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Abstract: As the demands for improved performance of integrated circuit (IC) chips continue to
increase, while technology scaling driven by Moore’s law is becoming extremely challenging, if
not impractical or impossible, heterogeneous integration (HI) emerges as an attractive pathway
to further enhance performance of Si-based complementary metal-oxide-semiconductor (CMOS)
chips. The underlying basis for using HI technologies and structures is that IC performance goes
well beyond classic logic functions; rather, functionalities and complexity of smart chips span across
the full information chain, including signal sensing, conditioning, processing, storage, computing,
communication, control, and actuation, which are required to facilitate comprehensive human–world
interactions. Therefore, HI technologies can bring in more function diversifications to make system
chips smarter within acceptable design constraints, including costs. Over the past two decades or
so, a large number of HI technologies have been explored to increase heterogeneities in materials,
technologies, devices, circuits, and system architectures, making it practically impossible to provide
one single comprehensive review of everything in the field in one paper. This article chooses to
offer a topical overview of selected HI structures that have been validated in CMOS platforms,
including a stacked-via vertical magnetic-cored inductor structure in CMOSs, a metal wall structure
in the back end of line (BEOL) of CMOSs to suppress global flying noises, an above-IC graphene
nano-electromechanical system (NEMS) switch and nano-crossbar array electrostatic discharge (ESD)
protection structure, and graphene ESD interconnects.

Keywords: flying noise; isolation; metal wall; ESD protection; graphene; gNEMS; interconnects;
magnetic core; inductor; nano-crossbar array; heterogeneous integration; heterogeneity

1. Introduction

There is no question that semiconductors have reshaped human society. Revolution
in microelectronics has transformed the modern world into the information technology
(IT) era and, most recently, advances in semiconductors are rapidly transitioning our lives
into the internet-of-everything (IoET) age. All these changes were essentially triggered by
inventions of the Ge transistor in 1947 [1–3], followed by integrated circuits (ICs) in Ge
and Si around 1958 and 1959 [4,5]. Most importantly, it was the birth of Si complementary
metal-oxide-semiconductor (CMOS) IC technology in 1963 [6], due to its scaling-enabled
integration and economic advantages, that drove the IT revolution into the fast lane. Unfor-
tunately, the scaling-based continuous advances in CMOS IC technologies, mostly driven
by Moore’s law [7], seem to be slowing down. On the other hand, demands for higher
performance (e.g., speed) and more complexity (e.g., functions) of chips, mainly driven
by data-centric IoET systems and applications, have been continuously increasing. It is
generally agreed upon that heterogeneous integration is an emerging technology that offers
a viable solution, alternative to classic scaling of various kinds, to continuously enhance
performance of Si-based CMOS chips in beyond-Moore time [8]. The reason is that the
performance of advanced chips goes well beyond classic logic functions. Instead, future
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chips require more functionality and higher complexity to facilitate the whole informa-
tion chain, spanning from signal sensing, conditioning, and processing, to data storage
and computing, to communications, control, and actuation to support human-in-the-loop
cyber-physical systems (HCPS) and applications empowered by smart chips. In principle,
heterogeneous integration is a technology to substantially enhance function diversifications
and performance specifications, in aggregation, by heterogeneously integrating compo-
nents, separately manufactured in different materials systems for individual optimization,
into a higher-level assembly, i.e., at wafer scale relevant to IC chips, to accommodate
the increasing demands for higher performance and more complexity of smart system
chips. Towards this end, great efforts have been devoted to developing various heteroge-
neous integration (HI) technologies and structures to bring both characteristic boosters and
non-IC functionalities into the mature, dominant Si CMOS platform. For example, new
performance boosters may be novel materials in a metal-oxide-semiconductor field-effect
transistor (MOSFET) channel to increase carrier mobility or a gate-all-around nanowire
transistor to improve drive per footprint, while sensors, micro-electromechanical system
(MEMS), and photonics can bring more functionality to Si CMOSs, and also bio-inspired
devices may change the computing paradigm [9,10]. Over the past two decades, numerous
HI technologies have been explored to increase heterogeneity in materials, technologies,
devices, circuits, and system architectures, making it practically impossible to provide
one single comprehensive review of the field in one paper. This article provides a topical
overview of selected HI structures developed in CMOS platforms to boost CMOS chip
performance, which include a stacked-via vertical magnetic-cored inductor structure in
radio-frequency (RF) CMOS (Section 2), a metal wall structure in CMOS back end of line
(BEOL) for global flying crosstalk isolation (Section 3), an above-IC graphene NEMS switch
for electrostatic discharge (ESD) protection (Section 4), a phase-changing nano-crossbar
array ESD protection structure (Section 5), and graphene nanoribbons for ESD interconnects
(Section 5). This overview means to showcase both potentials and feasibility of emerging
HI technologies and structures to make CMOS chips smarter without exceeding design,
fabrication, energy, or economic constraints.

