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Abstract

In structured output prediction, the goal is to jointly

predict several output variables that together en-

code a structured object ± a path in a graph, an

entity-relation triple, or an ordering of objects.

Such a large output space makes learning hard

and requires vast amounts of labeled data. Differ-

ent approaches leverage alternate sources of su-

pervision. One approach ± entropy regularization ±

posits that decision boundaries should lie in low-

probability regions. It extracts supervision from

unlabeled examples, but remains agnostic to the

structure of the output space. Conversely, neuro-

symbolic approaches exploit the knowledge that

not every prediction corresponds to a valid struc-

ture in the output space. Yet, they do not further re-

strict the learned output distribution. This paper in-

troduces a framework that unifies both approaches.

We propose a loss, neuro-symbolic entropy regular-

ization, that encourages the model to confidently

predict a valid object. It is obtained by restricting

entropy regularization to the distribution over only

the valid structures. This loss can be computed effi-

ciently when the output constraint is expressed as a

tractable logic circuit. Moreover, it seamlessly inte-

grates with other neuro-symbolic losses that elimi-

nate invalid predictions. We demonstrate the effi-

cacy of our approach on a series of semi-supervised

and fully-supervised structured-prediction experi-

ments, where it leads to models whose predictions

are more accurate as well as more likely to be valid.

1 INTRODUCTION

Neural networks have achieved breakthroughs across a wide

range of domains. Such breakthroughs are often only possi-

ble in the presence of large labeled datasets, which can be

hard to obtain. Increasing efforts are therefore being devoted

to approaches that utilize alternate sources of supervision in

lieu of more labeled data. Entropy regularization constitutes

one such approach [Grandvalet and Bengio, 2005, Chapelle

et al., 2010]. It posits that data belonging to the same class

tend to form discrete clusters. Minimizing the entropy of the

predictive distribution can thus be regarded as minimizing a

measure of class overlap under the learned representation.

Intuitively, a classifier guessing uniformly at random has

maximum entropy and has not learned features that are in-

formative of the underlying class. Consequently, we prefer

a minimum entropy classifier that learns features maximally

informative of the underlying class, even on unlabeled data.

The need for labeled data is only exacerbated in structured

prediction, where the objective is to predict multiple inter-

dependent output variables representing a discrete object.

Viewed as traditional classification, the number of classes

in structured prediction is exponential in the number of

output variables ± all possible output configurations. Neuro-

symbolic methods can provide additional supervision, lever-

aging symbolic knowledge regarding the structure of the out-

put space [De Raedt et al., 2020]. This knowledge, typically

expressed in logic, characterizes the set of valid structures;

for instance, a path in a graph is a series of connected edges

commencing at the source and terminating at the destination.

In this paper, we take a principled approach to unifying the

aforementioned forms of supervision. Naively, we might

consider simply optimizing both losses simultaneously.

However, computed in that manner, entropy regularization

does not account for the structure of the output space and is

therefore likely to push the network towards invalid struc-

tures. Instead, we restrict the entropy loss to the network’s

distribution over the valid structures, as characterized by the

constraint, as opposed to the entire predictive distribution,

proposing neuro-symbolic entropy regularization. That is,

we require that the network’s output distribution be max-

imally informative of the target subject to the constraint.

Intuitively, the network should ªknowº the right structure

among the valid structures. Computing the entropy of a
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distribution subject to a constraint is, in general, computa-

tionally hard. We provide an algorithm leveraging structural

properties of tractable logical circuits to efficiently compute

this quantity. Our framework integrates seamlessly with

other neuro-symbolic approaches that maximize the con-

straint probability, in effect ªeliminatingº invalid structures.

Empirically, we evaluate our loss on four structured pre-

diction tasks, in both semi-supervised and fully-supervised

settings. We observe it leads to models whose predictions

are more accurate, and more likely to satisfy the constraint.

Organization This paper is structured as follows. We

start by introducing the notation and background assumed

throughout the paper. Section 2 motivates, and formally

defines, our neuro-symbolic entropy loss. Section 3 de-

rives an algorithm that exploits certain structural proper-

ties of logical circuits that enable the efficient computa-

tion of our loss. Section 4 illustrates our algorithm on a

toy constraint, where the probability and neuro-symbolic

entropy computations are made explicit. Section 5 empir-

ically validates our proposed approach on tasks in both

semi-supervised and fully-supervised settings. Section 6

reviews, and draws connections to the the neuro-symbolic

and the semi-supervised literatures. We step through an

example compiling a logical formula in Section A and

conclude in Section 7. Our code can be found at https:

//github.com/UCLA-StarAI/NeSyEntropy.

