can be used
with one or two lines of code [143]. The usage of one or many FPGAs must become as simple as
the usage of GPUs in this examples.
As discussed in above sections, there are many efforts that explore this research direction. For

example, it is possible to deploy a given FPGA binary on a multitude of cloud FPGA platforms
with a single line of code or to compile and deploy an application of a given framework on a spe-
cific platform [123]. However, to reach the desired level of simplicity, both categories need to be
combined. It is not sufficient to deploy a fixed functionality on a flexible platform or a flexible
functionality on a fixed platform. For FPGAs, to be of use for complex scientific and commercial
applications, it must be possible to develop, debug, and deploy complex distributed applications
easily and independently of specific platforms. This includes the development of vertically inte-
grated design environments [63, 104, 107, 111] and supporting more debugging possibilities [116].
We notice that this problem is subject of many active research projects and we appreciate that this
focus is starting to be reflected in academic conferences and workshops.

5 SECURITY OF FPGA ACCELERATION IN CLOUD AND DATACENTER

ENVIRONMENTS

The availability of FPGAs in cloud datacenters has opened up unprecedented levels of application
flexibility and performance, although security is an important consideration. The development
of Spectre [81] and Meltdown [87] demonstrated how hardware vulnerabilities can be leveraged
at the software level to successfully launch attacks on infrastructure. FPGAs add another
infrastructure resource to the cloud that must be free of vulnerabilities to prevent malicious
activities. Unfortunately, a user’s ability to implement any logic function provides unique avenues
for malicious attacks on other cloud users’ applications and data and the cloud infrastructure
itself [74, 148, 165]. In this section, current and future threats to cloud FPGA security are discussed
with an eye towards prevention of existing and future potential attacks.

5.1 Cloud FPGA Security Overview

Many of the threats facing cloud FPGAs are similar to threats that have long been prevalent in
microprocessor-based cloud computing [34, 109, 136]. Multi-tenancy can lead to side channels in
which confidential user data is stolen [117, 169], or covert channels in which otherwise logically
isolated users are able to transmit sensitive information between each other [58]. Software and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:24 C. Bobda et al.

interface manipulation can also result in a denial of service for cloud users or even the infrastruc-
ture. Malicious bitstreams uploaded to the FPGAs in the data center can lead to faults or incorrect
results being generated [62, 113]. Unlike previous software-based attacks, cloud FPGA attacks of-
ten include digital hardware manipulation whereby the FPGA logic is configured in a malicious
way that can lead to accelerated device wear-out, short circuits [8, 15], or performance degradation.
In addition to the existing single-tenant deployments already available from vendors such as AWS,
multi-tenant cloud FPGAs are being actively researched. In multi-tenant FPGAs, different users
share the same FPGA, making attacks between users more dangerous. The use of multi-tenant
cloud FPGAs in the future will expand attack surfaces, necessitating more comprehensive security
plans.
The threats associated with cloud FPGAs include malicious FPGA tenants in a single-tenant

setting, co-tenants in a multi-tenant setting, nefarious cloud service providers, malicious and com-
promised tools, or intellectual property cores that may try to attack or steal information [74]. The
most striking of these threats is related to malicious co-tenants in the multi-tenant setting.
In this section, we review cloud and datacenter FPGA security threats. Vulnerabilities broadly

target the FPGA chip, the interfaces between the FPGA chip and other components on the FPGA
board or the server where the FPGA boards are located, and the system software used to manage
the FPGA bitstreams (e.g., loading designs onto the FPGA) and access data generated by the FPGA.
Other infrastructure components related to FPGAs, such as the shared power distribution within
the server, can also be a source of security vulnerabilities. Current and potential future attacks are
reviewed in this section in addition to existing and potential countermeasures.

5.2 Cloud FPGA Usage Models

In this subsection, we categorize FPGA usage models in the context of the architectures and inter-
faces introduced in Sections 3, 4.0.2, and 4.3.1. In many respects, the level of security available to
cloud FPGAs is dependent on the architectural model used and the associated interfaces.
Unlike in software-based virtual machine (VM) instances, with FPGA-accelerated instances,

users naturally engage with the hardware at a lower level. In software-based VMs, a hypervisor
provides an encapsulated environment for user execution that largely consists of virtualized CPUs,
memory, storage, and network interfaces. This encapsulation facilitates memory protection and
network isolation. Today’s commercial single-tenant cloud-based FPGAs do not abstract or virtual-
ize fundamental logical resources such as LUTs, block memory, or multiply-accumulate units. This
limitation is currently present for two reasons. First, abstracting the underlying FPGA fabric with
a template incurs non-trivial overhead in terms of usable FPGA logic density. Since many of the
performance benefits of using an FPGA hinge upon exploiting maximal parallel processing, the
efficient use of the available logic is very important. Second, FPGA virtualization is difficult. For
example, adding logic to stop an arbitrary circuit mid-computation, save the intermediate state,
and restore it at a later point presents design challenges and is expensive to implement in terms
of FPGA resources and performance. For example, although block memory and flip flop contents
in Xilinx UltraScale+ FPGAs can be streamed out of the device at 6.4 Gbps using a configuration
interface, the largest devices contain nearly 500 Mbit of RAM and 3.5 million flip flops [162]. Also,
pipeline registers in multiply-accumulate blocks cannot be easily retrieved via the interface.
Difficulties in implementing FPGA virtualization affect how they can be offered in the cloud.

For example, unlike traditional software-based servers, the fine-grain context switching of user
Roles is not practical. Rather, today’s commercial cloud providers assign an entire FPGA or more
than one entire FPGA to a user for the duration of their computation, forming a single-tenant
setting. For example, in the case of an AWS F1 instance, a user is assigned a VM on a given server
that has exclusive access to N FPGAs, with the VM resources and number of FPGAs scaled to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:25

the size of the purchased instance. The user first programs their circuit(s) onto the FPGA(s) and
then can utilize them at will, within the constraints of what the Shell will allow. When the user’s
instance terminates, or the cloud provider elects to reclaim the instance, the software-side and
FPGA resources will be returned to the allocation pool to be re-assigned to a different user, who
will then gain exclusive access to the FPGA(s) for themselves. The provider is expected to properly
erase all the resources before allocating them to the next user. For instance, the DDR memories
provided on the FPGA boards in AWS F1 instances get overwritten before an instance is allocated
to a new user.
In the near future, it is likely that large FPGAs that could be shared by multiple users will be

installed in datacenters. Sharing of the same FPGA by multiple users in the multi-tenant setting is
an example of the multi-tenant spatial model. In this case, FPGAs will have enough resources to
subdivide each device into multiple regions that can be assigned to independent users and a single
Shell would manage multiple Role regions, using dynamic partial reconfiguration to install a given
user’s Role at runtime. As a result, a single device would need to connect to multiple different VMs
and communication to the device would need to be multiplexed from a specific VM to a particular
Role. Since the circuits for different users reside on the same FPGA simultaneously in different
Role regions, significant new security issues may arise (e.g., side-channel attacks, fault injection
attacks, attacks on shared memory and I/O infrastructure [74]).
In addition to accelerator-focused deployments, such as AWS F1 instances, in which users access

the FPGAs via PCIe as a co-processor, there are other models of intra-node FPGA communication.
As discussed in Section 3, bump-in-the-wire architectures directly connect FPGAs to a network so
all network communication flows through FPGAs. This gives faster access to network data, but, ef-
fectively, data frommany users may pass through an FPGA instance controlled by a malicious user.
A further possible deployment includes the CPU and FPGA together on the server, possibly as

different chips on the same motherboard or with the CPU and FPGA sharing the same system-
on-chip (SoC). With the acquisitions of Altera by Intel and Xilinx by AMD, FPGAs may become
directly integrated into large servers as fundamental computers, not just as accelerator cards. It is
also expected that FPGAs will become parts of the processor dies themselves. This opens up even
further security threats, as, for example, the FPGA may have access to the memory bus and the
coherence messages being sent between CPUs.

5.3 Cloud and Datacenter FPGA Attack Categories

The co-location of multiple tenants inside cloud-based FPGAs, or having multiple dedicated FP-
GAs per user but sharing a server between different users, leads to numerous resource sharing
threats. Resource sharing can occur within an FPGA in a multi-tenant setting, between an FPGA
and associated host CPU and DRAM, or between different FPGA boards within the server in a
back-end configuration. Figure 7 provides a summary of resources that can be shared. The vul-
nerable resources include the system and individual chip power distribution network (PDN),
FPGA logic and wiring resources, Shell logic provided by the cloud provider, DRAM memory on
the FPGA board, and the host CPU. Further, a system bus in a storage-attached system may be
shared with the host server, which can include vulnerable DRAMmemory that can be accessed by
multiple users via direct memory access (DMA).
The following subsections detail current and future threats that are rooted in the shared re-

sources. These threats have been broadly grouped into the following categories:

(1) Single-tenant attacks;
(2) Multi-tenant attacks;
(3) Node-level attacks;

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:26 C. Bobda et al.

Fig. 7. Diagram of hardware resources that are shared in FPGA-accelerated servers and among servers in a

server rack; each shared resource could be a source of a possible attack or information leak.

(4) Datacenter system-level attacks;
(5) Bump-in-the-wire attacks;
(6) FPGA and CPU on same die, motherboard, or SoC attacks.

5.4 Single-tenant Attacks

These attacks affect FPGA computation in which one user at a time is using the FPGA. Today’s
cloud-based FPGA deployments exclusively follow such a single-tenant model.

5.4.1 Single-tenant Temporal Channels. Allowing users to load custom FPGA designs opens up
the opportunity for malicious users to sense the environment on or around an FPGA. In particular,
temperature affects operation of many electronic circuits: It affects signal delay in wires, transistor
switching, and capacitor decay (used in DRAM memories, for example).
Previous work [145] has shown that it is possible to create thermal covert channels for commu-

nication between users. In particular, even in a single-tenant FPGA setting, users share the FPGAs
in time: Once a user is done using an FPGA, it is assigned to a different user. Other temporal at-
tacks may be possible, for example one FPGA user may generate substantial PCIe traffic, which
reduces the bandwidth quota assigned to the FPGA. When the next user design is loaded onto the
FPGA, he or she may still experience a reduced bandwidth quota from the prior user. Any system
component that maintains state could be abused for temporal attacks if the state is not properly
erased. The state could be physical (e.g., thermal state) or logical (e.g., PCIe bandwidth allocation).
For example, old DRAM values may be read by subsequent users. In practice, this attack is not
currently feasible, since vendors (e.g., AWS F1) actively clear DRAM between users.

