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Abstract

Stochastic Gradient Descent (SGD) based methods have been widely used for training large-scale
machine learning models that also generalize well in practice. Several explanations have been offered for
this generalization performance, a prominent one being algorithmic stability [18]. However, there are no
known examples of smooth loss functions for which the analysis can be shown to be tight. Furthermore,
apart from properties of the loss function, data distribution has also been shown to be an important
factor in generalization performance. This raises the question: is the stability analysis of [18] tight for
smooth functions, and if not, for what kind of loss functions and data distributions can the stability
analysis be improved?

In this paper we first settle open questions regarding tightness of bounds in the data-independent
setting: we show that for general datasets, the existing analysis for convex and strongly-convex loss
functions is tight, but it can be improved for non-convex loss functions. Next, we give novel and improved
data-dependent bounds: we show stability upper bounds for a large class of convex regularized loss
functions, with negligible regularization parameters, and improve existing data-dependent bounds in
the non-convex setting. We hope that our results will initiate further efforts to better understand
the data-dependent setting under non-convex loss functions, leading to an improved understanding of
generalization abilities of deep networks.

1 Introduction

Stochastic gradient descent (SGD) has gained great popularity in solving machine learning optimization
problems [22, 20]. SGD leverages the finite-sum structure of the objective function, avoids the expensive
computation of exact gradients, and thus provides a feasible and efficient optimization solution in large-scale
settings [4]. The convergence and the optimality of SGD have been thoroughly studied [17, 31, 32, 39, 6, 7,
35].

In recent years, new research questions have been raised regarding SGD’s impact on a model’s general-
ization power. The seminal work [18] tackled the problem using the algorithmic stability of SGD, i.e., the
progressive sensitivity of the trained model w.r.t. the replacement of a single (test) datum in the training set.
They showed that the generalization error of an SGD-trained model is upper bounded by a uniform stability
parameter εstab, and relate εstab to the divergence of the two parameter vectors obtained by training on twin
datasets. This stability-based analysis of the generalization gap allows one to bypass classical model capacity
theorems [37, 23] or weight-based complexity theorems [29, 2, 1]. This framework also provides theoretical
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insights into many phenomena observed in practice, e.g., the “train faster, generalize better” phenomenon,
the power of regularization techniques such as weight decay [24], dropout [36], and gradient clipping. Other
works have developed the stability notion with advanced analysis [3, 16, 25] and adapted it into more
sophisticated settings such as Stochastic Gradient Langevin Dynamics and momentum SGD [27, 8, 9, 26].

Despite the promises of this stability-based analysis, it remains open whether the analysis in [18] can
be further improved to reveal the full potential of the stability method, either in general or for specific
data-distributions.

Table 1: Current landscape of stability bounds. [H] indicates results in [18], [K] indicates results in [25] and
* indicates results in this paper. β is the smoothness parameter. ζ is a data-dependent constant defined in
Lemma 6. ε̂stab is on-average stability defined in Def 7. a, b are small constants free of T and n. We only
keep T and n term in the bounds.

SGD Step Size Constant αt = a/β αt = a/(βt) αt = b/t

Loss function Strongly Con-
vex

Convex Non-Convex Non-Convex with ε̂stab

Upper Bound O( 1
n ) [H] O(T/n) [H] O

(
T

a
1+a /n

)
[H]

O
(
T a/n1+a

)
*

O
(
T

ζb
1+ζb /n

)
[K]

O(T ζb/n1+ζb)∗

Lower Bound Ω( 1n )
∗ Ω(T/n)* Ω( Ta

n1+a )* Open

Our results: We provide three kinds of results (see Table 1) that complement each other: a) tight existing
lower bounds that show settings where stability analysis cannot be improved further for general datasets, b)
weaker lower bounds that hint at a possible improvement, along with complementary improved upper bounds,
also for general datasets and c) in settings where existing data-independent analysis cannot be improved, we
derive improved data-dependent bounds. Below we summarize some of the existing open questions in this
line of research, grouped according to properties of the loss function, along with our results addressing these
problems.

