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ABSTRACT KEYWORDS

Several recent research efforts have proposed Machine Learning
(ML)-based solutions that can detect complex patterns in network
traffic for a wide range of network security problems. However,
without understanding how these black-box models are making their
decisions, network operators are reluctant to trust and deploy them
in their production settings. One key reason for this reluctance is that
these models are prone to the problem of underspecification, defined
here as the failure to specify a model in adequate detail. Not unique
to the network security domain, this problem manifests itself in ML
models that exhibit unexpectedly poor behavior when deployed in
real-world settings and has prompted growing interest in developing
interpretable ML solutions (e.g., decision trees) for “explaining” to
humans how a given black-box model makes its decisions. However,
synthesizing such explainable models that capture a given black-box
model’s decisions with high fidelity while also being practical (i.e.,
small enough in size for humans to comprehend) is challenging.

In this paper, we focus on synthesizing high-fidelity and low-
complexity decision trees to help network operators determine if
their ML models suffer from the problem of underspecification. To
this end, we present TRUSTEE, a framework that takes an existing
ML model and training dataset as input and generates a high-fidelity,
easy-to-interpret decision tree and associated trust report as out-
put. Using published ML models that are fully reproducible, we
show how practitioners can use TRUSTEE to identify three com-
mon instances of model underspecification; i.e., evidence of shortcut
learning, presence of spurious correlations, and vulnerability to out-
of-distribution samples.
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1 INTRODUCTION

In the last few years, we have witnessed a growing tension in the
network-security community. Recent research has demonstrated the
benefits of Artificial Intelligence (AI) and Machine Learning (ML)
models over simpler rule-based heuristics in identifying complex net-
work traffic patterns for a wide range of network security problems
(see recent survey articles such as [9, 46, 55, 62]). At the same time,
we have seen reluctance among network security researchers and
practitioners when it comes to adopting these ML-based research
artifacts in production settings (e.g., see [2, 4, 58]). The black-box
nature of most of these proposed solutions is the primary reason for
this cautionary attitude and overall hesitance. More concretely, the
inability to explain how and why these models make their decisions
renders them a hard sell compared to existing simpler but typically
less effective rule-based approaches.

This tension is not unique to network security problems but ap-
plies more generally to any learning models, especially when their
decision-making can have serious societal implications (e.g., health-
care, credit rating, job applications, and criminal justice system).
At the same time, this basic tension has also driven recent efforts
to “crack open” the black-box learning models, explaining why and
how they make their decisions (e.g., “interpretable ML” [51], “ex-
plainable AI (XAI)” [59], and “trustworthy AI” [12]). However, to
ensure that these efforts are of practical use in particular applica-
tion domains of AI/ML such as network security is challenging and
requires further qualifying notions such as (model) interpretability
or trust (in a model) [40] and also demands solving a number of
fundamental research problems in these new areas of AI/ML.

In this paper, we first provide such a qualification that is motivated
by the needs of the field of network security as application domain
of AI/ML and equates “an end user having trust in an AI/ML model”
with “an end user being comfortable with relinquishing control to
the model” [40]. Given this specific definition of what it means for
an AI/ML model to engender trust, we next address a number of
fundamental research challenges related to the problem of quantita-
tively deciding when an end user is comfortable with relinquishing
control to a given AI/ML model. To this end, a particular focus of
this paper is on determining whether or not a given AI/ML model
suffers from the problem of underspecification [17].

Here, the problem of underspecification in modern AI/ML refers
to determining whether the success of a trained model (e.g., high
accuracy) is indeed due to its innate ability to encode some essential
structure of the underlying system or data or is simply the result of
some inductive biases that the trained model happens to encode. In
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Figure 1: TRUSTEE overview.

practice, inductive biases typically manifest themselves in instances
of shortcut learning strategies [28], signs of spurious correlations [3],
or an inherent inability for out-of-distribution (0.0.d.) generalizations
(i.e., test data distribution is different from training data distribution).
The implication of such inductive biases is that their presence in
trained AI/ML models prevents these models from being credible or
trustworthy; that is, generalize as expected in deployment scenarios.
Thus, for establishing the specific type of trust in an ML model
considered in this paper, it is critical to be able to identify these
inductive biases, and this paper takes a first step towards achieving
this ambitious goal.

To detect underspecification issues in learning models for network
security problems, we develop TRUSTEE (TRUSt-oriented decision
TreE Extraction). This framework provides a means for carefully
inspecting black-box learning models for the presence of inductive
biases. Figure 1 shows how TRUSTEE augments the traditional ML
pipeline to examine the trustworthiness of a given ML model. Specit-
ically developed with the application domain of network security in
mind, TRUSTEE takes a given black-box model and the dataset that
has been used to train that model as input and outputs a “white-box”
model in the form of a high-quality decision tree (DT) explanation.

Importantly, in synthesizing this DT, TRUSTEE’s focus is first
and foremost on ensuring its practical use which, in turn, requires
leveraging domain-specific observations to strike a balance between
model fidelity (i.e., accuracy of the DT with respect to the black-box
model), model complexity, and model stability. Here, complexity
refers to both the size of the DT and to aspects of the tree’s branches.
In particular, when viewing the tree’s branches as decision rules,
we are concerned with their explicitness and intelligibility; that is,
we require these rules to be readily recognizable by domain experts
and be largely in agreement with the experts’ domain knowledge.
Model stability, on the other hand, is concerned with the correctness,
coverage and stability of the decision rules; that is, we require them
to correctly describe how the given black-box model makes a sig-
nificant number of its decisions and also want them to be largely
insensitive to the particular data samples that TRUSTEE used in
the process of selecting its final DT explanation. We achieve this
insensitivity or stability by implementing a heuristic method that
selects from among a number of different candidate DTs the one that
has the highest mean agreement. Here, the agreement between two
different DTs is a measure of how often the two DTs will make the
same decision for the same input data [30, 60]. In practical terms,
implementing this heuristic reduces the likelihood that TRUSTEE
outputs a misleading DT explanation.

TRUSTEE also outputs a trust report associated with the DT ex-
planation, which operators can consult to determine whether there is
evidence that the given black-box model suffers from the problem
of underspecification. If such evidence is found, the information
provided in the trust report can be used to identify components of
the traditional ML pipeline (e.g., training data and model selection)

that need to be modified in an effort to improve upon an ML model
that TRUSTEE has found to be untrustworthy.

While our work contributes to the rapidly growing ML literature
on model explainability/interpretability and is inspired by ongoing
developments in this area, our efforts and objectives differ from
existing approaches in a number of significant ways. For one,
given the inherent complexity of learning problems for network-
ing, existing approaches for replacing black-box models with
“white-box” models that are inherently explainable in the first place
(e.g., decisions trees) are in general impractical. Moreover, local
interpretability methods [31, 48, 53] are not suitable for examining
the various instances of the underspecification problem. At the same
time, although our effort is motivated by prior studies that focus
on global interpretability [6, 7, 37], these works are either only
applicable to a specific class of learning models (e.g., reinforcement
learning) or suffer from poor fidelity.

Through various case studies, we illustrate in Section 7 how oper-
ators can use TRUSTEE’s DTs and associated trust reports to detect
the presence of inductive biases. More specifically, we use published
ML models that are reproducible (i.e., code base and datasets are
publicly available) to show how network operators can use the infor-
mation provided by TRUSTEE to detect instances of shortcut learning
strategies, obtain evidence of overfitting and/or whether the model
relies on spurious correlations to make its decisions, or determine
the model’s inability to generalize to out-of-distribution data.

2 BACKGROUND AND RELATED WORK

The application domain of AI/ML considered in this paper is the
area of network security. In this section, we first discuss the unique
challenges that this area poses for utilizing the latest advances in
AI/ML. In particular, we focus on important recent AI/ML concepts
such as “interpretable ML” and “explainable AI” and discuss their
relevance for our work.

2.1 Challenges in ML for Network Security

Beyond the already-mentioned trust issue, there are a number of
other reasons why the area of network security is a particularly
challenging application domain for AI/ML. Networking-related
datasets in general and cybersecurity-specific datasets in particu-
lar typically contain information about what is being communicated
over a network (e.g., packet-level traffic traces) or provide insight
into how networks enable such information exchanges. As such, the
datasets often raise serious end user-specific privacy concerns or
reveal provider-specific details that many companies consider to be
proprietary in nature and are therefore unwilling to share. The result
is a general paucity of publicly available datasets. Moreover, the
datasets that are publicly available generally lack the complexity of
real-world settings, either because they have been synthetically gen-
erated, have been obtained from small-scale testbed environments,
or have been anonymized to the point where their general utility has
been severely curtailed.

The scarcity of carefully labeled data poses an even bigger prob-
lem. Networking or cybersecurity datasets do not come in the form
of images that humans can recognize but typically consist of seman-
tically rich content, and unpacking that content and properly labeling
it often requires substantial domain knowledge (e.g., network archi-
tecture, protocols, and standards). This need for domain knowledge
rules out labeling approaches that have been used successfully in
other domains and include crowdsourcing (e.g., for labeling images
that are part of open-source databases such as ImageNet [18]) or



outsourcing (e.g., for labeling datasets that have been curated and
open-sourced by commercial self-driving car companies for the
benefit of researchers [14, 15]).

