
PYLON:
A PyTorch Framework for Learning with Constraints

Kareem Ahmed,1 Tao Li,2 Thy Ton,3 Quan Guo,4 Kai-Wei Chang,1

Parisa Kordjamshidi,5 Vivek Srikumar,2 Guy Van den Broeck,1 Sameer Singh3

1 Computer Science Department, University of California, Los Angeles
2 School of Computing, College of Engineering, University of Utah
3 Department of Computer Science, University of California, Irvine

4 Department of Artificial Intelligence, Sichuan University
5 Department of Computer Science and Engineering, Michigan State University

{ahmedk, kwchang, guyvdb}@cs.ucla.edu, {tli, svivek}@cs.utah.edu,
{thynt, sameer}@uci.edu, guoquan@scu.edu.cn, kordjams@msu.edu

Abstract

Deep learning excels at learning task information from large
amounts of data, but struggles with learning from declarative
high-level knowledge that can be more succinctly expressed
directly. In this work, we introduce PYLON, a neuro-symbolic
training framework that builds on PyTorch to augment pro-
cedurally trained models with declaratively specified knowl-
edge. PYLON lets users programmatically specify constraints
as Python functions and compiles them into a differentiable
loss, thus training predictive models that fit the data whilst
satisfying the specified constraints. PYLON includes both ex-
act as well as approximate compilers to efficiently compute
the loss, employing fuzzy logic, sampling methods, and cir-
cuits, ensuring scalability even to complex models and con-
straints. Crucially, a guiding principle in designing PYLON is
the ease with which any existing deep learning codebase can
be extended to learn from constraints in a few lines of code:
a function that expresses the constraint, and a single line to
compile it into a loss. Our demo comprises of models in NLP,
computer vision, logical games, and knowledge graphs that
can be interactively trained using constraints as supervision.

Introduction

Deep learning models, by virtue of being universal function
approximators, are able to learn even the most complex of
tasks with enough available data. However, some high-level
domain knowledge can often be much more succinctly de-
scribed directly in a declarative manner, such as program-
matic constraints, which existing learning frameworks are
not able to learn from. Instead, deep learning models attempt
to extract the same knowledge from data available to them,
leading to overfitting the spurious patterns, learning func-
tions that are unfaithful to rules of the underlying domain.

Neuro-symbolic reasoning systems aim to straddle the
line between deep learning and symbolic reasoning, combin-
ing high-level declarative knowledge with data during learn-
ing. They aim to learn functions that fit the data while re-
maining faithful to the rules of the underlying domain. Em-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Listing 1: Enforcing a constraint using PYLON

1 # Only a person can live in a location

2 def check_livesin_subj(entity, relation):

3 # If a word is subject of livesIn, it should be PER

4 return all(entity[relation==LIVESIN_SUBJ] == PER)

5

6 livesin_loss = constraint_loss(check_livesin_subj)

7

8 # There should be more non-people tokens than people

9 numppl_loss = constraint_loss(

10 lambda entity: sum(entity!=PER) > sum(entity==PER))

11

12 for i in range(train_iters):

13 ...

14 entity_logits = entity_model(x)

15 relation_logits = relation_model(x)

16 loss = livesin_loss(entity_logits, relation_logits)

17 loss += CE(relation_logits, relation_labels)

18 loss += numppl_loss(entity_logits)

pirically, this translates into performance improvements us-
ing less labeled data. These systems are not without their
challenges, however. Most such systems use custom syn-
tax (Faghihi et al. 2021; Guo et al. 2020; Manhaeve et al.
2018) or logic (Bach et al. 2017; Diligenti, Roychowdhury,
and Gori 2017; Fischer et al. 2019; Hu et al. 2016; Li and
Srikumar 2019; Nandwani et al. 2019; Rocktäschel, Singh,
and Riedel 2015; Xu et al. 2018; Zhang et al. 2016) to ex-
press the constraint, making it unnatural, unwieldy or even
impossible to express many forms of knowledge. Other ap-
proaches (Ratner et al. 2017) exploit knowledge differently,
using it as labeling functions, providing a form of weak su-
pervision on the unlabeled data. Also related are probabilis-
tic programming languages (Bingham et al. 2018) which
incorporate stochastic functions into deterministic Pytorch
training code to obtain trained models with uncertainty esti-
mates. Such systems often require porting of existing code
bases to fit within the design of the target framework, mak-
ing them arduous to integrate into preexisting code. Lastly,



different approaches to integrating symbolic knowledge and
neural models have their own specific strengths and weak-
nesses, and are thus effective on a limited set of domains
and constraints, which is often not clear to the user.

We introduce PYLON,1 a package built on top of PyTorch
that offers practitioners the ability to seamlessly integrate
declarative knowledge into deep learning models. The user
expresses the knowledge directly as a Python predicate func-
tion that defines the constraint on tensor variables (such
as model output). PYLON compiles this user-defined func-
tion to efficiently compute a differentiable loss compatible
with PyTorch trainers, providing a common interface to ex-
isting neural-symbolic approaches that integrate declarative
knowledge in the learning process. Thus, with a few lines of
code (defining the constraint and adding the loss), the user
is able to integrate declarative knowledge into their models,
testing which of the existing approaches are most effective.