5.5 Multi-tenant Attacks

Multi-tenant attacks impact FPGA computation in whichmultiple users access the FPGA or shared
resources (e.g., memory) at the same time.Most current research focuses on this setting, as resource
sharing can lead to a diverse set of attacks.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:27

5.5.1 Multi-tenant Voltage Attacks. FPGAs in the multi-tenant spatial model are particularly
vulnerable to supply voltage attacks. All logic implemented in a commercial FPGA shares a power
distribution network (PDN). As a result, the PDN can be manipulated to perform a broad spec-
trum of attacks, including the implementation of covert channels [58], the side channel theft of
encryption keys [128, 169] or other information, and fault injection [62, 113]. In extreme cases,
large power waster circuits can consume sufficient power to drive the FPGA board into reset [114].
A full summary of multi-tenant voltage attacks is available [74].

Although multi-tenant voltage attacks have been widely explored, there are several additional
vectors of interest. It may be possible to localize failures to other specific devices on a board through
clever on-FPGA voltage manipulation. Remediation to prevent such attacks is also needed. AWS F1
includes a power monitor that will shut down an entire FPGA that consumes excessive power [61].
It has been shown that voltage sensor networks instantiated in an FPGA can quickly detect at-
tacks [113]. This information could be used to quickly suppress offending attack circuitry. Finally,
it may be possible to architect FPGAs so PDN regions are isolated or a global “kill” signal can
quickly suppress an FPGA region suspected of malicious activity.

5.5.2 Multi-tenant Attacks on Shared Block RAMs. Allowing a user to intentionally cause write
collisions in FPGA dual-port block RAMs can induce voltage and temperature fluctuations and re-
sult in circuit faults [5]. The faults may affect other users. Although unexplored, it may be possible
to abuse other modules (e.g., communication blocks, DSP blocks) within an FPGA to cause faults
or unintended behavior for other users.

5.5.3 Multi-tenant Crosstalk Attacks. The crosstalk of routing channel wires in multi-tenant
FPGAs has been extensively explored [60, 117]. In particular, static values on routing wires (logical
1 vs. 0, which corresponds to a charged or discharged routing wire) affect the propagation delay
on immediately adjacent channel wires. It is possible to sense the state of the adjacent wire and
use the information as a covert channel or side channel. Crosstalk has been used to steal AES [117]
and RSA [118] cryptographic keys.
Crosstalk could also be used to target Shell logic, or wires associated with communication buses,

such as the AXI bus within the FPGA used to connect different modules. The shared internal
FPGA bus could potentially be snooped to extract data from different users at different times. The
existence of crosstalk necessitates physical separation so different users’ modules or the Shell
are spatially far apart to prevent crosstalk. User-level control of logic placement may need to be
prevented in multi-tenant scenarios so attackers cannot chose custom locations for their logic, e.g.,
next to the Shell’s communication buses.

5.5.4 Multi-tenant Attacks on DRAM. Each cloud FPGA board typically has its own attached
DRAM that augments the shared DRAM on the server. Both sets of DRAM storage could be sus-
ceptible to Rowhammer-style attacks [79] in which one user attempts to modify the DRAM of
another user. This issue is particularly worrisome for multi-tenant FPGAs in which multiple spa-
tial co-tenants have immediate hardware access to the same DRAM modules, although this has
not yet been demonstrated in practice.
Since cloud FPGAs contain multiple DRAM chips (e.g., AWS F1 includes four DRAMmodules, or

chips, per FPGA), it may be possible to assign data from different tenants to different DRAM chips,
mitigating Rowhammer attacks by tenants. If more tenants than DRAM chips exist in a bank, then
tenants could be assigned to non-adjacent DRAM locations to prevent attacks. The development
of a DRAM controller and DRAM allocation and access policies for multi-tenant FPGA settings
could also be considered.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:28 C. Bobda et al.

5.6 Node-level Attacks

These attacks influence computing components located outside of the FPGA.Many of these attacks
are possible already in single-tenant cloud settings.

5.6.1 Node-level Attacks on Server’s DRAM. An FPGA Role could influence memory access for
software components that are not running on the FPGA. An FPGA Role or compromised Shell
could induce Rowhammer-style attacks on the server’s DRAM, since the FPGA has DMA access
to the memory on the server. FPGA accelerators typically use memory mapped buses to access
DRAM. Cloud providers must implement ad hoc memory protection units to prevent malicious
accesses, especially when resources are shared by another user.
While current FPGA node implementations typically include accelerator cards, FPGAswill even-

tually be more tightly integrated into the server. Once integrated, FPGAs may have direct access
to coherence messages and the ability to read and write DRAM, bypassing the PCIe and DMA used
today. This opens up the possibility of attacks on the coherence messages or the modification of
the caches’ contents, since FPGA operations will affect the CPU’s memory.

5.6.2 Node-level Attacks on a Server’s Power Distribution Network. Shared power distribution
networks are not only a concern for FPGA co-tenants, but also for components that share a system-
level power supply. Significant changes in FPGA power usage on a data center board can be sensed
by an FPGA on a different board if both boards use the same power supply [59]. While covert
communication using a shared power supply has been demonstrated in a lab setting, it has not
been shown using commercial public cloud hardware. A natural extension may be the creation
of a covert channel between servers or between server racks, although these channels may be
blocked by power supply filtering circuits.
It has also been shown that the encryption key of a cryptographic algorithm running on a

microprocessor can be extracted using an FPGA if both devices share a supply voltage [169]. This
approach could also be used to create a covert communication channel. Similar channels could be
developed from CPU to FPGA or from GPU to FPGA, as previously demonstrated [59]. In both
cases the FPGA could be the receiver, as it is able to measure voltage changes.

5.6.3 Node-level Bus Attacks. The Shell could be attacked by an FPGA Role to stall the bus
connecting the FPGA to the host server, creating a denial-of-service attack. This attack could po-
tentially be achieved by manipulating messages sent to the bus controller on the FPGA side or by
causing voltage attacks that in turn create faults in the bus controller that stall the bus.

5.7 Datacenter System-level Attacks

These attacks affect more than one node in the datacenter.

5.7.1 FPGA Instance Fingerprinting. Users can create malicious FPGA designs that steal cloud
infrastructure information. For example, it is possible to fingerprint FPGA instances using DRAM
physical uncloneable functions (PUFs) [146]. Given the assumption that a given physical
DRAM module will not be moved from one FPGA board to another, fingerprinting DRAM mod-
ules is equivalent to fingerprinting the attached FPGAs. An FPGA may also be fingerprinted using
dedicated PUF circuits inside the device [149]. Any circuit with a delay path, such as time-to-
digital converter (TDC) circuit or existing hard intellectual property (IP)modules for digital
signal processing (DSP), could potentially be used as a PUF. Recent work [144] has shown that
PCIe bus contention can also be used to fingerprint cloud infrastructures. Such contention-based
attacks could be extended to also cover network cards, which are attached to the bus.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:29

Fingerprinting attacks allow users to learn the number of FPGAs that are available and their
physical co-location within servers. Although fingerprinting attacks have focused on individual
FPGAs and servers, they could be extended to fingerprint server racks or whole data centers,
possibly using server thermal or voltage fluctuation patterns.

5.7.2 Potentially Destructive Attacks. Any attack that can physically damage the data center
hardware is very serious. Most destructive attacks would likely use excessive power, although, as
mentioned eariler in this section, power usage is already checked by cloud providers such as AWS,
and a user’s design is stopped if an FPGA crosses a power usage threshold. In general, destructive
power attacks may not have an instantaneous effect. Accelerated hardware degradation via less
aggressive power attacks may take longer but can be equally destructive and harder to detect.

5.8 Bump-in-the-wire Attacks

Risks associated with cloud FPGAs impact system architecture and user access models. Bump-in-
the-wire architectures have unique security challenges, since FPGAs are directly connected to the
network and process network packets from many users. Exposing FPGA resources in this manner
allows reconfigurable hardware application developers to exploit the natural ability of the hard-
ware to process at network line rates. Furthermore, bump-in-the-wire (or Smart-NIC) architectures
can support new capabilities while minimizing the impact of host software.
Malicious hardware in a bump-in-the-wire FPGA can easily and quickly flood the network with

nuisance packets. Although modern datacenters have systems to both monitor for problems and
take corrective actions, which limit the potential scope of issues that do arise, there is an inherent
delay between the start of a potential problem and the implementation of a solution. Thus, network-
connected FPGAs can, at the very least, create transitory local service issues. In a datacenter where
network-connected FPGAs are ubiquitous, a well-coordinated attack could have a systemic impact.
This issue is further complicated in bump-in-the-wire architectures, since blocking traffic from an
ill-behaved FPGA also blocks access to the host server.
Future research in bump-in-the-wire architectures could consider the moderation of network

packet injection and the careful scanning of network requests. Effectively, a broad class of network
security approaches could be applied to this class of cloud FPGA architecture.

5.9 Comparison with Existing CPU- and GPU-based Threats in Cloud Computing

Most hardware-related CPU threats faced by cloud providers involve information leakage and side-
channel or covert-channel attacks. The information leakage is usually due to resource sharing (e.g.,
via shared processor caches) [135]. These sharing-based attacks have some similarity to possible
shared bus [144] and DRAM attacks involving multiple FPGA tenants. For users that demand se-
curity, cloud providers can allocate full CPU cores (to avoid level 1 cache sharing and related
attacks, for example) or even allocate full servers to a single user. This limits any sharing of CPU
resources, but also clearly prevents resource sharing that could lower costs or improve utilization.
Researchers have also demonstrated GPU-based cache attacks that can leak information between
users due to shared resources such as caches [39]. FPGAs also suffer from resource sharing and con-
tention, but also have new types of FPGA threats due to ability to create malicious FPGA circuits
that can measure temperature, measure voltage changes, observe decay of the DRAM modules,
and so on.

5.10 Cloud FPGA Security – Current Countermeasures and Needs

Looking forward, security for cloud FPGAs can be categorized into four axes of protection: FPGA
intellectual property protection, system-level security, runtime user support, and FPGA device
architecture improvements. Each of these axes is addressed below.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:30 C. Bobda et al.

