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Abstract—We settle two long-standing complexity-theoretical
questions—open since 1981 and 1993—in combinatorial game
theory (CGT).

We prove that the Grundy value of UNDIRECTED GEOGRA-
PHY is PSPACE-complete to compute. This exhibits a stark con-
trast with a result from 1993 that UNDIRECTED GEOGRAPHY
is polynomial-time solvable. By distilling to a simple reduction,
our proof further establishes a dichotomy theorem, providing a
sharp ‘“phase transition to intractability”: The Grundy value
of the game over any degree-three graph is polynomial-time
computable, but over degree-four graphs—even when planar &
bipartite—is PSPACE-hard. Additionally, we show, for the first
time, how to construct UNDIRECTED GEOGRAPHY instances
with Grundy value *n and size polynomial in n.

We strengthen a result from 1981 showing that sums of
tractable partisan games are PSPACE-complete in two funda-
mental ways. First, we extend the result to impartial games,
a strict subset of partisan. Second, the 1981 construction is
not built from a natural ruleset, instead using a long sum
of tailored short-depth game positions. We use the sum of
two UNDIRECTED GEOGRAPHY positions. Our result also has
computational ramification to Sprague-Grundy Theory (1930s)
which shows that the Grundy value of the disjunctive sum of any
two impartial games can be computed—in polynomial time—
from their Grundy values. In contrast, we prove that, assuming
PSPACE is not equal to P, there is no general polynomial-time
method to summarize two polynomial-time solvable impartial
games to efficiently solve their disjunctive sum.

Our proof enables us to answer another long-term structural
question in the field. We establish the following complexity
independence: Unless P = PSPACE, there is no polynomial-
time reduction from winnability in misere-play setting to the
Grundy value, and vice versa (in UNDIRECTED GEOGRAPHY).

I. INTRODUCTION

Knowing how to win battles does not always translate into
knowing how to win wars. More often than not, the victor
must strategically lose some winnable battles in order to
win the war. This timeless principle is elegantly captured in
the celebrated Sprague-Grundy Theory [31], [18] from the
1930’s about impartial games. This theory introduces the
concept of the Grundy value to characterize the winning
strategy for the disjunctive sum of multiple “battlefield”
games by extending Bouton’s constructive theory [6] on
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NIMﬂ In this paper, we resolve a long-standing complexity-
theoretical question in combinatorial game theory (CGT)—
open since 1981—concerning the computational complexity
of strategic losing for the goal of winning the overall sum
game (the disjunctive sum). As the main technical result of
this paper, we settle another question in CGT—open since
1993—on the complexity barrier of Grundy values of a well-
studied impartial graph-theoretical ruleset. Our theoretical
work has also inspired new practical board games.

A. Games of Games: Disjunctive Sum

A combinatorial game is defined by a succinct ruleset,
specifying the domain of game positions, and for each
position, the set of feasible options each player can move
the game to [3]. A ruleset is impartial if both players
have the same options at every position. Games that aren’t
impartial are known as partisan. In the normal-play setting,
two players take turns advancing the game, and the player
who is forced to start their turn on a ferminal position—
a position with no feasible options—loses the game. We
combine the challenges of deciding the winnability and se-
lecting a winning move (whenever one is available) into one
term: strategic determination. (See also [[15] for integrating
the two tasks). If the player with a winning strategy can
consistently solve the strategic determination problem, then
they can play the game optimally and win.

For computational analysis, a size is associated with each
game position—e.g. of bits encoding NIM—as the basis for
measuring complexity [29], [15], [7]. The size measure is
assumed to be natural ﬂ with respect to the key components
of the ruleset. In particular, at each position with size n:
(1) the space of feasible options can be identified in time
polynomial in n, and (2) all positions reachable from the

'A NIM game starts with a collection of piles of items. Two (or multiple
players) takes turns picking at least one items from one of the piles. Under
normal play, the player taking the last items wins the game. NIM was known
in ancient China as Jian Shi Zi (picking pebbles).

2In other words, the naturalness assumption rules out rulesets with
embedded hard-to-compute predicate like—as a slightly dramatized
illustration—"If Riemann hypothesis is true, then the feasible options of
a position include removing an item from the last NIM pile.”



position have size upper-bounded by a polynomial function
in n. An impartial ruleset is said to be polynomial-time
solvable—or simply, tractable—if there is a polynomial-
time algorithm for its strategic determination. Multiple
games can be combined into a new game:

Definition I.1 (Disjunctive Sum). For any two games G and
H (respectively, of rulesets R; and Rs), their disjunctive
sum, G + H, is a game in which the next player chooses to
make a move in exactly one of G and H, leaving the other
alone. A sum game G+ H is terminal if and only if both G
and H are terminal according to their own rulesets.

B. Computational Questions About Sprague-Grundy Theory

In 1981, Morris [26] proved that the sum of tractable
partisan games can be PSPACE-hard. His theorem el-
egantly encapsulates the fundamental intricacy of strate-
gic interaction among (simple) games (even for introduc-
tory textbooks to the field [1]]). Morris generates lists of
individually-tractable partisan games that combine to create
an intractable sum. It serves as a starting point for other
versions, such as limiting the games to be depth 2 [35] and
limiting the number of branches for each game to 3 [23]. A
further adaptation is made to show that GO ENDGAMES are
PSPACE-hard [33]]. Morris’ theorem provides a framework
for understanding other families of games. One important
basic question has remained open since Morris’ construction:

Open Question 1 (Sum of Impartial Games). Can the
disjunctive sum of two (or more) polynomial-time solvable
impartial games become intractable?

This open question is fundamentally connected with
Sprague-Grundy theory, a seminal part of CGT. Formulated
in the 1930s, this theory provides a mathematical charac-
terization for impartial games and their sums [31], [18],
laying the foundation for modern CGT [L1]], [3]. We now
highlight two fundamental aspects of this beautiful theory
(and provide the background of our own work):

Concise Mathematical Summary of Impartial Games:
Playing combinatorial games optimally usually requires
deep strategic reasoning about long alternation down the
last level of their game trees. Remarkably, Sprague and
Grundy showed that the essence of every impartial game
can be distilled into an “equivalent” single-pile NIM game.
Its Grundy value (a.k.a. nim-value or nimber) is then the
number of items in the equivalent single-pile NIM. The nim-
value extends winnability: the current player has a winning
strategy if and only if the Grundy value is not equal to zero.
To win, it is sufficient to choose any feasible option with
value zero. The Grundy value of a game provides a succinct
mathematical summary of its game tree, whose size could
be exponential in the number of options: the Grundy value
is always bounded above by the number of options.

Systematic Framework for Combining Games: Sprague
and Grundy’s pioneering theory establishes a systematic
framework not only for combining games across different
rulesets, but also for a complete characterization of strategic
interaction among games in the overall sum, based on their
concise summaries [3[], [[L1]. Combined with Bouton’s theory
on NIM [6], letting & denote the bitwise xor (the nim-sum),
the theory establishes: for all impartial G and H:

nimber(G + H) = nimber(G) @ nimber(H) (1)

In general, losing a winnable game may be necessary
to win in the overall sum (true to the meaning of “losing
a battle but winning the war”). Sprague Grundy theory
contains a profound computational statement, made prior to
the inception of P vs NP. Because the nim-sum is linear-
time computable, if the Grundy values of the games are
tractable, then the Grundy value—hence the winnability—
of the overall sum game is also tractable. This contrasts
with some values in partisan games, as exploited by Morris
[26]], where he constructs a CGT representation for each
component, but proves one is unable to “add them up” in
polynomial time (unless P = PSPACE). The following open
question is intrinsically connected with Open Question [T}

Open Question 2. Can the information captured in the
Grundy value of an impartial game be more expensive to
compute than its strategic determination?