2.2 Interpretable ML and Explainable AI

As the scientific community continues to develop sophisticated
AI/ML-based tools for high stakes decision-making throughout so-
ciety, there has been a growing awareness about their actual or
potential misuses and negative implications. As a result, calls for
starting to study “trustworthy AI”, “responsible AI”, “ethical AI”
and related topics have intensified in recent years and have identified
model interpretability/explainability as a critically important but also
highly elusive concept for facilitating these studies [40].

Interpretable ML: Ex-ante Interpretability. The application
of modern AI/ML has resulted in a myriad of different learning
models that are “black-box” in nature; that is, provide no insight
in or understanding about why the black-box model makes certain
decisions (and not some other decisions) or what decision-making
process gives rise to these decisions. This development has resulted
in a recent explosion of work on “Explainable Al,” where a second
(post-hoc) model is created to explain the originally obtained black-
box model [59]. This pursuit of explainable AI has been criticized in
the recent AI/ML literature and called “problematic” (see, for exam-
ple [51]), mainly because such post-hoc explanations are often not
reliable and can be misleading [29, 37]. An alternative approach that
has been advocated in [51] argues for using learning models such as
linear models or DTs that are inherently (i.e., ex-ante) interpretable.

Unfortunately, because of the rich semantic content of the data
in the network security domain, uncovering the types of patterns
in the data that matter has become increasingly the responsibility
of trained “black-box” models rather than painstakingly-designed
inherently explainable models. However, instead of considering this
development as being “problematic,” we view it as an unique oppor-
tunity to ultimately achieve the vision of interpretable ML, ensuring
that AI/ML models used for high stakes decision-making are fully
comprehensible by their end users and interested third parties.

Explainable AI: Post-hoc Interpretability. A commonly-made
argument in favor of using black-box models such as deep neural
networks or random forests is that they typically achieve higher
accuracy compared to their interpretable counterparts (e.g., DTs)
and are therefore often more desirable when used in practice. Al-
though this argument is not universally shared (e.g., see [51]), it
nevertheless has been a driving force behind the recent efforts on
the topic of “explainable AL Also referred to XAl [59], explainable
Al describes efforts where the development of a trained black-box
model is followed up with additional activities that are intended
to help “explain” the originally obtained black-box model. These
efforts can be divided into two disjoint categories, namely local
explainability and global explainability.

Methods for providing local explanations aim at illuminating
how a black-box model makes individual decisions (or decisions
in a local region near a particular data point) and include well-
known techniques such as LIME [48], SHAP [41], and LEMNA [31].
Since these methods limit their attention to only a subset of indi-
vidual decisions, they are prone to providing misleading explana-
tions [40, 45, 64], depending on the subset of samples analyzed.
Related methods such as Partial Dependence Plots (PDP) [26] and
Accumulated Local Effect (ALE) plots [1] suffer from similar short-
comings. As such, these methods are of limited use when we seek
explanations that we can trust in the sense that they accurately de-
scribe how a given black-box model makes decisions holistically.

In turn, methods that provide global explanations aim at
describing how a given black-box model makes its decisions “as
a whole” and not one data sample at a time. Extracted from the
black-box model in a second step (i.e., post-hoc), such explanations
typically take the form of an inherently interpretable model such as
arule set or a DT [6, 38] and become the main vehicles for studying
the decision-making process of the original black-box model and
examining its properties. However, existing approaches for such
post-hoc extractions of global explanations are known to produce
at times too low of a fidelity to be useful in practice [6], target
only a very specific set of black-box models [7], be difficult to
reproduce [37, 38], and be possibly unreliable to the point of being
misleading [29, 37]. To achieve the level of explainability required
in high-stakes application domains such as network security, we
seek to generate high-fidelity global explanations that are capable
of accurately and faithfully describing a majority of the decisions
made by any given black-box model.

3 TRUSTEE OVERVIEW

Our focus in this paper is on post-hoc global model interpretability
for the application domain of network security problems. The idea of
using DTs for investigating global model interpretability for a given
black-box model is not novel. However, the set of requirements that
we impose on the DT explanations is non-standard and makes this a
challenging problem, which motivated us to develop TRUSTEE.

For one, we require that our new DT extraction method be model-
agnostic; that is, applicable to any given black-box model. Second,
we also demand that the method produces high-fidelity DT explana-
tions; that is, DTs whose expected predictive performance is similar
to that of the black-box model. To quantify the fidelity of DTs, we
rely on well-known metrics; for example, while for classification
problems we measure fidelity using the F1-score between classifica-
tions from the black-box model and the DT, for regression problems,
we measure fidelity in terms of the R-squared value between the pre-
dictions from the black-box and the DT. The third requirement we
impose is that the extraction method also results in low-complexity
DT explanations such that selected parts of the DTs are intelligible
and comprehensible (i.e., easy to understand by domain experts) and
accurately describe how the black-box model makes most of its deci-
sions. The fourth and last requirement concerns a stability property
that we want our new DT extraction method to have. In particular,
to reduce the chances that this output provides a misleading DT
explanation, we require that most of the final DT’s decisions should
be insensitive to the minute details of how this final DT explanation
has been determined.

For a DT that TRUSTEE extracts from a given black-box model
and satisfies this set of requirements, our next goal is to summa-
rize the pertinent aspects of this synthesized tree in a trust report.
This trust report is intended to help end users determine whether
the given black-box model suffers from the problem of underspec-
ification and cannot be trusted. To achieve this goal, we look for
ways to exploit the extracted DT explanation for the purpose of
enabling the end users to investigate the black-box model for likely
indications of the presence of inductive biases. In particular, in this
paper we consider the following three instances of inductive biases:
(i) instances of shortcut learning, (ii) signs of spurious correlations,
and (iii) problems with out-of-distribution samples.

Note that the presence of any of these inductive biases proves
that the given black-box model suffers from the underspecification
problem and cannot be trusted. At the same time, the absence of



these instances does not mean that the black-box model can be
trusted. In fact, while proving for an arbitrary black-box model that
the model does not suffer from the underspecification problem is
hard and remains an unsolved problem, showing that the model
does suffer from the underspecification problem only requires
demonstrating the presence of a single instance of an inductive
bias, and our design of TRUSTEE is an initial effort that simplifies
demonstrating that certain biases are present in a given model. After
describing TRUSTEE’s design in detail in Section 4, we illustrate
the end-to-end application of TRUSTEE, including the use of the
extracted DT explanation and resulting trust report with a number
of illustrative examples in Section 7.

4 EXTRACTING DECISION TREES

The first step to realize the agenda detailed in Section 3 consists
of generating high-fidelity and inherently interpretable (i.e., “white-
box”) counterparts for any given black-box model, regardless of the
learning method used by the black-box. To this end, we first discuss
existing approaches to this problem and their limitations. We then
present TRUSTEE, an original and practical framework that end users
can apply to extract high-fidelity DT explanations from an arbitrary
black-box learning model.

4.1 Existing approaches

Global white-box explanations extracted from a black-box model
can often describe in detail the reasoning behind the model’s
behavior, provided they achieve a good enough fidelity. Earlier
works [6, 7, 16, 43] have proposed different approaches to extracting
DT explanations from black-box models, but these DTs typically
do not satisfy all the above-listed requirements and are therefore
ill-suited for end users who want to gauge their level of trust in a
given black-box model. We list a number of relevant prior efforts
and their pertinent features in Table 1. Note that some of these exist-
ing methods [7, 43] are not model-agnostic but have been designed
for specific learning paradigms and models, such as Reinforcement
Learning. As such, they typically rely on assumptions that are spe-
cific to the learning paradigm or model that their designs focus on.
On the other hand, prior efforts that do propose model-agnostic ap-
proaches [6, 16] tend to produce DT explanations that don’t satisfy
the fidelity requirement that we demand for realizing our objective
(see our technical report [34] for empirical evidence).

Table 1: Existing approaches to extract decision trees.