2. Stacked-Via Vertical Magnetic-Cored Inductor

The proliferation of wireless communications was enabled by radio-frequency (RF)
ICs, which benefited critically from RF CMOS technology. On one hand, aggressive scal-
ing of CMOS technologies led to higher frequencies (i.e., f T, f max) in Si CMOSs while
retaining its most important feature, i.e., high integration, hence low costs. It was RF
CMOSs that made high-performance RF ICs widely available to deliver affordable wireless
gadgets, e.g., smartphones and wireless routers. On the other hand, not every device in RF
ICs can be scaled down following Moore’s law. Inductive devices, e.g., inductors, which
are practically indispensable to RF ICs, cannot be scaled down aggressively like MOSFETs.
The main barrier is associated with signal energy losses. Shrinking the metal spiral of
an IC inductor means a narrower metal wire, which leads to higher series resistance that
results in more electrical energy loss, and thus poorer Q-factor. A poor Q-factor is very
disadvantageous to many RF ICs. In addition, typical on-chip inductors are fairly large.
Therefore, RF system-on-a-chip (SoC) has been impractical (technically and economically)
in RF IC designs. Substantial research gone into addressing this RF IC design challenge. For
example, substrate engineering and MEMS structures have been used to reduce substrate
losses and improve Q-factor, e.g., using a suspended spiral over a deep cavity in the sub-
strate [11]. Alternatively, magnetic media have been introduced into an inductor structure
aiming to enhance magnetic flux and minimize magnetic energy loss, hence avoiding sig-
nificant degradation in Q-factor, e.g., using planar solenoids or lateral magnetic films [12].
Generally, these special inductors are large and have complicated device structures.

One big question that an RF IC designer may ask is whether is it possible to design
transistor-sized on-chip inductors with moderate inductance (L) and good Q-factor oper-
ating at multi-GHz frequencies to practically realize RF SoC in CMOSs. A new on-chip
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spiral inductor structure with a vertical stacked-via magnetic core bar array was invented
and demonstrated in CMOSs to answer this RF IC call, as depicted in Figure 1 [13]. This
vertically magnetic-cored inductor structure emerged from a hypothesis that an ideal
discrete solenoid inductor would be shrunk to a needle of transistor dimensions, which
could then be poked into the BEOL deck in a CMOS with multilayer metal (e.g., Cu) in-
terconnects, and a transistor-sized vertical spiral inductor with a magnetic core would
then be formed, being a miniaturized mimic of an ideal discrete solenoid. Using a CMOS
process flow, a magnetic core bar array can be formed readily by replacing vias within an
inductor by the desired magnetic materials layer by layer, hence creating a stacked-via
vertical magnetic core bar array for better magnetic flux control while utilizing mature
CMOS back-end processes [13]. The new vertical magnetic-cored inductor concept was
validated experimentally in several steps [14–24]. First, research was conducted to explore
different magnetic materials and their synthesis techniques to understand how materials’
compositions and processing methods would affect the magnetic characteristics, includ-
ing complex permeability (µ = µ′ + jµ′ ′) and frequency behavior, which generally affect
ferromagnetic resonance frequency (f FMR at µ′ ′max), L, Q, f max (the operating frequency
at Q = Qmax), and self-resonance frequency (f 0). In general, magnetic materials of higher
µ′ and lower µ′ ′ extended to higher frequency ranges are preferred for on-chip inductors
with higher inductance density (L-density) and Q, and are able to operate at a higher
frequency (multi-GHz and beyond). This was confirmed by simulation and in experi-
ments [14,18,19]. In the experiments [18,19], various ferrite materials were synthesized
and studied using spiral inductors, as shown in Figure 2. The ferrite compositions used in
the prototypes included Ni-Zn-Cu, YIG (Y-Fe-O), and Co2Z families with high f FMR and
compositions fine-tuned. The inductors were ferrite-partially-filled (Figure 2b) fabricated
in a low-temperature CMOS process flow (Figure 2c,d). Figure 3 depicts the measured L
and Q characteristics in the frequency domain for prototype inductor devices showing
substantial improvements in both L and Q to high frequencies for inductors integrated
with Ni-Zn-Cu (Ni0.3Zn0.6Cu0.1Fe2O4) at 0.1–5 GHz (up to +35% in L and +250% in Q)
and Co2Z-type (Ba3Co2Fe24O41) at 0.1–10 GHz (up to +22% in L and +149% in Q) over the
air-cored reference device. YIG samples showed good improvement in L, though significant
degradation in Q, due to its high µ”. Second, the new vertical magnetic-cored inductor con-
cept was then validated using stacked spiral inductors designed in a foundry 180 nm 6-Al
metal CMOS [20–22]. Figure 4 depicts the schematic for the 6-Al-layer spiral inductor with
a vertical nanomagnetic particle-filled core (nvM-L), with its fabricated device photo shown
in Figure 5. To achieve high µeff

