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ABSTRACT

Unit tests are widely used to check source code quality, but they can

be too coarse-grained or ill-suited for testing individual program

statements. We introduce inline tests to make it easier to check for

faults in statements. We motivate inline tests through several lan-

guage features and a common testing scenario in which inline tests

could be beneficial. For example, inline tests can allow a developer to

test a regular expression in place. We also define language-agnostic

requirements for inline testing frameworks. Lastly, we implement

I-Test, the first inline testing framework. I-Test works for Python

and Java, and it satisfies most of the requirements. We evaluate

I-Test on open-source projects by using it to test 144 statements

in 31 Python programs and 37 Java programs. We also perform a

user study. All nine user study participants say that inline tests

are easy to write and that inline testing is beneficial. The cost of

running inline tests is negligible, at 0.007xś0.014x, and our inline

tests helped find two faults that have been fixed by the developers.
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1 INTRODUCTION

Testing is essential for checking code quality during software devel-

opment. Today, testing frameworks only support three levels of test

granularityÐunit testing, integration testing and end-to-end testing.

These levels, shown in the top three layers of Figure 1 (known as the

test pyramid), reflect developer testing needs. Developers write unit

tests to check the correctness of logical units of functionality, e.g.,

methods or functions [15, 77]. Integration tests are used to check

that logical units interact correctly [32, 54, 69, 95]. Developers use

end-to-end tests to check if code runs correctly in its operating
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Figure 1: Testing pyramid.

environment, and if functional and non-functional requirements

are being met [96, 100].

Unfortunately, there is little support for developer testing needs

below the unit-test level. Yet, developers maywant to test individual

statements for at least four reasons:

(1) Single-statement bugs occur frequently [38, 39], but unit tests

rarely fail on commits that introduce single-statement bugs [47].

(2) The statement to be checked, i.e., the target statement, may be

buried deeply inside complicated program logic.

(3) Developers may want to check and better comprehend harder-

to-understand traditional programming language features like

regular expressions (regexes) [16, 17, 42, 62, 101], bit manipula-

tion [4, 51], and string manipulation [20, 46, 74].

(4) Recent language features, e.g., Java’s stream API [18], allow

writing complex program logic in one statement where one

would previously have written a method that can be unit tested.

Due to the lack of direct support for statement-level testing,

developers often resort to wasteful or ad hoc manual approaches.

We briefly mention three of them here and describe them and

others in Section 2. First, in the commonly-practiced łprintf de-

buggingž [5, 10, 31, 36, 55, 73], developers wastefully add and then

remove print statements to visually check correctness at specific

program points. Second, if the target statement is in privately ac-

cessible code, some developers violate core software engineering

principles to enable checking them with unit tests. For example,

google/guava [30] developers use the ł@VisibleForTestingž an-

notation to expose non-public variables or methods for unit test-

ing [70, 71]. Lastly, developers lose productivity when they repeat-

edly use any of the many third-party websites [14, 19, 94] or in-IDE

pop-ups like the one in IntelliJ [37] to test regexes.

We argue that there is a need for specialized support to allow

testing individual statements łin placež. A simple approach is to first

extract the target statement into a method by itself and then write a

unit test for the extracted method. Doing so would not be effective

for three reasons. First, to correctly set up the right state for test-

ing, developers may have to duplicate code from the method that

contains the target statement in the test for the extracted method.

Second, if there are many target statements, extracting each one can

devolve into a hard-to-maintain łone unit test per statementž sce-

nario. Finally, programs may become harder to comprehend if one

has to look up method bodies to understand individual statements.
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We introduce inline tests, a new kind of tests that makes it easier

to check individual program statements. An inline test is a statement

that allows to provide arbitrary inputs and test oracles for checking

the immediately preceding statement that is not an inline test. Inline

tests can be viewed as a way to bring the power of unit tests to

the statement level. Structurally, inline tests add a new level of

granularity below unit tests to the testing pyramid in Figure 1.

Inline tests could provide software development benefits beyond

testing. For example, prior work showed that tests and code do

not usually co-evolve gracefully [9]. Unlike unit tests, inline tests

are co-located in the same file as target statements. So, inline tests

could be easier to co-evolve with code. Prior work also showed

that test coverage can stay stable over time because existing tests

cover newly-added code [59]. Inline tests can help find faults in

newly-added code. The inputs and expected outputs in inline tests

are a form of documentation and they could improve code compre-

hension. Also, inline tests could improve developer productivity by

being more durable and less wasteful than łprintf debuggingž.

Inline tests are different from the assert construct that many

programming languages provide, e.g., [68, 91]. Assert statements

can enable production-time enforcement of conditions on program

state at given code locations without requiring developer-provided

inputs. For example, an assert can be used to ensure that a variable

is in range, or that a method’s return value is not null. Differently,

inline tests require developer-provided inputs and oracles, and they

only enable test-time checking of individual statements.

We implement I-Test, the first inline testing framework. Our

starting point is to define language-agnostic requirements for inline

testing frameworks (Section 3.1). For example, it should not be

possible to use inline tests in place of unit tests or debuggers. The

requirements that we define provide a basis for I-Test and they

can provide guidance for the development of future inline testing

frameworks. Our current I-Test implementation supports inline

testing for Python and Java, and it satisfies most of the requirements.