Method Optimization  Stopping Model High  Domain-specific
Objective Criterion Agnostic  Fidelity Pruning

Trepan [16] | Fidelity Max Nodes v

dtextract [6] | Accuracy Max Nodes v

VIPER [7] RL Reward Max Iterations

Metis [43] RL Reward Max Iterations

TRUSTEE ‘ Fidelity Max Iterations ‘ v v v

Another important aspect of many of these existing efforts is the
stopping criterion they use to obtain their extracted DT explanations.
For example, prior efforts such as [6, 16] require specifying the max-
imum size (i.e., number of nodes) that the extracted DT can have
and use this input parameter as stopping criterion. Such approaches
are convenient for obtaining explanations that are guaranteed to be
of a certain size, but this convenience typically comes at the cost of
low fidelity, implying that important decision-making rules may be
missing from the resulting DT. Other methods such as [7] and [43]
extract DT explanations in an iterative fashion, require specifying
the maximum number of iterations, and use this user-specified input

parameter as stopping criterion. Even though these methods do not
explicitly optimize for fidelity, they typically produce high-fidelity
explanations, but at the cost of high complexity (i.e., the large size
of the resulting explanations makes interpreting cumbersome if not
impractical). To overcome this problem, the authors of [43] rely
on a commonly-used technique called Cost-Complexity Pruning
(CCP) [26]. Similar to other pruning methods [24], CCP succeeds in
striking a balance between the overall fidelity of the extracted DTs
and their size. However, from an interpretability perspective, CCP
tends to be oblivious to what role each decision-making rule plays as
part of the resulting DT explanations. Because of this observed trade-
off between model complexity and model interpretability, these meth-
ods are ill-suited for our purpose where we strive to shed light on the
decision-making rules that are key to interpreting black-box models
that arise in the context of solving network security-related problems.

4.2 Model-Agnostic Decision Tree Extraction

Given the absence of readily available model-agnostic methods for
extracting high-fidelity, low-complexity, and stable DTs from black-
box ML models, we present in the following TRUSTEE. Algorithm 1
describes the steps that TRUSTEE takes to achieve its objective.

At a high level, these steps are executed as part of an outer loop
(lines 4-16) that is executed a total of S times. Each iteration of this
outer loop involves an inner loop (Lines 5-12) that is performed N
times. Here, this inner loop is designed to generate different high-
fidelity DT explanations, one per iteration. It does so by applying a
teacher-student dynamic derived from imitation learning [33] that
uses 7* as an oracle in conjunction with a carefully curated dataset
P’ to guide the training of a surrogate “white-box” model in the
form of a DT that imitates the black-box’s decisions. In contrast, the
purpose of the outer loop is (i) to select from among the N high-
fidelity DTs that have been generated in the process of executing
the inner loop the DT with the highest fidelity, (i) to transform this
resulting DT into a high-fidelity and low-complexity DT by means
of a post-processing step that consists of applying a purposefully-
developed pruning method (see Section 5 for details), and (iii) to
consider all S high-fidelity and low-complexity DTs that have been
generated in the process of executing the outer loop and output the
one that is the most stable in the sense of having the highest mean
agreement among these S DTs.

Algorithm 1 takes as input a given black-box model 7* that we
desire to explain and the original dataset Dy that was used to train
*. Other parameters that the algorithm requires as input are the
number of iterations S for the outer loop, the number of iterations N
for the inner loop, the number of samples M to select from Dy to use
when training the surrogate DTs as part of each iteration of the inner
loop, and a parameter k that is required by the tree pruning method
used in Line 14 and is discussed in more detail in Section 5 below.
The algorithm starts by initializing the training dataset O (Line 2)
using the given black-box 7™ to predict the expected outcomes from
the given input data Dy. It then initializes a set of DTs (Line 3) from
which, at the end (Line 17), the most stable DT explanation will be
selected and returned as output by TRUSTEE (Line 18).

To execute the inner loop as part of an iteration of the outer loop,
the steps that the algorithm performs during the j-th (1 < j < N)
iteration of the inner loop consist of (i) selecting M training samples
uniformly at random from the optimal prediction dataset O (Line
6) to initialize a training dataset D’; (ii) splitting the dataset D’ for
training and testing (Line 7); (iii) training a DT student /; on D/

train

(Line 8) by using the well-known CART method [11]; (iv) testing the
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DT explanation using Dj;,,, collecting the samples that the DT clas-
sifier wrongly classifies into the set D/ (Line 9), and querying the
black-box model for the expected results for D/ (Line 7) to produce
a correction dataset D; (Line 10); and (v) augmenting the optimal
dataset D’ with this correction dataset (Line 11) to reinforce the
correct decisions during the subsequent iterations of the inner loop.

The steps that the algorithm executes during the i-th (1 < i < S)
iteration of the outer loop are (i) perform N iterations of the inner
loop (Lines 6-11), (ii) select from among the N generated different
student models the one DT explanation with the highest fidelity (Line
13), and (iii) apply a special pruning method to this highest-fidelity
DT to obtain a high-fidelity and low-complexity DT explanation
candidate. Finally, after S iterations of this outer loop, the algorithm
selects from among the S obtained different high-fidelity and low-
complexity DT explanation candidates the one that has the highest
mean agreement (i.e., is the most stable) and returns this “best of the
best” DT as final output of TRUSTEE.

In the following, we provide a more detailed description of the
main design choices we made for TRUSTEE and further evaluate
some of these design choices as part of an ablation study in Section 8.

Algorithm 1 Model agnostic decision tree explanation extraction.

1: procedure TRUSTEE(
*: Black-box model,
Dy: Initial training dataset,
M: Number of samples to train the decision tree,
N: Number of iterations of inner loop,
S: Number of iterations of outer loop,
k: Parameter for Top-k Pruning),
2 Initialize dataset using black-box D « 7*(Vx € Dy)
3 Initialize stabilization set of DTs R « 0
4 fori —1...Sdo
5.
6

for j — 1...Ndo
Sample M training cases uniformly from D
D —{(xy) *UD)}
7: Split sampled dataset for training and testing
Dy, ain Diest < TRAINTESTSPLIT(D’)
8: Train DT
7 < TRAINDECISIONTREE( Dy, ....)
9: Test and get samples DT misclassifies
D, — {V(x,y) € D, | 7j(x) # 7% (x)}
10: Get correct outcome from black-box
Dj « x*(Vx € D))
11: Augment dataset D «— DU D;
12: end for
13: Select tree with highest fidelity
Amax — & € {A1,..., AN}
14: Prune selected tree 7; < TOPKPRUNE(Zmax, k)
15: Add tree to the stabilization set R « R U 7;
16: end for
17: Select tree with highest mean agreement with others
Tagree <— 7 € R
18: return Zagree

19: end procedure

Multiple iterations and uniform sub-sampling. The CART algo-
rithm that is traditionally used to train DT models relies on a greedy
approach for finding the best splits in the given training dataset.
This greedy approach ensures that for a given training dataset, the
resulting DT will be largely insensitive to the order in which the
input samples are processed. At the same time, this greedy approach
is prone to produce over-fitted DTs [10]. While using this approach
without further constraints (e.g., stopping criterion) to train a DT

results in perfect fidelity, being over-fitted makes the resulting DT
ill-suited for providing an intelligible explanation for how the given
black-box model makes its decisions. Instead, the resulting DT ex-
planation is largely an artifact of the method used to generate the
explanation. To overcome this problem, TRUSTEE implements an
iterative approach to train multiple student models on the expert
model predictions. This iterative approach is implemented as the
inner loop in Algorithm 1, where at each iteration, we select a frac-
tion M of the input data by uniform sub-sampling from the original
training dataset (Lines 5-11). This approach differs from existing
efforts [7] in that by requiring the uniform sub-sampling step at
each iteration, we ensure that each DT explanation will have only a
limited view of the entire data, akin to a k-fold cross validation [52].
Incorporating this sub-sampling step allows us to stress-test how
different features and/or feature values contribute to the decision-
making of the black-box model and then select the ones that best
fit our overall objective. In practical terms, uniform sub-sampling
from the original training dataset assumes each sample has the same
probability of being selected (i.e., balanced dataset). While it is well
known that using imbalanced datasets to train ML models leads
to biases towards the majority classes, the existing ML literature
provides several approaches that resolve this problem through proper
pre-processing of the original training data [36].

Dataset augmentation. An important design choice for TRUSTEE
involves a dataset augmentation step (Line 9), where in each iteration
of the inner loop, the algorithm uses the optimal predictions from
the black-box model on the sampled dataset D’ to augment the
original training dataset D. The purpose of this step is to over-correct
for data samples for which the student DT model makes wrong
decisions. Leveraging results from the existing literature on imitation
learning [7, 50], performing this step can not only increase the
overall accuracy of the trained student model but also reduce the
overall number of leaf nodes in the resulting tree.

Fidelity as objective function. When selecting from among the
different student models that TRUSTEE extracts from a given black-
box model, it uses model fidelity as objective function and picks
the student model with the highest fidelity (Line 11). This design
choice implies that while the final DT explanation produced by
TRUSTEE is not necessarily the most accurate DT for the given
classification problem, it is the DT that is the most faithful one in
terms of explaining how the black-box model makes its decisions.
Intuitively, it is by insisting on this high-fidelity aspect of the DTs
that TRUSTEE considers that we are able to post-process the resulting
DT explanation in ways that will help end users with varying degrees
of domain knowledge to gauge their trust in the given black-box
model. We provide evidence in support of this intuition in Section 5
where we describe the type of post-processing that we perform as
part of TRUSTEE so the final DT explanation it outputs can serve as
an inherently practical means for faithfully explaining most of the
given black-box model’s decisions.