′, low µeff” and high f FMR, NiZnCu (Ni0.25Cu0.25Zn0.5Fe2O4)
ferrite synthesized as nanoparticles (diameter, d~350 nm) were used as the vertical mag-
netic core. Figure 6 depicts the measured L and Q in the frequency domain for prototype
devices, showing significant increase in L (more than +70%) to 5.2 GHz and improvement
in Q to 1.6 GHz, respectively. The expected improvement in Q was much higher than
that observed per simulation, and the lower Q increase in measurement was mainly at-
tributed to the damage to the Al spirals during post-CMOS dry etching to create a deep
hole inside the inductor coils of six metal layers in the university lab. The results showed
that, with the vertical nanoferrite core, L-density of ~825 nH/mm2 was achieved, which
means that a vnM-L device can be substantially shrunk in designs, e.g., ~80% size reduc-
tion of L~9nH. If more advanced CMOS technologies are used, more Cu metal layers
can make a better and smaller vertical magnetic-cored inductor. Figure 7 shows that the
nvM-L compares favorably to the then-state-of-the-art magnetic-enhanced inductors in
terms of the figure of merit of Qmax X f max versus L-density. Third, the magnetic-cored
inductor concept was further validated in voltage-controlled oscillator (VCO) ICs [23,24].
Figure 8 depicts a 2.22–2.92 GHz LC-VCO designed and fabricated in a foundry 180 nm
silicon-on-insulator (SOI) CMOS with a magnetic-cored inductor made by post-CMOS
processes. The single-spiral magnetic-cored inductor features a higher L-density of ~17%,
making it much smaller than a normal inductor of the same inductance. Measurement
confirmed full circuit functions for the VCO using a magnetic-core inductor, including
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good phase noise, as shown in Figure 9. It is noteworthy that though the prototype of the
vertical magnetic-cored inductor still needs improvement, it readily shows the potential to
make high-quality transistor-sized on-chip inductors to enable large single-chip RF SoCs
through heterogeneous integration of magnetic media into a Si CMOS platform. Two main
challenges are to be addressed as future directions: first, novel nanomagnetic material
synthesis to achieve higher µ′ and lower µ” to beyond 10 GHz operations; second, process
techniques to prevent any contamination in CMOS manufacturing.
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Nanomaterials 2022, 12, 2340 6 of 21Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 22 
 

 

 

Figure 6. Measured performance improvement of 6-Al-layer (m = 6) single-turn (n = 1) sole-

noid-shaped stacked-spiral vnM-L inductors over the air-cored references: (a) L, (b) Q-factor. (dout: 

coil out diameter; w: line width) [20]. 

 

Figure 7. Qmax X fmax versus L-density chart for the vnM-L inductor and the published state-of-the-art 

results of lateral magnetic inductors, as well as several high-Q air-cored inductors [22]. 

 

Figure 8. An LC-VCO in 180 nm SOI CMOS using magnetic-cored inductor: (a) schematic, (b) 

without magnetic core, and (c) with magnetic core for the inductor [24]. 
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out diameter; w: line width) [20].
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3. In-BEOL Metal Wall Flying Crosstalk Isolation Structure

It is well known that crosstalk (a.k.a. noise coupling) through a conductive substrate (i.e., in-
substrate noises) is a major problem to noise-sensitive analog and RF ICs. Various mature
design techniques have been developed and adopted to isolate in-substrate global crosstalk
in mixed-signal and RF ICs, e.g., double guard rings, deep trenches, buried ground plane,
MEMS structures, substrate backside cavity, and high-resistivity substrates, etc. [25–32].
However, while these in-substrate noise-isolation techniques are very efficient in block-
ing in-substrate interference, they cannot suppress the global crosstalk in the BEOL deck
through the massive and complex metal interconnects (called flying noises), which were be-
lieved dominant, accounting for up to ~80%, in the whole-chip noise coupling, particularly
for complex chips at advanced technology nodes [33].