2 NEURO-SYMBOLIC ENTROPY LOSS

We first introduce background on logical constraints and

probability distributions over output structures. Afterwards,

we motivate and define our neuro-symbolic entropy loss.

2.1 BACKGROUND

We write uppercase letters (X , Y ) for Boolean variables

and lowercase letters (x, y) for their instantiation (Y = 0
or Y = 1). Sets of variables are written in bold uppercase

(X, Y), and their joint instantiation in bold lowercase (x,

y). A literal is a variable (Y ) or its negation (¬Y ). A logical

sentence (α or β) is constructed from variables and logical

connectives (∧,∨, etc.), and is also called a (logical) formula

or constraint. A state or world y is an instantiation to all

variables Y. A state y satisfies a sentence α, denoted y |= α,

if the sentence evaluates to true in that world. A state y that

satisfies a sentence α is also said to be a model of α. We

denote by m(α) the set of all models of α. The notation

for states y is used to refer to an assignment, the logical

sentence enforcing the assignment, or the binary output

vector capturing the assignment, as these are all equivalent

notions. A sentence α entails another sentence β, denoted

α |= β, if all worlds that satisfy α also satisfy β.

A Probability Distribution over Possible Structures Let

α be a logical sentence defined over Boolean variables Y =
{Y1, . . . , Yn}. Let p be a vector of probabilities for the same

variables Y, where pi denotes the predicted probability of

variable Yi and corresponds to a single output of the neural

network. The neural network’s outputs induce a probability

distribution P(·) over all possible states y of Y:

P(y) =
∏

i:y|=Yi

pi
∏

i:y|=¬Yi

(1− pi). (1)

Semantic Loss The semantic loss [Xu et al., 2018] is a

function of the logical constraint α and a probability vec-

tor p. It quantifies how close the neural network comes to

satisfying the constraint by computing the probability of

the constraint under the distribution P(·) induced by p. It

does so by reducing the problem of probability computa-

tion to weighted model counting (WMC): summing up the

models of α, each weighted by its likelihood under P(·). It,

therefore, maximizes the probability mass allocated by the

network to the models of α

Ey∼P [1{y |= α}] =
∑

y|=α

P(y). (2)

Taking the negative logarithm recovers semantic loss. We

make use of semantic loss in our experiments to "eliminate"

invalid structures under the neural network’s distribution.

2.2 MOTIVATION AND DEFINITION

Consider the plots in Figure 1. For any given data point

x, the neural network can be fairly uncertain regarding the

target class, accommodating for both valid and invalid struc-

tured predictions under its predicted distribution.

A common underlying assumption in many machine learn-

ing methods is that data belonging to the same class tend to

form discrete clusters [Chapelle et al., 2010] ± an assump-

tion deemed justified on the sheer basis of the existence

of classes. Consequently, a classifier is expected to favor

decision boundaries lying in regions of low data density, sep-

arating the clusters. Entropy-regularization [Grandvalet and

Bengio, 2005] directly implements the above assumption,

requiring that the classifier output confident ± low-entropy

± predictive distributions, pushing the decision boundary

away from unlabeled points, thereby supplementing scarce

labeled data with abundant unlabeled data. Seen through

that lens, minimizing the entropy of the predictive distri-

bution can be regarded as minimizing a measure of class

overlap as a function of the features learned by the network.

Entropy regularization, however, remains agnostic to the un-

derlying domain, failing to exploit situations where we have

knowledge characterizing valid predictions in the domain.

Therefore, it can often be detrimental to a model’s perfor-

mance, causing it to grow confident in invalid predictions.
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Figure 1: A network’s predictive distribution can be uncer-

tain or certain (↔), and it can allow or disallow invalid

predictions under the constraint α (↕). Entropy regulariza-

tion steers the network towards confident, possibly invalid

predictions (b). Neuro-symbolic learning steers the network

towards valid predictions without necessarily being confi-

dent (c). Neuro-symbolic entropy-regularization guides the

network to valid and confident predictions (d).

Conversely, neuro-symbolic approaches steer the network

towards distributions disallowing invalid predictions, by

maximizing the constraint probability, but do little to ensure

the network learn features conducive to classification.