Model stability. Since the inner loop of Algorithm 1 (Lines 6-11)
uses a different random subset of the entire dataset each time it trains
a DT explanation, it is possible for TRUSTEE to output a misleading
explanation because of the particular subset of data that was used
to train that final DT explanation. To minimize the chances for such
scenarios to occur, we add an outer loop in Algorithm 1 (Lines 4-16).
This addition results in the extraction of S different high-quality
DT explanations from the given black-box model and allows us to
measure the agreement among these S different DT explanations.
The agreement of DTs is a well-known measure of how often a pair



of DTs will make the same decisions for the same input data and is a
metric that has been used in previous studies that concern assessing
the stability of different DTs [30, 60]. Here, to select the final DT
explanation that is returned as output of TRUSTEE (Line 18), Line 17
in Algorithm 1 computes the pair-wise agreement among all S DT ex-
planations and selects the one with highest mean agreement. While
implementing this outer loop prevents TRUSTEE from generating
obviously misleading explanations and gives domain experts confi-
dence that they can trust the explanations produced by TRUSTEE’s
output, rigorously proving that a “white-box” model extracted from
a given black-box model does not provide misleading explanations
is an active area of current research [37].

5 PROCESSING DECISION TREES

When using TRUSTEE to synthesize a high-fidelity DT explanation
for a given black-box model, realizing the agenda outlined in Section
3 requires performing an additional step in Algorithm 1 (Line 14)
each time N iterations of the inner loop have completed and the algo-
rithm has selected the highest-fidelity DT from among the resulting
N different high-fidelity DT candidates (Line 13). The purpose of
this step is to transform this selected highest-fidelity DT into a DT
explanation for the given black-box model that is inherently practical
in the sense of having low complexity and at the same time high
fidelity. Here, low complexity of a DT explanation refers to small
trees but also, and more importantly, trees whose main branches
(i.e., decision rules ranked by number of input samples they classify)
explicitly, intelligibly, and accurately describe how the black-box
model makes most of its decision. Effectively, when generating this
low-complexity and high-fidelity DT explanation as a result of this
post-processing step, we tolerate some loss of fidelity in return for
achieving low complexity. In the following, we examine different as-
pects of this fidelity-complexity trade-off and introduce a simple tree
pruning method that we call Top-k Pruning and that comprises the
required post-processing step. We design this method for the explicit
purpose of ensuring that any final DT explanation that TRUSTEE
outputs can be readily processed and understood by domain experts.

5.1 Decision Tree Pruning: Trade-offs

One of the main disadvantages of CART models is that CART’s
greedy algorithm is known to be prone to overfitting, often produc-
ing high-fidelity DTs that can have thousands of nodes [24]. Clearly,
such large trees are detrimental to our ultimate goal; that is, present-
ing end users with inherently practical explanations that they can
readily inspect and understand with their available domain knowl-
edge. In designing TRUSTEE, we similarly focused on first obtaining
largely unconstrained DT explanations with the best possible fidelity
(Line 13). However, our reasoning for doing so is that we explicitly
require that any DT explanation that TRUSTEE outputs will have un-
dergone a post-processing phase for the purpose of making this final
DT explanation intelligible and comprehensible for end users. Our
intuition behind obtaining a high-fidelity DT explanation first and
addressing its complexity later is that manipulating a high-fidelity ex-
planation with an eye towards reducing its complexity is more likely
to result in explanations that, while experiencing some decrease in
their fidelity, still will have higher fidelity than their counterparts
that had lower fidelity to start with.

A commonly-used approach to transforming large DTs into trees
of smaller sizes is pruning, and the existing literature describes
several pruning methods for DTs [24, 26], many of which are highly
effective in obtaining DTs that have small complexity, at least as far
as the sizes of the trees are concerned. Among the most widely-used

approaches to pruning are (i) pre-pruning which limits either the total
number of nodes or the overall depth of the tree and (ii) post-pruning,
such as Cost-Complexity Pruning (CCP) [26]. On the one hand, by
explicitly constraining either the number of tree nodes or the tree’s
depth, the pre-pruning approaches allow for direct control over the
size of the resulting DT. However, this control over tree size typically
comes at the cost of reduced fidelity, mainly because the obtained
small trees run the risk of missing important decision branches as
they prevent the consideration of any further decision branches once
the stopping criterion is reached. On the other hand, using post-
pruning such as CCP often results in a better trade-off between
fidelity and size. However, this better trade-off comes at the cost of
reduced interpretability, mainly because CCP relies on a parameter
that is indirectly responsible for how many nodes of a tree get pruned.
Lack of a more direct control makes it difficult to decide which tree
branches to include in the pruned tree and which to exclude.

5.2 Top-k Pruning Method

Each branch in any of the highest-fidelity DTs that are selected in
the process of executing an iteration of Algorithm 1’s outer loop
(i.e., Line 13) represents a decision “rule”; that is, a combination
of individual decisions on features that results in labeling the input
data as belonging to a specific class (e.g., malware vs. benign). Since
each of these “rules” accounts for a certain percentage of all samples
in the input dataset, the different rules also contribute differently to
the overall model fidelity, and as the complexity of the DT grows
(i.e., larger number of branches), so does the DT’s fidelity.

The idea behind our Top-k Pruning method is that to detect signs
of the presence of inductive biases in a given black-box model, it
often suffices to carefully scrutinize only the top-k branches of an
extracted high-fidelity DT, ranked by the number of input samples a
branch classifies, especially in cases where the branches intelligibly
describe how the black-box makes most of its decisions. In particular,
we argue that the “tail” end of the branches of an extracted high-
fidelity DT (i.e., branches that are not in the top-k for some large
value of k) often reflects specific decisions of the black-box model
that are overfitted to the training dataset and can, for all practical
purposes, be ignored when trying to explain the most important
decisions of the black-box model. However, since the trade-offs
between model fidelity and model complexity are typically model
dependent, Top-k Pruning requires a parameter k, and specifying a
value for k gives end users complete control over how many branches
they want to consider in their attempt to understand the trade-offs
for a given model. Also note that even though selecting smaller k
values can possibly result in poor fidelity, it does not mean that we
cannot draw potentially important conclusions from the resulting
explanation. For instance, one specific branch can sometimes cover
most samples of a particular class, resulting in an apparent poor
overall fidelity but still indicating a potential underspecification issue
related to that specific class. In short, the user-specified parameter k
determines the complexity of the final DT explanation that TRUSTEE
presents to the end user. If, at any point, a user wants to inspect more
branches of the tree, they can simply choose a larger k and rerun
our algorithm. Note, however, that due to its probabilistic nature,
re-running our algorithm will typically result in applying the Top-k
Pruning method to a high-fidelity DT explanation that differs from
the original one. We leave a careful investigation of this aspect
of TRUSTEE and its deeper implications for detecting instances of
inductive biases in a given black-box model for future work.



5.3 Generating Trust Reports

We use the DT explanation that TRUSTEE outputs as basis for popu-
lating a trust report that simplifies the task of end users of a given
black-box model to gauge their trust in that model. In the following,
we provide details on how we build this trust report so it helps end
users spot signs that point to possible instances of inductive biases
in the given black-box model. If upon further scrutiny of these signs
the presence of such an inductive bias is confirmed, it would be
proof for the end users that they cannot trust the given model. To
this end, we leverage the fact that any DT explanation that TRUSTEE
outputs has been pruned with the help of our Top-k Pruning method
and is therefore typically a small tree comprised of k branches. As
part of the trust report, we present the details of the generated small
DT to the end users so they can examine these details with an eye
towards three common ways an underspecified ML model can be
recognized. More precisely, we intend the trust report to be the main
source of information that end users can consult when checking for
inductive biases that manifest themselves as instances of shortcut
learning strategies, through the presence of spurious correlations, or
in an inability to generalize for realistic out-of-distribution data.

Importantly, by itself, the information contained in the trust report
is in general insufficient to diagnose underspecification issues; in-
stead, it points to potentially attention-worthy aspects of the model or
the data that require further attention. As such, detecting and diagnos-
ing underspecification issues is not a task that is currently automated
but requires domain knowledge and great familiarity with the learn-
ing problem at hand. Consequently, the effort demands a (human) do-
main expert to actively inspect and check if the trust report-provided
information points to possible problems in the data or in the model,
or indicates that there are no problems with either the model or the
data. In the following, we briefly describe how the generated trust
report helps with checking for each of these three inductive biases.

Shortcut learning. Presenting a visual depiction of the small DT
explanation that forms the output of TRUSTEE and annotating it
with pertinent information (e.g., features used, splitting conditions
or clauses present at the different nodes of the tree, number of input
samples associated with each branch segment) allows for quick
and intelligible perusing and inspection of the tree. In particular,
observing that less than a handful of input features are required to
accurately classify most of the input data (or a specific class of input
samples) is often a strong indication of a shortcut that the black-box
model learned and that can in general quickly be confirmed with
readily available domain knowledge. Note however that a small
number of features in the output of TRUSTEE may also indicate that
the learning problem for which the black-box was designed for in
the first place is in fact simple and may not require any ML at all.