1.1 Convex and Strongly Convex Loss

The following are the main results presented in [18] for convex and strongly-convex loss functions (with
certain Lipschitz and smoothness conditions), when optimized using SGD. Here n denotes the size of the
sample, T the number of steps in SGD, and αt the size of the SGD step in the t-th iteration.

1. For convex loss functions, the stability is upper bounded by
∑T

i=1 αt/n. The smaller the number of
iterations T is, the lower this upper bound. Hence “train faster, generalize better".
2. In practice, one often uses constant step size: αt = α. For convex loss functions the upper bound would
then scale linearly in the number of iterations T , which seems to be too pessimistic. [18] show that by adding
a µ

2 ||w||22 regularization term to the convex loss function, where w is the vector of weights and µ ∈ Θ(1) is
a small constant, one gets a much better stability upper bound for constant step size that does not depend
on T , and is O(1/n).

This gives rise to the following questions:

Question 1: Are the upper bounds of [18] for convex and strongly-convex functions tight? That is, can one
construct loss functions that satisfy the hypotheses and exhibit the claimed worst-case stability performance?

We remark that, to the best of our knowledge, the only construction available in the literature is [3].
The authors analyze the stability of a loss function in order to derive lower bounds, but unfortunately the
loss function is not smooth and therefore does not satisfy the hypothesis in [18].
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Question 2: How important is the regularization term in order to make the transition from convex to
strongly-convex; and therefore the improvement from an O(T/n) upper bound to an O(1/n) upper bound
for constant step-size SGD?

We provide the following answers to the above questions:
Result 1: The answer to question 1 is yes, i.e., there exist smooth, convex and strongly-convex loss functions
that achieve the worst-case stability upper bound.
Result 2: (Data-dependent bounds) We derive an upper bound on the stability for linear model loss
function that is independent of T (the number of iterations), even when the weight µ of the regularization
term is very small (of the order of 1/n4), as long as the data satisfies a natural condition related to the
Rayleigh quotient. Sharing a similar spirit with [25], our result suggests that the property of distribution
plays an important role in generalization of SGD, and nice properties of the data can almost replace the
need for regularization.

1.2 Non-Convex Loss

[18] also prove an upper bound for non-convex loss functions, and one wonders again whether the bound is
tight. After only being able to prove a slightly weaker lower bound, we realized that this was because one
can actually improve the analysis in [18]!
Result 3: We provide matching lower and upper bounds on the stability of SGD for non-convex functions,
that are tighter than the upper bound in [18] for a wide and interesting range of values of T (e.g., when
n < T < n10).

In the non-convex setting, the bounds in both [18] and our Result 3 assume a decreasing step-size
αt ∝ 1/t in SGD. However, in practice the constant step-size case is very important. Although it is not
derived formally, the techniques in [18] can be employed to show an exponential upper bound for non-convex
loss functions minimized using SGD with constant-size step, raising the question of the existence of a better
analysis.
Result 4: We show that without any additional assumptions on either the loss function or the data distri-
bution, improving on this analysis is hopeless by providing a lower bound that is exponential in T .
Data-dependent bounds: This naturally raises the question of deriving data-dependent bounds on stability
in the non-convex setting. The work in [25] took the first step in this direction by analyzing SGD using
concept of “average stability” from [5, 34], and deriving upper bounds on it. Finally, we show:
Result 5: The improved analysis for uniform stability of SGD on non-convex and smooth loss functions can
also be applied to improve on the result in [25] and obtain a tighter bound for the average stability of SGD.

In summary, we essentially close the open questions of tightness in data-independent settings for all three
classes of functions, and improve upper bounds in the data-dependent setting. We hope that our results will
initiate further efforts to better understand the data-dependent setting under non-convex loss functions and
analyze the conditions under which one can expect better upper bounds on stability and generalization of
SGD.