We evaluate I-Test on open-source projects by using it to test

144 statements in 31 Python programs and 37 Java programs. We

perform a user study to assess how easy it is to write inline tests,

and to obtain feedback about inline testing. Lastly, we measure

the runtime cost of inline tests. All nine user participants who

completed the study say that inline tests are easy to write, needing

an average of 2.5 minutes to write each inline test, and that inline

testing is beneficial. Inline tests incur negligible cost, at 0.007x for

Python and 0.014x for Java on average, and our inline tests helped

find two new faults that have been fixed by developers after we

reported the bugs. These results show the promise of inline tests.

The main contributions of this paper include:

★ Idea. We introduce inline tests, the benefits that they provide,

and requirements for testing frameworks that support them.

★ Framework.We implement I-Test, the first inline testing frame-

work. I-Test works for Python and Java.

★ User study.We evaluate programmer perceptions about inline

testing, and obtain feedback about their inline testing needs.

★ Performance evaluation. We measure runtime costs of I-Test

using 152 inline tests that we write in 68 open-source projects.

Our code and data is publicly available at

https://github.com/EngineeringSoftware/inlinetest.

1 def parse_diff(diff: str) -> Diff:

2 ...

3 nm = re.match(r'^--- (?:(?:/dev/null)|(?:a/(.*)))$', line)

4 Here().given(line,
'--- a/python/regex.py').check_true(nm).check_eq(nm.groups(),
('python/regex.py',))

5 if nm:

6 name, = nm.groups()

Figure 2: Regex in Python code, and an inline test in blue.

2 MOTIVATION AND EXAMPLES

We motivate inline tests by showing examples of some program-

ming language (PL) features and one common testing scenario for

which inline tests could be beneficial. For each, we discuss problems

that developers face due to the lack of direct support for statement-

level testing, and show example inline tests that can help.

2.1 An Example Inline Test

We start by illustrating what inline tests look like because we show

several of them in this section, before the I-Test API is described

(Section 3.4). Consider this inline test that we write for a target state-

ment in apprenticeharper/DeDRM_tools [86]; that target state-

ment is shown and described in Figure 5:

Here() .given(dt, (1980, 1, 25, 17, 13, 14)) .check_eq(dosdate, 57)

Declare Assign Assert

The łDeclarež portion tells the inline testing framework to pro-

cess the statement as an inline test. The łAssignž portion allows

the developer to provide test inputs to the inline test. In this case,

(1980, 1, 25, 17, 13, 14) is to be used as the value of the dt variable

that is in the target statement. Finally, the łAssertž portion allows

the developer to specify a test oracle. In this case, given the test

input for dt, the dosdate variable that is being computed in the

target statement should equal 57 for the inline test to pass.

2.2 PL Features That Inline Tests Help Check

Regular expressions (regexes). Prior work showed that regexes

are widely used, but they are difficult for developers to understand

and to use correctly [12, 16, 17, 62]. So, inline tests can allow devel-

opers to check what regexes do, and to test them in place. Consider

the Python code fragment in Figure 2, which is simplified from

pytorch/pytorch [43]. The regex on line 3 is a search pattern that

starts with ł--- ž and ends with the non-capturing group ł/dev/nullž

or ła/(.*)ž. A matched string is assigned to the name variable.

Directly checking what the regex on line 3 matches, or testing

that it is correct, is difficult without support for statement-level test-

ing. Three unit tests check parse_diff (written in a different file

and executed using pytest [41]), but they mock the parse_diff

inputs and do not directly test the regex. In fact, we are not aware

of an easy way to directly unit-test the regex on line 3 with pytest.

In practice, a main way of checking regexes is to use regex-

checking websites [14, 19, 94]. Figure 3a shows one such website.

One could also use in-IDE pop-ups like the one in Figure 3b for

IntelliJ [37]. These websites and in-IDE pop-ups strengthen our

argument for statement-level testing in four ways. First, the exis-

tence and usage of these websites or pop-ups show that developers

have a need to directly test regexes. Second, these websites and
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1 ...

2 - elif ch < ' ' or ch == 0x7F:

3 + elif ch < ' ' or ord(ch) == 0x7F:

4 out.write('\\x')

5 out.write(hexdigits [(ord(ch) >> 4) & 0x000F ])

6 - Here().given(ch , 0x7F).check_eq ((ord(ch) >>4)&0x000F , 0x07)

7 + Here().given(ch , chr(0x7F)).check_eq ((ord(ch) >>4)&0x000F , 0x07)

8 out.write(hexdigits[ord(ch) & 0x000F ])

Figure 7: Inline test helped find string manipulation fault.

1 private CalculatedQueryOperation unwrapFromAlias(CallExpression call) {

2 List<Expression> children = call.getChildren();

3 List<String> aliases =

4 children.subList(1, children.size())

5 .stream()

6 .map(alias -> ExpressionUtils.extractValue(alias, String.class)

7 .orElseThrow(() -> new ValidationException("Unexpected: " + alias)))

8 .collect(toList());

9 new Here().given(children, Arrays.asList(new Expression[]{new
SqlCallExpression("SELECT MIN(Price) AS SmallestPrice FROM
Products; "), new SqlCallExpression("SELECT COUNT(ProductID) FROM
Products;")})).checkEq(aliases, Arrays.asList("SELECT
COUNT(ProductID) FROM Products;"));

10 CallExpression tc = (CallExpression) children.get(0);

11 return createFunctionCall(tc, aliases, tc.getResolvedChildren());

12 }

Figure 8: Java code using stream, and an inline test in blue.

Using an inline test to check statements that manipulate strings

also helped us find a fault, which we show together with the fix

in Figure 7. Specifically, the condition on line 2 is faulty because

it directly compares a string with an integer. So, the inline test on

line 6 fails with the message, łTypeError: ord() expected string of

length 1, but int foundž. Changing the condition to be as shown

on line 3 fixes the fault and the developers have accepted our pull

request2. Line 7 is our updated inline test after our fix. No unit test

covers this function, but other functions can call it in production.