Spurious correlations. A more involved investigation of the
information provided in the trust report concerns studying the im-
pact of removing the identified most important feature(s) from the
provided dataset. Upon removing such feature(s), we can then re-
train the black-box model using this altered dataset, proceed to use
TRUSTEE to extract a new DT explanation, and repeat this process
a number of different times. In general, the impact of removing im-
portant features from the training dataset is that the accuracy of the
black-box model decreases. However, especially in situations where
the data include a large number of features, it is often the case that
the black-box model is able to find alternative features so that remov-
ing the most important feature(s) leaves the overall model accuracy
essentially unchanged. We take this as a strong indication of the
presence of spurious correlations in the data that can subsequently
be easily confirmed via an analysis of the original feature set.

Out-of-distribution samples. The annotated version of the out-
put of TRUSTEE that is shown as part of the trust report can also be
used to uncover the individual features in each of the most impor-
tant tree branches, allowing us to plot the distribution of the values
that each of those features can take in the provided dataset. Inspect-
ing the resulting distributions affords end users an opportunity to
reason whether or not the observed distributions of feature values
are consistent with those encountered in data collected from actual
production settings. Such an inspection is especially informative
when the provided datasets consist of network traffic measurements,
where feature value distributions are typically dictated by the domi-
nant protocols in use, where artifacts can often be easily identified
(e.g., due to simple testbed experimentations), and where generating
meaningful out-of-distribution samples is in general feasible because
the expected behavior across the full TCP/IP protocol stack is either
known or well documented.

6 USING TRUSTEE IN PRACTICE

The following step-by-step instructions are intended to help end
users who want to use TRUSTEE and associated trust reports to
check if a given trained ML model is credible or not by inspecting it
for possible underspecification issues.

Step 1 (Getting started): Select the ML model that needs to
be analyzed and the dataset of the input samples that is used to
examine the model’s decisions and decision-making process. The
only requirement for the selected ML model is that it provides a
predict interface that TRUSTEE can use to query the model for
its prediction for a given input sample. As for the input dataset,
TRUSTEE also accepts datasets that differ from the dataset used to
train the ML model, but we recommend using the training dataset
for a basic analysis of the selected ML model.

Step 2 (Selecting hyperparameters): TRUSTEE requires select-
ing values for four hyperparameters: S and N (number of iterations
of the outer loop and inner loop in Algorithm 1, respectively), M
(sampling rate), and k (number of branches to keep as part of our Top-
k Pruning method). Although highly model- and data-dependent,
we found that in the context of the different use cases we analyzed,
choosing S = 10, N = 50, M = 30% of the input dataset, and k = 10 is
a good starting point and allows for subsequent modifications should
the need arise. In general, we recommend selecting suitable values
for M, S,and N by qualitatively comparing the learning curves [52,
Section 18.3.3] and checking the DT fidelity between training and
test data for different hyperparameter values, but more quantitative
methods such as grid search [8] or Bayesian Optimization [57] could
be used as well. However, the number of samples M is highly depen-
dant on the size and type of the available data; setting a sampling
rate too high increases the risk of over-fitting, setting the sampling
rate too low increases the risk of under-fitting and is likely to require
a higher number S of iterations of the outer loop of Algorithm 1.
In turn, selecting the parameter k (i.e., number of top-k branches)
depends first and foremost on the amount of information a domain
expert is willing to analyze when presented with TRUSTEE’s output.

Step 3 (Detecting underspecification issues): Identifying the
presence and/or nature of underspecification issues in a model cur-
rently requires manual inspection by a domain expert. The main
vehicle for performing this manual task is the DT explanation pro-
duced by TRUSTEE in conjunction with the information provided in
the corresponding trust report. Relying on basic trust report-provided
information can often point to potential biases, but it typically invites
further scrutiny at the level of individual decision rules (i.e., tree
branches) where, for example, certain deficiencies in the training



dataset (e.g., missing samples of real-world patterns or behavior)
can be identified.

Step 4 (Validating DT explanations): Validating a DT explana-
tion that forms the output of TRUSTEE typically requires tinkering
with the ML model itself, with the feature engineering as part of
the model’s design, or with the provided dataset. Unfortunately, a
general inability to easily collect new or different data severely limits
the validation efforts that require modified data. In such cases, we
found that tampering with the original data (e.g., removing certain
features or artificially modifying packet headers in a trace) can be a
viable option but has to be done with care to ensure that the tampered
dataset consists of realistic input samples that the ML model ought
to be able to handle.

7 RESULTS

In this section, we illustrate with different use cases how TRUSTEE
can be used in practice. Each use case concerns a recently published
black-box model that has been developed for a particular network
security-related problem and is accompanied by open-sourced arti-
facts (e.g., code base, dataset) that are required for reproducing the
reported findings and assessing whether the ML model is credible.

7.1 Summary

Table 2 summarizes the use cases we analyze. The first use case
(§7.2) illustrates how an apparently high-performant neural network
learns simple shortcuts to distinguish between two types of traf-
fic (VPN vs. Non-VPN). It highlights the importance of having
an in-depth understanding of the data used to train a model. The
second use case (§7.3) analyzes a black-box model (i.e., random for-
est) trained using the popular synthetic dataset CIC-IDS-2017 [54]
and shows that the developed model is vulnerable to 0.0.d. sam-
ples. This use case cautions against an over-reliance on synthetic
datasets that often include measurement artifacts that commonly-
considered black-box models exploit to achieve high accuracy. The
third use case (§7.4) analyzes a recent approach that advocates using
bit-level feature representations of the input data instead of care-
fully engineered and semantically meaningful features [32]. This use
case warns against the indiscriminate use of the high-dimensional
feature spaces that result from such representations because they
allow black-box models to identify and exploit spurious correla-
tions between features to achieve high accuracy. The fourth use case
(§7.5) concerns the application of a complex ensemble of neural net-
works [44] to perform traffic anomaly detection (e.g., Mirai attack).
By showing that this model is also vulnerable to o.0.d. samples,
we corroborate previously-reported criticism of this model [4] and
support it with further evidence. The remaining use cases listed in
Table 2 are analyzed in a technical report [34]. All datasets, models,
and results for all seven use cases are available at [35].

7.2 Detecting VPN vs. non-VPN Traffic

Problem setup. We consider the paper [61], which presents an
AI/ML-based framework for encrypted traffic classification that
integrates feature design, feature extraction, and feature selection. It
uses one-dimensional convolutional neural networks (1D-CNN) to
automatically learn the relationships between raw packets and the
output labels. For classifying VPN vs. Non-VPN traffic, the authors
train a 1D-CNN learning model with the PCAPs of the ISCX VPN-
nonVPN dataset [20], treating the packets of each session as a 2D
image of size 28x28. As a result, the proposed model views the
input traffic samples as discrete byte streams of fixed length (i.e.,
784 bytes) and treats each byte as a “feature.” The paper [61] reports

outstanding performance (i.e., 100% (99.9%) precision and 99.9%
(100%) recall for Non-VPN (VPN) traffic). All AI/ML research
artifacts [61] and datasets [20] are available online, allowing full
reproducibility of the described models and reported findings.

Explanation. We first reproduced the black-box model (i.e., 1D-
CNN) and the results presented in [61, Table VI] for classifying
VPN vs. Non-VPN traffic. Next, we used TRUSTEE to extract a DT
from the black-box 1D-CNN model (Figure 2) and note that due
to the small tree sizes, there was no need for TRUSTEE to apply
the Top-k Pruning method. To assess how well the extracted DT
reproduces the black-box model, we used it to classify the test cases
from [61] and compared the results with the classification from
the black-box, measuring precision, recall, and F1. To our surprise,
this simple and small white-box model accurately reproduced all
black-box decisions, achieving a perfect F1-score.
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Figure 2: Decision tree for 1D-CNN model. The percentage of
samples that follow each branch is presented above each node.
Line widths are proportional to the percentage of samples.
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Correctly interpreting this extracted DT requires understanding
the structure of the input data. Because the DT makes a decision
based only on three bytes in the initial segment of each input sample
(i.e., bytes Byg, B43, and By7), we analyzed samples of VPN and Non-
VPN test cases to uncover the “meaning” of those bytes. Figure 3
shows a schematic view of the first 80 bytes of actual input data used
in [61]. We notice that each input sample consists of an initial set of
bytes representing PCAP metadata, Ethernet header, and IP header.
Importantly, none of these initial bytes say anything about actual
VPN or Non-VPN traffic.
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Figure 3: First 80 bytes from the training dataset.

Upon further scrutiny of the public dataset [20], we noticed that
Non-VPN traffic samples always contain Ethernet headers while
roughly 90% of the VPN traffic samples do not (Figure 3). Thus,
if By denotes the byte in position k, then for k > 40, there is a
misalignment in the features of the two types of traffic, resulting
in completely different semantics for the byte k. In Figure 2, we
see that the DT uses feature Byg as the splitting criterion at the root
node. Due to the feature misalignment, Byo is the [Pv4 protocol field
in VPN samples or the fourth byte of the Ethernet source address
in Non-VPN samples. Because the VPN traffic in the dataset uses
either UDP (B4g9 = 17) or TCP (B49 = 6), the root node of the DT
splits almost all the samples by comparing the IP protocol field in
the VPN traffic with a random byte of the Ethernet addresses of



Table 2: Case Studies.