Our research has been influenced by the following two
tightly related yet subtly different formulations concerning
the algorithmic connection between Grundy values and
strategic determination.

Open Question 3 (Tractable Structures). For any rule-
set, does polynomial-time strategic determination imply
polynomial-time Grundy-value computation?

Open Question 4 (Efficient Reduction). Is there a general
polynomial-time reduction from Grundy-value computation
to strategic determination?

Questions [3] and [] are directly related - a YES answer to
the second affirms the first (and thus a NO answer to the first
also refutes the second.) An efficient solution for these two
would also provide a unified algorithm—based on Sprague-
Grundy theory—for efficiently solving the disjunctive sum
of tractable impartial games (and hence Open Question [I).

On the tractable spectrum, some polynomial-time solvable
rulesets—including NIM, SUBTRACTION GAME [3], and
many others—have dual tractability: their Grundy values are
also polynomial-time computable. Open Question [3] focuses
on whether strategic determination and Grundy values have
common underlying mathematical structures for tractability
beyond the fact that both can be obtained by evaluating the
game tree [3]]. This is relevant to the part of Fraenkel’s
work [15], where he conceptualized a class called games



with an efficient strategy by combining the tractability of
their own strategic determination with the tractability of their
involvements in disjunctive sums and in misere-play (that is,
the current player wins at any terminal position).

On the intractable spectrum, for any PSPACE-complete
game with polynomial game-tree height—e.g., NODE-
KAYLES [29], GENERALIZED GEOGRAPHY [29], [20], CoL
[L1], [2] and many based on logic, topology, network
sciences, etc, [29], [10], [30], [17]], [8]—the answer to Open
Question [ is always a YES. However, this complexity-
theoretical polynomial-time reduction is not extendable from
PSPACE-complete games to games with potentially lower
complexity. In addition to tractable games, it remains open
whether a polynomial-time reduction from Grundy values
to strategic determination exists for intractable impartial
games, whose complexity might be “strictly” in-between NP
and PSPACE Open Question || hypothesizes whether a
unified algorithmic approach exists for Grundy-values using
winnability testing & winning-move finding as subroutines.

As Fraenkel pointed out, winnability alone may not cap-
ture the whole picture of game’s tractability [15]. Recent
progress on Poset games [SOﬂ highlights that aspect. It is
well-known—by strategy-stealing—that the first player has
a winning strategy in any POSET game where the underlying
poset has a greatest element (e.g. in CHOMP), providing a
straightforward answer to winnability. On the other hand,
Bodwin and Grossman [4] prove that in this family, finding
a winning move can be PSPACE-complete. Hence even
in this special case, the Grundy-value and strategic deter-
mination are polynomial-time reducible to each other. The
implication on the nimber-winnability complexity separation
also has a caveat. POSET games with the greatest element
may have reachable game positions without the greatest
element: playing these special games requires later moves on
“normal” POSET games, outside the greatest-element family.
Indeed, Grier [17] proves that deciding winnability of normal
POSET games is PSPACE-complete.

C. Battles of Geography Without Directions

As a game version of the Seven Bridges of Konigsberg,
GEOGRAPHY grew from a real-world “Word Chain” game—
with cities as the category—into an abstract game on graphs,
as suggested by Richard Karp [29]. This game, known as
GENERALIZED GEOGRAPHY, became the main subject for
complexity study in the landmark paper, “GO is polynomial-
space hard” (1978) by Lichtenstein and Sipser [20]. In this

31s there a polynomial-time nimber-to-winnability reduction for impartial
games—arising in quantum combinatory game theory [7]—for which
strategic determination is complete for a particular level of the polynomial-
time hierarchy?

4A POSET game is a two-player impartial game over a partially ordered
set (poset), in which each move—the selection of an element in the poset—
removes it together with all elements that are greater. The POSET game
generalizes the classical “chocolate-eating” game CHOMP [36] as well as
NIM. A poset with the greatest element is a poset that contains an element
greater than any other element in the poset.

impartial game, a position is defined by a directed graph
and a specified node (with the token). During the game, two
players take turns moving the token to an outgoing neighbor
and removing the node it just occupied. In the normal-play
setting, the player who cannot make a move on their turn
loses the game. GENERALIZED GEOGRAPHY was originally
shown to be PSPACE-complete by Schaefer [29]]; this was
improved by Lichtenstein and Sipser [20] to be PSPACE-
complete, even when the graph is planar, bipartite, and has
a maximum degree of three. These properties are essential
to their analysis of GO, whose game board is a 2D grid.
In 1993, Fraenkel, Scheinerman, and Ullman [16]] added
a new twist. They proved that UNDIRECTED (VERTEX)
GEOGRAPHY—the special case over undirected graphs—
is polynomial-time solvable. In 2015, Renault and Schmidt
[28] revitalized interest in UNDIRECTED GEOGRAPHY by
showing that it’s PSPACE-complete under misére-play in-
stead of normal play. Both the edge variant [16] and short
version [24]] of UNDIRECTED GEOGRAPHY are also shown
to be PSPACE-complete. Various extensions to UNDI-
RECTED GEOGRAPHY have been analyzed [32], [Sl], [22].
The Fraenkel-Scheinerman-Ullman solution is guided by
an elegant matching theory and supported by efficient
matching algorithms. For any G = (V,E) and s € V
satisfying E # (), the current player has a winning strategy
at UNDIRECTED GEOGRAPHY position (G, s) iff s is in
every maximum matching of G. However, this matching-
based characterization appears to be limited to winnability.
Whether or not the Grundy value of UNDIRECTED GEOG-
RAPHY is polynomial-time computable had been elusive.

Open Question 5. Is the Grundy value for UNDIRECTED
GEOGRAPHY computable in polynomial-time?

UNDIRECTED GEOGRAPHY has thus become an exem-
plary tractable impartial game for which no efficient algo-
rithm had been discovered for its Grundy-value computation.
Others such as MOORE’S NIM [25], [3] and WYTHOFF’S
GAME [34] are also wonderful examples [15].

Viewing Renault-Schmidt’s result [28] through Fraenkel’s
framework [15] signifies the following structural question:

Open Question 6 (Complexity Independence). Are there
subfamilies of games (in UNDIRECTED GEOGRAPHY) for
which the Grundy values are polynomial-time computable,
but misére-Winnability is not, and vice versa?

D. Our Contributions

In this paper, we settle these open questions.

A Dichotomy Theorem on Grundy Values: As our main
technical result, we prove that computing the Grundy value
of UNDIRECTED GEOGRAPHY is PSPACE-complete. The
key step is to impose a direction over undirected edges,
where game paths can travel across in either direction. The



complexity analysis has another intricacy - the polynomial-
time winnability is an obstacle. By distilling our origi-
nal complex construction into a simpler reduction using
Lichtenstein-Sipser, we are able to establish a dichotomy
theorem —in Section [[I—providing a “phase transition to
intractability” in Grundy-value computation, sharply charac-
terized by a maximum degree of four:

Theorem I.1 (Geographical Dichotomy). The Grundy value
of UNDIRECTED GEOGRAPHY over degree-three graphs is
polynomial-time computable but over degree-four graphs—
even when planar & bipartite—is PSPACE-hard.