5.10.1 FPGA Intellectual Property Protection. Although FPGA design disclosure to the cloud
vendor helps limit the loading of malicious bitstreams to the cloud, it exposes a user’s intellectual
property to the cloud vendor. AWS andMicrosoft, for example, do not allow users to directly create
FPGA bitstreams for use in the cloud. Zeitouni et al. [166] have developed a multi-step procedure
to protect cloud infrastructure from damage by a malicious FPGA without disclosing the user’s
netlist to the cloud provider. This goal is accomplished using a trusted execution environment,
trusted Shell, and mutual authentication using a PUF for key generation. This approach could be
extended by considering FPGA architecture enhancements for trusted execution and key storage.

5.10.2 Preventing Attacks Using System-level Security. Protection for FPGAs, memory, transport
buses, and OS support are needed to create a secure system. These aspects of cloud FPGAs use
could potentially be vulnerable, and a security approach must consider how to protect the whole
system. System-level integration increases the difficulty of securing an entire system in the face
of remote hardware attacks.
The integration of FPGAs in cloud systems induces temporal and/or spatial interaction among

cloud tenants. Without guarantees of isolated execution, this sharing can lead to scenarios where
shared accelerators act as potential covert channels among software guests that reside in different
security contexts. Remote attacks have been demonstrated by manipulating FPGA hardware (e.g.,
the PDN), as explained earlier in this section. Domain isolation in hardware can be addressed from
a software perspective using an operating system. Emphasis can be placed on a system’s ability
to limit privileges associated with executing processes to contain the scope of damage that can
result from the exploitation of application vulnerabilities [88, 125]. Access control used in SoC
and FPGA-based embedded systems have assumed the availability of reference monitors to manage
hardware access [23, 71, 119]. Similar approaches could be provided in a multi-tenant cloud FPGA
scenario.
A comprehensive solution to domain isolation that cuts across hardware and software has been

proposed [66, 83, 96, 102] in which an FPGA is shared among virtual machines. The isolation
framework guarantees that hardware modules execute and reside in the same security context
as the “caller” VM. Similar operating systems and hypervisor approaches could form the basis of
multi-tenant isolation.

5.10.3 Runtime User Support. The Shell, cloud software, and cloud management systems used
for cloud FPGAs will need to significantly change in the coming years to support the multi-tenant
spatial model. This prospect raisesmultiple new FPGA-specific questions for cloud providers. Start-
ing at the beginning of the work flow, a user’s Role must be dynamically programmed to a specific
Role region. However, the cloud provider may not elect to expose an API for the user’s VM to
perform this programming for itself. Doing so may unnecessarily expose a vital part of the system,
the dynamic partial reconfiguration port, to potential abuse (e.g., a denial of service attack that
prevents or slows other Roles from being programmed onto the device). Rather, the cloud provider
may modify their management system to program the Role region in advance, only starting the
user’s VM after this operation is complete. This model also simplifies the Shell, software drivers,
and VM facilities that must be provided, since no safeguards are needed to ensure that a given
VM can only reprogram a specific Role region. In this case, the cloud management software will
send commands to the hypervisor, similar to what occurs when a VM is allocated. This model may
depart from the experience that some users may expect or need. For example, disallowing a user
from reprogramming the FPGA directly changes the potential use-cases that can be supported and
complicates the recovery process when a Role that has become unresponsive due to a bug in the
user’s code.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:31

Once the user’s Role is active on the device, the user’s VMmust have exclusive access to the Role.
Although the VM, driver, and Shell modifications needed to implement this access may be similar
to SR-IOV for devices that use PCIe, this approach may require different techniques for devices
that do not, e.g., network-attached standalone FPGAs. Furthermore, the Shell has responsibilities
that extend beyond communicationwith a user’s software—it must virtualize all external resources.
In the case of a resource like external memory, the Shell not only needs to segment the address
space for different Roles, it also must make fairness or quality of service considerations between
Roles. In the case of a resource like a network connection, this action likely requires support for
virtual networking to enforce isolation across the network and quality of service considerations
from both Roles and upstream switches.
Put together, the basic requirements needed to support the multi-tenant spatial model of execu-

tion indicate that all parts of the cloud eco-system will need to become more sophisticated. How-
ever, this added complexity presents new issues. For example, adding complexity naturally also
increases the potential for security vulnerabilities. In the case of the Shell, the necessary changes
also affect utilization. For example, the value proposition of the multi-tenant spatial model is the
availability of hardware for different users, thereby minimizing idle FPGA space. However, if sig-
nificant additional logic must be added to the Shell to support the multi-tenant spatial model, then
any potential advantage may be nullified.

5.10.4 FPGA Architecture Changes. In general, commercial FPGAs were not designed for simul-
taneous use by multiple independent users (the multi-tenant spatial model). To prevent attacks,
additional security measures may need to be added to FPGA devices. One possible architectural
enhancement is the isolation of PDNs to FPGA regions to avoid on-FPGA voltage attacks. Such iso-
lation, which is common in multi-core microprocessors, may also allow for more flexible voltage
scaling on a per-region basis. FPGAs could also be instrumented with additional hardened voltage
and temperature monitors that can be read quickly. This information could then be used to isolate
and suppress voltage, thermal, and other attacks before they can cause damage. Finally, new tech-
niques to dynamically reconfigure FPGA regions and save state more quickly may be needed to
fully support rapid on-demand FPGA use in the cloud.
Improved bitstream security may spur interest in FPGA use as a root-of-trust in the data cen-

ter. Although modern FPGAs contain PUFs used in key management, and specialized blocks for
hashing and decryption of bitstreams, full breaks of modern FPGA bitstreams are commonplace
[41]. Increased bitstream security will allow for a wider role for FPGAs in boot-strapping systems,
incorporating roles that have historically used trusted platform modules (TPMs) to validate
firmware.

6 APPLICATIONS

In this section, we focus on customer applications that in most cases are run on public cloud
services. We divide these applications into two categories, namely, infrastructure-based and other
applications.

6.1 Infrastructure

FPGAs have traditionally been used within networking equipment such as routers and switches.
In addition to the base functionality provided by the equipment vendor, more flexible switching
and routing capabilities were later introduced with protocols such as OpenFlow. An OpenFlow
switch [105] was implemented using NetFPGA hardware [156] to handle traffic going through the
electrical engineering and computer science building at Stanford University. Subsequently, NetF-
PGA SUME was introduced for prototyping 10, 40, and 100 Gbps applications [170]. FPGAs have

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:32 C. Bobda et al.

also been used as disaggregated computing resources by directly connecting to the datacenter net-
work as standalone resources [3]. The infrastructure of this cluster can be separated into privileged
and non-privileged regions using partial reconfiguration [122]. In recent years, computing require-
ments on the data plane have increased significantly with the emergence of applications such as
server virtualization and overlay tunneling. Performing such functions in software causes signifi-
cant CPU overhead, and SmartNICs were used to implement highly complex server side data plane
functions. Microsoft introduced FPGA-based SmartNICs to provide accelerated cloud services for
Azure customers by offloading host networking to hardware [47]. In this architecture, an FPGA is
placed in series with the network connection of the blade server (bump-in-the-wire) that enables
pre- and post-processing of data. Several other cloud service providers have also started using
SmartNICs in their acceleration applications [89, 163]. A framework [42] has been proposed that
provides a software abstraction and an FPGA-based hardware runtime for accelerating general
purpose applications in multi-tenant systems.

6.2 Other Applications

Numerous data center applications can benefit from using FPGA acceleration in areas such as data-
base acceleration, big data, machine learning, security, and privacy, some of which are described
below.

6.2.1 Data Analytics. The core functionality of Memcached, a powerful open-source in-
memory key-value store for small chunks of data, has been implemented on an FPGA [28]. This
architecture has tightly integrated compute, network, and memory resources so it achieves sig-
nificant benefits in terms of power consumption and performance compared to a baseline server.
Xilinx has also built two versions of Memcached on FPGA [18, 19]. A methodology has been pre-
sented for integrating FPGAs into Apache Spark [31], an open source analytics engine used for
big data processing. The cluster used in this work consists of a master node and six worker nodes,
each of which is equipped with a PCIe-attached Alpha Data ADM-PCIE-7V3 FPGA board. It has
been shown that the performance of Spark-FPGA integration scales well up to six worker nodes.
A challenge of using Java-based analytics platforms like Spark is being able to efficiently share
the application data managed by Java with the custom accelerator inside the FPGA [56, 57]. Sam-
sung has proposed a near storage accelerator for database sort using a SmartSSD, which consists
of an integrated FPGA that has a direct connection (P2P) to the storage device [126]. Having a
direct connection obviates the need to transfer data through the host memory, which incurs sig-
nificant latency in addition to occupying host resources. The implementation of a k-means algo-
rithm using multiple FPGAs in a heterogeneous computing cluster has been presented [32]. Re-
searchers have shown the ability to sort large amounts of data on an FPGA to support non-volatile
memory [75], an application that could be useful for cloud architectures in the future. Similarly,
researchers have shown that FPGAs can accelerate analytics for relational databases using a sin-
gle node [93], an approach that could be implemented in the cloud. Network-attached FPGAs have
been shown to significantly accelerate functions useful for database transactions, such as atomic
broadcast in hardware, which has been demonstrated on a distributed key-value store implementa-
tion [73] that demonstrates low latency and high throughput. FLOEM is a system for accelerating
network applications where reconfiguration is part of the NiC. FLOEM also uses key-value stores
as a demonstrator of its efficacy [110].

