
SceneChecker: Boosting Scenario Verification
Using Symmetry Abstractions

Hussein Sibai(B) , Yangge Li , and Sayan Mitra

Coordinated Science Laboratory, University of Illinois
at Urbana-Champaign, Urbana, USA

{sibai2,li213,mitras}@illinois.edu

Abstract. We present SceneChecker, a tool for verifying scenarios involving
vehicles executing complex plans in large cluttered workspaces. SceneChecker
converts the scenario verification problem to a standard hybrid system verifica-
tion problem, and solves it effectively by exploiting structural properties in the
plan and the vehicle dynamics. SceneChecker uses symmetry abstractions, a
novel refinement algorithm, and importantly, is built to boost the performance
of any existing reachability analysis tool as a plug-in subroutine. We evaluated
SceneChecker on several scenarios involving ground and aerial vehicles with
nonlinear dynamics and neural network controllers, employing different kinds of
symmetries, using different reachability subroutines, and following plans with
hundreds of waypoints in complex workspaces. Compared to two leading tools,
DryVR and Flow*, SceneChecker shows 14× average speedup in verification
time, even while using those very tools as reachability subroutines.

Keywords: Hybrid systems · Safety verification · Symmetry

1 Introduction

Remarkable progress has been made in safety verification of hybrid and cyber-
physical systems in the last decade [2–9]. The methods and tools developed have been
applied to check safety of aerospace, medical, and autonomous vehicle control sys-
tems [4,5,10,11]. The next barrier in making these techniques usable for more com-
plex applications is to deal with what is colloquially called the scenario verification
problem. A key part of the scenario verification problem is to check that a vehicle or an
agent can execute a plan through a complex environment. A planning algorithm (e.g.,
probabilistic roadmaps [12] and rapidly-exploring random trees (RRTs) [13]) generates
a set of possible paths avoiding obstacles, but only considering the geometry of the
scenario, not the dynamics. The verification task has to ensure that the plan can indeed

The authors are supported by a research grant from The Boeing Company and a research grant
from NSF (FMITF: 1918531). We would like to thank John L. Olson, Aaron A. Mayne, and
Michael R. Abraham from The Boeing Company for valuable technical discussions.

c© The Author(s) 2021
A. Silva and K. R. M. Leino (Eds.) CAV 2021, LNCS 12759, pp. 580–594, 2021.
https://doi.org/10.1007/978-3-030-81685-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81685-8_28&domain=pdf
http://orcid.org/0000-0002-6053-1001
http://orcid.org/0000-0003-4633-9408
http://orcid.org/0000-0001-7082-5516
https://doi.org/10.1007/978-3-030-81685-8_28

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 581

be safely executed by the vehicle with all the dynamic constraints and the state esti-
mation uncertainties. Indeed, one can view a scenario as a hybrid automaton with the
modes defined by the segments of the planner, but this leads to massive models. Encod-
ing such automata in existing tools presents some practical hurdles. More importantly,
analyzing such models is challenging as the over-approximation errors and the analysis
times grow rapidly with the number of transitions. At the same time, such large hybrid
verification problems also have lots of repetitions and symmetries, which suggest new
opportunities.

We present SceneChecker, a tool that implements a symmetry abstraction-
refinement algorithm for efficient scenario verification. Symmetry abstractions signif-
icantly reduce the number of modes and edges of an automaton H by grouping all
modes that share symmetric continuous dynamics [14]. SceneChecker implements a
novel refinement algorithm for symmetry abstractions and is able to use any exist-
ing reachability analysis tool as a subroutine. Our current implementation comes with
plug-ins for using Flow∗ [4] and DryVR [6]. SceneChecker’s verification algorithm
is sound, i.e., if it returns safe, then the reachset of H indeed does not intersect the
unsafe set. The algorithm is lossless in the sense that if one can prove safety without
using abstraction, then SceneChecker can also prove safety via abstraction-refinement,
and typically a lot faster. SceneChecker can be found on figshare: https://figshare.com/
articles/software/CAV2021_reduce_v6_ova/14504352 and its website: https://publish.
illinois.edu/scenechecker/. An extended version of this paper is available online [1].

SceneChecker offers an easy interface to specify plans, agent dynamics, obstacles,
initial uncertainty, and symmetry maps. SceneChecker checks if a fixed point has been
reached after each call to the reachability subroutine, avoiding repeating computations.
First, SceneChecker represents the input scenario as a hybrid automatonH where modes
are defined by the plan’s segments. It uses the symmetry maps provided by the user to
construct an abstract automaton Hv. Automaton Hv represents another scenario with
fewer segments, each representing an equivalence class of symmetric segments in H.
A side effect of the abstraction is that upon reaching waypoints in Hv, the agent’s state
resets non-deterministically to a set of possible states. For example, in the case of rota-
tion and translation invariance, the abstract scenario would have a single segment for
any set of segments with a unique length in the original scenario. SceneChecker refines
Hv by splitting one of its modes to two modes. That corresponds to representing a set
of symmetric segments with one more segment in the abstract scenario, capturing more
accurately the original scenario1.