Analyzed in Problem Dataset(s) Model(s) Trustee Fidelity  Type of inferred inductive bias
Section 7.2 Detect VPN traffic Public VPN dataset [20] 1-D CNN [61] 1.00 Shortcut learning
Section 7.3 Detect Heartbleed traffic CIC-IDS-2017 [54] RF Classifier [54] 0.99 Out-of-distribution samples
Section 7.4 Detect Malicious traffic (IDS)  CIC-IDS-2017 [54], Campus dataset  nPrintML [32] 0.99 Spurious correlations
Section 7.5 Anomaly Detection Mirai dataset [44] Kitsune [44] 0.99 Out-of-distribution samples
Tech Report [34]  OS Fingerprinting CIC-IDS-2017 [54] nPrintML [32] 0.99 Potential out-of-distribution samples
Tech Report [34]  IoT Device Fingerprinting UNSW-IoT [56] Tisy [63] 0.99 Likely shortcut learning
Tech Report [34]  Adaptive Bit-rate HSDPA Norway [49] Pensieve [42] 0.99 Potential out-of-distribution samples

the machines used to generate the Non-VPN traffic trace, making
feature Byg a classical “shortcut” to classify the traffic. However, the
split is not perfect because, coincidentally, two machines used for
generating Non-VPN traces had the fourth byte of their Ethernet
source addresses less than or equal to 17 (54:9£:35:0d:e9:c2
and 2c:44:£fd:02:16:ef).

The left branch of the DT classifies most samples as VPNs. How-
ever, to weed out a few remaining samples of Non-VPN traffic, the
DT uses feature Bys. In this case, B43 corresponds to the Total Length
IP field in most VPN samples or the fourth byte of the Ethernet des-
tination address in Non-VPN samples. Once again, the black-box
model takes a shortcut to distinguish between the two classes. A
similar analysis applies to the right branch, which classifies most
samples as Non-VPN and uses By7 (Fragment Offset in Non-VPN
vs. second byte of Ethernet source address in VPN) to weed out the
few VPN samples.

Validation. Even though the DT extracted by TRUSTEE is a high-
fidelity proxy for the 1D-CNN black-box model, it is unreasonable
to expect that a simple 3-node structure encompasses the model’s en-
tire decision-making process. We verify this intuition by generating
a tampered validation dataset for the black-box model. In particular,
we changed bytes 43, 47, and 49 in the VPN samples to mimic
random Non-VPN samples. By following the logic of the decision
tree branches, the black-box model would mis-classify all VPN sam-
ples. The first two rows of Table 3 give the average precision, recall,
and F1-score for both classes (VPN vs. Non-VPN) for original and
tampered datasets. The results show that tampering with only these
three features out of 748 had no significant impact on the classifi-
cation accuracy of the black-box model. However, by performing
detective work similar to the one described above, we observed that
the black-box model succeeds in finding alternative “shortcuts” that
are as easy to identify and explain as the one we described earlier.

Table 3: Accuracy of black-box classifier.

Validation dataset Avg. Precision Avg. Recall Avg. F1

Untampered 0.959 0.956 0.955
Tampered-43-47-49 0.959 0.956 0.955
Tampered-32-to-63 0.889 0.861 0.856
Tampered-0-to-63 0.831 0.757 0.734
Tampered-0-to-127 0.753 0.555 0.398

To further demonstrate that the black-box model described in [61]
and claimed to be highly successful in learning to classify encrypted
VPN and Non-VPN traffic is not a credible predictor, we tampered
with entire ranges of bytes instead of individual bytes. As Table 3
shows, tampering with byte ranges of 32-64, 0-64, and 0-128 makes
it increasingly more difficult for the black-box model to identify
alternative shortcut predictors, and not surprisingly, the model’s
performance (i.e., accuracy) gets worse and quickly reaches the
point where, without being able to resort to shortcut learning (i.e.,
randomly altering the first 128 bytes, which is less than 18% of the

features), the model’s performance becomes comparable to that of
flipping a fair coin.

7.3 Detecting Heartbleed Traffic

Problem Setup. We consider the paper [54], which presents
the public dataset CIC-IDS-2017 with labeled attack traces and
lists publications that rely on this dataset to propose ML-based
intrusion detection systems. The dataset contains traces of benign
background traffic and 13 different attacks, such as Heartbleed,
DDoS, and PortScans. The dataset also includes 78 pre-computed
flow features, such as flow duration and mean Inter Arrival Time
(IAT). Several research efforts report excellent classification results
(e.g., average precision and recall above 99% for all classes) of
learning models trained on the pre-computed features of this
dataset [13, 19, 22, 54, 64].

Explanation. We again started by reproducing the reported clas-
sification results using the pre-computed features from the dataset
to train a multi-class Random Forest Classifier to identify the 13
attacks and benign traffic, with a 75%-25% train-test split of the
data. We could reproduce the excellent results reported by several
publications, but, in doing so, we noticed that the dataset in question
is highly imbalanced, having as few as 3 Heartbleed samples and
as many as 680,000 DDoS samples in the 25% test split. Hence,
we used a Random Over Sampler [36, 39] to produce a balanced
training dataset to re-train the Random Forest Classifier and then
used TRUSTEE to extract a DT explanation. Without applying our
Top-k pruning method, the high-fidelity DT extracted by TRUSTEE
from the classifier contained 899 nodes, making it largely impossible
to understand the decision-making process of the black-box model.
However, when running TRUSTEE with the Top-k Pruning method
and setting k = 3, we obtain the small-sized and therefore inherently
manageable DT shown in Figure 4.
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Figure 4: Decision tree for Random Forest Classifier.

Despite the likely shortcut the model takes by using TCP ports
to classify SSH and FTP-Patator attacks, the root node of Figure 4
shows that the black-box model correctly classifies all samples of
Heartbleed attacks based only on the maximum packet size of the
victim server responses (i.e., “Bwd Packet Length Max”). In Heart-
bleed, an attacker sends a TLS heartbeat message with a value in
the size field that is bigger than the message. A vulnerable server re-
sponds with a message with a size equal to the value specified in the



size field and reviews information stored locally in its memory [21].
Prompted by this observation, we further inspect the DT to identify
other features that appear as the most dominant features after we
remove the “Bwd Packet Length Max” feature from the dataset. The
results showed that the total backward inter-arrival time (i.e., “Bwd
IAT Total”) also almost perfectly splits all Heartbleed samples. The
distributions displayed in the trust report for both features (Figure
5) reveal a very telling pattern. To understand this behavior, we in-
spected the PCAP files and noticed that the TCP connections of the
Heartbleed attacks were never closed between heartbeat messages,
resulting in high values for the features “Bwd IAT Total” and “Bwd
Packet Length Max”.
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Figure 5: Data distribution of feature “Bwd Packet Length Max”
(top) and “Bwd IAT Total”” (bottom) comparing values in the
Heartbleed class to all Others.

Validation. Considering that the dataset contained just one ob-
vious pattern for the Heartbleed attack, it is not surprising that
classifiers trained on this dataset have high accuracy when tested
with i.i.d. samples. However, to demonstrate that a model is credible
and generalizes as expected in deployment scenarios, we need to
validate it with alternate but realistic test cases, i.e., 0.0.d. samples.
We generated 1,000 new test cases of Heartbleed attacks using the
same tool described in [54], but we closed the connection after the
heartbeat request triggered a response with compromised data. This
change resulted in Heartbleed flows with much smaller backward
total IAT but with similar backward maximum packet length, as we
use the same packet sizes as for the original trace. We then evaluated
the Random Forest Classifier using the newly generated Heartbleed
flows as test data. Table 4 shows that with just a simple change in
the attack pattern, the classifier could not correctly classify a single
one of the 1,000 new Heartbleed attacks, resulting in an F1-score
of 0. This experiment demonstrates that the considered black-box
learning model overfits on the i.i.d. cases, is not a credible predictor
of realistic 0.0.d. cases, and does not learn anything that reflects
what readily available domain knowledge tells us about Heartbleed
attacks.

Table 4: Black-box classifier’s accuracy.

Class Precision Recall F1
Heartbleed (i.i.d.) 1.000 1.000  1.000
Heartbleed (0.0.d.) 0.000 0.000 0.000

7.4 Inferring Malicious Traffic for IDS

Problem setup. We consider the paper [32], which proposes nPrint
and the stable bit-level representation of network packets for auto-
matically training learning models using AutoML [23]. The idea is
to use a sequence of ordered features with values -1, 0, or 1 where
each feature represents a bit of a set of pre-established protocol
headers. The value -1 represents bits that are not present in a packet,
while the values 1 and O are the actual values of present bits. The
paper shows excellent results for an AutoML IDS model (called
nPrintML) with 4,480 features trained using raw PCAP files from
the CIC-IDS-2017 dataset [54].