2 Related Works

The stability framework suggests that a stable machine learning algorithm results in models with good
generalization performance [21, 5, 13, 34, 10, 11, 33]. It serves as a mechanism for provable learnability when
uniform convergence fails [34, 28]. The concept of uniform stability was introduced in order to derive high
probability bounds on the generalization error [5]. Uniform stability describes the worst case change in the
loss of a model trained on an algorithm when a single data point in the dataset is replaced. In [18], a uniform
stability analysis for iterative algorithms is proposed to analyze SGD, generalizing the one-shot version in [5].
Algorithmic uniform stability is widely used in analyzing the generalization performance of SGD [27, 16, 9].
The worst case leave-one-out type bounds also closely connect uniform stability with differential private
learning [15, 14, 12, 38], where the uniform stability can lead to provable privacy guarantees. While the
upper bounds of algorithmic stability of SGD have been extensively studied, the tightness of those bounds
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remains open. In addition to uniform stability, an average stability of the SGD is studied in [25] where the
authors provide data-dependent upper bounds on stability1. Our analysis framework for deriving improved
bounds in [18] can also be applied to improve the data-dependent stability results in [25].

In [3], a lower bound on the stability of SGD for nonsmooth convex losses is proposed. The lower bound
is designed to illustrate the tightness of the stability analysis without smoothness assumptions. In this work,
we report for the first time lower bounds on the uniform stability of SGD for smooth loss functions.

Our tightness analysis suggests the necessity of additional assumptions for analyzing the generalization
of SGD for deep learning.

3 Preliminaries

In this section we introduce the notion of uniform stability and establish notation. We first introduce the
quantities empirical risk, population risk, and generalization gap. Given an unknown distribution D on
labeled sample space Z = X×R, let S = {z1, ..., zn} denote a set of n samples zi = (xi, yi) drawn i.i.d. from
D. Let w ∈ R

d be the parameter(s) of a model that predicts y given x, and let f be a loss function where
f(w; z) denotes the loss of the model with parameter(s) w on sample z. Let f(w;S) denote the empirical
risk f(w;S) = Ez∼S [f(w; z)] = 1

n

∑n
i=1 f(w; zi) with corresponding population risk Ez∼D[f(w; z)]. The

generalization error of the model with parameter(s) w is defined as the difference between the empirical and
population risks:

|Ez∼D[f(w; z)]− Ez∼S [f(w; z)]|.
Next we introduce stochastic gradient descent (SGD). We follow the setting of [18]: starting with initialization
w0 ∈ R

d, an SGD update step takes the form

wt+1 = wt − αt∇wf(w; zit),

where it is drawn from [n] = {1, 2, · · · , n} uniformly and independently in each round. The analysis of SGD
requires the following crucial properties of the loss function f(·, z) at any fixed point z, viewed solely as a
function of the parameter(s) w:

Definition 1 (L-Lipschitz). A function f(w) is L-Lipschitz if ∀u, v ∈ R
d: |f(u)− f(v)| ≤ L‖u− v‖.

Definition 2 (β-smooth). A function f(w) is β-smooth if ∀u, v ∈ R
d: |∇f(u)−∇f(v)| ≤ β‖u− v‖.

Definition 3 (γ-strongly-convex). A function f(w) is γ-strongly-convex if ∀u, v ∈ R
d:

f(u) > f(v) +∇f(v)⊤[u − v] +
γ

2
‖u− v‖2.

Definition 4 (ρ-Lipschitz Hessian). A loss function f has a ρ-Lispchitz Hessian if ∀u, v ∈ R
d, ‖∇2f(u)−

∇2f(v)‖ ≤ ρ‖u− v‖.

Algorithmic Stability: Next we define the key concept of algorithmic stability, which was introduced
by [5] and adopted by [18]. Informally, an algorithm is stable if its output only varies slightly when we
change a single sample in the input dataset. When this stability is uniform over all datasets differing at a
single point, this leads to an upper bound on the generalization gap. We now flesh this out more formally.

Definition 5. Two sets of samples S, S′ are twin datasets if they differ at a single entry, i.e., S =
{z1, ...zi, ..., zn} and S′ = {z1, ..., z′i, ..., zn}.

Now, let A be a (possibly randomized) algorithm which is parameterized by a sample S of n datapoints
as A(S).