We evaluated SceneChecker on several scenarios where car and quadrotor agents
with nonlinear dynamics follow plans to reach several destinations in 2D and 3D
workspaces with hundreds of waypoints and polytopic obstacles. We considered dif-
ferent symmetries (translation and rotation invariance) and controllers (Proportional-
Derivative (PD) and Neural Networks (NN)). We compared the verification time of
SceneChecker with DryVR and Flow* as reachability subroutines against Flow* and
DryVR as standalone tools. SceneChecker is faster than both tools in all scenarios con-
sidered, achieving an average of 14× speedup in verification time (Table 1). In certain
scenarios where Flow* timed out (executing for more than 120min), SceneChecker

1 A figure showing the architecture of SceneChecker can be found in the extended version [1].

https://figshare.com/articles/software/CAV2021_reduce_v6_ova/14504352
https://figshare.com/articles/software/CAV2021_reduce_v6_ova/14504352
https://publish.illinois.edu/scenechecker/
https://publish.illinois.edu/scenechecker/

582 H. Sibai et al.

is able to complete verification in as fast as 12min using Flow* as a subroutine.
SceneChecker when using abstraction-refinement achieved 13× speedup in verifica-
tion time over not using abstraction-refinement in scenarios with the NN-controlled
quadrotor (Sect. 7).

Related Work. The idea of using symmetries to accelerate verification has been
exploited in a number of contexts such as probabilistic models [15,16], automata
[17,18], distributed architectures [19], and hardware [20,21]. Some symmetry utiliza-
tion algorithms are implemented in Murφ [22] and Uppaal [23].

In our context of cyber-physical systems, Bak et al. [24] suggested using symme-
try maps, called reachability reduction transformations, to transform reachsets to sym-
metric reachsets for continuous dynamical systems modeling non-interacting vehicles.
Maidens et al. [25] proposed a symmetry-based dimensionality reduction method for
backward reachable set computations for discrete dynamical systems. Majumdar et al.
[26] proposed a safe motion planning algorithm that computes a family of reachsets
offline and composes them online using symmetry. Bujorianu et al. [27] presented a
symmetry-based theory to reduce stochastic hybrid systems for faster reachability anal-
ysis and discussed the challenges of designing symmetry reduction techniques across
mode transitions.

In a more closely related research, we presented a modified version of DryVR
that utilizes symmetry to cache reachsets aiming to accelerate simulation-based safety
verification of continuous dynamical systems [28]. We developed the related tool
CacheReach that implements a hybrid system verification algorithm that uses sym-
metry to accelerate reachability analysis [29]. CacheReach caches and shares com-
puted reachsets between different modes of non-interacting agents using symmetry.
SceneChecker is based on the theory of symmetry abstractions of hybrid automata
we presented in [14]. We suggested computing the reachset of the abstract automaton
instead of the concrete one then transform it to the concrete reachset using symmetry
maps to accelerate verification. SceneChecker is built based on this line of work with
significant algorithmic and engineering improvements. In addition to the abstraction of
[14], SceneChecker 1) maps the unsafe set to an abstract unsafe set and verifies the
abstract automaton instead of the concrete one and 2) decreases the over-approximation
error of the abstraction through refinement. SceneChecker does not cache reachsets
and thus saves cache-access and reachset-transformation times and does not incur over-
approximation errors due to caching that CacheReach suffers from [29]. At the imple-
mentation level, SceneChecker accepts plans that are general directed graphs and poly-
topic unsafe sets while CacheReach accepts only single-path plans and hyperrectan-
gle unsafe sets. We show more than 30× speedup in verification time while having
more accurate verification results when comparing SceneChecker against CacheReach
(Table 1 in Sect. 7).

2 Specifying Scenarios in SceneChecker

A scenario verification problem is specified by a set of fixed obstacles, a plan, and an
agent that is supposed to execute the plan without running into the obstacles (e.g., see

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 583

Fig. 1B). For ground and air vehicles, for example, the agent moves in a subset of the 2D
or the 3D Euclidean space called the workspace. A plan is a directed graph G= 〈V,S〉
with vertices V in the workspace called waypoints and edges S called segments2. A
general graph allows for nondeterministic and contingency planning.

An agent is a control system that can follow waypoints. Let the state space of the
agent be X and Θ ⊆ X be the uncertain initial set. Let sinit be the initial segment in G
that the agent has to follow. From any state x ∈ X , the agent follows a segment s ∈ S
by moving along a trajectory. A trajectory is a function ξ : X × S×R

≥0 → X that
meets certain dynamical constraints of the vehicle. Dynamics are either specified by
ordinary differential equations (ODE) or by a black-box simulator. For ODE models, ξ
is a solution of an equation of the form: dξ

dt (x,s, t) = f (ξ (x,s, t),s), for any t ∈R
≥0 and

ξ (x,s,0) = x, where f : X ×S → X is Lipschitz continuous in the first argument. Note
that the trajectories only depend on the segment the agent is following (and not on the
full plan G). We denote by ξ .fstate, ξ .lstate, and ξ .dom the initial and last states and
the time domain of the time bounded trajectory ξ , respectively.

We can view the obstacles near each segment as sets of unsafe states, O : S →
2X . The map tbound : S → R

≥0 determines the maximum time the agent should spend
in following any segment. For any pair of consecutive segments (s,s′), i.e. sharing a
common waypoint in G, guard((s,s′)) defines the set of states (a hyperrectangle around
a waypoint) at which the agent is allowed to transition from following s to following s′.

Scenario JSON file is the first of the two user inputs. It specifies the scenario:Θ
as a hyperrectangle; S as a list of lists each representing two waypoints; guard
as a list of hyperrectangles; tbound as a list of floats; andO as a list of polytopes.
Output of SceneChecker is the scenario verification result (safe or unknown)
and a number of useful performance metrics, such as the number of mode-
splits, number of reachability calls, reachsets computation time, and total time.
SceneChecker can also visualize the various computed reachsets.