Explanation. We successfully reproduced the reported results
using the same configurations as those used in [32], obtaining a
model with a 0.999 F1-score. To investigate this high-performance
model, we used TRUSTEE (with k = 4 for our Top-k Pruning method)
to extract a high-fidelity (0.999) DT and show the top-4 branches
in Figure 6. We can see that the top nodes rely on bits of the IP
TTL field of the packets to separate the Benign class from the others.
To understand the reason behind this observation, we inspect the
description of the setup used to generate the CIC-IDS-2017 dataset.
While all attacks were generated using hosts outside of the network
in which the dataset was collected, the benign traffic was from hosts
inside the network, creating a strong correlation between the packets’
TTL value and traffic type. Also, most attacks were generated by a
host running Kali Linux, which sets the initial value for TTL to 64
(i.e., 00100000). Similarly, the DDoS attack traffic was generated
using a host running Windows 8.1, which sets the initial TTL value
to 128 (i.e., 01000000). This setup where the traffic was generated
makes it easy for the model to separate all DDoS attacks using only
the second and third most significant bits of the TTL field.
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Figure 6: Decision tree for nPrintML IDS model.

We used the extracted DT to further investigate the model’s be-
havior. We iteratively removed (assigned -1 to) the bits of the TTL
field and other prominent features from the nPrint representation
and retrained the model on the same dataset until the single fcp_opt
field remained, representing bits of options of the TCP header. Given
only these bits, the black-box nPrintML model still separates the
attacks in the CIC-IDS-2017 dataset almost perfectly, reaching a
F1-score of 0.990. In these cases, the DT explanations produced by
TRUSTEE showed that the model still used single bits of packets to
divide the traffic perfectly. These experiments demonstrate that the
model succeeds in exploiting spurious correlations in the dataset,
finding shortcuts due to the vast feature space where each bit is a fea-
ture. This issue is also known as the “curse of dimensionality” [52]
and concerns cases where a model faces a high-dimensional feature
space (e.g., 4,480 features per sample in the case of nPrintML IDS)
and not a diverse and dense enough data distribution to avoid occur-
rences of spurious correlations, which in turn a model can exploit to
learn various shortcuts.



Validation. To examine the ability of the nPrintML IDS model
to generalize to other deployment environments, we deployed the
Suricata Intrusion Detection System [25] in the UCSB campus net-
work and mirrored all the traffic before the firewall to produce a
real-world dataset of network attacks. We captured about 12 hours
of user traffic and the associated Suricata IDS alerts (see technical
report [34] for details). We found 1,344 flows of DoS attempts. Also,
we randomly sampled 1,366 port scan flows (out of 9 million) and
1,337 flows that didn’t trigger any alert, which we labeled as benign
traffic. Finally, we used nPrint to create a test dataset from that traffic
to validate the trained model of [32]. Table 5 shows the classification
results of the model for the trace of our campus network.

Table 5: Accuracy for black-box model trained in [32] and tested
with traffic captured in our campus network.

Class Precision Recall F1
Benign 0.653 0.806 0.722
DoS 0.000 0.000 0.000

Port Scan  0.120 0.143  0.130
Average 0.256 0.315 0.282

We notice that the model classified most of the traffic as benign,
a few samples as port-scan attacks, and none as DoS attacks. While
we did not expect the model to generalize to real-world settings, we
were intrigued that it correctly classified some port scans. Inspecting
the decision presented in Figure 6, we can see that the ancestor
of the Port Scan node splits most port scan attacks by checking
pkt_1_ipv4_opt_9 < —0.5. Since the nPrintML model builds its
feature vector using the first five packets of a flow (896 features
for each packet and 4,480 in total), when a flow has fewer than
five packets, it fills the remaining features with -1 values. Hence, to
identify port scan attacks, the nPrintML model simply recognizes the
absence of the second packet of the flow. To confirm this hypothesis,
we carefully investigated the dataset published by the authors of
nPrint [32] and noticed that most of the port scans in their dataset
have only 1 SYN packet from the attacker to the target (differently
from the original PCAPs in [54]). Thus the simple rule that the
second packet of a flow is missing would be enough to find all port
scans. However, in the case of our campus network traffic, most
port-scan attacks also contain a second packet, which prevented the
black-box model from classifying this type of traffic. This second
packet is a TCP RST packet that attackers send to prevent the target
from triggering the TCP SYN Cookie protection used to deal with
TCP SYN flooding attacks.

7.5 Anomaly Detection for Mirai Attacks

Problem setup. We analyzed the paper [44], where the authors
present Kitsune, an unsupervised ML classifier for anomaly detec-
tion. Kitsune comprises an ensemble of auto-encoders and neural
networks and solves a regression problem in practice. It receives a
set of 115 statistical features (e.g., mean and standard deviation),
calculated incrementally for a stream of packets for different levels
of aggregation (e.g., by source MAC and IP addresses). It outputs
the Root Mean Squared Error (RMSE) as an anomaly score by re-
constructing the input features from the ensemble output. Kitsune is
trained for some time under normal traffic conditions before moving
to an execution phase to detect anomalies. The larger the RMSE,
the bigger the anomaly detected by Kitsune. Hence, the authors
propose that operators use a threshold-based approach calculated on
the training data to detect an anomaly.

Kitsune relies on dampened incremental statistics over time win-
dows, where all features are calculated based on weights. The weight
feature corresponds to the current packet count multiplied by a de-
cay factor so that the weight of older features decreases over time,
akin to a sliding window. Kitsune uses a set with five different time
windows (100ms, 500ms, 1.5sec, 10sec, and 1min, represented by
a variable A = 5, 3, 1, 0.1, 0.01, respectively) for which the same
23 features are calculated for each time window, resulting in 115
features. While the work described in [44] applies Kitsune to several
anomaly detection use cases, a recent study [4] pointed out potential
problems with one of these use cases (i.e., the Mirai attack) and
prompted us to use TRUSTEE to scrutinize Kitsune’s proposed ML
model for the Mirai attack.

Explanation. We first executed the Mirai attack-specific exper-
iments described in [44] and were able to reproduce the results
reported [44]. The Mirai trace that Kitsune uses for training and
evaluation consists of 120 minutes (x760k packets) of a syntheti-
cally generated attack in a network with nine IoT devices, in which
the first 70 minutes (~120k packets) consist of benign traffic and
the remaining 50 minutes (~*640k packets) have anomalous traffic.
Kitsune is trained on the first 50 minutes of the trace and evaluated
on the remainder of traffic. For benign traffic, the largest RMSE
computed by Kitsune was approximately 6.9, but for anomalous
traffic, this value went up to 14 RMSE. We generated a balanced
subset of 300k packets, split between benign and anomalous packets,
and used TRUSTEE to extract a high-fidelity (0.99) DT from Kitsune.
As Kitsune works as a regression problem, we measure fidelity for
this use case as the R-squared value between Kitsune’s predictions
and those obtained by the DT explanation. Using TRUSTEE with its
built-in Top-k Pruning method and setting k = 3 results in the small
DT explanation that is shown in Figure 7 and achieves 0.94 fidelity
compared to Kitsune.

True MaclP ;7 False
19% s 0.01-Weight o
Mac-IP
; <139
45°% g 1-Weight —
RMSE: 0.018 RMSE: 5.338

Figure 7: Decision tree for Kitsune Mirai model.

The resulting DT explanation shows that the most prominent
features Kitsune uses to determine an anomaly are the weights, ag-
gregated by source MAC and IP addresses and associated with two
different time windows: 0.01 (1min) and 1 (1.5sec). That is, Kitsune
relies mainly on the volume of packets per time frame to determine
if an attack is underway. An infected device suffering from a Mi-
rai attack [27] exhibits three main traffic behaviors: (i) scanning
the network for other vulnerable IoT devices; (ii) communicating
with the Command and Control (C&C) server, and (iii) launching
a volumetric DDoS attack from the [oT devices to a target server
(usually outside of the infected network). However, the Mirai attack
in the synthetic trace used in Kitsune mixes two of these behaviors:
a volumetric scan of the infected IoT network with a flood of ARP
requests (about 6x times the amount of packets per second compared
to the benign traffic, as shown by top-left plot in Figure 8) and a
DDoS attack to the target server. This pronounced difference in vol-
ume between benign and attack traffic makes it easy for Kitsune to
detect anomalous behavior based on traffic volume alone and corrob-
orates the findings in [4] where a simple Boxplot method is shown



to achieve a performance very similar to that of the complex Kitsune.
However, as pointed out [4], this difference between malicious and
benign traffic for this portion of the Mirai attack is unlikely to be
this pronounced in traces collected from real-world networks.
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Figure 8: Packets per second for original Mirai trace from Kit-
sune and tampered trace. Blue segments represent benign traffic
and red segments represent traffic with malicious activities (i.e.,
benign plus attack).