Clearly then, there is a benefit to combining the merits of

both approaches. We restrict the entropy computation to the

distribution over models of the logical formula, ensuring

the network only grow confident in valid predictions. Com-

plemented with maximizing the constraint probability, the

network learns to allocate all of its mass to models of the

constraint, while being maximally informative of the target.

Defining the Loss More precisely, let Y be a random

variable distributed according to Equation 1: Y ∼ P. We

are interested in minimizing the entropy of Y conditioned

on the constraint α

H(Y|α) = −
∑

y|=α

P(y|α) log P(y|α)

= −EY|α [log P(Y|α)] .

(3)

Algorithm 1 ENT(α,P, c)

Input: a smooth, deterministic and decomposable logical

circuit α, a fully-factorized probability distribution P(·) over

states of α, and a cache c for memoization

Output: H(Y|α), where Y ∼ P(·)

1: if α ∈ c then return c(α)
2: if α is a literal then

3: e← 0
4: else if α is an AND gate then

5: e← ENT(β,P, c) + ENT(γ,P, c)
6: else if α is an OR gate then

7: e←
∑|in(α)|

i=1 P(βi) log P(βi)+ P(βi) ENT(βi,P, c)
8: c(α)← e

9: return e

3 COMPUTING THE LOSS

The above loss is, in general, hard to compute. To see this,

consider the uniform distribution over models of a con-

straint α. That is, let P(y|α) = 1
|m(α)| for all y |= α. Then,

H(Y|α) = −
∑

y|=α
1

|m(α)| log
1

|m(α)| = log |m(α)|. This

tells us how many models of α there are, which is a well-

known #P-hard problem [Valiant, 1979a,b]. We will show

that, through compilation into tractable circuits, we can

compute Equation 3 in time linear in the size of the circuit.

3.1 COMPUTATION THROUGH COMPILATION

Tractable Circuit Compilation We resort to knowledge

compilation techniques ± a class of methods that transform,

or compile, a logical theory into a target form with cer-

tain properties that allow certain probabilistic queries to be

answered efficiently. More precisely, we know of circuit

languages that compute the probability of constraints [Dar-

wiche, 2003], and that are amenable to backpropagation. We

use the circuit compilation techniques in Darwiche [2011]

to build a logical circuit representing our constraint. Due

to the structural properties of this circuit form, we can use

it to compute both the probability of the constraint as well

as its gradients with respect to the network’s weights, in

time linear in the size of the circuit [Darwiche and Marquis,

2002]. This does not, in general, escape the complexity of

the computation: worst case, the compiled circuit can be

exponential in the size of the constraint. In practice, how-

ever, constraints often exhibit enough structure (repeated

sub-problems) to make compilation feasible. We refer to

Section A for an illustrative example of such a compilation.

Logical Circuits More formally, a logical circuit is a

directed, acyclic computational graph representing a log-

ical formula. Each node n in the DAG encodes a logical

sub-formula, denoted [n]. Each inner node in the graph is

either an AND or an OR gate, and each leaf node encodes

a Boolean literal (Y or ¬Y ). We denote by in(n) the set of



n’s children, that is, the operands of its logical gate.

Structural Properties As already alluded to, circuits en-

able the tractable computation of certain classes of queries

over encoded functions granted that a set of structural prop-

erties are enforced. We explicate such properties below.

A circuit is decomposable if the inputs of every AND gate

depend on disjoint sets of variables i.e. for α = β ∧ γ,

vars(β) ∩ vars(γ) = ∅. Intuitively, decomposable AND

nodes encode local factorizations of the function. For the

sake of simplicity, we assume that decomposable AND gates

always have two inputs, a condition that can be enforced

on any circuit in exchange for a polynomial increase in its

size [Vergari et al., 2015, Peharz et al., 2020].

A second useful property is smoothness. A circuit is smooth

if the children of every OR gate depend on the same set

of variables i.e. for α =
∨

i βi, we have that vars(βi) =
vars(βj) ∀i, j. Decomposability and smoothness are a suffi-

cient and necessary condition for tractable integration over

arbitrary sets of variables in a single pass, as they allow

larger integrals to decompose into smaller ones [Choi et al.,

2020].

Lastly, a circuit is said to be deterministic if, for any input,

at most one child of every OR node has a non-zero output

i.e. for α =
∨

i βi, we have that βi ∧ βj = ⊥ for all i ̸= j.