1While it is an interesting open problem to get data-dependent lower bounds by lower bounding the average stability, we

construct lower bounds on the worst-case stability. Thus our lower bounds are general and not data-dependent.
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Definition 6. (Stability) Define the algorithmic stability parameter εstab(A, n) as

inf{ε : sup
z,S,S′

EA|f(A(S); z)− f(A(S′); z)| ≤ ε}.

The expectation EA factors in the possible randomness of A. For such an algorithm, one can define its
expected generalization error as

GE(A, n) := ES,A[Ez∼D[f(A(S); z)]− Ez∼S [f(A(S
′

); z)]].

We also define a data-dependent stability which is an average stability that was introduced by [30, 34] and
was applied for analyzing algorithmic stability of SGD by [25].

Definition 7 (On-average stability). Let D be the data distribution and w0 be the initialized weight. A
randomized algorithm A is ε̂stab(D, w0)-on-average stable if

ES,S′EA[f(AS ; z)− f(AS′ ; z)] ≤ ε̂stab(D, w0),

where S
iid∼ Dm and S

′

is its copy with i-th example replaced by z
iid∼ D.

Throughout this paper, we will write εstab and ε̂stab omitting dependencies that are clear in context.

Stability and generalization: It was proved in [18] that GE(A, n) ≤ εstab(A, n). Furthermore, the
authors observed that an L-Lipschitz condition on the loss function f enforces a uniform upper bound:
supz∈Z |f(w; z) − f(w′; z)| ≤ L‖w − w′‖. This implies that for a Lipschitz loss, the algorithmic stability
εstab(A, n) (and hence the generalization error GE(A, n)) can be bounded by obtaining bounds on ‖w−w′‖.
And in [25] they have similar results in the notion of on-average stability.

Let wt and w
′

t be the parameters obtained by running SGD on twin datasets S, S′ respectively for t
iterations. The divergence quantity is defined as δt := EA||wt − w

′

t||. While [18] reports upper bounds on δt
for different loss functions, e.g., convex and non-convex loss functions, we investigate the tightness of those
bounds.

4 Main Results

In this section we report our main results. We first consider the convex case with constant step size, where we
prove 1) that the existing bounds in [18] are tight, and 2) for linear models, the we report a data-dependent
analysis to show that εstab does not increase with t. Then we move on to the non-convex case, where a) for
decreasing step size we report a lower bound suggests that within a wide range of T , existing bound in [18]
is not tight. We prove a tighter upper bound which matches our lower bound thus, and b) for constant step
size we give loss functions whose divergence δt increases exponentially with t.

4.1 Convex Case

In this section we analyze the stability of SGD when the loss function is convex and smooth. We begin with
a construction which shows that Theorem 3.8 in [18] is tight. Our lower bound analysis will require the
quadratic function

f(w; z) =
1

2
w⊤Aw − yx⊤w, (1)

where A is a d × d matrix. In the construction of lower bounds, we carefully choose A and S so that the
single data point replaced in the twin data set will cause the instability of SGD. In particular, we will choose
A to be a PSD matrix in the convex case in the construction of the lower bound and choose A to be an
indefinite matrix with some strictly negative eigenvalues in the non-convex case. We first begin with the
following lemma which describes how ‖wt − w′

t‖ behaves for functions defined in Equation 1.
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Lemma 1 (Dynamics of divergence). Let f(w;x) = 1
2w

⊤Aw − yx⊤w. Suppose [xi − x′
i]/‖xi − x′

i‖ is an
eigenvector of A, i.e., A[xi − x′

i] = λxx′ [xi − x′
i]. Let ∆t be wt − w′

t, αt ≤ λxx′ be the step size of SGD and

∆0 = 0. If one runs SGD on f(w, S) and f(w, S′) where S, S′ are twin datasets and x′⊤
i xj = 0, x⊤

i xj =
0, ∀j 6= i, then the dynamics of ∆t are given by

EA‖∆t+1‖ = (1− αtλxx′)EA‖∆t‖+
αt

n
‖xi − x′

i‖. (2)

The next lemma recursively applies Lemma 1. We will carefully chose λxx′ in the following lemma for
lower bound constructions in the convex and non-convex cases.