Our polynomial-time algorithm in Theorem [[.T|applies the
Fraenkel-Scheinerman-Ullman algorithm [16] to navigate a
branch-and-bound process for evaluating game trees.

Strategic Losing is Hard: We show distinguishing * from
*2 in UNDIRECTED GEOGRAPHY is PSPACE-hard, a detail
crucial in our next theorem that settles Open Question

Theorem 1.2 (Strategic Synergy). The disjunctive sum of
two tractable impartial games—e.g., two UNDIRECTED GE-
OGRAPHY games—can be PSPACE-hard to solve.

Our result strengthens Morris’ 1981 result [26]] in two fun-
damental aspects. First, we extend the PSPACE-hardness
from the sum of partisan games to the sum of impartial
games, shedding new light on the computational facet of
the Sprague-Grundy characterization (more below). Second,
Morris’ construction is built from a long sum of tailored
short-depth game positions. In contrast, we use two games
of a natural, well-studied UNDIRECTED GEOGRAPHY im-
partial ruleset to create our hard sum. Our construction
is in fact robust: In our PSPACE-hard sum, one of the
games—provided with non-zero Grundy value—can even be
arbitrarily chosen, say by an adversary.

Sprague-Grundy theory presents a barrier to closely mim-
icking Morris’ construction in the realm of impartial games.
Since nim sums are efficiently computable, one cannot
present a long list of shallow impartial games where the
winnability of the sum is intractable. We overcame this
obstacle by instead summing two positions where the indi-
vidual Grundy values (of at least one) are difficult to discern.
We are curious whether there is a well-known, tractable,
strictly-partisan ruleset where determining the winnability
of the sum of two positions is computationally hard.

Mathematical-Computational Divergence in Sprague-
Grundy Theory: Our complexity result on this concrete
graph game has a wider computational ramification in
connection with Sprague-Grundy Theory. The sharp con-
trast between the complexity of strategic determination and
Grundy values in UNDIRECTED GEOGRAPHY illustrates
a fundamental mathematical-computational divergence in
Sprague-Grundy theory. When computational cost is no
object, the Grundy values are effective and concise math-

ematical summaries of game trees for strategic reasoning in
disjunctive sums. However, as we have shown, this elegant
mathematical summary could be PSPACE-hard to obtain,
even for polynomial-time solvable games. That is, assuming
PSPACE # P, the Grundy values of combinatorial games
capture provably richer and potentially hard-to-compute
structures than just their solvability. In fact, Theorem
implies a broader impossibility statement:

Theorem 1.3 (Succinct Summarization is Hard). Unless P
= PSPACE, there is no general polynomial-time method to
summarize two polynomial-time solvable impartial games to
efficiently solve their disjunctive sum.

Complexity Independence of Misere-Winnability and
Grundy Values: For any impartial game, its normal-play
winnability is polynomial-time computable from its Grundy
value. In contrast, answering Open Question [6] we prove:
Unless P = PSPACE, there is no polynomial-time reduction
from winnability in misere-play setting to the Grundy value,
and vice versa (in Undirected Geography).

Towards Practical Board Games: In Section we apply
Sprague-Grundy theory to resolve the complexity of several
rulesets that generalize UNDIRECTED GEOGRAPHY. We
first show very basic extensions, including MULTI-TOKEN
UNDIRECTED GEOGRAPHY and UNDIRECTED GEOGRA-
PHY WITH PASSES. Then we demonstrate the versatility of
the result, by showing that UNO SWAP, a minor modification
of the tractable UNCOOPERATIVE UNO [12], is PSPACE-
complete. These results have potential applications to the
practical design of board games based on UNDIRECTED
GEOGRAPHY, where the real world appreciates games with
simple rules and positions, combined with deep strategic rea-
soning for winning moves [3]], [8]]. Thus, the removal of edge
directions from GENERALIZED GEOGRAPHY, while also
retaining its PSPACE-hard complexity opens up several
possibilities. In the full paper on the archive [9]], we discuss
two further practical extensions using the standard GO or
HEX game boards. For example, the web-version of one
of our new games, BINARY UNDIRECTED GEOGRAPHY,
can be played at https://turing.plymouth.edu/~kgb1013/DB/
combGames/twoBUG.html.

Graphs with Polynomial-High Nimbers: In Section [V]
we give a constructive proof that, for any n, there exists a
polynomial-sized UNDIRECTED GEOGRAPHY instance with
Grundy value n. Logarithmic Grundy values are realizable
by trees with recursive structures, and linear Grundy values
can be achieved by directed graphs in GENERALIZED GE-
OGRAPHY. To the best of our knowledge, this is the first
polynomial Grundy value construction for UNDIRECTED
GEOGRAPHY, which also provides the technical support for
proving Theorem that any classifier for positive Grundy
values in UNDIRECTED GEOGRAPHY is PSPACE-hard.


https://turing.plymouth.edu/~kgb1013/DB/combGames/twoBUG.html
https://turing.plymouth.edu/~kgb1013/DB/combGames/twoBUG.html

II. THE VALUE OF GAMES BEYOND WINNING

In combinatorial game theory, a ruleset defines not just
a single game, but many—possibly infinitely many—game
instances (or positions). Playing games requires strategic
reasoning of one’s own options as well as opponent’s sub-
sequent options, to answer the key problem on winnability:

Definition IL.1 (Strategic Determination). Given a game G
under a ruleset R, determine whether or not the current
player in G has a winning option, and if YES, return a
winning option of G.

This fundamental problem—commonly involving deep
alternation—has been the subject of intense mathematical
and computational studies [3], [29], [14], [13], [27], [10],
[201], [2]]. A ruleset R defines a natural game tree, capturing
this alternation for each of its positions, GG, by recursively
branching with feasible options. Thus, the game tree of GG
contains all reachable positions of G under ruleset R, with
the leaves as the terminal positions.

The foundational Sprague-Grundy theory characterizes
each impartial game G by a natural number, known as
the Grundy value (a.k.a nim-value or nimber) of the game.
Recursively, the Grundy value of G is:

Terminal Position: For any terminal G, nimber(G) = 0.
Non-Terminal Position: If {G,...,Ga} is the set of fea-
sible options of G, then:

nimber(G) = mex ({nimber(G1), ...,nimber(Ga)}) (2)

where mex is the minimum excluded value, returning the
smallest value of Z*TU{0}\ {nimber(G), ..., nimber(Ga)} .

We will use the notation standard in combinatorial game
theory for Grundy values: *k for k, except that * is shorthand
for x1 and O is shorthand for *OE] By grouping all positions
with non-zero Grundy values into a class called “Fuzzy”,
impartial game positions can be partitioned into two outcome
classes, characterizing winnability. (1) N (“Fuzzy”) - with
positive Grundy values; the current (next) player always has
a winning strategy. (2) P (“Zero”) - with zero Grundy value;
the previous player always has a winning strategy.

III. A DICHOTOMY THEOREM

In this section, we prove Theorem setting up the
Dichotomy Theorem of Grundy-value computation in UNDI-
RECTED GEOGRAPHY based on its degree. Because “Zero”
(P) is polynomial-time distinguishable from “Fuzzy” (N)
in UNDIRECTED GEOGRAPHY, to establish the hardness,
we need to show that the “Fuzzy” region is PSPACE-
hard to classify. By a (rather involved) reduction from
True Quantified Boolean Formula, we proved that x and *2
are PSPACE-hard to distinguish. While aiming for planar
graphs, we distilled this construction, finding a simple gadget

5The reason for the *0 = 0 convention is that it is equivalent to the
integer zero in CGT.