Stream. The target statement on lines 3 to 8 in Figure 8 uses Java’s

stream API; it is from apache/flink [23] and it extracts the val-

ues of an expression’s children to a list. Using unit tests to check

whether the aliases variable is computed correctly will require

using sophisticated Java features like reflection [60] (the target

statement is in a private method). Moreover, a unit test cannot help

to directly check aliases; only the value computed on line 11 is re-

turned. Lastly, the unwrapFromAlias method is not directly tested

by any unit test but it is called by methods in other classes. The

inline test on line 9 directly tests the target statement. Also, given

the complexity of the statement on lines 3 to 8, a developer who is

new to apache/flink is likely to be better able to understand the

code with the inline test than they would do without it.

2.3 A Common Scenario: łprintf debuggingž

Developers commonly perform łprintf debuggingž, in which they

temporarily add print statements so that they can visually check

whether correct values are being computed at the target statement.

Then, after some time, they remove these print statements.

One indication of łprintf debuggingž popularity can be seen

by searching for łremove debugž on GitHub or by going to [26].

(We found 3,344,094 matching commits in May 2022, but we did not

2https://github.com/python/cpython/commit/5535f3f745761e53a6ff941b8ef74b5ce

1 private List <Field > getNestedField (...) {

2 if (subField.isAnnotationPresent(Indexed.class)) {

3 - System.out.println(">>> Found Indexed SUBFIELD ....");

4 boolean sfIsTagField = (( subField

5 .isAnnotationPresent(Indexed.class)

6 && (( CharSequence.class.isAssignableFrom(subField.getType ())

7 || (subField.getType () == Boolean.class)

8 || (maybeCollectionType.isPresent ()

9 && (CharSequence.class

10 .isAssignableFrom(maybeCollectionType.get())

11 || (maybeCollectionType.get() == Boolean.class)))))));

12 - System.out.println(">>> sfIsTagField ==> " + sfIsTagField);

13 new Here().given(subField, new Object() {@Indexed CharSequence f;}

14 .getClass().getDeclaredField("f"))

15 .checkEq(sfIsTagField, true);

16 ...

17 }}}

Figure 9: How inline tests can help Java łprintf debuggingž.

look through them all to see if they are all about łprintf debug-

gingž.) GitHub commits likely underestimate łprintf debuggingž

popularity; developers may clean the print statements before com-

mitting their code. Dedicated utilities like git−remove−debug [11]

and others [13, 40, 58] clean up after łprintf debuggingž. Figure 9

shows a GitHub commit3 that cleaned up after łprintf debuggingž

a complex statement in a private method. Researchers found many

reasons why developers do łprintf debuggingž: lack of familiarity

with debuggers [10], lack of platform-specific debuggers [5, 36],

perceived speed [73] and simplicity [55] of łprintf debuggingž,

the inability of debuggers to handle parallel PL constructs [31], etc.

We do not claim that inline tests could replace łprintf de-

buggingž. The many reasons for the longevity and popularity of

łprintf debuggingž suggests that there is no silver bullet. How-

ever, inline tests can help to reduce some of the wastefulness of

adding and then removing print statements during łprintf de-

buggingž. Specifically developers could use inline tests to persist

knowledge that they gain during łprintf debuggingž. For example,

line 13 to line 15 in Figure 9 shows how one could migrate the print

statements from łprintf debuggingž into inline tests.

3 THE I-TEST FRAMEWORK

We start with a list of language-agnostic requirements for inline

testing frameworks. Then, we give an overview of I-Test, the inline

testing framework that we implement in this paper. Lastly, we

introduce I-Test’s API, and describe our current implementation.

3.1 Inline Testing Framework Requirements

Section 2 motivated the need for inline tests. We now turn to the

question, what are the requirements for inline testing frameworks?

Answering it helps to (1) distinguish inline testing from existing

forms of testing, (2) provide a road map for inline testing develop-

ment, and (3) provide a basis for evaluating I-Test. Inline testing

frameworks should meet this minimum set of requirements:

(1) Inline tests are not replacements for unit tests or debuggers. ✓

(2) An inline test should only check one target statement. ✓

(3) Multiple inline tests can check the same target statement. ✓

(4) An inline test should allow developers to provide multiple val-

ues for a variable in the target statement. ✓

3https://github.com/redis/redis-om-spring/commit/f808c9b3a0c72d22c14221e37228a389a3ff139d
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Python. We implement I-Test as a standalone Python library,

which can be run from the command line; we also integrate I-Test

into pytest. I-Test uses the Python AST library [85] to parse the

source code, extract the tested statement, process the input assign-

ments and assertions, compose an executable test, and execute the

inline test in the name space of the module in which tested state-

ment exists. More precisely, I-Test uses the visitor design pattern to

detect inline test initialization and to find target statements. Oracles

are implemented on top of the assert construct in Python. If an

assertion fails, the resulting error message shows the line number

of the failing inline test, and its observed and expected outputs.

We integrate I-Test as a plugin into pytest to reuse the various

testing options that pytest provides and to generate test reports.