PYLON Overview

Example Consider the code snippet in listing 1. It de-
scribes how to enforce a user-defined constraint in an entity-
relation extraction setting using PYLON. The model on line
14 accepts a sentence x, and for each word in the sentence,
returns the likelihood of different relations, and entities, re-
spectively. We wish to enforce two considerations on our
learned representation: 1) that the subject of a lives in

relation should be a person entity, and 2) a statistical con-
straint that most entities in the sentence are not person.

Constraint functions We encode the aforementioned
declarative knowledge (read: constraints) by means of con-
straint functions. A constraint function is a Python func-
tion that accepts any number of tensor arguments, each of
shape (batch size, ...) and returns a Boolean tensor of
shape (batch size, ). Each argument corresponds to a
(batched) decoding from a model. A decoding is an as-
signment to all variables of a model, each variable sampled
with a probability corresponding to its likelihood under the
model’s posterior. For example, in our entity-relation ex-
traction example, a decoding of relation logits (resp.
entity logits) constitutes a relation (resp. entity) as-
signed to each word in the sentence. On the other hand, for
a classifier defined over 2n2 − 2n Boolean variables – the
edges in a n× n grid – and that predicts a path in the grid, a
decoding constitutes an assignment to each of the 2n2 − 2n

variables, and there are 22n
2
−2n such decodings.

A constraint function defines a predicate C on the decod-
ings of any number of models, and returns whether or not the
given decodings satisfy the constraint. For instance, lines 2-4
define a constraint function over the decodings of the entity
and relations classifiers which encodes our first constraint
whereas line 10 defines a lambda constraint function over
the decoding of the entity classifier, and encodes our second
constraint. Note that while the first constraint can be easily
expressed in logic, the same does not hold true for the sec-
ond constraint: we would need to conjoin all decodings sat-
isfying the constraint, which would scale exponentially with

1PYLON website is available at https://pylon-lib.github.io/

the length of the sentence – unless we resort to introduc-
ing auxiliary variables. Using Python/PyTorch we manage
to capture the constraint succinctly in a single line of code.

Training objective Having defined our constraint func-
tion C, our aim is to compile it into a differentiable loss func-
tion pushing the model towards satisfying the constraints by
minimizing the probability that the constraint is violated.

argmin
θ

L(θ|C, x) = argmin
θ

− logEy∼pθ(·|x)

[

1{C(y)}
]

(1)

Calculating the above naively requires enumerating all de-
codings y in a brute force manner, of which there are expo-
nentially many, and is feasible only for simple constraints.

Exploiting Structure of Constraint Definition Even
though the user is free to use all of PyTorch/Python to
write the constraint, we parse the constraint code to see if
it is expressing known structures, for example, first-order
logic. When the constraints do exhibit structural proper-
ties that allow us to reuse intermediate computations, we
can sidestep the intractability of eqn. 1 by compiling them
into logical circuits (Xu et al. 2018). This does not, in gen-
eral, escape the complexity of eqn. 1 as the compiled cir-
cuit can worst-case grow exponentially in the size of the
constraint. In such a case, we can utilize approximations
based on fuzzy logic, computing differentiable probabilities
of logical statements without grounding them, such as using
product T-norm (Rocktäschel, Singh, and Riedel 2015), or
Łukasiewicz T-norm (Bach et al. 2017; Kimmig et al. 2012).

Black-box Optimization Alternatively, we can also ap-
proximate the loss in eqn. 1 by sampling decodings from the
network’s posterior. More precisely, we can use the REIN-
FORCE gradient estimator (Glynn 1990; Williams 1992) to
rewrite the gradient of the expectation in eqn 1 as the expec-
tation of the gradient, which can be readily estimated using
Monte Carlo sampling. This not only enables us to estimate
the probability of otherwise-intractable constraints but also
enables greater flexibility in defining our constraint func-
tions: we can issue calls to non-differentiable resources (e.g.
external APIs, database queries, etc.) and continue to yield a
differentiable loss function, hence the moniker black-box.

PYLON uses implementations of these approaches that
are directly compatible with PyTorch, as seen in lines 16
and 17, including ones that utilize the structure in the user-
defined code for efficiency (T-norm and circuit-based losses)
and ones that work for any implementation (brute-force and
sampling), and is easily extensible to other techniques.

Case Studies
Our case studies span computer vision, NLP and logical
games (e.g. Li et al. 2019; Punyakanok, Roth, and Yih 2008)

• MNIST Addition: Presented with two MNIST digits, we
require the model’s predictions add to their summation.

• NLI Transitivity: The model’s predictions of connected
triples of sentences are constrained to satisfy transitivity.

• SRL Unique Role: For each predicate in the SRL task,
we require a core argument span to appear at most once.

• Sudoku: Given a Sudoku, we require that in each indi-
vidual row, column and square, the elements are unique.