6.2.2 Deep Learning. Computational requirements for processing AI workloads have grown
significantly over the past few years, and cloud operators have opted to use FPGAs in applications
involving DNNs because of their high power efficiency and performance compared to CPUs
and GPUs. For some of the implementations, they were motivated by research outcomes in the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

The Future of FPGA Acceleration in Datacenters and the Cloud 34:33

field of machine learning. DNNWeaver [130] generates custom, synthesizable accelerators for
deep neural networks that best match the needs of the DNN while providing high performance
and efficiency gains for the target FPGA. Notably, DNNWeaver is FPGA-agnostic and has been
demonstrated on both Intel and Xilinx FPGAs. The automatically generated accelerators deliver
superior performance and efficiency compared to multicore CPU and GPU implementations. The
redundancy associated with floating point number representation in CNNs used by CPUs and
GPUs can be removed by quantizing weights and activations and retraining the neural network.
FINN is a framework developed by Xilinx Research Labs to design flexible quantized neural net-
work inference accelerators on FPGAs [20]. This work shows that simple arithmetic operations
in binary neural networks (BNNs) are well suited for energy-efficient inference by fitting
parameters entirely in on-chipmemory (OCM), which enables high computational performance.
Microsoft’s Brainwave [33, 49] is a hardware architecture developed to perform real time AI
calculations using a soft-core neural processing unit (NPU) implemented on an Intel Stratix 10
FPGA. This NPU uses reduced precision proprietary floating point formats and enables compet-
itive levels of performance and energy efficiency compared to hard NPUs without compromising
the accuracy of the model. Brainwave was used as a cloud service [38] to accelerate ResNet-50
image classification for particle physics computing applications. An enhancement has been made
to the Brainwave’s NPU [24] to efficiently use the tensor blocks in an FPGA, and its performance
has been compared against Nvidia’s T4 and V100 GPUs. An FPGA acceleration platform using a
supertile-based design method for general-purpose CNNs and image/video inference applications
has also been introduced [164]. An interleaved task dispatching method has been used to scale up
supertile units (SUs) to efficiently perform different types of convolutions. Training CNNs using
an FPDeep framework has also been demonstrated [154]. Although the proposed architecture
is not cloud-ready yet, the authors have provided some insights onto a possible future cloud
deployment using a scalable FPGA cluster. The use of multiple FPGAs to implement more complex
3D CNNs is of research interest. Such implementations have demonstrated higher inference
throughput while preserving the end-to-end latency of a single FPGA implementation [17, 134].

6.2.3 Security and Privacy. An important application area for FPGAs in the cloud is the secu-
rity and privacy of user data undergoing computation. Early research identified the necessity of
having FPGAs secure client data from attackers and untrusted system administrators [40]. A vir-
tualization framework was proposed and prototyped [29] that allows for the abstraction of cloud
FPGA resources using accelerator pools (APs). Garbled circuits (GC) [46] provide a promising
approach for the hardware acceleration of privacy preserving computation. This work demon-
strated the implementation of a generic reconfigurable coarse-grained FPGA overlay architecture
for secure function evaluation. GC has been deployed using AWS [70] and applied to privacy-
preserving machine learning on cloud servers using FPGAs [72]. A garbler circuit [70] can achieve
a 15× speedup compared to a software implementation. The acceleration of homomorphic encryp-
tion is also being investigated [147]. Here, a domain-specific co-processor architecture is used to
accelerate homomorphic function evaluation on encrypted data using AWS F1 FPGA instances. Re-
searchers at Microsoft have demonstrated homomorphic encryption on FPGAs and demonstrated
over 100× speedup compared to previous implementations [120].

6.3 Future Applications

FPGAs are increasingly being made available in user programmable cloud systems including those
from Alibaba [171], AWS [7], and the Open Cloud Testbed [64]. The trend is to have these FPGAs
be directly attached to the network to remove the latency incurred when data is transferred to and
from the host. At the same time, FPGAs continue to grow in capacity and to incorporate larger and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

34:34 C. Bobda et al.

diverse memory elements. The applications of the future will take advantage of these properties to
deliver graph processing [30], machine learning, security and privacy applications on large data,
as well as accelerating a host of scientific applications and applications not yet imagined.

7 CONCLUSIONS

This article has discussed the recent and potential future evolution of FPGAs in cloud computing
platforms and datacenters from the perspective of experts in this field of research. The article
focuses on the architectural organization, resource management, security, and application
deployment of FPGAs used in cloud and datacenter environments. These disciplines must be well
understood for cloud service providers (CSP) to effectively provide resources to users, and for
users to efficiently use the resources. The evolution of these FPGA systems has been chronicled
in the article, and current research provides insight into future development trajectories.
Towards GPUs and CPUs, FPGAs have the advantage of low latency, high throughput, and en-

ergy efficiency. While FPGAs will not replace CPU and GPUs, they will be a complementary alter-
native in the cloud in applications such as computer vision, AI, security, crypto processing, and
more.
We believe that future FPGA-inclusive cloud systems and datacenters will consolidate the vast

selection of choices available today into a smaller range of architectures, programming models,
and security-enhanced deployments. This consolidation may mirror the integration of CPUs and
FPGAs in desktop and embedded systems that has taken place over the past two decades. With
increased available FPGA resources per device, many applications in the future will use only a
portion of an entire FPGA, leading to a need for resource sharing and system multi-tenancy. As a
result, FPGA architectures for cloud computing will require physical resource and protocol isola-
tion to ensure user security across different tenants, and the containment of faults and attacks that
can disrupt system operation. Enhancements in architecture, programming models, and security
will lead to a broader range of applications for FPGA-based cloud deployment and growing market
share in the years to come.
The main obstacle for a broad adoption of FPGAs in datacenters is the lack of the software stack

that allows easy deployment, management, and scaling of FPGAs on the cloud. Providing a soft-
ware stack similar to the one that has led to the success of CPUs/GPUs will increase architecture
diversification in the cloud, with FPGAs operating as equal partners on the side of CPUs and GPUs.
The foundations for broad adoption of FPGA in datacenters are currently being developed. Innova-
tive companies such as VMAccel, Inaccel, as well as the opensource initiatives such as the Cyborg
project whose goal is the seamless integration of accelerator in OpenStack, are paving the way.

REFERENCES

[1] Mohamed S. Abdelfattah, David Han, Andrew Bitar, Roberto DiCecco, Shane O’Connell, Nitika Shanker, Joseph Chu,

Ian Prins, Joshua Fender, Andrew C. Ling, et al. 2018. DLA: Compiler and FPGA overlay for neural network inference

acceleration. In 28th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 411–4117.

[2] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and L. Veltri. 2017. Implementation of virtual network

function chaining through segment routing in a Linux-based NFV infrastructure. In IEEE Conference on Network

Softwarization (NetSoft). 1–5. DOI:https://doi.org/10.1109/NETSOFT.2017.8004208
[3] Francois Abel, JagathWeerasinghe, Christoph Hagleitner, BeatWeiss, and Stephan Paredes. 2017. An FPGA platform

for hyperscalers. In IEEE 25th Annual Symposium on High-Performance Interconnects. 29–32. DOI:https://doi.org/10.
1109/HOTI.2017.13

[4] Amran A. Al-Aghbari and Muhammad E. S. Elrabaa. 2019. Cloud-based FPGA custom computing machines for

streaming applications. IEEE Access 7 (2019), 38009–38019.

[5] Md Mahbub Alam, Shahin Tajik, Fatemeh Ganji, Mark Tehranipoor, and Domenic Forte. 2019. RAM-Jam: Remote

temperature and voltage fault attack on FPGAs using memory collisions. In Workshop on Fault Diagnosis and Toler-

ance in Cryptography. 48–55.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://doi.org/10.1109/NETSOFT.2017.8004208
https://doi.org/10.1109/HOTI.2017.13

The Future of FPGA Acceleration in Datacenters and the Cloud 34:35

[6] Gustavo Alonso, Timothy Roscoe, David Cock, Muhsen Owaida, Kaan Kara, Dario Korolija, Zeke Wang, et al. 2020.

Tackling hardware/software co-design from a database perspective. In 6th Biennial Conference on Innovative Data

Systems Research (CIDR).

[7] Amazon.com, Inc. 2021. Amazon EC2 F1 Instances. Retrieved from https://aws.amazon.com/ec2/instance-types/f1/.

[8] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, and G. Snider. 1995. Teramac-configurable custom computing.

In IEEE Symposium on FPGAs for Custom Computing Machines. 32–38.

[9] ARM. 2010. AMBA 4 AXI4-Stream Protocol Specification. Technical Report. ARM.

[10] ARM. 2011. AMBA AXI and ACE Protocol Specification. Technical Report. ARM.

[11] Mikhail Asiatici, Nithin George, Kizheppatt Vipin, Suhaib A. Fahmy, and Paolo Ienne. 2017. Virtualized execution

runtime for FPGA accelerators in the cloud. IEEE Access 5 (2017), 1900–1910.

[12] Daniel O. Awduche. 1999. MPLS and traffic engineering in IP networks. IEEE Commun. Mag. 37, 12 (1999), 42–47.

[13] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. Towards predictable datacenter net-

works. InACM SIGCOMMConference (SIGCOMM’11). Association for ComputingMachinery, NewYork, NY, 242–253.

DOI:https://doi.org/10.1145/2018436.2018465
[14] R. Baxter, S. Booth, M. Bull, G. Cawood, J. Perry, M. Parsons, A. Simpson, A. Trew, A. McCormick, G. Smart, R. Smart,

A. Cantle, R. Chamberlain, and G. Genest. 2007. Maxwell – A 64 FPGA supercomputer. In 2nd NASA/ESA Conference

on Adaptive Hardware and Systems (AHS’07). 287–294. DOI:https://doi.org/10.1109/AHS.2007.71
[15] Christian Beckhoff, Dirk Koch, and Jim Torresen. 2010. Short-circuits on FPGAs caused by partial runtime reconfig-

uration. In International Conference on Field Programmable Logic and Applications. 596–601.

[16] D. Bernstein. 2014. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput. 1, 3 (2014), 81–84.

[17] Saman Biookaghazadeh, Pravin Kumar Ravi, and Ming Zhao. 2021. Toward multi-FPGA acceleration of the neural

networks. ACM J. Emerg. Technol. Comput. Syst. 17, 2 (2021), 1–23.

[18] Michaela Blott, Kimon Karras, Ling Liu, Kees Vissers, Jeremia Bär, and Zsolt István. 2013. Achieving 10Gbps

line-rate key-value stores with FPGAs. In 5th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’13).

USENIX Association, San Jose, CA. Retrieved from https://www.usenix.org/conference/hotcloud13/workshop-

program/presentations/blott.

[19] Michaela Blott, Ling Liu, Kimon Karras, and Kees Vissers. 2015. Scaling out to a single-node 80gbps memcached

server with 40terabytes of memory. In 7th USENIXWorkshop on Hot Topics in Storage and File Systems (HotStorage’15).

USENIX Association, Santa Clara, CA. Retrieved from https://www.usenix.org/conference/hotstorage15/workshop-

program/presentation/blott.