Java. We use Javaparser [87] to manipulate Java AST. Java I-Test

additionally infers variable types in given calls using a symbol

table that it maintains. For example, in given(a, 1), it looks up the

type that a was declared with in the program. We support two

compilation modes for Java inline tests. The first (guard mode)

keeps the inline test in the resulting bytecode and uses a flag to skip

or run the inline test. The second (delete mode) discards the inline

tests from the bytecode. We also support two ways to run inline

tests in Java. The first generates an ad hoc class for each source file,

where each inline test is converted to a method and a main method

is added to run all the inline tests. The second produces a JUnit test

class for the given file, where each inline test is converted to a test

method, which can be executed using the JUnit runner.

4 PERFORMANCE EVALUATION FOR I-TEST

We answer these research questions to assess inline testing costs:

RQ1: How long does it take to run inline tests?

RQ2: What is the runtime overhead when inline tests are enabled

during the execution of existing unit tests?

RQ3: What is the runtime overhead when inline tests are disabled

during the execution of existing unit tests?

We measure the times for answering these questions using the

inline tests from the 100 examples that we write (Section 3.3.2). We

also duplicate each of these inline tests 10, 100, and 1000 times, so

that we can simulate the costs as the number of inline tests grows.

We evaluate RQ2 and RQ3 on 21 projects in our corpus where we

could run the unit tests.

4.1 Experimental Setup

Standalone experiments. To run the inline tests in an example,

I-Test does not need all code elements (class, method, or field) in

that example. Rather, it only needs code elements used by the target

statement and the inline test. For example, the code fragment in

Figure 6 has classes Context and Database in the method signature.

But, the inline test there does not need these classes; it only needs

the String class from the standard library and the Here class in

I-Test. On the contrary, running a unit test for the same example

requires loading all the classes. So, I-Test can run all 152 inline tests

under the standalone mode without setting up the environments

needed to run unit tests. For Python, we run the inline tests in each

example using the I-Test plugin that we integrate into pytest. For

Java, we run the inline tests in each example by using I-Test to

produce an ad-hoc class and then invoke its main method.

Integrated experiments. To measure the runtime overhead of

inline tests, we need to run them together with unit tests using the

runtime environment specified by each project.Wewrite inline tests

directly in the projects from which we extract the examples. But,

we face difficulties in setting up some runtime environments or in

running unit tests. So, we perform the experiments for answering

RQ2 and RQ3 on a subset of 21 projects. Below, we discuss the

difficulties that we face for Python and Java, respectively.

I-Test for Python relies on pytest to run inline tests. Of 31

Python projects in our corpus, we could not setup the appropriate

pytest runtime environment for 2: keras-team/keras uses the

bazel build system which requires additional time to setup; and

kovidgoyal/kitty mixes C++ with Python code, leading to prob-

lems with importing C++ code into pytest using a pyi interface

file. Of the other 29 projects, 5 have no unit tests. We confirm

absence of unit tests by (1) checking the README.md and CON-

TRIBUTING.md files which contain instructions for setting up the

projects; (2) inspecting the Continuous Integration logs, if any; and

(3) searching for ∗test ∗ .py in the repositories. 5 projects do not

use pytest to run unit tests. Lastly, another 5 projects have many

unit tests that consistently fail. If a project manifests less than 10

flaky unit tests [8, 44, 45, 57, 80] that can be skipped without caus-

ing more failures, we run the remaining unit tests in that project.

We run inline tests and unit tests for the remaining 14 projects (first

column of Table 4a).

For Java, we use I-Test to generate ad-hoc classes for the inte-

grated examples, and compile the generated classes together with

the other source code in the project. Of 37 projects in our corpus,

10 have compilation failures (before integrating any inline test)

and 3 have no unit tests. We confirm that these projects have no

unit tests and handle flaky tests similarly as we did for Python.

If running unit tests across a multi-module project fails, we retry

running only the unit tests in the sub-modules that we write inline

tests for (and refrain from using the project in our experiments if

there are still too many failures). We run inline tests and unit tests

for the remaining 7 projects, shown in the first column of Table 4c.

Duplicating inline tests. Since we are the first to explore inline

tests, the number of inline tests we have written for each project is

often not as much as the number of unit tests that a project typically

has. In the future, about equal or even more inline tests than unit

tests may be written. To simulate the performance of I-Test in such

scenario with the corpus we currently have, we experiment with du-

plicating each inline test 10, 100, and 1000 times. When duplicating

inline tests 1000 times, two Java projects (alibaba/fastjson and

apache/kafka) do not compile because the size of the bytecode in

the method containing the target statement exceeded the allowable

limit in Java [67]. So, we exclude these two projects (only when

duplicating 1000 times).

Experimental procedure and environment. We run inline tests

and unit tests four times. The first run is for warm-up, and we

average the times for the last three runs. We run experiments on a

machine with Intel Core i7-11700K @ 3.60GHz (8 cores, 16 threads)

CPU, 64 GB RAM, and Ubuntu 20.04. We use Java 8 and Python

3.9 in the standalone experiments, and use the software versions

required by each project in the integrated experiments.
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Table 3: Results of standalone experiments. Dup = duplica-

tion count, #IT= total no. of inline tests, 𝑇IT[s]= total inline

tests running time, 𝑡IT[s]= inline test running time.

(a) Python

Dup #IT 𝑇IT[s] 𝑡IT[s]

x1 87 12.78 0.147

x10 870 13.41 0.015

x100 8,700 19.86 0.002

x1000 87,000 124.92 0.001

(b) Java

Dup #IT 𝑇IT[s] 𝑡IT[s]

x1 65 23.08 0.355

x10 650 24.92 0.038

x100 6,500 34.21 0.005

x1000 65,000 67.87 0.001
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Figure 12: Line plots of duplication times vs. total/per-test

time when running inline tests standalone.