A unique in-BEOL metal wall crosstalk isolation technique was developed to effec-
tively suppress global flying noises through metal interconnects in the back end [34,35].
Figure 10 depicts the concept of the novel in-BEOL metal wall noise-isolation structure,
which is a deep trench circle (or partial) etched into the BEOL deck that is filled with
metal to form an in-BEOL metal wall enclosure to isolate one circuit block from the other
in a die. The concept structure was experimentally validated in two circuit designs, one
amplifier IC designed in a foundry 180 nm FD-SOI CMOS [34] and the other being an
SPDT RF switch IC fabricated in a foundry 45 nm SOI CMOS [35]. The in-BEOL metal wall
structures were fabricated in post-CMOS processing after receiving the MPW dies from
the foundry. Figure 11 shows the die photos for the amplifier IC case and Figure 12 gives
the schematic and die photos for the SPDT circuit. In the prototypes, the deep trench was
created using a focused ion beam (FIB, mill current of 30 kV/18 nA) that was then filled by
silver nanopowder (99.99%, 80–100 nm) to form the metal wall enclosure. It was found that
the property of the filling metal can be critical to electromagnetic isolation. The designs
were guided by HFSS-ADS cosimulation. Figure 13 depicts the measured third-order
intermodulation (IM3) for the first amplifier circuit, which shows a reduction of ~9 dBm in
IM3 interference. In the second design of SPDT ICs, the post-CMOS process for making the
metal wall structures was improved and an SPDT split using the foundry-recommended
in-Si BI-ring (buried isolation) noise-isolation option was also included for comparison.
Figure 14 shows the crosstalk characteristics at the output of Switch B (victim) due to the
interference coming from Switch A (noise generator at 0 dBm input) by simulation and
measurement. It is readily observed that the in-BEOL metal wall structure achieved a
reduction in flying crosstalk of ~18.5 dB (i.e., ~98.6% noise suppression in linear scale).
The prototypes confirmed that the in-BEOL metal wall crosstalk isolation structure is very
efficient in blocking global flying noises on a chip.
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4. Graphene NEMS ESD-Protection Structure

Electrostatic discharge (ESD) failure is a major IC reliability problem that causes the
industry billions of dollars of annual revenue loss. On-chip ESD protection is hence required
for all ICs [36]. In principle, an ESD-protection device acts like a controlled switch that is
connected to bonding pads on an IC die. As depicted in Figure 15, an ESD-protection device
remains in an OFF state during normal IC operations so that it will not affect chip functions.
During an ESD event, a fast and strong incident ESD transient appearing at an IC pad
will trigger the ESD-protection device (i.e., ON), creating a low-resistance conduction path
to discharge the ESD pulse to protect the IC. In ESD-protection designs, the ESD-critical
parameters, including triggering voltage, current, and time (Vt1, It1, t1), holding voltage
and current (Vh, Ih), discharging resistance (RON), and thermal breakdown voltage and
current (Vt2, It2), must be carefully designed to comply with the ESD design window in
order to provide adequate on-chip ESD protection [37–40]. Unfortunately, ESD design
overhead always exists, which includes ESD-induced parasitic capacitance (CESD), leakage
(Ileak), noises and noise coupling, as well as Si area consumption and physical design
difficulty in layout associated with large ESD devices [39–42]. The ESD design overhead
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problem is rapidly becoming unacceptable to large and complex ICs implemented at
advanced technology nodes [39]. It is understood that the root cause of the ESD design
overhead is the traditional in-Si PN-junction-based ESD-protection structure, as depicted
in Figure 16, which has been commonly used for about 60 years. To fundamentally address
the ESD design overhead challenge, revolutionary ESD-protection mechanisms and device
structures are needed, towards which several novel non-PN-based ESD protection concepts
have been reported.
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(c) BJT, (d) MOSFET, and (e) SCR, as well as their derivatives.