[20] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Kenneth O’Brien, Yaman Umuroglu,

Miriam Leeser, and Kees Vissers. 2018. FINN-R: An end-to-end deep-learning framework for fast exploration of

quantized neural networks. ACM Trans. Reconfig. Technol. Syst. 11, 3 (2018), 1–23.

[21] Christophe Bobda. 2007. Introduction to Reconfigurable Computing: Architectures, Algorithms, and Applications (1st

ed.). Springer Publishing Company, Incorporated.

[22] C. Bobda, A. Majer, A. Ahmadinia, T. Haller, A. Linarth, and J. Teich. 2005. The Erlangen slot machine: Increasing flex-

ibility in FPGA-based reconfigurable platforms. In IEEE International Conference on Field-Programmable Technology.

37–42. DOI:https://doi.org/10.1109/FPT.2005.1568522
[23] Marc Boulé and Zeljko Zilic. 2008. Automata-based assertion-checker synthesis of PSL properties. ACM Trans. Des.

Autom. Electron. Syst. 13, 1 (Feb. 2008). DOI:https://doi.org/10.1145/1297666.1297670
[24] Andrew Boutros, Eriko Nurvitadhi, Rui Ma, Sergey Gribok, Zhipeng Zhao, James C. Hoe, Vaughn Betz, and

Martin Langhammer. 2020. Beyond peak performance: Comparing the real performance of AI-Optimized FPGAs

andGPUs. In International Conference on Field-Programmable Technology (ICFPT). 10–19. DOI:https://doi.org/10.1109/
ICFPT51103.2020.00011

[25] Alexander Brant and Guy G. F. Lemieux. 2012. ZUMA: An open FPGA overlay architecture. In IEEE 20th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 93–96.

[26] Stuart Byma, J. Gregory Steffan, Hadi Bannazadeh, Alberto Leon Garcia, and Paul Chow. 2014. FPGAs in the cloud:

Booting virtualized hardware accelerators with openstack. In IEEE 22nd Annual International Symposium on Field-

Programmable Custom Computing Machines. IEEE, 109–116.

[27] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, Jeremy Fowers, Michael Haselman, Stephen Heil, Matt

Humphrey, Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa

Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale acceleration architecture. In 49th

IEEE/ACM International Symposium on Microarchitecture. 1–13.

[28] Sai Rahul Chalamalasetti, Kevin Lim, Mitch Wright, Alvin Au Young, Parthasarathy Ranganathan, and

Martin Margala. 2013. An FPGA memcached appliance. In ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays. 245–254.

[29] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and Kun Wang. 2014. Enabling FPGAs in

the cloud. In 11th ACM Conference on Computing Frontiers. ACM, 3.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://aws.amazon.com/ec2/instance-types/f1/
https://doi.org/10.1145/2018436.2018465
https://doi.org/10.1109/AHS.2007.71
https://www.usenix.org/conference/hotcloud13/workshop-program/presentations/blott
https://www.usenix.org/conference/hotstorage15/workshop-program/presentation/blott
https://doi.org/10.1109/FPT.2005.1568522
https://doi.org/10.1145/1297666.1297670
https://doi.org/10.1109/ICFPT51103.2020.00011

34:36 C. Bobda et al.

[30] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Deming Chen. 2021. ThunderGP: HLS-

based graph processing framework on FPGAs. In ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. 69–80.

[31] Yu-Ting Chen, Jason Cong, Zhenman Fang, Jie Lei, and Peng Wei. 2016. When Spark meets FPGAs: A case study

for next-generation DNA sequencing acceleration. In 8th USENIX Workshop on Hot Topics in Cloud Computing (Hot-

Cloud’16).

[32] Yuk-Ming Choi and Hayden Kwok-Hay So. 2014. Map-Reduce processing of k-means algorithm with FPGA-

accelerated computer cluster. In IEEE 25th International Conference on Application-Specific Systems, Architectures and

Processors. 9–16.

[33] Chung Eric, Fowers Jeremy, Ovtcharov Kalin, Papamichael Michael, Caulfield Adrian, Massengill Todd, Liu Ming,

Lo Daniel, Alkalay Shlomi, and Haselman Michael. 2018. Serving DNNs in real time at datacenter scale with project

brainwave. IEEE Micro 38, 2 (2018), 8–20.

[34] Catalin Cimpano. 2020. Vast majority of cyber-attacks on cloud servers aim to mine cryptocurrency. Retrieved from

https://www.zdnet.com/article/vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/.

[35] Chris Conger, Ian Troxel, D. Espinoza, Vikas Aggarwal, andA. George. 2005. NARC: Network attached reconfigurable

computing for high performance, network based applications. In 8th Annual International Conference on Military and

Aerospace Programmable Logic Devices (MAPLD’05).

[36] Guohao Dai, Yi Shan, Fei Chen, Yu Wang, Kun Wang, and Huazhong Yang. 2014. Online scheduling for FPGA com-

putation in the cloud. In International Conference on Field-Programmable Technology (FPT). IEEE, 330–333.

[37] Tiziano De Matteis, Johannes de Fine Licht, Jakub Beránek, and Torsten Hoefler. 2019. Streaming message interface:

High-performance distributed memory programming on reconfigurable hardware. In International Conference for

High Performance Computing, Networking, Storage and Analysis. 1–33.

[38] Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman, Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin

Kreis, Brian Lee, Mia Liu, et al. 2019. FPGA-accelerated machine learning inference as a service for particle physics

computing. Comput. Softw. Big Sci. 3, 1 (2019), 1–15.

[39] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, Andres Marquez, and Kevin Barker. 2021. Leaky

buddies: Cross-component covert channels on integrated CPU-GPU systems. In ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA). IEEE, 972–984.

[40] Ken Eguro and RamarathnamVenkatesan. 2012. FPGAs for trusted cloud computing. In 22nd International Conference

on Field Programmable Logic and Applications (FPL). 63–70.

[41] Maik Ender, Amir Moradi, and Christof Paar. 2020. The unpatchable silicon: A full break of the bitstream encryption

of Xilinx 7-series FPGAs. In 29th USENIX Security Symposium.

[42] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019. NICA: An infrastructure for inline

acceleration of network applications. In USENIX Annual Technical Conference (USENIX ATC 19). 345–362.

[43] Dieter Ernst. 2020. Competing in Artificial Intelligence Chips: China’s Challenge Amid Technology War. Centre for

International Governance Innovation, Special Report.

[44] Nariman Eskandari, Naif Tarafdar, Daniel Ly-Ma, and Paul Chow. 2019. Amodular heterogeneous stack for deploying

FPGAs and CPUs in the data center. In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays

(FPGA’19). ACM, New York, NY, 262–271. DOI:https://doi.org/10.1145/3289602.3293909
[45] Suhaib A. Fahmy, Kizheppatt Vipin, and Shanker Shreejith. 2015. Virtualized FPGA accelerators for efficient cloud

computing. In IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom). IEEE,

430–435.

[46] Xin Fang, Stratis Ioannidis, and Miriam Leeser. 2017. Secure function evaluation using an FPGA overlay architecture.

In ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 257–266.

[47] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari

Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung et al. 2018. Azure accelerated networking: SmartNICs in the

public cloud. In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). 51–66.

[48] Forbes. 2018. Xilinx FPGAs: The Chip Behind Alibaba’s Singles Day. Retrieved from https://www.forbes.com/sites/

moorinsights/2018/11/29/xilinx-fpgas-the-chip-behind-alibabas-singles-day/?sh=5f2294e27e3b.

[49] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,

Michael Haselman, LoganAdams,Mahdi Ghandi, StephenHeil, Prerak Patel, Adam Sapek, GabrielWeisz, LisaWoods,

Sitaram Lanka, Steven K. Reinhardt, AdrianM. Caulfield, Eric S. Chung, and Doug Burger. 2018. A configurable cloud-

scale DNN processor for real-time AI. In ACM/IEEE 45th Annual International Symposium on Computer Architecture

(ISCA). 1–14. DOI:https://doi.org/10.1109/ISCA.2018.00012
[50] Karl Freund. 2017. Google Cloud TPU: Strategic Implications for Google, NVIDIA and the Machine Learn-

ing Industry. Retrieved from https://www.forbes.com/sites/moorinsights/2017/05/22/google-cloud-tpu-strategic-

implications-for-google-nvidia-and-the-machine-learning-industry/?sh=69d2f5a13af7.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://www.zdnet.com/article/vast-majority-of-cyber-attacks-on-cloud-servers-aim-to-mine-cryptocurrency/
https://doi.org/10.1145/3289602.3293909
https://www.forbes.com/sites/moorinsights/2018/11/29/xilinx-fpgas-the-chip-behind-alibabas-singles-day/?sh=5f2294e27e3b
https://doi.org/10.1109/ISCA.2018.00012
https://www.forbes.com/sites/moorinsights/2017/05/22/google-cloud-tpu-strategic-implications-for-google-nvidia-and-the-machine-learning-industry/?sh=69d2f5a13af7

The Future of FPGA Acceleration in Datacenters and the Cloud 34:37

[51] Norihisa Fujita, Ryohei Kobayashi, Yoshiki Yamaguchi, and Taisuke Boku. 2019. Parallel processing on FPGA com-

bining computation and communication in OpenCL programming. In IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). IEEE, 479–488.

[52] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki, James Clarkson, and Christos Kotselidis.

2019. Dynamic application reconfiguration on heterogeneous hardware. In 15th ACM SIGPLAN/SIGOPS International

Conference on Virtual Execution Environments. 165–178.

[53] William Gayde. 2020. How Arm Came to Dominate the Mobile Market and It’s Coming for More, Much More. Re-

trieved from https://www.techspot.com/article/1989-arm-inside.

[54] Alan George, Herman Lam, and Greg Stitt. 2010. Novo-G: At the forefront of scalable reconfigurable supercomputing.

Comput. Sci. Eng. 13, 1 (2010), 82–86.

[55] A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng, and C. Yang. 2016. Novo-G#: Large-scale recon-

figurable computing with direct and programmable interconnects. In IEEE High Performance Extreme Computing

Conference (HPEC). 1–7. DOI:https://doi.org/10.1109/HPEC.2016.7761639
[56] Ehsan Ghasemi and Paul Chow. 2016. Accelerating Apache Spark big data analysis with FPGAs. In Interna-

tional IEEE Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Computing, Scalable Com-

puting and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). 737–744. DOI:https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-

IoP-SmartWorld.2016.0119

[57] Ehsan Ghasemi and Paul Chow. 2019. Accelerating Apache Spark with FPGAs. Concurr. Comput.: Pract. Exper. 31, 2

(2019), e4222. DOI:https://doi.org/10.1002/cpe.4222 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4222.