Figure 1. The gadget for each directed edge (z,y).

(Figure [I)) to obtain a direct reduction from GENERALIZED
GEOGRAPHY. For readers who may want to see more com-
plex constructions for “direction control” in UNDIRECTED
GEOGRAPHY, we refer them to Section |V| on nimber con-
structability. Replacing directed edges there is more intricate
because high Grundy values cannot be truncated as in the
complexity analysis below, and our attempts to simplify the
proof haven’t yet produced the same outcome.

A. Complexity Separation of Winnability and Grundy Values

Theorem III.1 (PSPACE-Complete Grundy Values). The
Grundy value of polynomial-time solvable UNDIRECTED
GEOGRAPHY is PSPACE-hard to compute.

Our reduction, 7, takes a GENERALIZED GEOGRAPHY
position (G, s) and yields an UNDIRECTED GEOGRAPHY
position (G, s) = (G’, s) where:

(G/,s){:*’ if (G.5) =0 (€ P)

eN\ {x}, if (G,s)eN

For readers unaccustomed to working with nimbers, we
provide another characterization: the (disjunctive) sum of
(G', s) with a simple * yields:

P, if (G,s)eP
N, if(G,s)eN

The reader can consider the winnability of (G, s) equiv-

alent to (G’, s) + *. The reduction itself contains two parts:

(G',s)+x¢€

1) Modify G so that each vertex v € V is given an
adjacent singleton vertex, vy, adjacent to no other
vertices. In other words, Vv € V we will add vertex
vo and (undirected) edge (v, vg).

2) For each of the directed edges in G, (x,y), we replace
it with the gadget shown in Figure

The correctness of the reduction hinges on this gadget
acting like a directed edge from x to y. We assert that with
two lemmas. Here, we present proofs using nimber-based
calculations. In the full version [9], we provide alternate
proofs based on the winnability when added to *. The reader
is welcome to use whichever reasoning they prefer to follow.

We will also use some notation to represent a graph, G,
after moves have been made. For a subset S C V, we will
use Gg be the graph obtained from G by removing S and
all edges incident to S. Thus, from a position (G, s), if a



player chooses to traverse edge (s, t), the resulting position
is (Gysy,t) (or (Gs,t) for short).

Lemma III.1 (Wrong Way). Moving from y to any vertex
d results in a value of *2 or %3, i.e., (G;7 d) = %2 or 3.

Proof: We prove this by examining the three options
from d. Moving to dy is clearly a move to 0. Moving to ¢
will be non-zero, because ¢y is zero. It remains to show that
moving d — f results in a %-position. We can see this by
considering the following necessary move f — b. Since both
of b’s remaining neighbors, a and ¢, have terminal neighbors
(ap and c¢gp), they are non-zero. Thus, the move to b must be
a zero position, and the move to f must be x. ]

Lemma II1.2 (Correct Way). Moving from d to y results in
a value of * exactly when moving from x to a in the same
gadget results in .

Proof: In both cases, we will use the fact that moving
from b to f results in a O-position, because d is always non-
zero and it is f’s only neighbor. For the first case, assume
that moving d to y results in *. This means that moving c to
d has value %2, as options to f and d are both 0. Thus, b to
c has value *. Since b has options to both 0 and *, moving
to b has value %2, and moving = to a has value *. In the
other case, assume that moving d to y does not have value
*. (Either it is 2 or above or y has already been removed.)
Thus, moving ¢ to d results in a value of *, because d’s
other options are 0. b to ¢ then has a value of %2, meaning
that a to b has a value of *. This means that moving x to a
has a value of *2 # %, completing the proof. ]

Proof: (of Theorem Determining the winnabil-
ity of GENERALIZED GEOGRAPHY position (G,s) is
PSPACE-hard. Thus, it remains to be shown that for
the UNDIRECTED GEOGRAPHY position resulting from the
= x, if (G,s)=0(eP)
eEN\ {x}, if(G,s)eN

Consider any GENERALIZED GEOGRAPHY position
(H,t), k moves after (G,z) and the analagous UNDI-
RECTED GEOGRAPHY position (H’,t) = r(H,t), reached
5k moves after (G’ s) by traversing the gadgets correspond-
ing to the directed edges traversed to reach (H,t). If there
are no options from (H,t), then (H’,t) has options to ¢,
which has value 0; possibly to gadget vertices d, which have
value either %2 or *3 by Lemma[[IL.T} and possibly to gadget
vertices a where the corresponding y vertex has already
been removed, which have a non-* value (specifically *2)
by Lemma Thus, there is a move to zero and might
be moves to *2 or *3. (H',t) = x. If there are options from
(H,t), then it is either in P or N. We can complete our
proof inductively by assuming that the theorem is true for
all options of (H,t) and showing that it works for (H,t).
(1) If (H,t) € P, then each option, (Hy,p) is in N. Thus,
by our induction hypothesis, (H/,p) = *z, where z > 2.

reduction, (G, s)

Figure 2. Prelude Gadget.

This means that (H’,t) doesn’t have any options equal to
*. Since it does have a move to zero (to), (H',t) = .
v (2) If (H,t) € N, then some option, (H,p) € P. Thus,
(H],p) = *. Since (H',t) has a move to zero (ty) and *,
the value is *z where z > 2. |

Currently our reduction creates positions where the initial
value (at (G, s)) is either * or higher. We can narrow this
down so that the decision is on distinguishing between * and
%2, specifically, by appending a Prelude gadget (see Figure
[2) before s and then asking what the value of the overall
game position is when starting at the “start” vertex.

Corollary IIL.1. Determining whether an UNDIRECTED
GEOGRAPHY position equals x or x2 is PSPACE-complete,
even on bipartite, planar graphs with a maximum degree of
four.

Proof: Since the height of the game tree is at most
n, the Grundy-value can be computed in polynomial-space
using the standard DFS technique.

Adding our prelude gadget to the reduction from Theorem
the value at vertex “start” will either be * or %2. By
calculating the nimber backtracking from the value at s, we
see that it will be * exactly when the value at s is *, and
x2 for any of the other values of s.

From Lichtenstein and Sipser [20], we know that the
winnability of GENERALIZED GEOGRAPHY is PSPACE-
hard on bipartite, planar graphs with a maximum degree of
three. Our reduction preserves the planarity, and, since there
is no odd-cycle in the gadget, the bipartite property as well.
We increase the degree by one because we add an extra
vertex adjacent to the original vertices in V. Thus, we are
still hard on graphs with a maximum degree of four. [ ]

The proof above also establishes that determining whether
two “Fuzzy” games in UNDIRECTED GEOGRAPHY have the
same Grundy value is PSPACE-hard. In Section [V-C| we
will use our “poly-high nimber constructor” to prove the
following theorem, showing no polynomial-time classifier
exists for Grundy values in UNDIRECTED GEOGRAPHY,
beyond the well-known “Zero”-“Fuzzy” classifier, unless P
= PSPACE.

Theorem IIL.2 (Too “Fuzzy” to Classify). In UNDIRECTED
GEOGRAPHY, determining whether or not the Grundy value
of (G, s), where s has degree A, is in any given set S C [A],
is PSPACE-hard.



B. Following the Winning Way in Branch-and-Bound

We show that for any undirected graph G with maximum-
degree at most three, the Grundy value of UNDIRECTED
GEOGRAPHY is polynomial-time computable. In this case,
we present a polynomial-time reduction from the Grundy-
value computation to decision of winnability.