3 Transforming Scenarios to Hybrid Automata

The input scenario is first represented as a hybrid automaton by a Hybrid constructor.
This constructor is a Python function that parses the Scenario file and constructs the
data structures to store the scenario’s hybrid automaton components. In what follows,
we describe the constructed automaton informally. In our current implementation, sets
are represented either as hyper-rectangles or as polytopes using the Tulip Polytope
Library3.

2 We introduce this redundant nomenclature because later we will reserve the term edges to talk
about mode transitions in hybrid automata. We use waypoints instead of vertices as a more
natural term for points that vehicles have to follow.

3 https://pypi.org/project/polytope/.

https://pypi.org/project/polytope/

584 H. Sibai et al.

Scenario as a Hybrid Automaton. A hybrid automaton has a set of modes (or discrete
states) and a set of continuous states. The evolution of the continuous states in each
mode is specified by a set of trajectories and the transition across the modes are specified
by guard and reset maps. The agent following a plan in a workspace can be naturally
modeled as a hybrid automaton H, where sinit and Θ are its initial mode and set of
states.

Each segment s ∈ S of the plan G defines a mode of H (e.g. see Fig. 1A). The set
of edges E ⊆ S×S of H is defined as pairs of consecutive segments in G. For an edge
e ∈ E, guard(e) is the same as that of G. The reset map of H is the identity map. We
will see in Sect. 5 that abstract automata will have nontrivial reset maps.

Verification Problem. An execution of length k is a sequence σ := (ξ0,s0), . . . ,(ξk,sk).
It models the behavior of the agent following a particular path in the plan G. An exe-
cution σ must satisfy: 1) ξ0.fstate ∈ Θ and s0 = sinit, for each i ∈ {0, . . . ,k− 1}, 2)
(si,si+1) ∈ E, 3) ξi.lstate ∈ guard((si,si+1)), and 4) ξi.lstate = ξi+1.fstate, and 5) for
each i ∈ {0, . . . ,k}, ξi.dom ≤ tbound(si). The set of reachable states is ReachH :=
{σ .lstate | σ is an execution}. The restriction of ReachH to states with mode s ∈ S
(i.e., agent following segment s) is denoted by ReachH(s). Thus, the hybrid system
verification problem requires us to check whether ∀s ∈ S, ReachH(s)∩O(s) = /0.

4 Specifying Symmetry Maps in SceneChecker

The hybrid automaton representing a scenario, as constructed by the Hybrid
constructor, is transformed into an abstract automaton. SceneChecker uses symme-
try abstractions [14]. The abstraction is constructed by the abstract function (line 1 of
Algorithm 1) which uses a collection of pairs of maps Φ = {(γs :X →X ,ρs : S→ S)}s∈S
that is provided by the user. We describe below how these maps are specified by the user
in the Dynamics file. These maps should satisfy:

∀ t ≥ 0,x0 ∈ X ,s ∈ S,γs(ξ (x0,s, t)) = ξ (γs(x0),ρs(s), t). (1)

where ∀s ∈ S, the map γs is differentiable and invertible. Such maps are called symme-
tries for the agent’s dynamics. They transform the agent’s trajectories to other symmet-
ric ones of its trajectories starting from symmetric initial states and following symmetric
modes (or segments in our scenario verification setting). It is worth noting that (1) does
not depend on whether the trajectories ξ are defined by ODEs or black-box simula-
tors. Currently, condition (1) is not checked by SceneChecker for the maps specified by
the user. However, in the following discussion, we present some ways for the user to
check (1) on their own. For ODE models, a sufficient condition for (1) to be satisfied
is if: ∀ x ∈ X ,s ∈ S, ∂γs

∂x f (x,s) = f (γs(x),ρs(s)), where f is the right-hand-side of the
ODE [30]. For black-box models, (1) can be checked using sampling methods. In realis-
tic settings, dynamics might not be exactly symmetric due to unmodeled uncertainties.
In the future, we plan to account for such uncertainties as part of the reachability anal-
ysis.

In scenario verification, a given workspace would have a coordinate system accord-
ing to which the plan (waypoints) and the agent’s state (position, velocity, heading

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 585

angle, etc.) are represented. In a 2D workspace, for any segment s ∈ S, an example
symmetry ρs would transform the two waypoints of s to a new coordinate system where
the second waypoint is the origin and s is aligned with the negative side of the hor-
izontal axis (see Fig. 1D). The corresponding γs would transform the agent’s state to
this new coordinate system (e.g. by rotating its position and velocity vectors and shift-
ing the heading angle). For such a pair (γs,ρs) to satisfy (1), the agent’s dynamics
have to be invariant to such a coordinate transformation and (1) merely formalizes this
requirement. Such an invariance property is expected from vehicles’ dynamics–rotating
or translating the lane should not change how an autonomous car behaves.

Dynamics file is the second input provided by the user in addition to the
Scenario file and it contains the following:

polyVir(X ′,s): returns γs(X ′) for any polytope X ′ ⊂ X and segment s ∈ S.
modeVir(s): returns ρs(s) for any given segment s ∈ S.
virPoly(X ′,s): returns γ−1

s (X ′), implementing the inverse of polyVir.
computeReachset(initset,s,T): returns a list of hyperrectangles over-
approximating the agent’s reachset starting from initset following segment s
for T time units, for any set of states initset ⊂ X , segment s ∈ S, and T ≥ 0.