[58] Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. 2019. Reading between the dies: Cross-SLR covert channels

on multi-tenant cloud FPGAs. In IEEE International Conference on Computer Design. 1–10.

[59] Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. 2020. CAPSULe: Cross-FPGA covert-channel attacks through

power supply unit leakage. In IEEE Symposium on Security and Privacy. 1728–1741.

[60] Ilias Giechaskiel, Kasper B. Rasmussen, and Ken Eguro. 2018. Leaky wires: Information leakage and covert commu-

nication between FPGA long wires. In Asia Conference on Computer and Communications Security (ASIACCS). 15–27.

[61] AWS GitHub. 2020. AFI Power. Retrieved from https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.

md.

[62] Dennis R. E. Gnad, Fabian Oboril, and Mehdi B. Tahoori. 2017. Voltage drop-based fault attacks on FPGAs using valid

bitstreams. In International Conference on Field Programmable Logic and Applications (FPL). 1–7.

[63] Christoph Hagleitner, Dionysios Diamantopoulos, Burkhard Ringlein, Constantinos Evangelinos, Charles Johns,

Rong N. Chang, Bruce D’Amora, James A. Kahle, James Sexton, Michael Johnston, Edward Pyzer-Knapp, and Chris

Ward. 2021. Heterogeneous computing systems for complex scientific discovery workflows. In Design, Automation

Test in Europe Conference Exhibition (DATE). 13–18. DOI:https://doi.org/10.23919/DATE51398.2021.9474061
[64] S. Handagala, M. Herbordt, and M. Leeser. 2021. OCT: The open cloud FPGA testbed. In 31st International Conference

on Field Programmable Logic and Applications (FPL).

[65] Reiner Hartenstein. 2001. Coarse grain reconfigurable architecture (embedded tutorial). In Asia and South Pacific

Design Automation Conference. ACM, 564–570.

[66] Festus Hategekimana, Joel Mandebi Mbongue, Md Jubaer Hossain Pantho, and Christophe Bobda. 2018. Inheriting

software security policies within hardware IP components. In IEEE International Symposium on Field-Programmable

Custom Computing Machines. 53–56. DOI:https://doi.org/10.1109/FCCM.2018.00017

[67] Festus Hategekimana, Joel Mandebi Mbongue, Md Jubaer Hossain Pantho, and Christophe Bobda. 2018. Secure hard-

ware kernels execution in CPU+ FPGA heterogeneous cloud. In International Conference on Field-Programmable Tech-

nology (FPT). IEEE, 182–189.

[68] Nicole Hemsothd. 2017. First in-depth look at Google’s new second-generation TPU. Retrieved from https://www.

nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/.

[69] Edson L. Horta, John W. Lockwood, David E. Taylor, and David Parlour. 2002. Dynamic hardware plugins in an

FPGA with partial run-time reconfiguration. In 39th Annual Design Automation Conference (DAC’02). Association

for Computing Machinery, New York, NY, 343–348. DOI:https://doi.org/10.1145/513918.514007
[70] Kai Huang, Mehmet Gungor, Xin Fang, Stratis Ioannidis, and Miriam Leeser. 2019. Garbled circuits in the cloud using

FPGA enabled nodes. In IEEE High Performance Extreme Computing Conference (HPEC). 1–6.

[71] Ted Huffmire, Brett Brotherton, Nick Callegari, Jonathan Valamehr, Jeff White, Ryan Kastner, and Tim Sherwood.

2008. Designing secure systems on reconfigurable hardware. ACM Trans. Des. Autom. Electron. Syst. 13, 3 (July 2008),

44:1–44:24.

[72] Siam U. Hussain, Bita Darvish Rouhani, Mohammad Ghasemzadeh, and Farinaz Koushanfar. 2018. Maxelerator:

FPGA accelerator for privacy preserving multiply-accumulate (MAC) on cloud servers. In 55th Annual Design Au-

tomation Conference. 1–6.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://www.techspot.com/article/1989-arm-inside
https://doi.org/10.1109/HPEC.2016.7761639
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0119
https://doi.org/10.1002/cpe.4222
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4222
https://github.com/aws/aws-fpga/blob/master/hdk/docs/afi_power.md
https://doi.org/10.23919/DATE51398.2021.9474061
https://doi.org/10.1109/FCCM.2018.00017
https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/
https://doi.org/10.1145/513918.514007

34:38 C. Bobda et al.

[73] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016. Consensus in a box: Inexpensive coordination

in hardware. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI’16). 425–438.

[74] Chenglu Jin, Vasudev Gohil, Ramesh Karri, and Jeyavijayan Rajendran. 2020. Security of cloud FPGAs: A survey.

arxiv arXiv:2005.04867 (2020).

[75] Sang-Woo Jun, Shuotao Xu, and Arvind. 2017. Terabyte sort on FPGA-accelerated flash storage. In IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM). 17–24. DOI:https://doi.org/
10.1109/FCCM.2017.53

[76] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene. 2014. FlowBender: Flow-level adaptive rout-

ing for improved latency and throughput in datacenter networks. In 10th ACM International Conference on Emerg-

ing Networking Experiments and Technologies (CoNEXT’14). Association for Computing Machinery, New York, NY,

149–160. DOI:https://doi.org/10.1145/2674005.2674985
[77] Nachiket Kapre and Jan Gray. 2015. HopLite: Building austere overlay NOCs for FPGAs. In 25th International Con-

ference on Field Programmable Logic and Applications (FPL). IEEE, 1–8.

[78] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza, and Christopher J. Rossbach. 2018.

Sharing, protection, and compatibility for reconfigurable fabric with Amorphos. In 13th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI’18). 107–127.

[79] Yoongu Kim, Ross Daly, Jeremie S. Kim, Chris Fallin, Jihye Lee, Donghyuk Lee, Chris B.Wilkerson, Konrad K. Lai, and

Onur Mutlu. 2014. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance

errors. In International Symposium on Computer Architecture. 361–372.

[80] Ryohei Kobayashi, Yuma Oobata, Norihisa Fujita, Yoshiki Yamaguchi, and Taisuke Boku. 2018. OpenCL-ready high

speed FPGA network for reconfigurable high performance computing. In International Conference on High Perfor-

mance Computing in Asia-Pacific Region. 192–201.

[81] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,

Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative

execution. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[82] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. 2020. Do OS abstractions make sense on FPGAs? In 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI’20). 991–1010.

[83] S. Kumar Saha and C. Bobda. 2020. FPGA accelerated embedded system security through hardware isolation. InAsian

Hardware Oriented Security and Trust Symposium (AsianHOST). 1–6. DOI:https://doi.org/10.1109/AsianHOST51057.
2020.9358258

[84] Joshua Landgraf, Tiffany Yang, Will Lin, Christopher J. Rossbach, and Eric Schkufza. 2021. Compiler-driven FPGA

virtualization with SYNERGY. In 26th ACM International Conference on Architectural Support for Programming Lan-

guages and Operating Systems. 818–831.

[85] Xiangwei Li, Abhishek Jain, Douglas Maskell, and Suhaib A. Fahmy. 2016. An area-efficient FPGA overlay using DSP

block based time-multiplexed functional units. arXiv preprint arXiv:1606.06460 (2016).

[86] Thomas Lin, Byungchul Park, Hadi Bannazadeh, and Alberto Leon-Garcia. 2015. Savi testbed architecture and fed-

eration. In Future Access Enablers of Ubiquitous and Intelligent Infrastructures. Springer, 3–10.

[87] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Man-

gard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown: Reading kernel memory from

user space. In 27th USENIX Security Symposium (USENIX Security’18).

[88] Peter Loscocco and Stephen Smalley. 2001. Meeting critical security objectives with security-enhanced Linux. In

Ottawa Linux Symposium. 115–134.

[89] Layong Larry Luo and T. E. G. Tencent. 2018. In Towards Converged SmartNIC Architecture for Bare Metal and Public

Clouds at Tencent Scale 2nd Asia-Pacific Workshop on Networking (APNet 2018) August 2-3 2018, Beijing, China.

[90] Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqiang Liu, Abel Mulugeta Eneyew, Zhengwei Qi, and

Baris Kasikci. 2020. A hypervisor for shared-memory FPGA platforms. In 25th International Conference on Architec-

tural Support for Programming Languages and Operating Systems. 827–844.

[91] M. Ma and V. W. S. Wong. 2019. An optimal peak hour content server cache update scheduling algorithm for 5G het-

nets. In IEEE International Conference on Communications (ICC). 1–6. DOI:https://doi.org/10.1109/ICC.2019.8761705
[92] SenMa, Zeyad Aklah, and David Andrews. 2015. A run time interpretation approach for creating custom accelerators.

In 25th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 1–4.

[93] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun Kumar, and Hadi Esmaeilzadeh. 2018. In-RDBMS

hardware acceleration of advanced analytics. Proc. VLDB Endow. 11, 11 (July 2018), 1317–1331.

[94] Mallik Mahalingam, Dinesh G. Dutt, Kenneth Duda, Puneet Agarwal, Lawrence Kreeger, T. Sridhar, Mike Bursell,

and Chris Wright. 2014. Virtual eXtensible local area network (VXLAN): A framework for overlaying virtualized

layer 2 networks over layer 3 networks. RFC 7348 (2014), 1–22.

[95] Pongstorn Maidee, Alireza Kaviani, and Kevin Zeng. 2017. LinkBlaze: Efficient global data movement for FPGAs. In

International Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE, 1–8.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://doi.org/10.1109/FCCM.2017.53
https://doi.org/10.1145/2674005.2674985
https://doi.org/10.1109/AsianHOST51057.2020.9358258
https://doi.org/10.1109/ICC.2019.8761705

The Future of FPGA Acceleration in Datacenters and the Cloud 34:39

[96] JoelMandebiMbongue, Sujan Kumar Saha, and Christophe Bobda. 2021. Domain isolation in FPGA-accelerated cloud

and data center applications. In Great Lakes Symposium on VLSI. 283–288.

[97] Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, and Christophe Bobda. 2018. FLexiTASK: A flexible FPGA over-

lay for efficient multitasking. In Great Lakes Symposium on VLSI. ACM, 483–486.