The first nontraditional ESD-protection device was a two-terminal (2T) graphene-
based NEMS switch (gNEMS) device, as depicted in Figure 17. Unlike traditional in-Si PN-
based active electronic device ESD protection [43], gNEMS is a mechanical switch compris-
ing a suspended graphene membrane over a cavity with its two electrodes, i.e., graphene
ribbon as the anode (A) and the Si substrate as the cathode (K), connected to an I/O pad
and ground (GND or VSS) and/or supply pad (VDD). During normal IC operations, gNEMS
remains OFF, hence not interfering with IC functions. During an ESD event, the fast ESD
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transient generates a strong electrostatic force that pulls the suspended graphene mem-
brane downward to the conducting bottom electrode. When the graphene ribbon touches
the K terminal, gNEMS turns ON to form a low-R conduction channel to discharge the
incident ESD pulse, hence protecting the IC. Uniquely, gNEMS is a cavity-based mechanical
device, thus theoretically introducing negligible CESD, Ileak, and noises during normal IC
operations. In addition, the gNEMS ESD switch is made in the CMOS BEOL deck, above
the Si substrate (i.e., above-IC), which ideally does not consume Si area and will make
chip-layout planning much easier. The gNEMS ESD switch offers a new ESD-protection
mechanism and ESD-protection device structure. The new gNEMS ESD switch concept was
first validated experimentally using polycrystalline graphene grown by the CVD method
and a CMOS-compatible device-fabrication process flow [43]. As depicted in Figure 18,
fabrication of a gNEMS switch device starts with a phosphorus-doped silicon wafer (a),
followed by growing a SiO2 layer of 250 nm thick by thermal oxidation (b), then a Si3N4
layer of 100 nm is deposited by plasma-enhanced chemical vapor deposition (PECVD), fol-
lowed by etching an opening using reactive ion etch (RIE) (c), then a CVD-grown graphene
film is transferred to the Si substrate over the opening in the Si3N4 layer followed by
graphene patterning by RIE etching (d), next, Pd (10 nm) and Au (90 nm) electrodes are
created by e-beam deposition and lifting off (e), and finally, HF vapor is applied to etch
the SiO2 underneath the opening to release the suspended graphene membrane to form
a gNEMS device (f), as shown in Figure 17 (Inset). Comprehensive ESD measurements
were conducted by DC sweeping and TLP and VFTLP ESD zapping tests for a large set
of gNEMS prototypes. Figure 19 shows expected gNEMS switch turn-on by simple DC
sweeping test and desired dual-directional transient ESD discharging I-V characteristics by
TLP zapping, readily validating the new gNEMS ESD switch concept. Figure 20 depicts
the TLP-measured ESD triggering voltage Vt1 for gNEMS devices of various dimensions,
showing a wide range of adjustable Vt1, desirable for practical ESD-protection designs.
The gNEMS devices were further improved by using single-crystalline graphene films
grown using an improved CVD method, which shows much improved ESD switching and
reliability performance [44]. Figure 21a depicts the Raman spectrum for polycrystalline
and single-crystalline graphene films, confirming their crystalline structures. ESD perfor-
mance comparison for polycrystal and single-crystal gNEMS device samples is presented
in Figure 21b,c under both DC sweeping test and TLP zapping, which readily confirms that
the single-crystal gNEMS device outperforms its polycrystal counterpart, attributed to the
outstanding material properties of the single-crystal graphene membrane. To evaluate the
design reliability (durability) of gNEMS devices, 110-fold repeat TLP and VFTLP zapping
tests were conducted for samples, and the measured I-V characteristics remained very
stable, as shown in Figure 22, confirming the superior quality of the single-crystal gNEMS
devices fabricated. Upper-limit TLP and VFTLP zapping tests were also performed for
single-crystal gNEMS samples to explore their ESD current-handling capability, as shown
in Figure 23. These revealed that the single-crystal gNEMS devices had outstanding ESD
robustness, achieving a record maximum ESD current density of Jt2~1.19 × 1010 A/cm2

under TLP testing and Jt2~6.09 × 109 A/cm2 under VFTLP stressing. This is equivalent
to a record HBM ESD capability of ~178 KV/µm2, compared over ~7.5 V/µm2 for a typi-
cal in-Si SCR ESD-protection device, which is generally considered the most robust in-Si
ESD-protection device. VFTLP testing confirmed that the new gNEMS device featured
ultrafast switching, at least ~100 ps, largely attributed to the mechanical properties and
superhigh Young’s modulus of graphene film. Figure 24 shows measured leakage currents
for gNEMS samples, showing negligible leakage of ~1′s pA, highly desirable for advanced
ICs and superior to its in-Si PN-type ESD-device counterparts. Overall, the new above-IC
graphene-based gNEMS ESD-protection structure has the potential to overcome the ESD de-
sign overhead problem inherent to any traditional in-Si PN-based ESD-protection structure.
Fundamentally, the motivation for using graphene for ESD protection is to leverage the
unique material properties of graphene, e.g., ultrahigh carrier mobility, superior thermal
conductivity, outstanding mechanical strength, and super Young’s modulus [45–47]. It is
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noteworthy that other possible 2D materials of similar properties may also be explored for
making novel ESD-protection structures.
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graphene ribbon, (e) deposit the metal pad, and (f) HF etching SiO2 to release the graphene membrane
to form the gNEMS device.
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Nanomaterials 2022, 12, 2340 13 of 21

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 22 
 

 

(7.0, 7.6, 15, 29.8 V), and (b) TLP test showing dual-directional transient ESD discharging I-V be-

havior [43]. 