4.2 Results

RQ1: cost of running only inline tests. Table 3 shows the results

of running Python and Java inline tests in the standalone mode.

Without duplicating the inline tests in each example, the average

time for running each inline test is 0.147s for Python and 0.355s for

Java. As we duplicate the inline tests in each example, the average

time for running each inline test reduces to 0.001s for Python and

0.001s for Java. There could be two reasons. First, the cost of reading

a file and extracting inline tests is amortized. Second, repeatedly

executing the same inline test is faster.

Figure 12 shows how total and per-test execution time scale as

the number of inline tests grows. There, the total time for running

inline tests stays almost constant when duplicating the inline tests

10 or 100 times (corresponding to around 10 and 100 inline tests

per file), and starts to grow dramatically when duplicating 1000

times. The Java version of I-Test shows better scalability than the

Python-version, as it is slower initially but faster when duplicating

1000 times, probably due to just-in-time compilation.

RQ2: overhead of running unit tests with inline tests enabled.

Table 4 shows the results of running Python and Java inline tests

after integrating with the open-source projects and their unit tests.

There, the 𝑂ITE columns show the overhead when inline tests

are enabled and executed during the execution of existing unit

tests. Overall, without duplicating inline tests (tables 4a and 4c),

the overhead of running inline tests is negligible compared to unit

tests, and is 0.007x for Python and 0.014x for Java. This observation

holds when duplicating inline tests (tables 4b and 4d); for example,

when duplicating inline tests 1000 times, which brings the number

of inline tests similar to the number of unit tests, the overhead is

0.088x for Python and 0.008x for Java. Negligible overhead may be

due to inline tests running much faster than unit tests.

RQ3: overhead of running unit tests with inline tests disabled.

The 𝑂ITD columns in Table 4 show the overhead when inline tests

are disabled during the execution of existing unit tests. The inline

tests are not executed, but having them in the code base may require

unit tests to execute additional no-op statements. Nevertheless, we

found such overhead to be negligible, even when duplicating the

inline tests for 10ś1000 times; the negative close-to-zero overhead

numbers (e.g., -0.001x for Python when not duplicating inline tests)

are likely due to nondeterminism during execution.

5 USER STUDY

The goals of our study are to evaluate the ease with which devel-

opers learn and use I-Test, and to obtain their perception about

inline testing or how I-Test can be improved.

5.1 Study Design

We ask participants to complete three activities: (1) a short tuto-

rial to learn about inline testing and I-Test (expected duration: 20

minutes), (2) four testing tasks in which they write inline tests for

four specified target statements (expected duration: 10 minutes per

task), and (3) a questionnaire with six questions (unspecified dura-

tion). We suggest a one-hour time limit, but results show that most

participants finish faster. We write scripts to process the responses,

and manually check the correctness of participants’ inline tests.

We only use I-Test for Python in our user study to keep par-

ticipants focused on inline testing and not on switching between

programming languages. We plan to do a user study of I-Test for

Java (and other programming languages) in the future. A sample

user study (without responses) is in our GitHub repository. We

briefly describe the activities that participants undertake.

(1) Tutorial. We provide an overview of I-Test’s API (Section 3.4).

Then, we ask each participant to run a provided script to setup the

environment. Finally, we illustrate I-Test using three examples.

The first example is a toy łhello worldž example; the other two are

examples from our corpus. Each example contains a code snippet,

specifies a target statement or two together with one or two in-

line tests per target statement. We also describe I-Test’s API and

instructions for running the inline tests.

(2) Using inline tests. We ask participants to write and run inline

tests for four examples from our corpus. For each example, we

present the participant with the code snippet (without our inline

tests) and specify a target statement. Then, we ask participants to

write one or more inline tests for the target statement. We also ask

participants to ensure that their inline tests pass. Finally, we ask

participants to separately report the time taken to understand the

target statement and the time taken to write all inline tests.

(3) Survey. We ask participants to fill a questionnaire, to record their

experiences with I-Test and their feedback. Specifically, we ask

participants to (a) rate the difficulty of learning I-Test’s API and

of writing inline tests, (b) report their number of years of general

and Python programming experience (to understand if expertise

impacts their experiences), (c) say whether they think writing inline

tests is beneficial for each of the four tasks compared with unit

tests (they can optionally justify their łyesž or łnož responses),

(d) comment on how to improve I-Test.

Participants. Our valid user study participants are six graduate

students and two undergraduate students from our institutions and

one professional software engineer. We start with 13 participants.

Two participants partake in a pilot study, but we discard their
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Table 4: Results of integrated experiments. Proj= project name, Dup = duplication times, #UT= total no. of unit tests, #IT= total

no. of inline tests, 𝑡UT[s]= time to run each unit test, 𝑡IT[s]= time to run each inline test, 𝑇ITE [s]= total time to run unit tests

with inline tests enabled, 𝑡ITE[s]= time to run each unit test with inline tests enabled, 𝑂ITE= overhead of running unit tests

with inline tests enabled, 𝑇ITD[s]= total time to run unit tests with inline tests disabled, 𝑡ITD[s]= time to run each unit test with

inline tests disabled, 𝑂ITD= overhead of running unit tests with inline tests disabled.