5 Symmetry Abstraction of the Scenario’s Automaton

In this section, we describe how the abstract function in Algorithm 1 uses the functions
in the Dynamics file to construct an abstraction of the scenario’s hybrid automaton
provided by the Hybrid constructor. Given the symmetry maps of Φ , the symmetry
abstraction ofH is another hybrid automatonHv that aggregates many symmetric modes
(segments) of H into a single mode of Hv.

Modes and Transitions. Any segment s ∈ S of H is mapped to the segment ρs(s) in Hv

using modeVir. The set of modes Sv of Hv is the set of segments {ρs(s)}s∈S. For any
sv, tboundv(sv) =maxs∈S,sv=ρs(s) tbound(s). In the example of Sect. 4 (Fig. 1D), the seg-
ments inHv are aligned with the horizontal axis and ending at the origin. The number of
segments in Hv would be the number of segments in G with unique lengths. The agent
would always be moving towards the origin of the workspace in the abstract scenario.
Any edge e = (s,s′) ∈ E of H is mapped to the edge ev = (ρs(s),ρs′(s′)) in Hv. The
guard(e) is mapped to γs(guard(e)) using polyVir which becomes part of guardv(ev) in
Hv. For any x∈ X , reset(x,e), which is equal to x, is mapped to γs′(γ−1

s (x)) and becomes
part of resetv(x,ev) in Hv. In our example in Sect. 4, the γ−1

s (x) would represent x in
the absolute coordinate system assuming it was represented in the coordinate system
defined by segment s. The γs′(γ−1

s (x)) would represent γ−1
s (x) in the new coordinate

system defined by segment s′. The guardv(ev) would be the union of rotated hyperrect-
angles centered at the origin that result from translating and rotating the guards of the
edges represented by ev. The initial set Θ of H is mapped to Θv = γsinit(Θ), the initial
set of Hv. A formal definition of symmetry abstractions can be found in [1] (or [14]).

586 H. Sibai et al.

The unsafe map O is mapped to Ov, where ∀sv ∈ Sv,Ov(sv) = ∪s∈S,ρs(s)=svγs(O(s)).
That means that the obstacles near any segment s∈ S in the environment will be mapped
to be near its representative segment ρs(s) in Hv.

A forward simulation relation between H and Hv can show that if Hv is safe with
respect toOv, thenH is safe with respect toO. More formally, if ∀sv ∈ Sv,ReachHv(sv)∩
Ov(sv) = /0, then ∀s ∈ S,ReachH(s)∩O(s) = /0 [14].

6 SceneChecker Algorithm Overview

A sketch of the core abstraction-refinement algorithm is shown in Algorithm 1. It con-
structs a symmetry abstraction Hv of the concrete automaton H resulting from the
Hybrid constructor. SceneChecker attempts to verify the safety of Hv using traditional
reachability analysis. SceneChecker uses a cache to store per-mode initial sets from
which reachsets have been computed and thus avoids repeating computations. An exam-
ple run is shown in Fig. 1.

Fig. 1. A simple scenario with a car following a plan with six segments is shown in B. Set of
initial positions (green square), unsafe set (grey), and the segments (black lines). The automaton
(A) has one mode per segment. Translation and rotation symmetries are used to abstract A to the
automaton C. The abstraction translates and rotates each segment of the original scenario to a
segment aligned with the x-axis and ends at the origin resulting in the segments (i.e. modes) s0v
and s1v . The unsafe set is transformed accordingly for each mode as shown in D. SceneChecker
computes the reachset of C which turns out to be unsafe; to illustrate the process this abstract
reachset transformed to the original scenario is shown in E. The colors refer to a different abstract
modes. The algorithm refines C to F by adding s2v (same segment as s1v but different guard). The
reachset of F is safe and the algorithm terminates (H). (The colored figure is available in the
online version of this paper)

The core algorithm verify (Algorithm 2) is called iteratively. If verify returns
(safe,⊥) or (unknown,⊥), SceneChecker returns the same result. If verify instead
results in (refine,s∗v), splitMode (check the extended version of this paper [1] for the
formal definition) is called to refine Hv by splitting s∗v into two modes s1v and s

2
v . Each of

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 587

Algorithm 1. SceneChecker(Φ = {(γs,ρs)}s∈S,H,O)
1: Hv,Ov ← abstract(H,O,Φ)
2: ∀s ∈ S,rv[s] ← ρs(s)
3: while True do
4: cache ← {sv �→ /0 | sv ∈ Sv}
5: result,s∗v ← verify(rv[sinit],Θv,cache,rv,Hv,Ov)
6: if result = safe or unknown then return: result
7: else rv,Hv,Ov ← splitMode(s∗v ,rv,Hv,Ov,H,O)

the two modes would represent part of the set of the segments of S that were originally
mapped to sv in rv. Then the edges, guards, resets, and the unsafe sets related to sv are
split according to their definitions.

The function verify executes a depth first search (DFS) over the mode graph of Hv.
For any mode sv being visited, computeReachset computes Rv, an over-approximation
of the agent’s reachset starting from initset following segment sv for time tboundv(sv).
If Rv ∩Ov(sv) = /0, verify recursively calls sv’s children continuing the DFS in line 6.
Before calling each child, its initial set is computed and the part for which a reachset
has already been computed and stored in cache is subtracted. If all calls return safe,
then initset is added to the other initial sets in cache[sv] (line 12) and verify returns safe.
Most importantly, if verify returns (refine,s∗v) for any of sv’s children, it directly returns
(refine,s∗v) for sv as well (line 7). If any child returns unknown or Rv intersects Ov(sv),
verify will need to split sv. In that case, it checks if rv−1[sv] is not a singleton set and thus
amenable to splitting (line 10). If sv can be split, verify returns (refine,sv). Otherwise,
verify returns (unknown,⊥) implicitly asking one of sv’s ancestors to be split instead.