Figure 2 shows an example of smooth, decomposable and

deterministic circuit.

3.2 ALGORITHM

Let α be a smooth, deterministic and decomposable logi-

cal circuit encoding our constraint, defined over Boolean

variables Y = {Y1, . . . , Yn}. We now show that we can

compute the constrained entropy in Equation 3 in time lin-

ear in the size of α. The key insight is that, using circuits, we

are able to efficiently decompose an expectation with respect

to a fully-factorized distribution by alternately splitting the

query variables and the support of the distribution until we

reach the leaves of the circuit, which are simple literals. In

what follows, in a slight abuse of notation for brevity, all

unconditional probabilities are implicitly conditioned on

constraint α; that is we redefine P(·) as P(·|α).

3.2.1 Base Case: α is a literal

When α is a literal, α = Yi or α = ¬Yi, we have that

P(yi|α) = 1{yi |= [α]}, and

H(yi|α) = −P(yi|α) log P(yi|α) = 0.

Intuitively, a literal has no uncertainty associated with it.

3.2.2 Recursive Case: α is a conjunction

When α is a conjunction, decomposability enables us to

write

P(y|α) = P(y1|β) P(y2|γ), where vars(β)∩vars(γ) = ∅

as it decomposes α into two independent constraints β and γ,

and y into two independent assignments y1 and y2. The

neuro-symbolic entropy −EY|α [log P(Y|α)] is then

− E{Y1,Y2}|α

[

log P(Y1|β) + log P(Y2|γ)
]

= −
[

EY1|β

[

log P(Y1|β)
]

+ EY2|γ

[

log P(Y2|γ)
]

]

.

That is, the entropy given a decomposable conjunction α is

the sum of entropies given the conjuncts of α.

3.2.3 Recursive Case: α is a disjunction

When α is a smooth and deterministic disjunction, we have

that α =
∨

i βi, where the βis are mutually exclusive, and

therefore partition α. Consequently, we have that

P(y|α) =
∑

i

P(βi) · P(y|βi).

The neuro-symbolic entropy decomposes as well:

− EY|α [log P(Y|α)] = −
∑

y|=α

P(y|α) log P(y|α)

= −
∑

y|=α

∑

i

P(βi) P(y|βi) log
[

∑

j

P(βj) P(y|βj)
]

= −
∑

y|=α

∑

i

P(βi) P(y|βi)Jy |= βiK

log
[

∑

j

P(βj) P(y|βj)Jy |= βjK
]

,

where by determinism, we have that, for any y such that

y |= α, y |= βi =⇒ y ̸|= βj for all i ̸= j. In other words,

any state that satisfies the constraint α satisfies one and only

one of its terms, and therefore, the above expression equals

−
∑

y|=α

∑

i

P(βi) P(y|βi) log
[

P(βi) P(y|βi)
]

Jy |= βiK

= −
∑

i

∑

y|=βi

P(βi) P(y|βi) log
[

P(βi) P(y|βi)
]

.

Further simplifying the expression, expanding the logarithm,

and using the fact that probability sums to 1 yields

= −
∑

i

P(βi) log P(βi)
∑

y|=βi

P(y|βi)

+ P(βi)
∑

y|=βi

P(y|βi) log P(y|βi)
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Figure 2: For a given data point, the network (middle) out-

puts a distribution over classes A,B and C, highlighted

in blue, green and red, respectively. The circuit encodes

the constraint (A ∧ B) =⇒ C. For each leaf node l, we

plug in P(l) and 1− P(l) for positive and negative literals,

respectively. The computation proceeds bottom-up, taking

products at AND gates and summations at OR gates. The

value accumulated at the root of the circuit (left) is the proba-

bility allocated by the network to the constraint. The weights

accumulated on edges from OR gates to their children are

of special significance: OR nodes induce a partitioning of

the distribution’s support, and the weights correspond to the

mass allocated by the network to each mutually-exclusive

event. Complemented with a second upward pass, where the

entropy of an OR node is the entropy of the distribution over

its children plus the expected entropy of its children, and

the entropy of an AND node is the product of its children’s

entropies, we get the entropy of the distribution over the con-

straint’s models ± the neuro-symbolic entropy regularization

loss (right).

= −
∑

i

P(βi) log P(βi) + P(βi)EY|βi

[

log P(Y|βi)
]

.