Acknowledgements

We would like to thank Sebastian Riedel and San-
jay Subramanian for important suggestions and feed-
back for the project. This work is supported in part by
NSF grants #IIS-2046873, #CCF-1837129, #IIS-1956441,
#IIS-1943641, #CNS-1801446, #IIS-1822877, NSF Career
award #2028626, Office of Naval Research grant #N00014-
20-1-2005, a Sloan Fellowship, and a gift from Allen Insti-
tute for AI.

References

Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L. 2017.
Hinge-Loss Markov Random Fields and Probabilistic Soft
Logic. Journal of Machine Learning Research, 18(109): 1–
67.

Bingham, E.; Chen, J. P.; Jankowiak, M.; Obermeyer, F.;
Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall,
P.; and Goodman, N. D. 2018. Pyro: Deep Universal Prob-
abilistic Programming. Journal of Machine Learning Re-
search.

Diligenti, M.; Roychowdhury, S.; and Gori, M. 2017. Inte-
grating Prior Knowledge into Deep Learning. In 2017 16th
IEEE International Conference on Machine Learning and
Applications (ICMLA), 920–923.

Faghihi, H. R.; Guo, Q.; Uszok, A.; Nafar, A.; Raisi, E.; and
Kordjamshidi, P. 2021. DomiKnowS: A Library for Integra-
tion of Symbolic Domain Knowledge in Deep Learning. In
Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations,
231–241. Online and Punta Cana, Dominican Republic: As-
sociation for Computational Linguistics.

Fischer, M.; Balunovic, M.; Drachsler-Cohen, D.; Gehr,
T.; Zhang, C.; and Vechev, M. 2019. DL2: Training and
Querying Neural Networks with Logic. In Chaudhuri, K.;
and Salakhutdinov, R., eds., Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, 1931–1941.
PMLR.

Glynn, P. W. 1990. Likelihood Ratio Gradient Estimation
for Stochastic Systems. Commun. ACM, 33(10): 75–84.

Guo, Q.; Rajaby Faghihi, H.; Zhang, Y.; Uszok, A.; and Ko-
rdjamshidi, P. 2020. Inference-Masked Loss for Deep Struc-
tured Output Learning. In Bessiere, C., ed., Proceedings of
the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI-20, 2754–2761. International Joint
Conferences on Artificial Intelligence Organization. Main
track.

Hu, Z.; Ma, X.; Liu, Z.; Hovy, E.; and Xing, E. 2016. Har-
nessing Deep Neural Networks with Logic Rules. In Pro-
ceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2410–
2420. Berlin, Germany: Association for Computational Lin-
guistics.

Kimmig, A.; Bach, S.; Broecheler, M.; Huang, B.; and
Getoor, L. 2012. A short introduction to probabilistic soft
logic. In Proceedings of the NIPS Workshop on Probabilis-
tic Programming: Foundations and Applications.

Li, T.; Gupta, V.; Mehta, M.; and Srikumar, V. 2019. A
Logic-Driven Framework for Consistency of Neural Mod-
els. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing.

Li, T.; and Srikumar, V. 2019. Augmenting Neural Networks
with First-order Logic. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics.
Florence, Italy: Association for Computational Linguistics.

Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2018. DeepProbLog: Neural Probabilistic
Logic Programming. In Bengio, S.; Wallach, H.; Larochelle,
H.; Grauman, K.; Cesa-Bianchi, N.; and Garnett, R., eds.,
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc.

Nandwani, Y.; Pathak, A.; Mausam; and Singla, P. 2019.
A Primal Dual Formulation For Deep Learning With Con-
straints. In Wallach, H.; Larochelle, H.; Beygelzimer, A.;
d'Alché-Buc, F.; Fox, E.; and Garnett, R., eds., Advances in
Neural Information Processing Systems, volume 32. Curran
Associates, Inc.

Punyakanok, V.; Roth, D.; and Yih, W.-t. 2008. The Impor-
tance of Syntactic Parsing and Inference in Semantic Role
Labeling. Computational Linguistics, 34(2): 257–287.

Ratner, A.; Bach, S. H.; Ehrenberg, H.; Fries, J.; Wu, S.; and
Ré, C. 2017. Snorkel: Rapid Training Data Creation with
Weak Supervision. Proc. VLDB Endow., 11(3): 269–282.

Rocktäschel, T.; Singh, S.; and Riedel, S. 2015. Inject-
ing Logical Background Knowledge into Embeddings for
Relation Extraction. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
1119–1129. Denver, Colorado: Association for Computa-
tional Linguistics.

Williams, R. J. 1992. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning.
Mach. Learn., 8(3–4): 229–256.

Xu, J.; Zhang, Z.; Friedman, T.; Liang, Y.; and Van den
Broeck, G. 2018. A Semantic Loss Function for Deep
Learning with Symbolic Knowledge. In Dy, J.; and Krause,
A., eds., Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, 5502–5511. PMLR.

Zhang, X.; Pacheco, M. L.; Li, C.; and Goldwasser, D. 2016.
Introducing DRAIL – a Step Towards Declarative Deep Re-
lational Learning. In Proceedings of the Workshop on Struc-
tured Prediction for NLP, 54–62. Austin, TX: Association
for Computational Linguistics.