Lemma 2 (Lower bound on divergence). Let f(w;x) = 1
2w

⊤Aw − yx⊤w. Suppose [xi − x′
i]/‖xi − x′

i‖ is
an eigenvector of A where A[xi − x′

i] = λxx′ [xi − x′
i]. Let ∆t be wt − w′

t, αt ≤ λxx′ be the step size of SGD

and ∆0 = 0. If one runs SGD on f(w, S) and f(w, S′) where S, S′ are twin datasets and x′⊤
i xj = 0, x⊤

i xj =
0, ∀j 6= i, then we have

EA‖∆T ‖ ≥ ‖xi − x′
i‖

n

T−1∑

t=1

T−1∏

τ=t+1

αt(1− ατλxx′).

Now we can present our tightness results. We begin with the convex case. The main idea of the
construction is to leverage Equation 1 with specially designed A and S, S′ to ensure that EA‖wT −w′

T ‖ will
diverge. To obtain the L-Lipschitz condition, we trim f(w;S) to mimic the Huber loss function [19] so that
the smoothness is maintained for the piecewise function.

Theorem 1 (Lower bound for convex losses). Let wt, w
′
t be the outputs of SGD on twin datasets S, S′

respectively. Let ∆t = wt − w′
t and αt be the step size of SGD. There exists a function f which is convex,

β-smooth, and L-Lipschitz, and twin datasets S, S′ such that

εstab ≥ L

2n

T∑

t=1

αt. (3)

The convex upper bound in Theorem 3.8 of [18] states that EA‖∆T ‖ ≤ ∑T
i=1

αtL
n , which implies that

the divergence increases throughout training. The lower bound in Theorem 1 suggests the tightness of the
upper bound. However, in practice, this is not commonly observed; the generalization performance does
not deteriorate as the number of training iterations increases. Under the γ-strongly-convex loss function
condition, [18] provides an O( 1n ) uniform stability bound, which fits better with empirical observations on
classical convex losses. In the next theorem, we show the tightness of the O( 1

n ) bound for strongly-convex
losses.

Theorem 2 (Lower bound for strongly-convex losses). Let wt, w
′
t be the outputs of SGD on twin datasets

S, S′ respectively, ∆t be wt − w′
t and α = 1

2β be the step size of SGD. There exists a function f which is

γ-strongly-convex and β-smooth, and twin datasets S, S′ such that the divergence and stability of the two
SGD outputs satisfies

εstab ≥
1

16γn
. (4)

Theorem 2 provides evidence for the tightness of the O( 1
n ) stability bound on SGD. To obtain such

stability, the loss function must satisfy ∇2
wf(w; z) > γId with γ = Ω(1). In general this does not hold, e.g.,

the Hessian of an individual linear regression loss term is xjx
⊤
j which is not strongly-convex. In practice

one can incorporate a strongly-convex regularizer to impose strong convexity, often resulting in improved
generalization performance in practice [34, 5]. However, an O(1) regularization term will bias the loss function
away from achieving sufficiently low empirical risk. This motivates us to investigate a weaker condition than
strong convexity which still can enforce an O

(
1
n

)
stability, without substantially biasing the loss function.

In the remainder of this section, we restrict ourselves to a family of linear model loss functions and
show that the O( 1n ) stability results can be obtained under the framework of average stability. The results of
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Theorem 3 have a dependence on a property of the distribution, and are thus data-dependent. We begin with
the definition of a ξ-bounded Rayleigh quotient. Essentially, a bounded Rayleigh quotient dataset requires
an average linear dependence of Span{x1, ..., xn}. Recall that the i-th sample is of the form zi = (xi, yi).

Definition 8. A set S = {(x1, y1), ..., (xn, yn)} is defined to have ξS- bounded Rayleigh quotient if ∀v ∈
Span{x1, ..., xn}

v⊤(
1

n

n∑

i=1

xix
⊤
i )v ≥ ξSv

⊤v.

A distribution D has a (ξ, n, µ)-inversely bounded Rayleigh quotient if there exists a constant ξ > 0 such
that

ES∼Dn

[
1

ξS + µ

]
≤ 1

ξ + µ
.