[98] Joel Mbongue, Festus Hategekimana, Danielle Tchuinkou Kwadjo, David Andrews, and Christophe Bobda. 2018.

FPGAVirt: A novel virtualization framework for FPGAs in the cloud. In IEEE 11th International Conference on Cloud

Computing (CLOUD). IEEE, 862–865.

[99] Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, and Christophe Bobda. 2019. Automatic generation of

application-specific FPGA overlays with Rapidwright. In International Conference on Field-Programmable Technol-

ogy (ICFPT). IEEE, 303–306.

[100] Joel Mandebi Mbongue, Danielle Tchuinkou Kwadjo, Alex Shuping, and Christophe Bobda. 2021. Deploying multi-

tenant FPGAs within Linux-based cloud infrastructure. ACM Trans. Reconfig. Technol. Syst. 15, 2 (2021), 1–31.

[101] Joel Mandebi Mbongue, Sujan Kumar Saha, and Christophe Bobda. 2021. Performance study of multi-tenant cloud

FPGAs. In IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 168–171.

[102] Joel Mandebi Mbongue, Sujan Kumar Saha, and Christophe Bobda. 2021. A security architecture for domain isolation

in multi-tenant cloud FPGAs. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 290–295.

[103] Joel MandebiMbongue, Alex Shuping, Pankaj Bhowmik, and Christophe Bobda. 2020. Architecture support for FPGA

multi-tenancy in the cloud. In IEEE 31st International Conference on Application-specific Systems, Architectures and

Processors (ASAP). IEEE, 125–132.

[104] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2019. A hardware-software blueprint for flexible deep learning

specialization. IEEE Micro 39, 5 (2019), 8–16. DOI:https://doi.org/10.1109/MM.2019.2928962

[105] Jad Naous, David Erickson, G. Adam Covington, Guido Appenzeller, and Nick McKeown. 2008. Implementing an

OpenFlow switch on the NetFPGA platform. In 4th ACM/IEEE Symposium on Architectures for Networking and Com-

munications Systems. 1–9.

[106] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. 2006. Intel virtualization technology: Hardware

support for efficient processor virtualization. Intel Technol. J. 10, 3 (2006).

[107] Jonas Ney, Dominik Loroch, Vladimir Rybalkin, Nico Weber, Jens Krüger, and Norbert Wehn. 2021. HALF: Holistic

auto machine learning for FPGAs. In st IEEE International Conference on Field-Programmable Logic and Applications

(FPL). DOI:https://doi.org/10.1109/FPL53798.2021.00069
[108] M. Noormohammadpour and C. S. Raghavendra. 2018. Datacenter traffic control: Understanding techniques and

tradeoffs. IEEE Commun. Surv. Tutor. 20, 2 (2018), 1492–1525. DOI:https://doi.org/10.1109/COMST.2017.2782753

[109] Opeyemi Osanaiye, Kim-Kwang Raymond Choo, and Mqhele Dlodlo. 2016. Distributed denial of service (DDoS)

resilience in cloud: Review and conceptual cloud DDoS mitigation framework. J. Netw. Comput. Applic. 67 (May

2016), 147–165.

[110] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter, Rastislav Bodik, and Thomas

Anderson. 2018. FLOEM: A programming system for NIC-accelerated network applications. In 13th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI’18). 663–679.

[111] Christian Pilato, Stanislav Bohm, Fabien Brocheton, Jeronimo Castrillon, Riccardo Cevasco, Vojtech Cima, Radim

Cmar, Dionysios Diamantopoulos, Fabrizio Ferrandi, Jan Martinovic, Gianluca Palermo, Michele Paolino, Anto-

nio Parodi, Lorenzo Pittaluga, Daniel Raho, Francesco Regazzoni, Katerina Slaninova, and Christoph Hagleitner.

2021. EVEREST: A design environment for extreme-scale big data analytics on heterogeneous platforms. In Design,

Automation Test in Europe Conference Exhibition (DATE). 1320–1325. DOI:https://doi.org/10.23919/DATE51398.2021.
9473940

[112] Christian Plessl. 2018. Bringing FPGAs to HPC production systems and codes. In H2RC’18 Workshop at Supercomput-

ing (SC’18). DOI:https://doi.org/10.13140/RG.2.2.34327.42407
[113] George Provelengios, Daniel Holcomb, and Russell Tessier. 2019. Characterizing power distribution attacks in multi-

user FPGA environments. In International Conference on Field Programmable Logic and Applications (FPL). 194–201.

[114] George Provelengios, Daniel Holcomb, and Russell Tessier. 2020. Power wasting circuits for cloud FPGA attacks. In

International Conference on Field Programmable Logic and Applications (FPL).

[115] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.

Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati, J. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith,

J. Thong, P. Y. Xiao, and D. Burger. 2014. A reconfigurable fabric for accelerating large-scale data center services. In

ACM/IEEE 41st International Symposium on Computer Architecture (ISCA). 13–24. DOI:https://doi.org/10.1109/ISCA.
2014.6853195

[116] Arzhang Rafii, Welson Sun, and Paul Chow. 2021. Pharos: A multi-FPGA performance monitor. In 31st International

Conference on Field-Programmable Logic and Applications (FPL). 257–262. DOI:https://doi.org/10.1109/FPL53798.2021.
00048

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://doi.org/10.1109/MM.2019.2928962
https://doi.org/10.1109/FPL53798.2021.00069
https://doi.org/10.1109/COMST.2017.2782753
https://doi.org/10.23919/DATE51398.2021.9473940
https://doi.org/10.13140/RG.2.2.34327.42407
https://doi.org/10.1109/ISCA.2014.6853195
https://doi.org/10.1109/FPL53798.2021.00048

34:40 C. Bobda et al.

[117] Chethan Ramesh, Shivukumar B. Patil, Siva Nishok Dhanuskodi, George Provelengios, Sébastien Pillement, Daniel

Holcomb, and Russell Tessier. 2018. FPGA side channel attacks without physical access. In IEEE 26th Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines (FCCM). 45–52.

[118] Kasper Rasmussen, Ilias Giechaskiel, and Ken Eguro. 2019. Leakier wires: Exploiting FPGA long wires for covert-and

side-channel attacks. ACM Trans. Reconfig. Technol. Syst. 12, 3 (2019), 11:1–11.29.

[119] Sandip Ray and Yier Jin. 2015. Security policy enforcement in modern SoC designs. In IEEE/ACM International Con-

ference on Computer-Aided Design. 345–350.

[120] M. Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. Heax: An architecture for computing on encrypted

data. In 25th International Conference on Architectural Support for Programming Languages and Operating Systems.

1295–1309.

[121] B. Ringlein, F. Abel, D. Diamantopoulos, B.Weiss, C. Hagleitner,M. Reichenbach, andD. Fey. 2021. A case for function-

as-a-service with Disaggregated FPGAs. In IEEE 14th International Conference on Cloud Computing (CLOUD’21).

333–344. DOI:https://doi.org/10.1109/CLOUD53861.2021.00047
[122] Burkhard Ringlein, Francois Abel, Alexander Ditter, BeatWeiss, ChristophHagleitner, and Dietmar Fey. 2019. System

architecture for network-attached FPGAs in the cloud using partial reconfiguration. In 29th International Conference

on Field Programmable Logic and Applications (FPL). IEEE, 293–300. DOI:https://doi.org/10.1109/FPL.2019.00054
[123] B. Ringlein, F. Abel, A. Ditter, B. Weiss, C. Hagleitner, and D. Fey. 2020. Programming reconfigurable heteroge-

neous computing clusters using MPI with transpilation. In IEEE/ACM International Workshop on Heterogeneous High-

performance Reconfigurable Computing (H2RC). IEEE, 1–9. DOI:https://doi.org/10.1109/H2RC51942.2020.00006
[124] B. Ringlein, F. Abel, A. Ditter, B.Weiss, C. Hagleitner, and D. Fey. 2020. ZRLMPI: A unified programmingmodel for re-

configurable heterogeneous computing clusters. In IEEE 28th Annual International Symposium on Field-Programmable

Custom Computing Machines (FCCM). IEEE, 220. DOI:https://doi.org/10.1109/FCCM48280.2020.00051

[125] John M. Rushby. 1982. Proof of separability a verification technique for a class of security kernels. In International

Symposium on Programming. 352–367.

[126] Sahand Salamat, Armin Haj Aboutalebi, Behnam Khaleghi, Joo Hwan Lee, Yang Seok Ki, and Tajana Rosing. 2021.

NASCENT: Near-storage acceleration of database sort on SmartSSD. In ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays (FPGA’21). 262–272.

[127] Grigory Sapunov. 2021. Will ASIC Chips Become the Next Big Thing in AI? Retrieved from https://

moorinsightsstrategy.com/will-asic-chips-become-the-next-big-thing-in-ai/.

[128] Falk Schellenberg, Dennis R. E. Gnad, Amir Moradi, and Mehdi B. Tahoori. 2018. An inside job: Remote power

analysis attacks on FPGAs. In Design, Automation & Test in Europe Conference & Exhibition (DATE). 1111–1116.

[129] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. 2012. OpenStack: Toward an open-source solution for

cloud computing. Int. J. Comput. Applic. 55, 3 (2012), 38–42.

[130] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim, Chenkai Shao, Asit Mishra, and

Hadi Esmaeilzadeh. 2016. From high-level deep neural models to FPGAs. In 49th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 1–12.

[131] S. B. Shaw, C. Kumar, and A. K. Singh. 2017. Use of time-series based forecasting technique for balancing load and

reducing consumption of energy in a cloud data center. In International Conference on Intelligent Computing and

Control (I2C2). 1–6. DOI:https://doi.org/10.1109/I2C2.2017.8321782
[132] Jim Smith and Ravi Nair. 2005. Virtual Machines: Versatile Platforms for Systems and Processes. Elsevier.

[133] Hayden Kwok-Hay So and Cheng Liu. 2016. FPGA overlays. In FPGAs for Software Programmers. Springer, 285–305.

[134] Mengshu Sun, Pu Zhao, Mehmet Gungor, Massoud Pedram, Miriam Leeser, and Xue Lin. 2020. 3D CNN acceleration

on FPGA using hardware-aware pruning. In 57th ACM/IEEE Design Automation Conference (DAC). 1–6.