8

10

12

14

16

18

V
t1
(V
)

Devices  

Figure 20. TLP measurement shows a wide range of ESD Vt1 values for prototype gNEMS switches, 

adjustable by device design variations [36]. 

 

 

  

Figure 21. Measurement comparison of gNEMS devices made in single-crystal and polycrystal 

graphene films: (a) Raman spectrum, (b) DC sweeping test, and (c) TLP test [44]. 

Figure 20. TLP measurement shows a wide range of ESD Vt1 values for prototype gNEMS switches,
adjustable by device design variations [36].

Nanomaterials 2022, 12, x FOR PEER REVIEW 13 of 22 
 

 

(7.0, 7.6, 15, 29.8 V), and (b) TLP test showing dual-directional transient ESD discharging I-V be-

havior [43]. 

8

10

12

14

16

18

V
t1
(V
)

Devices  

Figure 20. TLP measurement shows a wide range of ESD Vt1 values for prototype gNEMS switches, 

adjustable by device design variations [36]. 

 

 

  

Figure 21. Measurement comparison of gNEMS devices made in single-crystal and polycrystal 

graphene films: (a) Raman spectrum, (b) DC sweeping test, and (c) TLP test [44]. 

Figure 21. Measurement comparison of gNEMS devices made in single-crystal and polycrystal
graphene films: (a) Raman spectrum, (b) DC sweeping test, and (c) TLP test [44].



Nanomaterials 2022, 12, 2340 14 of 21Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 22 
 

 

 

 

Figure 22. Durability evaluation of single-crystal graphene gNEMS devices by 110-fold ESD stress 

tests: (a) TLP zapping, and (b) VFTLP zapping [44]. 

  

Figure 23. Measurement of single-crystalline gNEMS samples showing robust ESD cur-

rent-handling capability (It2): (a) TLP zapping, and (b) VFTLP zapping [44]. 

Figure 22. Durability evaluation of single-crystal graphene gNEMS devices by 110-fold ESD stress
tests: (a) TLP zapping, and (b) VFTLP zapping [44].

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 22 
 

 

 

 

Figure 22. Durability evaluation of single-crystal graphene gNEMS devices by 110-fold ESD stress 

tests: (a) TLP zapping, and (b) VFTLP zapping [44]. 

  

Figure 23. Measurement of single-crystalline gNEMS samples showing robust ESD cur-

rent-handling capability (It2): (a) TLP zapping, and (b) VFTLP zapping [44]. 

Figure 23. Measurement of single-crystalline gNEMS samples showing robust ESD current-handling
capability (It2): (a) TLP zapping, and (b) VFTLP zapping [44].



Nanomaterials 2022, 12, 2340 15 of 21
Nanomaterials 2022, 12, x FOR PEER REVIEW 15 of 22 
 

 

0

2

4

6

8

10

I L
e

ak
(p
A

)

Length x Width (μm x μm)

5×7 7×7
5×10

7×10
10×10

7×15

7×20
15×10

 

Figure 24. Measurement statistics showing extremely low leakage currents Ileak for gNEMS devices 

under TLP zapping [44]. 

5. In-BEOL Nano-Crossbar Array ESD-Protection Structure 

To address the ESD design overhead problem inherent to traditional in-Si PN-type 

ESD protection structures, a novel in-BEOL phase-changing type nano-crossbar 

ESD-protection concept has also been proposed and validated experimentally [48,49]. 

Similarly, the uniqueness is that this ESD device relies on a phase-changing phenomenon 

for ESD discharging, not any active PN-type devices, and can be made above-IC (in 

CMOS BEOL), instead of residing inside-Si. Another key advantage of the new 

nano-crossbar ESD device is with its dual-directional ESD discharging features, which 

serve to dramatically reduce the total number of ESD devices needed on a chip for con-

structing a whole-chip ESD-protection network. The new nano-crossbar ESD-protection 

device structure is depicted in Figure 25, where each crossbar node is a 2T device con-

taining two electrodes (A and K) sandwiched between a phase-changing insulator. The A 

and K electrodes are connected to bonding pads on a chip. During normal IC operations, 

a nano-crossbar ESD device stays OFF due to the insulator separating A and K terminals, 

hence not interfering with IC functions. During an ESD event, the strong transient elec-

trical field induced by an incoming ESD pulse will trigger phase changing in the insulator 

and turn ON the device to form a low-R ESD conduction path to discharge the ESD pulse 

into GND, hence providing ESD protection. After the ESD surge is over, the 

nano-crossbar ESD device will return from ON to OFF state and normal IC operation will 

resume. The small scale of a nano-crossbar node device seems to be important to retain-

ing the nanoscale phase-changing behavior to ensure ultrafast switching, as confirmed in 