For UNDIRECTED GEOGRAPHY at a position G = (V, E)
and s € V, the degree of s in GG is equal to the number of its
feasible moves, and hence serves as a tight upper bound on
the Grundy value of the position. Similarly, the maximum
degree in G characterizes the maximum branching factor of
the game tree at position (G, s): If the maximum degree of
G is A, then the branching factor of every node except the
root is at most A — 1 (the current geography path entering
the node will take away at least one edge incident to the
node). The root may have branching factor A but no more.

Theorem III.3 (Following the Winning Way in UNDI-
RECTED GEOGRAPHY). For any undirected graph G =
(V, E) with maximum degree 3, and node s € V, the Grundy
value at the UNDIRECTED GEOGRAPHY position (G, s) can
be computed in polynomial time in n = |V|.

Proof: We focus on the case when the degree of s is 1
or 2. The proof naturally extends to the case of 3.

SINGLE OPTION: When the degree of s is 1, the Grundy
value of UNDIRECTED GEOGRAPHY at (G, s) is = if and
only if (G, s) is a winning position. So, the Grundy-value
can be directly reduced to the decision of winnability.

DOUBLE OPTIONS: When the degree of s is 2 (say with
neighbors v; and vq), the maximum branching factor of the
game tree for position (G, s) is 2. Note that the degree of
v1 and vo in Gy is at most 2. We run the polynomial-
time matching-based winnability algorithm to determine
whether or not (Gg,v1) and (G, v2) are winning positions
in UNDIRECTED GEOGRAPHY, and consider the four cases:

1) [“Fuzzy”, “Fuzzy”] - both (Gs,v1) and (G5, v2) are

winning positions: nimber(G, s) = 0.

2) [“Zero”, “Zero”] - both (Gg,v1) and (Gg,ve) are

losing positions: nimber(G, s) = *.

3) [“Fuzzy”, “Zero”] - (G, v1) is a winning position and

(Gs,v2) is a losing position:
nimber(G, s) = *(3 — nimber(Gs, v1))
4) [“Zero”, “Fuzzy”] - (G4, v1) is a losing position and
(Gs,v2) is a winning position:
nimber(G, s) = *(3 — nimber(G, v2))

In the last two cases, one of v; and v is 0, and the other
has value x = % or = *2. By the mex rule, (G,s) will
be the other of those values (%2 or *, respectively) which is
exactly 3 — x (or 3 @ x), so the above derivation works.

In the first two cases, we find the Grundy value of (G, s)
in polynomial time. Crucial to the tractability, in the last two
cases, we reduce the Grundy-value computation of (G, s)

to a single Grundy-value computation of either (G, v1) or
(Gs,v2). Because G has one less node than G, the depth
of the branch-and-bound process is O(n). In total, we make
O(n) calls to the decision-of-winnability algorithm in order
to compute the Grundy value of position (G, s). ]

C. Misere-Play Winnability vs Grundy Values

We now demonstate that the connection between misére
rule and normal-play Grundy values is very subtle. Indeed,
the strategy to play for termination positions and the strategy
to play to avoid termination positions can be different. The
following theorem provides an answer to Open Question [6]

Theorem IIL.4 (Complexity Independence). There are non-
empty sub-classes PP, HP, PH, and HH of UNDIRECTED
GEOGRAPHY positions with the following properties: (1)
For class PP, both misere-winnability and Grundy value are
polynomial-time computable. (2) For class HP, Grundy val-
ues are polynomial-time computable, but misére-winnability
is PSPACE-complete in the worst-case. (3) For class
PH, misére-winnability is polynomial-time computable, but
Grundy values are PSPACE-complete to compute in the
worst-case (4) For class HH, both misere-winnability and
Grundy values are PSPACE-complete in the worst-case.

Proof: (High-level). UNDIRECTED GEOGRAPHY on
trees is one of many examples of PP. By Theorem and
Renault-Schmidt’s result [28], UNDIRECTED GEOGRAPHY
itself is an example of HH.

We now show that Renault-Schmidt’s construction in [28]]
for the misere-play setting provides an example of HP. Thus,
Renault-Schmidt’s construction can’t directly tell us about
Grundy value-hardness. The main reason is that the Grundy
value (in the normal setting) of the construction in [28]] can
be computed in polynomial time. More specifically, for a
starting vertex u, the starting position has value x, %2, or
x3, depending on the following properties (below we use
the vertex naming conversion of the arc gadget of [28])): (1)
If w is adjacent to some uv; and some ruy, then it has value
*3. (2) If u is only adjacent to some uv; but no ruy, then
it has value *2. (3) Otherwise, it has value .

Our proof for Theorem [[IL.1] provides an example for PH,
because for all these games, the winnability in the misere
setting is polynomial-time solvable. The main reason is that
our gadget of Figure [ has simple winnability for the current
player at x or y in the misere setting without needing to get
out the gadget (i.e. it localizes the decision). Particularly,
(1) Any move to a is a winning move for the first player,
since ag is a losing move for the second player (in misere
setting), and thus they move to b, the first player to f, the
second player to d, and then the first player to c. Then,
the second player can only move to ¢y and lose the game.
(2) Any move to d for the first player is a losing move, as
the second player can move to f, then the first player must
move to d, and the second player can move to ¢ and thus



win, since the first player must move to ¢y and lose. (3) Any
position with moves to neither a nor d must have no moves,
and thus is a winning position for the first player. ]

IV. GAMES OF GAMES, SPRAGUE-GRUNDY
CHARACTERIZATION, AND
MATHEMATICAL-COMPUTATIONAL DIVERGENCE

Sprague-Grundy theory provides not only a unified theory
for understanding diverse impartial rulesets, but also an ele-
gant framework for their interactions. Because nimber(G +
H) = nimber(G)@®nimber(H ), the Grundy value of (G+H)
can be reduced in polynomial-time to the Grundy values
of G and H. In contrast, using our complexity result for
UNDIRECTED GEOGRAPHY, we strengthen Morris’ theorem
[26] from strictly partisan to impartial games:

Theorem IV.1 (Beyond Winning Impartial Games). If P #
PSPACE, then the disjunctive sum of two polynomial-time
tractable impartial games can be intractable.

Thus, wunlike Grundy-value, there is no general
polynomial-time reduction from winnability of (G + H)
to strategic determination for G and H, unless P =
PSPACE. This illustrates a striking view of the classical
Sprague-Grundy characterization through the lens of
computational complexity theory. The Grundy value and
strategic determination are two different yet fundamental
summaries of the game tree. Using the complexity gulf
between P and PSPACE, our result demonstrates that the
Grundy value is a significantly richer summary of game
data than strategic determination.

Theorem IV.2 (Intractability of Game Summary). Unless
P = PSPACE, there is no general polynomial-time method
to summarize two given impartial games (say G and H) to
efficiently solve the game of their sum (G + H).

Sprague-Grundy theory establishes that such concise
summaries—in the form of Grundy values—of game data
always exist when computational cost is no object. This work
highlights a subtle yet fundamental contrast between the
mathematical and computational facets of CGT. Applying
Sprague-Grundy theory, our dichotomy theorem also enables
us to settle the solvability of several families of games
extending UNDIRECTED GEOGRAPHY.

MULTI-FIELD UNDIRECTED GEOGRAPHY - The disjunc-
tive sum of multiple UNDIRECTED GEOGRAPHY games.