Remark 1. The value of ξS is always lower bounded by the minimum nonzero eigenvalue of 1
n

∑
j xjx

⊤
j

which is the empirical covariance matrix of sample size n.

Proposition 1 (Example of distribution with inversely bounded Rayleigh quotient). Suppose that S =
{(x1, y1), . . . , (xn, yn)} is sampled from D with the xj sampled from a d-dimensional spherical Gaussian with
dimension d > 10. Then, D has a (15 , n, µ)-inversely bounded Rayleigh quotient if µ = Ω( 1

n4 ) and n ≥ 2d.

Remark 2. Proposition 1 implies that for data generated in the form of x̃ = UDx where U ∈ R
d×k is a

column-wise orthonormal matrix, D = diag(λ1, ..., λk) ∈ R+
k×k is a diagonal matrix and x ∼ N (0, Ik), the

empirical covariance matrix has a bounded regularized inverse. Thus distribution of x̃ has a ( 1
5λk

, n, 1
n4 )-

inversely bounded Rayleigh quotient.

In our next theorem, we leverage the inversely bounded Rayleigh quotient condition to prove a non-
accumulated on-average stability bound for SGD on linear models with a regularized loss function. We
characterize a linear model by rewriting the loss function f(w; z) in terms of fy(w

⊤x) where fy(·) is a scalar
function depending only on the inner product of the model parameter w and the input feature x.

Theorem 3 (Data-dependent stability of SGD with inversely bounded Rayleigh quotient). Suppose a loss
function f(w; z) is of the form

f(w;S) =
1

n

n∑

j=1

fyj
(w⊤xj) +

µ

2
w⊤w,

where fy(w
⊤x) satisfies (1) |f ′

y(·)| ≤ L , (2) 0 < γ ≤ f ′′
y (·) ≤ β, (3) S, S′ are sampled from D which has

(ξ, n, µ
γ ) -inversely bounded Rayleigh quotient with bounded support on x: ‖x‖ ≤ R and 4) µ = Ω( γ

n4 ). Let

wt and w′
t be the outputs of SGD on S and S′ after t steps, respectively. Let the divergence ∆t = wt − w′

t

and α ≤ µ
2β2R2 be the step size of SGD. Then,

ε̂stab ≤ 16L2R2

ξγn
. (5)

Remark 3. The inversely bounded Rayleigh quotient condition allows SGD to maintain an average stability
guarantee for a family of widely used models with a negligible regularizer and large sample size. The theorem
suggests that if the dataset S is sampled from a ‘good’ distribution, one can obtain an advanced generalization
property which mainly depends on the distribution. The theorem also justifies the common choice of small
values for the weight in the L2-regularizer (also known as weight decay) when training ridge regression type
models.

Example: Linear regression. Linear regression minimizes the quadratic loss on w: f(w, S) =
1
2n

∑
xj∈S(x

⊤
j w − yj)

2. Note that the Hessian of an individual linear regression loss term is xjx
⊤
j which

is not strongly-convex. However, one can rewrite the loss function as fy(w
⊤x) where f ′′

y (·) = 1. Hence
Theorem 3 can be applied to give a data-dependent bound on the stability of SGD in above example.
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4.2 Non-Convex Case

In this section, we construct a non-convex loss function to analyze the tightness of the divergence bound in
[18]. We first focus on the case where SGD applies a step size that decreases with t. Define a hitting time
to be the time t that satisfies wt−1 − w

′

t−1 = 0 and wt − w
′

t 6= 0. We first fix a hitting time t0 and prove
Lemma 3.

Lemma 3 (Divergence of non-convex loss function). There exists a function f which is non-convex and
β-smooth, twin datasets S, S′ and constant a > 0 such that the following holds: if SGD is run using step size
αt =

a
0.99βt for 1 ≤ t < T , and wt, w

′
t are the outputs of SGD on S and S′, respectively, and ∆t = wt − w′

t,
then

∀1 ≤ t0 ≤ T, EA [‖∆T ‖|∆t0 6= 0] ≥ 1

2n

(
T

t0

)a

.