(a) Python

Proj #UT #IT 𝑇UT [s] 𝑡UT[s] 𝑇ITE [s] 𝑡ITE[s] 𝑂ITE 𝑇ITD[s] 𝑡ITD[s] 𝑂ITD

RaRe-Technologies/gensim 968 2 225.92 0.233 226.90 0.234 0.004 226.35 0.234 0.002

Textualize/rich 622 2 3.71 0.006 3.94 0.006 0.063 3.72 0.006 0.002

bokeh/bokeh 8,616 8 49.63 0.006 50.91 0.006 0.026 50.13 0.006 0.010

chubin/cheat.sh 1 3 0.34 0.337 0.74 0.186 1.204 0.33 0.334 -0.010

davidsandberg/facenet 3 1 0.97 0.323 1.83 0.458 0.888 0.98 0.325 0.006

geekcomputers/Python 1 4 0.17 0.169 0.38 0.075 1.217 0.18 0.179 0.058

google-research/bert 15 1 2.05 0.137 2.69 0.168 0.314 2.07 0.138 0.011

joke2k/faker 1,596 4 16.73 0.010 16.91 0.011 0.011 16.64 0.010 -0.006

mitmproxy/mitmproxy 1,287 1 7.50 0.006 7.85 0.006 0.046 7.45 0.006 -0.007

numpy/numpy 19,644 2 147.82 0.008 145.88 0.007 -0.013 145.36 0.007 -0.017

pandas-dev/pandas 147,307 2 278.43 0.002 279.81 0.002 0.005 278.88 0.002 0.002

psf/black 236 1 6.96 0.029 7.29 0.031 0.048 7.02 0.030 0.009

pypa/pipenv 106 1 3.63 0.034 4.17 0.039 0.151 3.64 0.034 0.003

scrapy/scrapy 2,246 2 130.07 0.058 130.93 0.058 0.007 130.42 0.058 0.003

avg 13,046.29 2.43 62.42 0.005 62.87 0.005 0.007 62.37 0.005 -0.001

Σ 182,648 34 873.93 N/A 880.24 N/A N/A 873.16 N/A N/A

(b) Python, with duplicating inline tests

Dup #UT #IT 𝑇UT [s] 𝑡UT[s] 𝑇ITE [s] 𝑡ITE[s] 𝑂ITE 𝑇ITD[s] 𝑡ITD[s] 𝑂ITD

x1 182,648 34 873.93 0.005 880.24 0.005 0.007 873.16 0.005 -0.001

x10 182,647 340 871.73 0.005 922.03 0.005 0.058 914.68 0.005 0.049

x100 182,648 3,400 876.13 0.005 884.16 0.005 0.009 873.65 0.005 -0.003

x1000 182,647 34,000 872.59 0.005 949.02 0.004 0.088 889.00 0.005 0.019

(c) Java

Proj #UT #IT 𝑇UT [s] 𝑡UT[s] 𝑇ITE [s] 𝑡ITE[s] 𝑂ITE 𝑇ITD[s] 𝑡ITD[s] 𝑂ITD

alibaba/fastjson 5,022 2 44.99 0.009 45.59 0.009 0.013 44.86 0.009 -0.003

alibaba/nacos 971 1 249.45 0.257 250.67 0.258 0.005 249.93 0.257 0.002

apache/dubbo 3,180 1 678.86 0.213 680.26 0.214 0.002 679.43 0.214 0.001

apache/kafka 221 1 9.84 0.045 10.76 0.048 0.094 10.09 0.046 0.026

apache/shardingsphere 44 2 5.03 0.114 5.75 0.125 0.143 5.04 0.115 0.002

jenkinsci/jenkins 32 2 4.67 0.146 5.29 0.156 0.132 4.64 0.145 -0.007

skylot/jadx 709 1 66.57 0.094 76.21 0.107 0.145 75.47 0.106 0.134

avg 1,454.14 1.43 151.34 0.104 153.50 0.105 0.014 152.78 0.105 0.009

Σ 10,179 10 1,059.41 N/A 1,074.53 N/A N/A 1,069.47 N/A N/A

(d) Java, with duplicating inline tests

Dup #UT #IT 𝑇UT [s] 𝑡UT[s] 𝑇ITE [s] 𝑡ITE[s] 𝑂ITE 𝑇ITD[s] 𝑡ITD[s] 𝑂ITD

x1 10,179 10 1,059.41 0.104 1,074.53 0.105 0.014 1,069.47 0.105 0.009

x10 10,179 100 1,059.36 0.104 1,065.38 0.104 0.006 1,060.47 0.104 0.001

x100 10,179 1,000 1,059.11 0.104 1,073.50 0.096 0.014 1,068.44 0.105 0.009

x1000 4,936 7,000 1,004.24 0.203 1,012.16 0.085 0.008 1,008.55 0.204 0.004

responses after using those responses to refine the user study. We

then send the study to the other participants in batches of five and

six. No participant is a co-author of this paper, and we confirm that

none of them contributes to the open-source projects being tested.

We got nine valid responses; participants report an average 6.1

years (median: 6.0 years) of programming experience. On a scale of

1 to 5, with 1 being novice and 5 being expert, participants self-rate

their Python expertise as 3.4 on average (median: 3.0).

Inline tests vs. unit tests. We did not ask user study participants

to write unit tests or to directly compare them with inline tests for

the testing tasks. Rather, we only ask for anecdotal comparisons

of inline tests and unit tests in the questionnaire. We chose this

study design for three reasons. First, setting up the unit testing

environment per project is hard (even for us) and differs across

projects. So, asking participants to set up environments before

writing unit tests could be a source of bias. Second, providing a

Docker image (or similar) could induce biasÐinstalling and running

Docker containers could be hard for participants who are unfamiliar

with Docker. Lastly, we do not assume familiarity with pytest,

which participants would need to write unit tests in Python. To
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work around these three problems, we provide participants with

a script that sets up a minimal Python runtime environment for

inline tests. It takes only about one minute to run the script.