That is, the entropy of the random variable Y conditioned on

a disjunction α is the sum of the entropy of the distribution

induced on the children of α, and the average entropy of its

children. The full algorithm is illustrated in Algorithm 1.

4 AN ILLUSTRATIVE EXAMPLE

Consider Figure 2. Given a data point, the neural network

defines a distribution over Boolean random variables A,B,

and C, where P(A) = p0 and P(¬A) = 1−p0, P(B) = p1
and P(¬B) = 1−p1, etc. The circuit encodes the constraint

(A ∧ B) =⇒ C. To compute the the probability of the

constraint under the network’s distribution, we feed the prob-

abilities into the circuit, proceeding in a bottom-up fashion,

taking products at AND gates and summations at OR gates,

accumulating intermediate computations on the edges of

the circuit. The value accumulated at the root of the circuit

is the probability mass allocated by the network to models

of the formula, and corresponds to the probability of the

constraint under the network’s distribution ± this is exactly

the semantic loss, up to a negative logarithm. The weights

accumulated on edges from OR gates to their children are

of special significance: OR nodes induce a partitioning of

the distribution’s support, and the weights correspond to the

mass allocated by the network to each mutually-exclusive

event. Complemented with another upward pass, where the

entropy of every OR node is the entropy of the distribution

over it’s children plus the expected entropy of its children,

and the entropy of every AND node is the product of its chil-

dren’s entropies, we calculate the entropy of the distribution

over models of the constraint ± this is exactly the neuro-

symbolic entropy regularization. Therefore, performing two

upward sweeps of the circuit, we are able to compute the

neuro-symbolic entropy regularization and the semantic loss

5 EXPERIMENTAL EVALUATION

In this section we set out to empirically test our neuro-

symbolic entropy loss. To that end, we devise a series of

semi-supervised and fully-supervised structured prediction

experiments. Such are settings where, contrary to the their

dominant use, classifiers are expected to predict structured

objects rather than scalar, discrete or real values. Such ob-

jects are defined in terms of constraints: a set of rules charac-

terizing the set of solutions. We aim to answer the following:

1. Does entropy regularization, in general, lead to predic-

tive models with improved generalization capabilities?

2. If the answer to the above question is in the positive, it

is our expectation that restricting the distribution acted

upon by entropy regularization to that over just the

models of the constraint might seem more sensible as

compared to entropy-regularizing the entire predictive

distribution±including non-models of the constraint.

Do experiments corroborate such a hypothesis?

3. Finally, entropy regularization can be interpreted as

clustering the different classes, and has intimate con-

nections to transductive Support Vector Machines

[Chapelle et al., 2010]. Does such an interpretation

carry over to models and non-models of the constraint?

Put differently, can we expect entropy-regularized pre-

dictive models to better conform to our constraints,

measured by the percentage of predictions satisfying

the constraint regardless of matching the groundtruth.

5.1 SEMI-SUPERVISED: ENTITY-RELATION

EXTRACTION

We begin by testing our research questions in the semi-

supervised setting. Here the model is presented with only



Table 1: Experimental results for entity-relation extraction on ACE05 and SciERC. #Labels indicates the number of

labeled data points available to the network per relation. The remaining training set is stripped of labels and utilized in an

unsupervised manner. We report the F1-score where a prediction is correct if the relation and its entities are correct.

# Labels 3 5 10 15 25 50 75

A
C

E
0

5

Baseline 4.92 ± 1.12 7.24 ± 1.75 13.66 ± 0.18 15.07 ± 1.79 21.65 ± 3.41 28.96 ± 0.98 33.02 ± 1.17

Self-training 7.72 ± 1.21 12.83 ± 2.97 16.22 ± 3.08 17.55 ± 1.41 27.00 ± 3.66 32.90 ± 1.71 37.15 ± 1.42

Product t-norm 8.89 ± 5.09 14.52 ± 2.13 19.22 ± 5.81 21.80 ± 7.67 30.15 ± 1.01 34.12 ± 2.75 37.35 ± 2.53

Semantic Loss 12.00 ± 3.81 14.92 ± 3.14 22.23 ± 3.64 27.35 ± 3.10 30.78 ± 0.68 36.76 ± 1.40 38.49 ± 1.74

+ Full Entropy 14.80 ± 3.70 15.78 ± 1.90 23.34 ± 4.07 28.09 ± 1.46 31.13 ± 2.26 36.05 ± 1.00 39.39 ± 1.21