VFTLP testing, which is explained by a new dispersed local ESD tunneling model de-

picted in Figure 26. The nano-crossbar ESD design function mechanism follows: anneal-

ing drives Cu ions into the insulator materials, under ESD stressing, free carriers will hop 

over the Cu ion islands through a local tunneling effect, hence realizing ultrafast 

phase-changing conduction via the local tunneling effect (not a filament conduction 

mechanism). To ensure high ESD current-handling capability, a nano-crossbar array 

ESD-protection structure will be used in practical designs to ensure high ESD robustness. 

The nano-crossbar array ESD-device prototypes were fabricated using a 

CMOS-compatible process and were characterized by comprehensive ESD zapping test-

ing. Figure 27 depicts the TLP-measured ESD I-V characteristics that readily show the 

expected dual-directional ESD discharge curve. Furthermore, multiple ESD triggering 

points appear in the ESD discharge I-V curve for an array ESD structure, attributed to 

nonsimultaneous phase-changing actions of all individual nano-crossbar nodes within an 

array. By careful device design (e.g., device dimensions, insulator materials, etc.), the 

Figure 24. Measurement statistics showing extremely low leakage currents Ileak for gNEMS devices
under TLP zapping [44].

5. In-BEOL Nano-Crossbar Array ESD-Protection Structure

To address the ESD design overhead problem inherent to traditional in-Si PN-type
ESD protection structures, a novel in-BEOL phase-changing type nano-crossbar ESD-
protection concept has also been proposed and validated experimentally [48,49]. Similarly,
the uniqueness is that this ESD device relies on a phase-changing phenomenon for ESD
discharging, not any active PN-type devices, and can be made above-IC (in CMOS BEOL),
instead of residing inside-Si. Another key advantage of the new nano-crossbar ESD device
is with its dual-directional ESD discharging features, which serve to dramatically reduce
the total number of ESD devices needed on a chip for constructing a whole-chip ESD-
protection network. The new nano-crossbar ESD-protection device structure is depicted
in Figure 25, where each crossbar node is a 2T device containing two electrodes (A and K)
sandwiched between a phase-changing insulator. The A and K electrodes are connected
to bonding pads on a chip. During normal IC operations, a nano-crossbar ESD device
stays OFF due to the insulator separating A and K terminals, hence not interfering with
IC functions. During an ESD event, the strong transient electrical field induced by an
incoming ESD pulse will trigger phase changing in the insulator and turn ON the device to
form a low-R ESD conduction path to discharge the ESD pulse into GND, hence providing
ESD protection. After the ESD surge is over, the nano-crossbar ESD device will return from
ON to OFF state and normal IC operation will resume. The small scale of a nano-crossbar
node device seems to be important to retaining the nanoscale phase-changing behavior to
ensure ultrafast switching, as confirmed in VFTLP testing, which is explained by a new
dispersed local ESD tunneling model depicted in Figure 26. The nano-crossbar ESD design
function mechanism follows: annealing drives Cu ions into the insulator materials, under
ESD stressing, free carriers will hop over the Cu ion islands through a local tunneling
effect, hence realizing ultrafast phase-changing conduction via the local tunneling effect
(not a filament conduction mechanism). To ensure high ESD current-handling capability, a
nano-crossbar array ESD-protection structure will be used in practical designs to ensure
high ESD robustness. The nano-crossbar array ESD-device prototypes were fabricated
using a CMOS-compatible process and were characterized by comprehensive ESD zapping
testing. Figure 27 depicts the TLP-measured ESD I-V characteristics that readily show the
expected dual-directional ESD discharge curve. Furthermore, multiple ESD triggering
points appear in the ESD discharge I-V curve for an array ESD structure, attributed to
nonsimultaneous phase-changing actions of all individual nano-crossbar nodes within
an array. By careful device design (e.g., device dimensions, insulator materials, etc.),
the critical ESD triggering Vt1 can be adjusted, from a few to a few tens of volts in the
report, which is very useful in practical ESD-protection designs, as shown in Figure 28.
TLP testing reveals very high ESD-protection capability for the new nano-crossbar array
ESD-protection structures, e.g., It2~8.11A for a 5 × 5 array device [48]. VFTLP zapping
confirms that the new nano-crossbar ESD device can respond to an ultrafast ESD pulse of
~100 ps. Measurement also shows that ESD-induced leakage is extremely low, i.e., <2 pA,
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as depicted in Figure 29, due to using an insulator medium between the A and K electrodes.
Overall, the work clearly shows the functions and potential of the new in-BEOL nano-
crossbar array ESD protection for future chips, overcoming the ESD design overhead
problem inherent to traditional in-Si PN-type ESD protection structures.
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6. Graphene Interconnects for on-Chip ESD-Protection Circuits