[135] Jakub Szefer. 2019. Survey of microarchitectural side and covert channels, attacks, and defenses. J. Hardw. Syst. Secur.

3, 3 (Sept. 2019), 219–234.

[136] David Talbot. 2009. Vulnerability Seen in Amazon’s Cloud-Computing. Retrieved from https://www.

technologyreview.com/2009/10/23/208662/vulnerability-seen-in-amazons-cloud-computing/.

[137] Naif Tarafdar and Paul Chow. 2019. libGalapagos: A software environment for prototyping and creating heteroge-

neous FPGA and CPU applications. In 6th International Workshop on FPGAs for Software Programmers (FSP’19).

[138] Naif Tarafdar, Nariman Eskandari, Thomas Lin, and Paul Chow. 2017. Designing for FPGAs in the cloud. IEEE Des.

Test 35, 1 (2017), 23–29.

[139] N. Tarafdar, N. Eskandari, V. Sharma, C. Lo, and P. Chow. 2018. Galapagos: A full stack approach to FPGA integration

in the cloud. IEEE Micro 38, 06 (Nov. 2018), 18–24. DOI:https://doi.org/10.1109/MM.2018.2877290

[140] Naif Tarafdar, Thomas Lin, Eric Fukuda, Hadi Bannazadeh, Alberto Leon-Garcia, and Paul Chow. 2017. Enabling

flexible network FPGA clusters in a heterogeneous cloud data center. In ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. 237–246.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://doi.org/10.1109/CLOUD53861.2021.00047
https://doi.org/10.1109/FPL.2019.00054
https://doi.org/10.1109/H2RC51942.2020.00006
https://doi.org/10.1109/FCCM48280.2020.00051
https://moorinsightsstrategy.com/will-asic-chips-become-the-next-big-thing-in-ai/
https://doi.org/10.1109/I2C2.2017.8321782
https://www.technologyreview.com/2009/10/23/208662/vulnerability-seen-in-amazons-cloud-computing/
https://doi.org/10.1109/MM.2018.2877290

The Future of FPGA Acceleration in Datacenters and the Cloud 34:41

[141] Naif Tarafdar, Thomas Lin, Daniel Ly-Ma, Daniel Rozhko, Alberto Leon-Garcia, and Paul Chow. 2019. Building the

infrastructure for deploying FPGAs in the cloud. In Hardware Accelerators in Data Centers. Springer, 9–33.

[142] Impulse Accelerated Technologies. 2021. Retrieved from https://web.archive.org/web/20110904033728/http://www.

impulseaccelerated.com/.

[143] The Apache Software Foundation / TVM community. [n.d.]. Quick Start Tutorial for Compiling Deep Learning

Models. Retrieved from https://tvm.apache.org/docs/tutorial/relay_quick_start.html.

[144] Shanquan Tian, Ilias Giechaskiel, Wenjie Xiong, and Jakub Szefer. 2021. Cloud FPGA cartography using PCIe con-

tention. In IEEE International Symposium on Field-Programmable Custom Computing Machines.

[145] Shanquan Tian and Jakub Szefer. 2019. Temporal thermal covert channels in cloud FPGAs. In International Symposium

on Field-Programmable Gate Arrays (FPGA).

[146] Shanquan Tian, Wenjie Xiong, Ilias Giechaskiel, Kasper Rasmussen, and Jakub Szefer. 2020. Fingerprinting cloud

FPGA infrastructures. In International Symposium on Field-Programmable Gate Arrays (FPGA).

[147] Furkan Turan, Sujoy Sinha Roy, and Ingrid Verbauwhede. 2020. HEAWS: An accelerator for homomorphic encryption

on the Amazon AWS FPGA. IEEE Trans. Comput. 69, 8 (2020), 1185–1196.

[148] Furkan Turan and Ingrid Verbauwhede. 2020. Trust in FPGA-accelerated cloud computing. Comput. Surv. 53, 6 (Dec.

2020), 28:1–28:128.

[149] Mohammad Usmani, Shahrzad Keshavarz, Eric Matthews, Lesley Shannon, Russell Tessier, and Daniel E. Holcomb.

2019. Efficient PUF-based key generation in FPGAs using per-device configuration. IEEE Trans. VLSI Syst. 27, 2 (Feb.

2019), 364–375.

[150] Juan Camilo Vega, Qianfeng Clark Shen, Alberto Leon-Garcia, and Paul Chow. 2019. Introducing ReCPRI: A field re-

configurable protocol for backhaul communication in a radio access network. In IFIP/IEEE Symposium on Integrated

Network and Service Management (IM). 329–336.

[151] Malte Vesper, Dirk Kocha, and Khoa Phama. 2017. PCIeHLS: An OpenCL HLS framework. In 4th International Work-

shop on FPGAs for Software Programmers. VDE, 1–6.

[152] Hasitha Muthumala Waidyasooriya and Masanori Hariyama. 2019. Multi-FPGA accelerator architecture for stencil

computation exploiting spacial and temporal scalability. IEEE Access 7 (2019), 53188–53201.

[153] Herbert Walder and Marco Platzner. 2004. A runtime environment for reconfigurable hardware operating systems.

In Field Programmable Logic and Application, Jürgen Becker, Marco Platzner, and Serge Vernalde (Eds.). Springer

Berlin, 831–835.

[154] Tianqi Wang, Tong Geng, Ang Li, Xi Jin, and Martin Herbordt. 2020. FPDeep: Scalable acceleration of CNN training

on deeply-pipelined FPGA clusters. IEEE Trans. Comput. 69, 8 (2020), 1143–1158.

[155] X. Wang, Y. Niu, F. Liu, and Z. Xu. 2020. When FPGA meets cloud: A first look at performance. IEEE Trans. Cloud

Comput. (2020), 1–1. DOI:https://doi.org/10.1109/TCC.2020.2992548
[156] Greg Watson, Nick McKeown, and Martin Casado. 2006. NetFPGA: A tool for network research and education. In

2nd Workshop on Architectural Research Using FPGA Platforms (WARFP), Vol. 3.

[157] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. 2015. Enabling FPGAs in hyperscale data centers. In IEEE

12th International Conference on Ubiquitous Intelligence and Computing and IEEE 12th International Conference on

Autonomic and Trusted Computing and IEEE 15th International Conference on Scalable Computing and Communica-

tions and Its Associated Workshops (UIC-ATC-ScalCom). 1078–1086. DOI:https://doi.org/10.1109/UIC-ATC-ScalCom-

CBDCom-IoP.2015.199

[158] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf. 2016. Disaggregated FPGAs: Network performance com-

parison against bare-metal servers, virtual machines and Linux containers. In IEEE International Conference on Cloud

Computing Technology and Science (CloudCom). 9–17. DOI:https://doi.org/10.1109/CloudCom.2016.0018

[159] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner. 2016. Network-attached FPGAs for data center applications.

In International Conference on Field-Programmable Technology (FPT). 36–43. DOI:https://doi.org/10.1109/FPT.2016.
7929186

[160] David Wilson and Greg Stitt. 2019. Seiba: An FPGA overlay-based approach to rapid application development. In

International Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE, 1–8.

[161] Xilinx Case Study. [n.d.]. Xilinx Powers Alibaba Cloud FaaS with AI Acceleration Solution for E-Commerce Business.

Retrieved from https://www.xilinx.com/publications/powered-by-xilinx/xilinx-alibaba-case-study.pdf.

[162] Xilinx Corporation 2021. Virtex UltraScale+ FPGA Data Sheet: DC and AC Switching Characteristics.

[163] Wang Xu. 2018. Hardware acceleration over NFV in China Mobile. OPNFV Plugfest.

[164] Xiaoyu Yu, Yuwei Wang, Jie Miao, Ephrem Wu, Heng Zhang, Yu Meng, Bo Zhang, Biao Min, Dewei Chen, and

Jianlin Gao. 2019. A data-center FPGA acceleration platform for convolutional neural networks. In 29th International

Conference on Field Programmable Logic and Applications (FPL). 151–158.

[165] Shaza Zeitouni, Ghada Dessouky, and Ahmad-Reza Sadeghi. 2020. SoK: On the security challenges and risks of multi-

tenant FPGAs in the cloud. arxiv arXiv:2009.13914 (2020).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://web.archive.org/web/20110904033728/http://www.impulseaccelerated.com/
https://tvm.apache.org/docs/tutorial/relay_quick_start.html
https://doi.org/10.1109/TCC.2020.2992548
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
https://doi.org/10.1109/CloudCom.2016.0018
https://doi.org/10.1109/FPT.2016.7929186
https://www.xilinx.com/publications/powered-by-xilinx/xilinx-alibaba-case-study.pdf

34:42 C. Bobda et al.

[166] Shaza Zeitouni, Jo Vliegen, Tommaso Frassetto, Dirk Koch, Ahmad-Reza Sadeghi, and Nele Mentens. 2021. Trusted

configuration in cloud FPGAs. In IEEE International Symposium on Field-Programmable Custom Computing Machines.

[167] Jiansong Zhang, Yongqiang Xiong, Ningyi Xu, Ran Shu, Bojie Li, Peng Cheng, Guo Chen, and Thomas Moscibroda.

2017. The Feniks FPGA operating system for cloud computing. In 8th Asia-Pacific Workshop on Systems. 1–7.

[168] Ke Zhang, Yisong Chang, Mingyu Chen, Yungang Bao, and Zhiwei Xu. 2019. Computer organization and design

course with FPGA cloud. In 50th ACM Technical Symposium on Computer Science Education. ACM, 927–933.

[169] Mark Zhao and G. Edward Suh. 2018. FPGA-based remote power side-channel attacks. In IEEE Symposium on Security

and Privacy (S&P). 229–244.

[170] Noa Zilberman, Yury Audzevich, G. Adam Covington, and Andrew W. Moore. 2014. NetFPGA SUME: Toward 100

Gbps as research commodity. IEEE Micro 34, 5 (2014), 32–41.

[171] Xiantao Zxt, Zhengxiao Zx, and Justin Song. 2020. High-density multi-tenant bare-metal cloud with memory ex-

pansion SoC and power management. In IEEE Hot Chips 32 Symposium (HCS). 1–18. DOI:https://doi.org/10.1109/
HCS49909.2020.9220447

Received July 2021; revised October 2021; accepted December 2021

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 34. Pub. date: February 2022.

https://doi.org/10.1109/HCS49909.2020.9220447