+ NeSy Entropy 14.72 ± 1.57 18.38 ± 2.50 26.41 ± 0.49 31.17 ± 1.68 35.85 ± 0.75 37.62 ± 2.17 41.28 ± 0.46

S
ci

E
R

C

Baseline 2.71 ± 1.10 2.94 ± 1.00 3.49 ± 1.80 3.56 ± 1.10 8.83 ± 1.00 12.32 ± 3.00 12.49 ± 2.60

Self-training 3.56 ± 1.40 3.04 ± 0.90 4.14 ± 2.60 3.73 ± 1.10 9.44 ± 3.80 14.82 ± 1.20 13.79 ± 3.90

Product t-norm 6.50 ± 2.00 8.86 ± 1.20 10.92 ± 1.60 13.38 ± 0.70 13.83 ± 2.90 19.20 ± 1.70 19.54 ± 1.70

Semantic Loss 6.47 ± 1.02 9.31 ± 0.76 11.50 ± 1.53 12.97 ± 2.86 14.07 ± 2.33 20.47 ± 2.50 23.72 ± 0.38

+ Full Entropy 6.26 ± 1.21 8.49 ± 0.85 11.12 ± 1.22 14.10 ± 2.79 17.25 ± 2.75 22.42 ± 0.43 24.37 ± 1.62

+ NeSy Entropy 6.19 ± 2.40 8.11 ± 3.66 13.17 ± 1.08 15.47 ± 2.19 17.45 ± 1.52 22.14 ± 1.46 25.11 ± 1.03

a portion of the labeled training set, with the rest used ex-

clusively in an unsupervised manner by the respective ap-

proaches.

We make use of the natural ontology of entity types and

their relations present when dealing with relational data.

This defines a set of relations and their permissible argu-

ment types. As is with all of our constraints, we express the

aforementioned ontology in the language of Boolean logic.

Our approach to recognizing the named entities and their

pairwise relations is most similar to Zhong and Chen [2020].

Contextual embeddings are first procured for every token in

the sentence. These are then fed into a named entity recog-

nition module that outputs a vector of per-class probability

for every entity. A classifier then classifies the concatenated

contextual embeddings and entity predictions into a relation.

We employ two entity-relation extraction datasets, the Auto-

matic Content Extraction (ACE) 2005 [Walker et al., 2006]

and SciERC datasets [Luan et al., 2018]. ACE05 defines

an ontology over 7 entities and 18 relations from mixed-

genre text, whereas SciERC defines 6 entity types with 7
possible relation between them and includes annotations

for scientific entities and there relations, assimilated from

12 AI conference/workshop proceedings. We report the per-

centage of coherent predictions: data points for which the

predicted entity types, as well as the relations are correct.

We compare against five baselines. The first baseline is a

purely supervised model which makes no use of unlabeled

data. The second is a classical self-training approach based

off of Chang et al. [2007], and uses integer linear program-

ming to impute the unlabeled data’s most likely labels sub-

ject to the constraint, and consequently augment the (small)

labeled set. The third baseline is a popular instantiation of a

broad class of methods, fuzzy logics, which replace logical

operators with their fuzzy t-norms and logical implications

Table 2: Grid shortest path test results

Test accuracy % Coherent Incoherent Constraint

5-layer MLP 5.62 85.91 6.99

Semantic loss 28.51 83.14 69.89

+ Full Entropy 29.02 83.76 75.23

+ NeSy Entropy 30.12 83.01 91.61

with simple inequalities. Lastly, we compare our proposed

method, dubbed ªNeSy Entropyº, to vanilla semantic loss

as proposed in Xu et al. [2018] as well as another entropy-

regularized baseline, dubbed ªFull Entropyº, which mini-

mizes the entropy of the entire predictive distribution, as

opposed to just the distribution over the constraint’s models.

Our results are shown in Table 1. We observe that seman-

tic loss outperforms the baseline, self-training, and product

t-norm across the board. We attribute such a performance

to the exactness of semantic loss, and its faithfulness to

the underlying constraint. We also observe that entropy-

regularizing the predictive model, in conjunction with train-

ing using semantic loss leads to better predictive models,

as compared with models trained solely using semantic

loss. Furthermore, it turns out that restricting entropy to the

distribution over the constraint’s models, models that we

know constitute the set of valid predictions, compared to the

model’s entire predictive distribution, which includes valid

and invalid predictions, leads to a non-trivial increase in the

accuracy of predictions.