Validation. To validate the DT explanation that TRUSTEE gen-
erated, we tampered with the original Mirai trace used in [44]. We
modified the attack portion of the original trace by spacing out ARP
requests from the Mirai-infected devices so that the number of pack-
ets per second (pps) would not cross a random threshold from a given
range of specified limits. In particular, by considering the ranges (i)
from 10 to 50 pps; (ii) from 30 to 70 pps and (iii) from 50 to 90 pps,
we obtained three distinct tampered traces with different volumes of
attack traffic (Figure 8 shows the original and one tampered trace).
‘We changed neither the order in which the packets appeared nor
the timestamps of ARP responses to avoid interfering with estab-
lished RTTs. We ran Kitsune for each of these traces, using the same
amount of training samples. Figure 9 (left) shows the results for each
of the traces’ first 200k packets in the execution phase of Kitsune.
On the right side of Figure 9, we also compare the expected RMSE
(produced by Kitsune in the original trace) and the predicted RMSE
for each tampered trace. The diagonal line (in red) represents the
optimal outcome between expected and predicted RMSE. Hence,
the more dots are closer to the line, the less impact our tampering
had on the predicted outcome.

 RMES

Figure 9: Kitsune execution-phase predicted RMSE results for
first 200k packets from original and tampered traces.

The results clearly show that the RMSE values produced by Kit-
sune depend highly on the volume of the attack traffic encountered,
diminishing as the volume decreases, all the way within the values
generated for the benign traffic. However, we did notice that our
tampering with the original traces made Kitsune produce outliers
of RMSE for otherwise benign traffic. While we cannot be sure of
the reason for these outliers, since all features calculated by Kitsune
depend on the weight for each time window, we believe that the
changes we made to the attack traffic affected the feature values

for the underlying benign traffic. This experiment demonstrates that
the Mirai use case from Kitsune is vulnerable to 0.0.d. samples,
similar to the Heartbleed use case (Section 7.3). A simple but re-
alistic change to the Mirai attack pattern made it impossible for
Kitsune to accurately detect anomalous behavior. Finally, while our
observations point to problems with Kitsune’s ability to detect Mirai
attacks, they do not imply that Kitsune is unable or unfit to detect
other attacks and problems if it uses training data of representative
real-world scenarios.

8 ABLATION STUDY

In this section, we evaluate key design choices we made for
TRUSTEE and that we motivated in Section 4.2.

Data augmentation and optimizing for fidelity. We first assess
the impact of data augmentation (Line 11 in Algorithm 1) on the
size and fidelity of the DT explanations generated by TRUSTEE and
at the same time consider the impact of using accuracy (i.e., how
well the DT classifies the data) rather than fidelity (i.e., how well
the DT mimics black-box classifications) as the optimization goal
for TRUSTEE. To this end, for the first three use cases described
in Section 7, we use TRUSTEE to extract DT explanations for four
different settings (i.e., with and without data augmentation, using
either accuracy or fidelity), with all four settings using the same set
of hyperparameter values. The results are shown in Figure 10 where
the top plot depicts the (normalized) DT size and the bottom plot
shows fidelity. We observe that in cases of small-sized extracted
DTs (e.g., maximum tree size for VPN vs. NonVPN and nPrintML
IDS is 7 nodes and 47 nodes, respectively), data augmentation is not
necessary. However, for extracted DTs that are more complex (e.g.,
maximum tree size for Heartbleed is 1,491 nodes), the data augmen-
tation step results in a significant reduction in DT size (roughly 20%,
and especially for imbalanced datasets) and also improves the DT’s
fidelity (although only slightly, about 2-3%). In terms of optimiz-
ing for fidelity vs. accuracy, we observe no significant differences,
mainly because all the analyzed use cases have excellent accuracy
to start with. However, we expect that for models that have lower
accuracy, optimizing for fidelity may help end users identify reasons
for why the model accuracy is low.
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Figure 10: Ablation study results for data augmentation and
optimization for fidelity/accuracy.

Pruning methods. We next evaluate and compare the trade-
offs between fidelity and complexity of the DT explanations that
TRUSTEE generates when using a tree pruning method other than our



proposed Top-k Pruning method (Line 14 in Algorithm 1). In particu-
lar, we consider the three pruning methods mentioned in Section 5.1:
Max Leaves (pre-pruning), Max Depth (pre-pruning) and CCP (post-
pruning). Figure 11 (top) depicts the results for the Heartbleed use
case and shows the number of branches (x-axis) and fidelity (y-axis)
that are achievable by each of these three methods as well as by our
Top-k Pruning method. We observe that except for the Max Depth
method, all other methods show similar performance, with the two
post-pruning methods (i.e., CCP and Top-k Pruning) outperform-
ing the competitive pre-pruning method Max Leaves, especially for
high-fidelity DTs (e.g., fidelity of 0.9 and above). In view of such
minimal differences in their overall performance, choosing between
CCP and Top-k Pruning boils down to practical considerations. In
particular, while the CCP method relies on an implicit parameter o to
determine how much post-pruning is necessary, our Top-k Pruning
method gives end users direct control by means of the parameter k
that explicitly reflects the amount of effort an end user is willing or
capable to spend inspecting and analyzing TRUSTEE'’s output.
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Figure 11: Ablation study results: pruning methods for Heart-
bleed use case (top), and model stability for Heartbleed use case
with Top-10 Pruning (bottom)

Model stability. The last design choice we evaluate concerns the
inclusion of an outer loop as part of Algorithm 1 (Lines 4-16). Given
that TRUSTEE only analyzes a subset of the input data to generate
its output in the form of a DT explanation, it is fully expected
that running TRUSTEE under identical conditions (i.e., same set
of hyperparameter values) multiple times will result in different
DT explanations. However, for an end user to trust the output of
TRUSTEE, it should be the case that the different DT explanations are
stable in the sense that they make in general identical decisions when
presented with the same input samples. We quantify this stability
aspect of the output of TRUSTEE by using the notion of agreement
between DTs that measures how often the DTs will make the same
decision for the same input data. To examine this aspect of TRUSTEE,
we consider the Heartbleed use case and ran TRUSTEE (with S=1,
thus effectively disabling the outer loop; number of samples M =
593,123 (i.e., 30% of Dy); N = 50; and k = 10) a total of 50 different
times. The results are presented in Figure 11 (bottom) and show an
overall high mean agreement and fidelity for each of the resulting 50
different DT explanations. However, in a few cases (e.g., iterations
16, 28, 31), the mean agreement of the obtained DT explanations
is as low as about 80%. This observation motivated us to include
the outer loop in Algorithm 1 that ensures that TRUSTEE outputs a

DT explanation that has been selected so as to avoid obviously “bad”
(i.e., low mean agreement) and possibly misleading DT explanations
for the given black-box model.

9 CONCLUSIONS AND DISCUSSIONS

In this paper, we present TRUSTEE, a new framework that enables
end users of ML-based solutions to gauge their trust in the black-box
models that underlie these solutions. To demonstrate how TRUSTEE
works in practice, we consider several use cases of published ML-
based solutions from the existing literature, examine whether end
users can trust them, and discuss our findings and lessons learned.

First, we emphasize that our TRUSTEE-based analyses of the
considered use cases rely critically on the work of researchers who
have made their ML-related artifacts publicly available. In recent
years, the scientific community and the network research community,
in particular, have argued strongly for more reproducibility [5, 471,
and we second this effort. However, for the time being, network
security researchers interested in using ML have to accept the lack
of open-source datasets and a general reluctance for widespread data
sharing due to privacy concerns as faits accomplis.

Second, given that the vast majority of published ML models
that have been developed for a range of different network security
problems are not fully reproducible, our reported findings based
on a handful of use cases that are fully reproducible are in no way
representative of the existing literature on applications of ML in the
field of network security. However, the problematic nature of our
findings for the few analyzed use cases should serve as a cautionary
tale as far as the popular use of standard ML pipelines in the field is
concerned. In this sense, our work contributes to existing efforts that
argue for looking at developments in this area with a critical eye (e.g.,
see [2, 4, 58] and references therein) and identifies specific pitfalls
that prevent end users from trusting proposed ML-based solutions
and deploying them in production networks.

Last but not least, we purposefully designed TRUSTEE to aid
end users’ efforts to check whether a given black-box model suffers
from the problem of underspecification and can therefore not be
trusted. While underspecification is a known and common problem
in modern ML pipelines [17], this paper takes a first step towards
detecting the presence and identifying the type of underspecification
in a given black-box model. However, in the context of TRUSTEE,
these detection and identification tasks are currently not automated
and depend critically on the help of domain experts who can use
TRUSTEE as-is to assert if a given black-box model makes decisions
in accordance with existing domain knowledge or is even capable
of teaching the domain experts new decision-making strategies. To
realize the goal of automating these tasks, much work remains. In
particular, we need to involve network operators and security experts
in carefully designed user studies for quantitatively assessing their
level of trust in a given black-box ML model that drives a proposed
ML-based solution for a specific network security problem.
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