5.2 User Study Results

Quantitative analysis. Our user study results are shown in Table 5,

grouped by the four tasks. For each task, we show the average

time (in minutes) spent by each participant on understanding the

target statement, writing all inline tests, and writing each inline

test. We also show the number of inline tests that participants write,

the number of participants for whom all inline tests pass, and the

number of participants who answer łyesž to łwriting inline tests

is beneficial compared with just writing unit testsž. On a scale of

1 to 5 (1 being very difficult and 5 being very easy), participants

rank the difficulty of learning I-Test as 4.2 (median: 4.0) and rank

the difficulty of writing inline tests as 4.1 (median: 4.0). On average,

participants write 1.7 inline tests (median: 1.7) per task, and spend

2.5 (median: 2.6) minutes to understand a target statement and 3.5

(median: 3.6) minutes to write an inline test.

Qualitative analysis. All participants found inline tests to be

beneficial for some of the tasks. In fact, for all four tasks, most

participants think that writing inline tests is beneficial, and all

participants agree that inline tests are beneficial for Task 4. The one

participant who said that inline testing is not beneficial for Task 1

preferred to extract the target statement into a function and then

write unit tests. So, while they did not use inline testing for this

task, they still found it important to test the target statement. For

Task 2, the one participant who did not find inline testing beneficial

said that they think that the target statement is too trivial to test.

Lastly, the four participants who did not find inline testing useful

for Task 3 provide two kinds of reasons: (1) the variable in the target

statement is being returned from the function, so a unit test would

suffice (two participants); and (2) the target statement performs

sorting, which is easy to understand and does not warrant inline

testing (two participants). The variance in perceptions on Tasks 1,

Task 2, and Task 3, plus the different reasons given by participants

who think that a target statement does not warrant an inline test

shows that developers will likely use inline tests in different ways.

Participants provide feedback on how to further improve I-Test,

including by (a) minimizing the long stack traces that are shown

when inline tests fail (łThe stack trace you get when a test fails is

quite long, but this is an easy fixž ); (b) allowing inline tests to use

symbolic variables (łHaving tests with symbolic values, meaning that

you don’t provide values for inputsž ); (c) providing other methods in

the API that allow writing other kinds of oracles beyond equality

checks (łOther kinds of checks besides equalityž ); (d) supporting

parameterized inline tests, which we have now implemented (łI

would like shortcut for checking for multiple inputsž ).

Participants also share feedback on using I-Test. A participant

liked having inline tests in addition to unit tests: łit is quite useful to

have an inline testing option available. Unit testing and inline testing

don’t have to be exclusionary, there are some situations where one

might be preferable but having both as an option is nicež. Another

participant commented that there is a learning curve: łI experienced

a learning curve to using the framework. I was able to understand

the structure of how to make ... tests much better after doing the

Table 5: User study results.𝑇u[min]= time to understand each

task,𝑇w[min]= time to write all inline tests per task, #IT= no.

of inline tests, 𝑇w/#IT [min]= avg. time to write each inline

test, Corr= ratio of participants whowrite passing inline tests,

Adv= ratio of participants who find inline tests beneficial.

Task 𝑇u[min] 𝑇w[min] #IT 𝑇w/#IT [min] Corr Adv

avg med avg med avg med avg med

1 4.0 4.0 3.7 3.0 1.7 1.0 2.8 2.0 9/9 8/9

2 1.6 1.0 3.4 3.0 1.6 1.0 2.5 2.0 9/9 8/9

3 2.2 2.0 4.1 4.0 1.7 2.0 3.0 2.0 9/9 5/9

4 3.3 3.0 2.8 2.0 1.8 2.0 1.9 1.0 9/9 9/9

avg 2.8 2.8 3.5 3.6 1.7 1.7 2.5 2.6 N/A N/A

first taskž. It will be important in the future to investigate ways to

lower the learning curve. A participant was curious to know what

the overhead is when inline tests are disabled: łDoes inline testing

add overhead during production runs (i.e. no testing is needed)?ž.

We answer this question in Section 4.2. Also, a participant thinks

inline tests may be better than assert statements (łInline tests can

be good replacement for assertionsž ). Lastly, a participant made the

connection to łprintf debuggingž: łI would legitimately want to use

a framework like this next time I felt the need to do printf debuggingž.

6 LIMITATIONS

We design the I-Test API based on 100 examples that we select

from open-source projects. Also, the inline test inputs and expected

outputs that we use in those tests were neither chosen by the open-

source project developers nor confirmed by them. So, it is not yet

clear if those developers will find our inline tests acceptable.

Our own programming experience tells us that more kinds of

oracles will likely need to be supported in I-Test. For example,

we do not yet support expected exceptions or allow checking near

equality between floating point values. The current limited set

of oracles in I-Test results from using 100 examples to guide our

design. In the future, by collecting more examples and requirements,

I-Test can possibly be extended to support more kinds of oracles.

In terms of implementation, Section 3.1 shows the list of language

agnostic requirements that I-Test does not yet support (✗) and

those that it only partially supports (✓∗). This paper motivates,

defines, and evaluates inline tests as a way to prove the concept.

The engineering effort to fully support all the requirements is a

matter of time and resources that we will invest into seeing that

inline tests become more mature.

An inline test is inserted as code directly following the code

under test. In the unlikely case when the code under test is in a large

method or file, inserting inline tests may cause code-too-large errors

due to limitations of compilation tool chains (for example, a Java

method can only have a maximum of 65535 bytes of bytecode [67]).