Correctness. SceneChecker ensures that all the refined automata Hv’s are abstractions
of the original hybrid automaton H (a proof is given in the extended version of this
paper [1]). For any mode with a reachset intersecting the unsafe set, SceneChecker
keeps refining that mode and its ancestors until safety can be proven or Hv becomes H.

Theorem 1 (Soundness). If SceneChecker returns safe, then H is safe.

If verify is provided with the concrete automatonH and unsafe setO, it will be the tradi-
tional safety verification algorithm having no over-approximation error due to abstrac-
tion. If such a call to verify returns safe, then SceneChecker is guaranteed to return safe.
That means that the refinement ensures that the over-approximation error of the reachset
caused by the abstraction is reduced to not alter the verification result.

Counter-examples. SceneChecker currently does not find counter-examples to
show that the scenario is unsafe. There are several sources of over-approximation
errors, namely, computeReachset and guard intersections. Even after all the over-
approximation errors from symmetry abstractions are eliminated, as refinement does,
it still cannot infer unsafe executions or counter-examples because of the other errors.
We plan to address this in the future by combining the current algorithm with systematic
simulations.

588 H. Sibai et al.

Algorithm 2. verify(sv, initset,cache,rv,Hv,Ov)
1: Rv ← computeReachset(initset,sv)
2: if Rv ∩Ov(sv) = /0 then
3: for s′v ∈ children(sv) do
4: initset′ ← resetv(guardv((sv,s′v))∩Rv)\cache[s′v]
5: if initset′ �= /0 then
6: result,s∗v ← verify(s′v, initset′,cache,rv,Hv,Ov)
7: if result = refine then return: refine,s∗v
8: else if result = unknown then break
9: if Rv ∩Ov(sv) �= /0 or result is unknown then
10: if |rv−1[sv]| > 1 then return: refine,sv
11: else return: unknown,⊥
12: cache[sv] ← cache[sv]∪ initset
13: return: safe,⊥

7 Experimental Evaluation

Agents and Controllers. In our experiments, we consider two types of nonlinear agent
models: a standard 3-dimensional car (C) with bicycle dynamics and 2 inputs, and a
6-dimensional quadrotor (Q) with 3 inputs. For each of these agents, we developed a
PD controller and a NN controller for tracking segments. The NN controller for the
quadrotor is from Verisig’s paper [9] but modified to be rotation symmetric (check the
extended version of this paper [1] for more details). Similarly, the NN controller for the
car is made rotation symmetric. Both NN controllers are translation symmetric as they
take as input the difference between the agent’s state and the segment being followed.
The PD controllers are translation and rotation symmetric by design.

Symmetries. We experimented with two different collections of symmetry maps Φs: 1)
translation symmetry (T), where for any segment s in G, γs maps the states so that the
coordinate system is translated by a vector that makes its origin at the end waypoint of
s, and 2) rotation and translation symmetry (TR), where instead of just translating the
origin, Φ rotates the xy-plane so that s is aligned with the x-axis, which we described
in Sect. 4. For each agent and one of its controllers, we manually verified that condition
(1) is satisfied for each of the two Φs using the sufficient condition for ODEs in Sect. 4.

Scenarios. We created four scenarios with 2D workspaces (S1-4) and one scenario with
a 3D workspace (S5) with corresponding plans. We generated the plans using an RRT
planner [31] after specifying a number of goal sets that should be reached. We modified
S4 to have more obstacles but still have the same plan and named the new version S4.b
and the original one S4.a. When the quadrotor was considered, the waypoints of the 2D
scenarios (S1-4) were converted to 3D representation by setting the altitude for each
waypoint to 0. Scenario S5 is the same as S2 but S5’s waypoints have varying altitudes.
The scenarios have different complexities ranging from few segments and obstacles to
hundreds of them. All scenarios are safe when traversed by any of the two agents.

We verify these scenarios using SceneChecker and CacheReach, each with two
instances, one with DryVR and the other with Flow*, implementing computeReachset.

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 589

We also use DryVR and Flow* as independent tools to verify the same scenarios.
The results of experiments with tools that involve DryVR (i.e., SceneChecker+DryVR,
CacheReach+DryVR, and DryVR) are stochastic and change between runs. The reason
is that each time DryVR is called, it randomly samples traces of the system from which
it computes the requested reachset. We fix the random seed for repeatable results in this
section. We show close averaging-based results on SceneChecker’s website.

SceneChecker is able to verify all scenarios with PD controllers. The results are
shown in Table 14 and plotted for C-S1 using SceneChecker+Flow* in Fig. 1.

Observation 1: SceneChecker offers fast scenario verification and boosts existing
reachability tools Looking at the two total time (Tt) columns for the two instances
of SceneChecker with the corresponding columns for Flow* and DryVR, it becomes
clear that symmetry abstractions can boost the verification performance of reachabil-
ity engines. For example, in C-S4.a, SceneChecker+DR was around 20× faster than
DryVR. In C-S3, SceneChecker with Flow* was around 16× faster than Flow*. In sce-
nario Q-S5, SceneChecker timed out at least in part because a computeReachset call
to Flow* timed out. Even when many refinements are required and thus causing sev-
eral repetitions of the verification process in Algorithm 1, SceneChecker is still faster
than DryVR and Flow* (C-S4.b). All three tools resulted in safe for all scenarios when
completed executions.