MULTI-TOKEN UNDIRECTED GEOGRAPHY - This game is
played on an undirected graph, in which a game position
is defined by a graph G = (V, E) and a set S C V. Each
node in S has a token, and in each turn, exactly one of the
tokens can be moved to an adjacent unoccupied node, and
the node of its previous location is removed from the graph.
In MULTI-TOKEN UNDIRECTED GEOGRAPHY, alternating
moves by two players create multiple node-disjoint exploring

paths in GG, one by each token. The game ends when no valid
extension exists to any of these paths.

UNDIRECTED GEOGRAPHY WITH PASSES - this natural
extension of a game is to allow players to pass their turn:
For k£ > 0, we consider UNDIRECTED GEOGRAPHY with k-
Total Passes, which augments the feasible moves by allowing
players to pass their turn, provided that the total number of
passes taken so far (by both players) is less than k.

SwWAP UNO - This game is inspired by a generalization of
Uno, was shown by Domaine et al [12] to be in P via
reduction to UNDIRECTED GEOGRAPHY. In this game, there
are two hands, H; and Hs, which each consist of a set of
cards. This is a perfect information game, so both players
may see each other’s hands. Each card has two attributes,
a color ¢ and a rank r and can be represented as (c¢,7). A
card can only be played in the center (shared) pile if the
previous card matches either the c of the current card or the
r of the current card. Finally, for the special part that makes
this ”Swap” Uno, either player may, once a game, decide to
use their turn to swap their hand for their opponent’s rather
than playing in a pile. Once a single player swaps, the other
player may not swap.

We now prove that, although UNDIRECTED GEOGRA-
PHY is polynomial-time solvable, these basic extensions
of UNDIRECTED GEOGRAPHY can be more challenging
computationally.

Theorem IV.3 (The War of GEOGRAPHY Battles). Deciding
whether or not the current player has a winning strategy
in the sum of two UNDIRECTED GEOGRAPHY games, and
consequently, in TWO-TOKEN UNDIRECTED GEOGRAPHY
and SWAP UNO games, is PSPACE-complete. Further-
more, UNDIRECTED GEOGRAPHY WITH k-TOTAL PASSES
is PSPACE-complete to solve for odd k, and polynomial-
time solvable for even k.

Proof: Let’s start with the complexity analysis of
UNDIRECTED GEOGRAPHY WITH k-TOTAL PASSES. We
consider a trivial game, called PASS. Each position in PASS
is defined by an integer k. The terminal position is the one
with & = 0. For any k& > 0, there is a single move at position
k to position k — 1. PASS with £ = 1 is isomorphic to NIM
with a single pile of one item. In general, the PASS position k
is isomorphic to NIM with & piles, each containing a single
item. The Grundy value of PASS at position k is zero if
k is even and x if k£ is odd. For any undirected graph G
and positive integer k£, UNDIRECTED GEOGRAPHY WITH
k-TOTAL PASSES at position ((G, s),k) is isomorphic to
the game defined by the disjunctive sum of two battlefield
games: (1) UNDIRECTED GEOGRAPHY at position (G, s)
and (2) PASS at position k. Therefore:

e When k is odd (e.g., £ = 1), by the Sprague-Grundy
theory, the Grundy value of position ((G,s),k) is
equal to nimber((G, s)) & *. The current player in this



game has NO winning strategy iff nimber((G, s)) = =
in UNDIRECTED GEOGRAPHY. We conclude that the
winnability of this game is PSPACE-complete to solve,
because deciding whether or not nimber((G,s)) is
equal to * (or *2) is PSPACE-complete (Theorem
11.2).
e When k£ is even, the Grundy value of position
((G, s), k) is equal to nimber((G, s)), for which we can
distinguish “Zero” from “Fuzzy” in polynomial time.
We can similarly characterize the complexity of the sum
of two UNDIRECTED GEOGRAPHY games (see the full
version). Because the sum of two UNDIRECTED GEOGRA-
PHY games is a special case of TWO-TOKEN UNDIRECTED
GEOGRAPHY, the PSPACE-hardness extends, and, in fact,
even when we require that the underlying graph is connected.
In the full version, we show that UNO bipartite graphs
have the structural property needed to encode the hard
instances for Grundy value computation in UNDIRECTED
GEOGRAPHY, as required in our proof for Theorem [[IL.T}
Thus, the PSPACE-hardness of SWAP UNO follows from
that of UNDIRECTED GEOGRAPHY WITH ONE PASS. u

Theorems [[V.Tand [[V.2] then follow directly from Theorem
IV.3|on the PSPACE-hardness of the disjunctive sum of two
UNDIRECTED GEOGRAPHY games, and the sum of NIM and
UNDIRECTED GEOGRAPHY.

Proposition IV.1. The sum of UNDIRECTED GEOGRAPHY
over degree-three graphs are polynomial-time solvable.

V. GRAPHS WITH POLYNOMIAL GRUNDY VALUES

A fundamental problem in CGT is that of nimber con-
structability. That is to say—when specialized to the game of
our focus—the question of whether a game of UNDIRECTED
GEOGRAPHY can actually have a certain Grundy value
(equivalent to determining the habitat for impartial games),
and if it can, whether it can be succinctly encoded. The
existence is important primarily from a pure mathemati-
cal standpoint. The succinct encoding is needed for sums
of games with high Grundy values to actually be shown
intractable. In Section [V-C| we highlight the use of the
(polynomially) succinct encoding of high nimbers to support
our complexity analyses.

A. Logarithmic Intuition and Polynomial Challenge

The habitat going up to the maximum degree in the graph
is simple. We will present it in the next construction to
motivate our more advanced proof.

Observation V.1 (Logarithmic Nimber). There is a tree-
based UNDIRECTED GEOGRAPHY position with nimber *n,
highest degree n, and 2" vertices.

Proof: Recursively, we define a tree ¢(n) with moves to
t(n—1),t(n—2)...t(0). For the base case, t(0) is a single
isolated vertex (with nimber 0). Inductively, we assume each

Figure 3. The overall schema for Nimber Constructability. The value of
the position with the token at N, is *n.

of the smaller (i) have 2! vertices, so we have 2¥*! be
20 491 4 ... 42k 4+ 1, where the final 1 is the new root. W

Thus, we can get a poly-log nimber using a polynomial
number of vertices (and certainly any constant nimber, which
we will use for gadgets up to *3).

The exponential size comes from the fact that we re-
peat each tree in each subtree. This is necessary, since if
we attempt to combine the subtrees, being able to move
“back up” those trees could change the Grundy values. In
GENERALIZED GEOGRAPHY, one can use directed edges
to prevent undesired “up” moves to share the lower nimber
nodes. Thus, one can achieve nimber n with n + 1 vertices.
We can’t just replace these with our directed-edge gadget
from Figure |1} because the inner degree on those is constant
and will prevent arbitrarily large nimbers. We need a more
sophisticated mechanism to get nimbers of any size.

B. Polynomial-High Nimber Constructability

To attain nimber n, we create n vertices Ng,..., Ny,
which exist in a clique, as in Figure [3] Each N; has nimber
x7 so long as all N with k& < ¢ remain. (These vertices are
said to have a lower rank.) We argue that starting with the
token on vertex NN, is a *n-position. (We do not have Ny,
N, Ns, or N3, since we use O through *3 as mechanisms
to ensure the player is unable to move “up” in rank.)

After any move from N, to Ni, we no longer want
vertices with higher-rank than % to retain their nimber value.
To attain this, we create * and x2 gadgets for each V;, which

Other *, *2

*2 gadget

* gadget

Figure 4. Each vertex IN; is connected to all other N-vertices, as well
as its own *3 gadget, it’s own *2 gadget, it’s own * gadget, and it’s own
R; vertex (with value 0). R; is also connected to the Py, and M}, gadgets
where k > ¢ as shown in the following figures.