5.2 FULLY-SUPERVISED LEARNING

We now turn our attention to testing our hypotheses in a fully

supervised setting, where our aim is to examine the effect of

constraints enforced on the training set. We note that this is







7 CONCLUSION

In conclusion, we proposed neuro-symbolic entropy regular-

ization, a principled approach to unifying neuro-symbolic

learning and entropy regularization. It encourages the net-

work to output distributions that are peaked over models of

the logical formula. We are able to compute our loss due to

structural properties of circuit languages. We validate our

hypothesis on four different tasks under semi-supervised

and fully-supervised settings and observed an increase in

accuracy as well as the validity of the model’s predictions.
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A COMPILING LOGICAL FORMULAS

INTO TRACTABLE CIRCUITS

At a high level, there exist off-the-shelf compilers [Choi

and Darwiche, 2013, Oztok and Darwiche, 2015, Darwiche,

2004, Muise et al., 2012, Lagniez and Marquis, 2017, Toda

and Soh, 2016] utilizing SAT solvers, essentially through

case analysis, to compile a logical formula into a tractable

logical circuit. NeSy Entropy is agnostic to the exact flavor

of circuit so long as the properties outlined in Section 3.2

are respected. In our experiments, we use PySDD1 a python

SDD compiler [Darwiche, 2011, Choi and Darwiche, 2013].

We will now step through an example of compiling a logical

formula. Consider the circuit in Figure 2 encoding constraint

(A ∧B) =⇒ C,

to be construed as encoding, animal ∧ barks =⇒ dog.

Intuitively, our aim is to transform the above logical for-

mula into a compact target form representing all possible

assignments to A,B and C satisfying the logical formula.

We compile such a constraint by proceeding in a bottom up

fashion, where bottom-up compilation can be seen as com-

posing Boolean sub-functions whose domain is determined

by a variable ordering. Concretely, starting from circuits for

literals A and B, we compile a circuit β = A∧B. We com-

pose the previously compiled circuit β with the circuit for

literal C. We point out that this is achieved using a couple of

simple API calls to a bottom-up compiler. We will now step

through the actual construction of the circuit. We introduce

logical circuits representing the literals

A ¬A B ¬B C ¬C

1https://github.com/wannesm/PySDD

The compiler disjoins literals A with ¬A, and B with ¬B,

introducing deterministic and smooth OR nodes.

A ¬A B ¬B

An OR node represents disjoint solutions to the logical

formula, meaning there exists distinct assignments, charac-

terized by the children, satisfying the constraint e.g. a,¬a, b
and ¬b all occur as part of distinct solutions to the constraint.

Compilation proceeds by conjoining constraint circuits for

A ∨ ¬A with B ∨ ¬B, ¬A with B ∨ ¬B and A with ¬B.

A ¬B ¬A

A ¬A B ¬B

Decomposable AND nodes compose functions over disjoint

sets of variables. These AND nodes represent Boolean func-

tions (A∨¬A)∧ (B ∨¬B), ¬A∧ (B ∨¬B), and A∧¬B.

The compiler disjoins ¬A ∧ (B ∨ ¬B), with A ∧ ¬B and

(A∨¬A)∧ (B ∨¬B) with true, the multiplicative identity,

guaranteeing alternating AND and OR nodes, for conve-

nience. It is worth reiterating that every child of an OR node

encodes disjoint solutions over the same set of variables.

So far, we have compiled logical circuits for the formula

(¬A ∧ (B ∨ ¬B)) ∨ (A ∧ ¬B) (4)

as well as for the fomula

(A ∨ ¬A) ∧ (B ∨ ¬B) (5)

What remains is to conjoin eq. (4) with C, and eq. (5) with

¬C, and disjoin the resulting circuits. What we get is a

disjunction over the possible solutions of the constraint:

predicting the presence of a barking animal implies the

presence of a dog. Otherwise, there might or not be a dog.

C ¬C

A ¬B ¬A

A ¬A B ¬B

Compilation techniques like the one we illustrated do not,

however, escape the hardness of the problem: the compiled

circuit can be exponential in the size of the constraint, in

the worst case. In practice, however, we can obtain compact

circuits because real-life logical constraints exhibit enough

structure (e.g., repeated sub-problems) that can be easily

exploited by a compiler [Darwiche and Marquis, 2002].
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