Observation 2: SceneChecker is faster and more accurate than CacheReach Since
CacheReach only handles single-path plans, we only verify the longest path in the
plans of the scenarios in its experiments. CacheReach’s instance with Flow* resulted
in unsafe reachsets in C-S1 and C-S4.b scenarios likely because of the caching over-
approximation error. In all scenarios where CacheReach completed verification besides
C-S4.b, it has more Rc and longer Tt (more than 30× in C-S2) while verifying simpler
plans than SceneChecker using the same reachability subroutine. In all Q scenarios,
both instances of CacheReach, with Flow* and DryVR, timed out.

Observation 3: More symmetric dynamics result in faster verification time
SceneChecker usually runs slower in 3D scenarios compared to 2D ones (Q-S2 vs. Q-
S5) in part because there is no rotational symmetry in the z-dimension to exploit. That
leads to larger abstract automata. Therefore, many more calls to computeReachset are
required.

We only used SceneChecker’s instance with DryVR for agents with NN-
controllers5. We tried different Φs. The results are shown in Table 2. When not using
abstraction-refinement, SceneChecker took 10.5, 130.95, and 74.15min for the QNN-
S2, QNN-S3, and QNN-S4 scenarios, while DryVR took 5.22, 52.56, and 61.31min for
the same scenarios, respectively. Comparing these results with those in Table 2 shows

4 Figures presenting the reachsets of the concrete and abstract automata for different scenarios
can be found in the extended version of this paper [1] as well as the machine specifications.

5 Check the extended version [1] for a discussion about our attempts for using other verification
tools for NN-controlled systems as reachability subroutines.

590 H. Sibai et al.

Ta
bl
e
1.

C
om

pa
ri
so
n
be
tw
ee
n
S
ce
n
eC

h
ec
ke
r,
D
ry
V
R
(D

R
),
Fl
ow

*
(F
*)
,a
nd

C
ac
h
eR

ea
ch

(C
ac
h
eR

).
B
ot
h
S
ce
n
eC

h
ec
ke
r
an
d
C
ac
h
eR

ea
ch

us
e
re
ac
ha
-

bi
lit
y
to
ol
s
as

su
br
ou
tin

es
.T

he
su
br
ou
tin

es
us
ed

ar
e
sp
ec
ifi
ed

af
te
r
th
e
‘+
’
si
gn
.Φ

is
T
R
.T

he
ta
bl
e
sh
ow

s
th
e
nu

m
be
r
of

m
od

e-
sp
lit
s
pe
rf
or
m
ed

(N
re
fs
),

th
e
to
ta
ln

um
be
r
of

ca
lls

to
co
m
p
u
te
R
ea
ch
se
t
(R
c)
,t
he

to
ta
lt
im

e
sp
en
ti
n
re
ac
hs
et
co
m
pu
ta
tio

ns
(R
t)
,a
nd

th
e
to
ta
lc
om

pu
ta
tio

n
tim

e
in

m
in
ut
es

(T
t)
.I
n

sc
en
ar
io
s
w
he
re

a
to
ol

ra
n
ov
er

12
0
m
in
,w

e
m
ar
ke
d
th
e
T
tc
ol
um

n
as

‘T
im

ed
ou
t’
(T
O
)
an
d
th
e
ot
he
r
on
es

as
‘N

ot
A
va
ila
bl
e’

(N
A
).

Sc
.

|S|
S
ce
n
eC

h
ec
ke
r+
D
R

C
a
ch

eR
+
D
R

D
R

S
ce
n
eC

h
ec
ke
r+
F*

C
a
ch

eR
+
F*

F*
N
re
fs

R
c

R
t

T
t

R
c

T
t

T
t

N
R
ef
s

R
c

R
t

T
t

R
c

T
t

T
t

C
-S
1

6
1

4
0.
14

0.
15

46
1.
73

1.
28

1
4

0.
51

0.
52

52
8.
20

2.
11

C
-S
2

14
0

0
1

0.
04

0.
65

42
4

19
.9
2

10
.5
7

0
1

0.
18

0.
79

19
2

30
.9
5

17
.5
2

C
-S
3

45
8

0
1

0.
04

4.
24

50
2

19
.3
3

71
.4
1

0
1

0.
11

4.
34

17
6

28
.6
4

73
.0
6

C
-S
4.
a

52
0

2
7

0.
26

4.
37

40
4

15
.8
4

94
.6
2

2
7

0.
80

4.
96

16
0

25
.9
8

61
.5
3

C
-S
4.
b

52
0

10
39

1.
43

8.
69

40
4

16
.0
6

96
.0
2

10
39

2.
83

31
.7
3

16
0

26
.0
7

60
.6
7

Q
-S
1

6
1

4
0.
04

0.
05

N
A

T
O

0.
25

1
4

13
.8
5

14
.1
3

N
A

T
O

30
.1
7

Q
-S
2

14
0

0
1

0.
04

0.
88

N
A

T
O

4.
97

0
1

3.
38

12
.6
2

N
A

T
O

T
O

Q
-S
3

45
8

0
1

0.
06

5.
9

N
A

T
O

46
.3
4

0
1

4.
98

62
.6
6

N
A

T
O

T
O

Q
-S
4.
a

52
0

0
1

0.
06

3.
17

N
A

T
O

56
.1
9

0
1

4.
8

34
.8
9

N
A

T
O

T
O

Q
-S
5

18
8

0
36

0.
85

3.
04

N
A

T
O

8.
03

N
A

N
A

N
A

T
O

N
A

T
O

T
O

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 591

that the speedup in verification time of SceneChecker is caused by the abstraction-
refinement algorithm, achieving more than 13× in certain scenarios (QNN-S4 using
Φ = T). SceneChecker+DR was more than 10× faster than DryVR in the same sce-
nario.