Figure 5. A = gadget, which has value * unless a lower-rank-IN vertex
is removed. If all of IV vertices exist off the bottom, then moving to any
one of them from Ry results in a 0-board (by Lemma @) This causes
the move M; — Ml((;c) to be equal to 2. Otherwise, one Ry has value 0,

so M; — MZ(‘L) is a move to *, so M, instead has value *3.

have their named values if and only if no vertex of a lower
rank has been removed. As such, a later move to a higher-
rank N; will have value either % or %2 instead of .

We present these designs in Figures [] Bl and [§]

Figure 6. The %2 gadget

Lemma V.1 (Grounded). In a game where the only vertices
removed are some N, vertices along with some of their as-
sociated M; and M;, or P; and P, vertices, then traversing
edge (N, Ri) always results in a move to 0.

Proof: Any move to an M i('z) vertex has nimber at least
* since it has a move to Mi(l;j which is 0. Thus, moving Mi(i)

from Mi(‘,? results in a 0, so all M i(fi) moves from Ry result

)

in *. The same is true of moving from Ry to P.(f because

P(k) is also non-zero. Since Ry, only has *-options, it’s value
is zero when moving from Nj. [ ]

Lemma V.2. In a game where the only vertices removed are
some N, vertices along with some of their associated M;
and My, vertices or P; and Py, vertices, then traversing the
edge (R,, Np) is a move to 0.

Proof: There is a move to *3 (and, if p = 4, *2 and
*), moves to M), and P,, which both have a move to 0 by
construction, and to various other /V;, which have moves to
R;, which are moves to 0 by Lemma [V 1] [ ]

Lemma V.3 (Skip *%2). So long as only N; vertices are
removed from the graph, the position from moving from Ny,
to My has nim-value x if and only if no N; have been
removed with i < k. Otherwise, it is *3.

Proof: Consider the result of moving M;’ (d) — Ry. All

moves to other M ( k) vertices are losing moves as established

in Lemma There is only a winning move if Ny still
exists, so the position at Ry # 0 iff Ny still exists. Let’s
consider these two cases: (1) If IVy exists, then moving to
Ry, # 0. Thus, moving to M, i()c,? yields 0, so moving to M, i(jc)
yields *, and moving to M 7:((1? yields *2. If all N, exist, then
M; does not have a move to %, 80 it’s value is * from V;.
(2) On the other hand, if Nj does not exist, then moving

to Ry from M, (k) yields 0. Thus, moving to M (k yields ,

s0 moving to Mi(’ k) yields 0, and moving to Mi(’k) yields .

Since M; has an *x-option, moving there from N; now yields
a position with value *3. [ ]

The proofs for the next three lemmas are in the full
version.

Lemma V.4 (Skip *). So long as only N; vertices are
removed, a token on Py has nim-value 2 iff no N; have
been removed with i < k. If the value is not %2, it is *3.

Lemma V.5. [f the token is on Ny, and only N; with i > k
have been removed, then the nimber must be at least 4.

Lemma V.6 (Parity). If the only vertices removed are N,
vertices, the token is currently on Ny, Nj is of lower rank
than Ny, and is the lowest rank that has been removed, and
if there are an odd number of N, vertices remaining, where
N, are higher rank than N, then the nim-value of the game
is x. If there are an even number of those vertices remaining,



then the game has value *2.

Theorem V.1 (Right Amount of Stars). When the token is
on N, the resulting game has nim-value *n.

Proof: For 0 through %3, we build a tree as described
by Observation [V.I] For larger Grundy values, we have the
token on vertex IV,,. We will prove this has value *n through
induction on the values of a starting token on NN;.

Base Case: As long as the only vertices removed from
the graph are NN; vertices, the token on /N4 has value *4.

To establish this: there are moves to *, *2, and %3, each
by construction. There is a move to 0 through R4 by Lemma
The only other available moves are some subset of of
the N;, which by Lemma @, have value * or *2.

Inductive Hypothesis: As long as the only vertices
removed from the graph are various N; vertices where ¢ > k,
N} has value *k.

Inductive Step: We need to show that as long as the
only vertices removed from the graph are various N; vertices
where ¢ > k + 1, N1 has value xk + 1.

To establish this: Npy; has moves to *3 and %4, by
construction, and to M1, Px41, Ri+1, all of N4 through
Ny, and some of N2 to N,. Moves to N4 to Ny, are *4
to xk by induction. The move to Ry, is a move to 0 by
Lemma The move to Mj; is *, by Lemma since
all N; remain. The move to to Py is *2, by Lemma [V.4]
again since no N; is removed. u

C. Complexity Implication

We now use Theorem [V.I] to prove Theorem [[IL2] estab-
lishing that every classifier of UNDIRECTED GEOGRAPHY
Grundy values, other than the polynomial-time time ‘“Zero”-
“Fuzzy” classifier, is PSPACE-hard.

Proof: (of Theorem [[TI.Z)) Recall that the proof of Corol-
lary shows that distinguishing * from *2 is PSPACE-
hard. We will first use this to prove that distinguishing
between *(k — 1) and *k is PSPACE-hard, for any &k > 2.

We prove this by taking a position (Gz,vs) that is hard
to distinguish between * and *2. We introduce a new vertex
v3 with moves to its own 0 and * and add edge (vs,v3) to
create G3. Then we will create a new vertex v4 with moves
to its own 0, *, %2, and connect (v4, v3) to create G4, and
so on, until we create a vertex v; with moves to its own 0
to x(k — 1), and add edge (vk,vi—1) to create Gj. These
vertices v; and their associated gadgets have size polynomial
in 4 due to Theorem [V.1]

Now, if (Ga,v2) = *, then (Gs,v3) doesn’t have a
move to *2, so (Gs,vs) = *2. Similarly, (G4,v4) = *3,
(Gs,v5) = #4,...,(Gg,vx) = =*(k — 1). If instead,
(Ga,v2) = %2, then (G5, v3) = %3, because there is a move
to 2. Likewise, (G4,v4) = #4, ..., (G, vr) = xk. Thus, it
is PSPACE-hard to distinguish between xk and *(k — 1).

Next, we prove that distinguishing between any *k and *p
is PSPACE-hard. (We will assume p > k, without loss of

generality.) We first create a (G}, vi) where distinguishing
*(k — 1) from *k is hard, then add a new vertex v, which
has moves to its own 0 to *(k — 1), vg, and *(k + 1) to
*(p —1). We name this graph G,; the position (G, v;) has
value *p exactly when (Gy,vy) has value *k. (G}, v,) has
value xk otherwise. Thus, it is PSPACE-hard to distinguish
between *p and *k.

Finally, we use this to show that distinguishing between
any possible fixed set of Grundy values is hard. For any
possible set .9, there must be at least one Grundy value x € S
and one Grundy value in y € S := [A]\ S. Then, we can,
as described above, create a position where it’s PSPACE-
hard to distinguish between *xz and xy. Thus, if one could
classify the game to be within that set of Grundy values,
one could solve a PSPACE-hard problem. ]

VI. MATH BEHIND BOARD GAMES: THEORY AND
PRACTICE

“My experiences also strongly confirmed my pre-
vious opinion that the best theory is inspired
by practice and the best practice is inspired by
theory.” - Donald E. Knuth [19]

Combinatorial game theory is a fascinating field, where
simplicity is valued, and both efficient methods for solving
games and intriguing positions for challenging players are
appreciated [3]], [1]. Indeed, the magic smile on a six-year
old’s face when they realize a winning trick (e.g. how to
win two-pile NIME] as introduced in Math Circl is as
enchanting as the contemplative gaze [21] of CHESS, GO,
and HEX champions. These are the polynomial-time smiles
and PSPACE-hard gazes.