Similar to any complex ICs, metal interconnects are becoming a design challenge for
advanced chips, due to the inevitable parasitic effects associated with the massive metal
interconnects, such as capacitive coupling and IR drop effects. Interconnects can be an even
bigger design challenge for on-chip ESD-protection circuits, because the large ESD current
pulses can readily damage metal interconnects that are normally minimized in IC designs
to reduce the parasitic effects. To address this ESD design challenge, graphene nanoribbon
(GNR) was studied as a potential solution for ESD interconnects on a chip [47,48]. The
motivation was obviously with the unique electrical, thermal, and mechanical properties of
graphene materials, i.e., ultrahigh mobility, superior thermal conductivity, and outstanding
mechanical strength [45–47], all of which are desirable features for ESD protection. In the
experiments, a large sample set of GNR wires of varying dimensions (length L, width W,
and layer number) were designed using CVD-grown graphene films in both polycrystal
and single-crystal structures [50,51]. Figure 30 depicts the application scheme of using
GNR wires for on-chip ESD protection. Figure 31 presents measured ESD discharge
I-V characteristics for GNR wire samples using TLP and VFTLP zapping (a) and for
samples with varying L (b), which readily shows the critical voltage (VC) and current
(IC) of GNR wires measured. Obviously, IC increases as L becomes longer, due to series
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resistance that increases heating. The influence of GNR width (W) on IC is given in
Figure 32, which clearly shows that IC increases for wider GNR wire, due to reduced R.
The thermal breakdown current density (Jt2) appears to be insensitive to W, as expected.
The effect of annealing temperature on GNR wires is depicted in Figure 33, revealing
a somewhat optimal temperature for graphene treatment, i.e., Topt~50–60 ◦C for It2-opt,
suggesting optimization in GNR fabrication to ensure better ESD robustness. It has also
been reported that using single-crystal graphene GNR wires for ESD protection achieved
much improved ESD robustness over using polycrystal GNRs, due to optimization of
graphene materials [51]. In principle, if GNR wires are used to replace traditional Al/Cu
metal interconnects for on-chip ESD protection circuits, one can either dramatically narrow
the wire width to reduce ESD metal-induced parasitic effects or achieve a much higher
ESD-protection level using the same ESD wire width. Future research should study the
failure mechanisms and durability of GNR wires by repeated ESD zapping tests.
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7. Conclusions

In summary, there seems to exist a consensus that heterogeneous integration opens a
door to make future CMOS chips smarter in the post-Moore era, because HI technologies
can bring in many and various heterogeneities to system chips at material, device, fabrica-
tion, circuit, and architecture levels. For years, research efforts have led to many advances
in HI technologies, making it impractical to provide a single-paper review of everything in
the field. This article provides a topical overview of a few key advances in HI technologies
and structures that have been validated in CMOS platforms experimentally. The novel HI
structures reviewed in this paper include stacked-via magnetic-core inductors, in-BEOL
metal wall structure for global flying crosstalk isolation, above-IC graphene gNEMS switch
and nano-crossbar array ESD-protection structures, and using graphene nanoribbons to
replace Cu/Al for ESD interconnects. These examples strongly support the vision that HI
technologies can be a viable solution for smart future chips, predominant still in CMOS
platforms. It is noteworthy that while heterogeneous integration technologies can enrich
heterogeneities at all levels in a microsystem, Si CMOSs will remain the foundation upon
which function diversification will be built, at least in the foreseeable future, for two main
reasons: the maturity of Si CMOS IC technologies and the economy of Si materials. Ideally,
any non-Si CMOS-based technologies (i.e., materials, devices, functionalities) loosely re-
ferred to as “X” technologies can be heterogeneously integrated into a Si CMOS platform
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to deliver smarter “CMOS + X” future chips, which generally require a new co-design and
co-development philosophy holistically across all layers within a system.
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