Table 2. Comparison between Φs. In addition to the statisitics of Table 1, this table reports the
number of modes and edges in the initial and final (after refinement) abstractions (|Sv|i, |Ev|i;
|Sv| f , and |Ev| f , respectively)

Sc NRef Φ |S| |Sv|i |Ev|i |Sv| f |Ev| f Rc Rt Tt

CNN-S2 6 TR 140 1 1 7 17 19 1.51 3.05

CNN-S4 9 TR 520 1 1 10 28 47 3.77 11.25

QNN-S2 3 TR 140 1 1 4 9 9 0.61 3.55

QNN-S3 5 TR 458 1 1 6 16 15 1.51 12.7

QNN-S4 4 TR 520 1 1 5 13 11 1.11 7.43

QNN-S2 0 T 140 7 19 7 19 8 0.53 1.38

QNN-S3 4 T 458 7 30 11 58 29 2.92 16.88

QNN-S4 0 T 520 7 30 7 30 13 1.32 5.34

Observation 4: Choice of Φ is a trade-off between over-approximation error and num-
ber of refinements The choice of Φ affects the number of refinements performed and
the total running times (e.g. QNN-S2, QNN-S3, and QNN-S4). Using TR leads to a
more succinct Hv but larger over-approximation error causing more mode splits. On the
other hand, using T leads to a largerHv but less over-approximation error and thus fewer
refinements. This trade-off can be seen in Table 2. For example, QNN-S4 with Φ =T
resulted in zero mode splits leading to |Sv|i = |Sv| f = 7, while Φ = TR resulted in 4
mode splits, starting with |Sv|i = 1 modes and ending with |Sv| f = 5, and longer verifi-
cation time because of refinements. On the other hand, in QNN-S3, Φ = TR resulted in
Nref= 5, |Sv| f = 6, and Tt= 12.7 min while Φ =T resulted in Nref= 4, |Sv| f = 11, and
Tt= 16.88 min.

Observation 5: Complicated dynamics require more verification time Different vehicle
dynamics affect the number of refinements performed and consequently the verification
time (e.g. QNN-S2, QNN-S4, CNN-S2, and CNN-S4). The car appears to be less stable
than the quadrotor leading to longer verification time for the same scenarios. This can
also be seen by comparing the results of Tables 1 and 2. The PD controllers lead to more
stable dynamics than the NN controllers requiring less total computation time for both
agents. More stable dynamics lead to tighter reachsets and fewer refinements.

8 Limitations and Discussions

SceneChecker allows the choice of modes to be changed from segments to waypoints
or sequences of segments as well. The waypoint-defined modes eliminate the need for

592 H. Sibai et al.

segments of G to have few unique lengths, but only allow Φ = T. SceneChecker splits
only one mode per refinement and then repeats the computation from scratch. It has
to refine many times in unsafe scenarios until reaching the result unknown. We plan
to investigate other strategies for eliminating spurious counter-examples and returning
valid ones in unsafe cases. In the future, it will be important to address other sources of
uncertainty in scene verification such as moving obstacles, interactive agents, and other
types of symmetries such as permutation and time scaling. Finally, it will be useful to
connect a translator to generate scene files from common road simulation frameworks
such as CARLA [32], commonroad [33], and Scenic [34].

References

1. Sibai, H., Li, Y., Mitra, S.: SceneChecker: boosting scenario verification using symmetry
abstractions (2021). https://arxiv.org/abs/2011.10713

2. Frehse, G., et al.: SpaceEX: scalable verification of hybrid systems. In: CAV (2011)
3. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reachability

for linear systems. In: Proceedings of the 20th International Conference on Hybrid Systems:
Computation and Control, pp. 173–178. ACM (2017)

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid sys-
tems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_18

5. Duggirala, P.S., Fan, C., Mitra, S., Viswanathan, M.: Meeting a Powertrain verification chal-
lenge. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 536–543.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_37

6. Fan, C., Qi, B., Mitra, S., Viswanathan, M.: DRYVR: data-driven verification and composi-
tional reasoning for automotive systems. In: Majumdar, R., Kunčak, V. (eds.) CAV (2017)

7. Dutta, S., Chen, X., Jha, S., Sankaranarayanan, S., Tiwari, A.: Sherlock - a tool for verifica-
tion of neural network feedback systems: demo abstract, pp. 262–263. HSCC 2019. ACM,
New York, USA (2019). https://doi.org/10.1145/3302504.3313351

8. Tran, H.D., et al.: NNV: the neural network verification tool for deep neural networks and
learning-enabled cyber-physical systems. In: Lahiri, S.K., Wang, C. (eds.) CAV (2020)

9. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety properties of
hybrid systems with neural network controllers. In: ACM HSCC (2019)

10. Althoff, M.: An introduction to CORA 2015. In: Proceedings of the Workshop on Applied
Verification for Continuous and Hybrid Systems (2015)

11. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis
for nonlinear hybrid models with C2E2. In: CAV (2016)

12. Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–
580 (1996)

13. Lavalle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Technical
report (1998)

14. Sibai, H., Mitra, S.: Symmetry abstractions for hybrid systems and their applications (2020).
https://arxiv.org/abs/2006.09485

15. Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic model
checking. In: CAV (2006)

16. Antuña, L.R., Araiza-Illan, D., Campos, S., Eder, K.: Symmetry reduction enables model
checking of more complex emergent behaviours of swarm navigation algorithms. In:
Towards Autonomous Robotic Systems TAROS, pp. 26–37 (2015)

https://arxiv.org/abs/2011.10713
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-319-21690-4_37
https://doi.org/10.1145/3302504.3313351
https://arxiv.org/abs/2006.09485

SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions 593

17. Emerson, E.A., Sistla, A.P.: Symmetry and model checking. In: Computer Aided Verifica-
tion, 28 June–1 July 1993, Elounda, Greece, Proceedings, pp. 463–478 (1993)

18. Clarke, E.M., Jha, S.: Symmetry and induction in model checking. In: Computer Science
Today: Recent Trends and Developments, pp. 455–470 (1995)

19. Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Methods in Computer Science [elec-
tronic only] 10 (2014)

20. Mann, M., Barrett, C.: Partial order reduction for deep bug finding in synchronous hardware.
In: TACAS 2020. LNCS, vol. 12078, pp. 367–386. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45190-5_20

21. Hu, Y., Shih, V., Majumdar, R., He, L.: Exploiting symmetries to speed up sat-based Boolean
matching for logic synthesis of FPGAs. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 27(10), 1751–1760 (2008). https://doi.org/10.1109/TCAD.2008.2003272

22. Ip, C.N., Dill, D.L.: Better verification through symmetry. In: Proceedings of the 11th IFIP
WG10.2 International Conference, pp. 97–111. CHDL 1993, North-Holland Publishing Co.,
Amsterdam, The Netherlands, The Netherlands (1993)

23. Hendriks, M., Behrmann, G., Larsen, K., Niebert, P., Vaandrager, F.: Adding symmetry
reduction to uppaal (2004)

24. Bak, S., Huang, Z., Abad, F.A.T., Caccamo, M.: Safety and progress for distributed cyber-
physical systems with unreliable communication. ACM Trans. Embed. Comput. Syst. 14(4)
(2015). https://doi.org/10.1145/2739046

25. Maidens, J., Arcak, M.: Exploiting symmetry for discrete-time reachability computations.
IEEE Control Systems Letters 2(2), 213–217 (2018)

26. Majumdar, A., Tedrake, R.: Funnel libraries for real-time robust feedback motion planning.
Int. J. Robot. Res. 36(8), 947–982 (2017)

27. Bujorianu, M., Katoen, J.P.: Symmetry reduction for stochastic hybrid systems. In: 2008
47th IEEE Conference on Decision and Control : CDC; Cancun, Mexico, 9–2008. - T. 1, pp.
233–238. IEEE, Piscataway, NJ (2008). https://publications.rwth-aachen.de/record/100535

28. Sibai, H., Mokhlesi, N., Mitra, S.: Using symmetry transformations in equivariant dynamical
systems for their safety verification. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.) ATVA
2019. LNCS, vol. 11781, pp. 98–114. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-31784-3_6

29. Sibai, H., Mokhlesi, N., Fan, C., Mitra, S.: Multi-agent safety verification using symmetry
transformations. In: TACAS 2020. LNCS, vol. 12078, pp. 173–190. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45190-5_10

30. Russo, G., Slotine, J.J.E.: Symmetries, stability, and control in nonlinear systems and net-
works. Phys. Rev. E 84(4), 041929 (2011)

31. Fan, C., Miller, K., Mitra, S.: Fast and guaranteed safe controller synthesis for nonlinear
vehicle models. In: Lahiri, S.K., Wang, C. (eds.) CAV (2020)

32. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban driv-
ing simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16
(2017)

33. Althoff, M., Koschi, M., Manzinger, S.: CommonRoad: composable benchmarks for motion
planning on roads. In: Proceedings of the IEEE Intelligent Vehicles Symposium (2017)

34. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L., Seshia, S.A.:
Scenic: a language for scenario specification and scene generation, pp. 63–78. PLDI 2019,
ACM, New York, USA (2019). https://doi.org/10.1145/3314221.3314633

https://doi.org/10.1007/978-3-030-45190-5_20
https://doi.org/10.1007/978-3-030-45190-5_20
https://doi.org/10.1109/TCAD.2008.2003272
https://doi.org/10.1145/2739046
https://publications.rwth-aachen.de/record/100535
https://doi.org/10.1007/978-3-030-31784-3_6
https://doi.org/10.1007/978-3-030-31784-3_6
https://doi.org/10.1007/978-3-030-45190-5_10
https://doi.org/10.1145/3314221.3314633

594 H. Sibai et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	SceneChecker: Boosting Scenario Verification Using Symmetry Abstractions
	1 Introduction
	2 Specifying Scenarios in SceneChecker
	3 Transforming Scenarios to Hybrid Automata
	4 Specifying Symmetry Maps in SceneChecker
	5 Symmetry Abstraction of the Scenario's Automaton
	6 SceneChecker Algorithm Overview
	7 Experimental Evaluation
	8 Limitations and Discussions
	References