In this paper, we have proved that adding a single
‘PASS’—the smallest possible extension—to UNDIRECTED
GEOGRAPHY transforms the game from polynomial-time
solvable to PSPACE-hard intractable. And similarly, we
showed that giving a single pass to the game of UNCOOP-
ERATIVE UNO also had this same transformation from P to
PSPACE. Characterizing the complexity impact of this small
change to the ruleset has deepened and expanded our under-
standing of the foundational concept & characterization in
combinatorial game theory. It has also added MULTI-TOKEN
UNDIRECTED GEOGRAPHY to the collection of PSPACE-
hard graph-based impartial games with simple rulesets.

In the full version [9], we present two practical board
games inspired by our theoretical work and open questions
inspired by these practical design.

ACKNOWLEDGMENT

We thank the anonymous reviewers for insightful sugges-
tions, one of which led to Theorem [IlI.4] During the COVID-

Swhen realizing the fact that NIM with two identical piles is a losing
position can be used for finding a winning strategy for any two-pile NIM—
including the decision to go first or second—so that they will never again
lose to their parents.

"https://mathcircles.org/



19 pandemic, we are grateful to live in the Internet age
with technologies—such as Zoom—that enable our weekly
virtual meetings. This research was supported in part by
the Simons Investigator Award for fundamental & curiosity-
driven research and NSF grant CCF-1815254.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

(11]

(12]

[13]

(14]

[15]

REFERENCES

M. H. Albert, R. J. Nowakowski, and D. Wolfe. Lessons in
Play: An Introduction to Combinatorial Game Theory. A. K.
Peters, Wellesley, Massachusetts, 2007.

G. Beaulieu, K. G. Burke, and E. Duchéne. Impartial coloring
games. TCS, 485:49-60, 2013.

E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning
Ways for your Mathematical Plays, volume 1. A K Peters,
Wellesley, Massachsetts, 2001.

G. Bodwin and O. Grossman. Strategy-Stealing Is Non-
Constructive. In ITCS, volume 151, pages 21:1-21:12, 2020.

J. Bosboom, C. Chen, L. Chung, S. Compton, M. Coulombe,
E. D. Demaine, M. L. Demaine, I. T. Ferreira A. Filho,
D. Hendrickson, and A. Hesterberg. Edge matching with in-
equalities, triangles, unknown shape, and two players. Journal
of Information Processing, 28:987-1007, 2020.

C. L. Bouton. Nim, a game with a complete mathematical
theory. Annals of Mathematics, 3(1/4):pp. 35-39, 1901.

K. Burke, M. Ferland, and S.-H. Teng. Quantum combinato-
rial games: Structures and computational complexity. CoRR,
abs/2011.03704, 2020.

K. Burke, M. Ferland, and S.-H. Teng. Transverse wave: an
impartial color-propagation game inspired by social influence
and quantum nim. CoRR, abs/2101.07237, 2021.

K. Burke, M. Ferland, and S.-H. Teng. Winning the war
by (strategically) losing battles: Settling the complexity of
grundy-values in undirected geography. abs/2106.02114,
2021.

K. W. Burke and S.-H. Teng. Atropos: A pspace-complete
sperner triangle game. Internet Mathematics, 5(4):477-492,
2008.

J. H. Conway. On numbers and games (2. ed.). A K Peters,
2001.

E. D. Demaine, M. L. Demaine, N. JA Harvey, R. Uehara,
T. Uno, and Y. Uno. Uno is hard, even for a single player.
TCS, 521:51-61, 2014.

E. Duchéne and G. Renault. Vertex nim played on graphs.
Theor. Comput. Sci., 516:20-27, 2014.

S. Even and R. E. Tarjan. A combinatorial problem which is
complete in polynomial space. J. ACM, 23(4):710-719, 1976.

A. S. Fraenkel. Complexity, appeal and challenges of com-
binatorial games. TCS, 313(3):393-415, 2004.

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

(35]

(36]

A. S. Fraenkel, E. R. Scheinerman, and D. Ullman. Undi-
rected edge geography. TCS, 112(2):371-381, 1993.

D. Grier. Deciding the winner of an arbitrary finite poset
game is pspace-complete. In ICALP, page 497-503, 2013.

P. M. Grundy. Mathematics and games. Eureka, 2:198—211,
1939.

D. E. Knuth.
November 1991.

Theory and practice. TCS, 90(1):1-15,

D. Lichtenstein and M. Sipser. Go is polynomial-space hard.
J. ACM, 27(2):393-401, 1980.

D. Llada. The Thinkers. Quality Chess, Glasgow, UK, 1 2018.

N. Matsumoto and A. Nagao. Feedback game on eulerian
graphs. arXiv preprint arXiv:2002.09570, 2020.

D. Moews. On some combinatorial games connected with
Go. PhD thesis, Citeseer, 1993.

A. Monti and B. Sinaimeri. On variants of vertex geogra-
phy on undirected graphs. Discrete Applied Mathematics,
251:268-275, 2018.

E. H Moore. A generalization of the game called nim. The
Annals of Mathematics, 11(3):93-94, 1910.

FL Morris. Playing disjunctive sums is polynomial space
complete. International Journal of Game Theory, 10(3-
4):195-205, 1981.

S. Reisch. Hex ist PSPACE-vollstindig. Acta Inf., 15:167—
191, 1981.

G. Renault and S. Schmidt. On the complexity of the
misere version of three games played on graphs. TCS,
595(C):159-167, August 2015.

T. J. Schaefer. On the complexity of some two-person perfect-
information games. JCSS, 16(2):185-225, 1978.

M. Soltys and C. Wilson. On the complexity of computing
winning strategies for finite poset games. 7CS, 48:680-692,
04 2011.

R. P. Sprague. Uber mathematische Kampfspiele. Tohoku
Mathematical Journal, 41:438—444, 1935-36.

S. Venkataraman. Survey of results in impartial combinatorial
games and an extension to three-player game. PhD thesis,
2001.

D. Wolfe. Go endgames are pspace-hard. intelligence, 9(7):6,
2000.

W A Wythoff. A modification of the game of nim. Nieuw
Arch. Wisk., 7:199-202, 1907.

L. Jo Yedwab. On playing well in a sum of games. PhD
thesis, MIT, 1985.

D. Zeilberger. Chomp, recurrences and chaos. J. of Difference
Equations and Applications, 10:1281 — 1293, 2004.



	Introduction
	Games of Games: Disjunctive Sum
	Computational Questions About Sprague-Grundy Theory
	Battles of Geography Without Directions
	Our Contributions

	The Value of Games Beyond Winning
	A Dichotomy Theorem
	Complexity Separation of Winnability and Grundy Values
	Following the Winning Way in Branch-and-Bound
	Misère-Play Winnability vs Grundy Values

	Games of Games, Sprague-Grundy Characterization, and Mathematical-Computational Divergence
	Graphs with Polynomial Grundy Values
	Logarithmic Intuition and Polynomial Challenge
	Polynomial-High Nimber Constructability
	Complexity Implication

	Math Behind Board Games: Theory and Practice
	References