Our current Java I-Test implementation is designed to support

language features of Java 8, and it may not work for newer language

features in more recent Java versions. In the opposite direction,

our current Python I-Test implementation is designed to support

language features of Python 3.6 and above, so it may not work for

older Python versions.

If a target statement invokes a method with arguments that need

to be assigned in an inline test, then the current I-Test implementa-

tion cannot be used to check that target statement (Hence, the ✗ on
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Requirement 13 in Section 3.1). We already observed a consequence

of this limitation in our attempt to write inline tests for statements

that use Java’s stream API. Most stream operations invoke the kind

of method-with-arguments that we do not yet support. Also, stream

operations typically invoke several methods, so testing them with

inline tests can seem like writing unit tests. Finding smart ways to

support the testing of stream operations will be a priorityÐthe com-

plexity and popularity of stream operations make them attractive

candidates for inline testing.

Inline testing may not generalize well to programming languages

that do not use the imperative style of Java and Python. In particular,

more thoughts need to be given in the future on whether and how

inline testing can be realized effectively for functional languages

like Haskell, logic programming languages like Prolog, or domain-

specific languages like SQL.

We have not investigated how well inline testing can fit into

different software and test design processes. So, it is not yet clear

what impact, if any, inline tests will have in the presence of different

testing methodologies. For example, since inline tests check existing

target statements, its role may be limited in organizations that

follow test-driven development (TDD) [3, 7, 78]. (In TDD, tests

are written prior to writing code.) As another example, what role

should inline tests play during regression testing and how often

should they be re-run during software evolution? Similarly, it may

be that inline tests are more useful in systems where testability [24]

was not a first-class concern during programming. That is, inline

tests may be more helpful in legacy systems or systems with large

monolithic components than in newer systems that are designed

to be unit-testable from the ground up. We leave the investigation

of how to fit inline tests into different software- and test-design

processes as future work.

7 RELATED WORK

Testing and debugging. Karampatsis and Sutton [39], and Kamien-

ski et al. [38] curated datasets of single-statement bugs (SStuBs) in

Java and Python, respectively. Also, Latendresse et al. [47] find that

continuous integration (CI) rarely detects SStuBs. These works on

SStuBs further motivate the need for direct support for checking

individual statements, which inline tests provide.

Michael et al. [62] found that regexes are hard to read, find,

validate, and document. Eghbali and Pradel [20] also found that

string-related bugs are common in JavaScript programs. Section 2

discussed how inline tests can mitigate these problems and how

I-Test helped find regex-related and string-manipulation bugs.

Doctest [84] in Python allowswriting tests in function docstrings.

Inline tests are similar to doctests in that both can help with code

comprehension. But, doctest only supports function-level testing,

while inline tests only support statement-level testing.

Regression test selection (RTS) [21, 27ś29, 52, 81, 102] speeds

up regression testing by only re-running tests that are affected

by code changes. Section 4 showed that each inline test runs very

fast compared to unit tests, but RTS for inline tests may become

important as inline tests usage increases.

In-vivo testing [64] executes tests in the deployment environ-

ment, to find defects that are hidden by the clean test environment.

In-vivo tests are method-level tests, while inline tests statement-

level tests, and I-Test currently targets the test environment.

Fault localization [1, 2, 56, 72, 98, 99] helps finds faulty statements

that cause a test failure. Inaccurate fault localization can occur for

unit tests that cover many statements [53, 82]. We expect fault

localization for inline tests to be more accurate since they check

the immediately preceding statement that is not an inline test.

Assertions and design by contract. The assert construct in

many programming languages, e.g., [35, 68, 83, 91], allows checking

that a condition holds on the current program state. An inline

tests, like an assert [97], can be written after any statement in the

production (not test) code. Inline tests allow developer-provided

input and are only to be used for test-time checking, but asserts

do not allow developers to provide arbitrary inputs and can be used

for production-time checking [76].

There is a lot of work on design-by-contract (DBC) [6, 50, 61,

63, 65, 76, 79, 89, 90] for specifying preconditions, postconditions,

and invariants. DBC tools include PyContracts [90], Crosshair [79],

Icontract [89] for Python, and JML [50], Jass [6], Squander [63],

Deuterium [65] for Java. DBC helps check and comprehend hard-

to-understand programsÐgoals that inline tests also target. DBC

typically requires developers to use a different programming lan-

guage/paradigm developers, so theremay be a higher learning curve.

In contrast, inline tests are written in the same language/paradigm

as the code. Also, DBC enables method-level checks (except for

loop invariants [22, 25, 34]), but inline tests check statements.

Domain specific languages. We provide I-Test as an API in both

Python and Java. However, the design of our API was inspired by

prior work on domain specific languages for writing executable

comments [66] and contracts [65].

8 CONCLUSION

If developers could write tests for individual program statements,

then they would be able to meet testing needs for which they cur-

rently have little to no support. Such needs are at a lower granularity

level than what today’s testing frameworks support, or for which

currently supported levels of test granularity are ill-suited.We intro-

duced a new kind of tests, called inline tests to help test individual

statements. We implemented the first inline testing framework, I-

Test, to meet language-agnostic requirements that we define. Our

assessment of I-Test via a user study and via performance mea-

surements showed that inline testing is promisingÐparticipants

find it easy to learn and use inline testing and the additional cost of

running inline tests is tiny. We outline several directions in which I-

Test can be extended to make it more mature and to meet developer

needs across programming languages.
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