The following theorem follows from Lemma 3 by optimizing over t0. The choice of hitting time t0 plays
an important role in the analysis, which is also illustrated in the “burn-in Lemma” 3.11 in [18].

Theorem 4 (Lower bound for non-convex loss functions). Let wt, w
′
t be the outputs of SGD on twin datasets

S, S′, and ∆t = wt−w′
t. There exists a function f which is non-convex and β-smooth, twin datasets S, S′ and

constants a < 0.1 such that the divergence of SGD after T > n rounds using constant step size αt =
a

0.99βt
satisfies

εstab ≥ T a

6n1+a
. (6)

In the above theorem, the lower bound is derived by choosing t0 = n in Lemma 3. The bound in [18] is of

the form O
(

T
a

1+a

n

)
which does not match the above lower bound. According to the lower bound provided in

Theorem 4, the bound in [18] may not be tight in the region T
a

1+a ≤ n. We investigate this gap and derive
a tighter bound in the next theorem which improves on Theorem 3.12 in [18].

To prove a better upper bound for non-convex losses, we first consider the case of sampling from the
data without replacement, which we call permutation SGD. We need the following lemma, which gives us
the expectation of divergence for a given hitting time tk + 1, which is the timestamp of permutation SGD
first selecting the k-th different sample.

Lemma 4. [18] Assume f is β-smooth and L-Lipschitz. Let wt, w
′
t be outputs of SGD on twin datasets

S, S′ respectively after t iterations and let ∆t = [wt − w′
t] and δt = E‖∆t‖. Running SGD on f(w;S) with

step size αt =
a
βt satisfies the following conditions:

• The SGD update rule is a (1 + αtβ)-expander and 2αtL-bounded.

• EA[‖∆t‖|∆t−1] ≤ (1 + αtβ) ‖∆t−1‖+ 2αtL
n .

• EA[‖∆T ‖|∆tk = 0] ≤
(
T
tk

)a 2L
n .

By taking the expectation over hitting time tk +1 from 0 to n we obtain an upper bound on the stability
for non-convex losses.

Theorem 5 (Permutation SGD). Assume f is β-smooth and L-Lipschitz. Running T > n iterations of
SGD on f(w;S) with step size αt =

a
βt , the stability of SGD satisfies

εstab ≤ 2L2T a

n1+a
. (7)

Dividing our bound by the bound in Theorem 3.12 of [18], we obtain the ratio Ω

(
T

a2

1+a

na

)
. This factor

is less than 1 (and so we improve the upper bound) exactly when T
a

1+a ≤ n. Note that this is potentially
a large range as a is a small and positive constant. We remark that our tight bound is for permutation
SGD. We also prove the bound for uniform sampling SGD which uses sampling with replacement with an
additional log(n) factor, and still achieves a polynomial improvement for a wide range of T .
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Lemma 5. Let wt, w
′
t be outputs of SGD on twin datasets S, S′ after t iterations and let ∆t = wt − w′

t.
Suppose that tk = ctk−1. Then the following conditions hold:

• P[∆tk−1 = 0|∆tk 6= 0] ≤ n
n+tk−1

.

• P[∆tk−1 6= 0|∆tk 6= 0] ≤ 1
c

(
1 + tk

n

)
.

• EA[‖∆T ‖|∆tk 6= 0] ≤ 1
c

(
1 + tk

n

)
EA[‖∆T ‖|∆tk−1

6= 0] +
(

T
tk−1

)a 2L
n .

By applying the last inequality in Lemma 5 recursively, we could bound the case where the hitting time
is not equal to tk. Then we obtain an upper bound for the stability of uniform sampling SGD as follows:

Theorem 6 (Uniform sampling SGD). Assume f is β-smooth and L-Lipschitz. Running T > n iterations
of SGD on f(w;S) with step size αt =

a
βt , the stability of SGD satisfies

εstab ≤ 16 log(n)L2 T a

n1+a
.

In [25], the data-dependent stability of SGD is analyzed, incorporating the dependence on the variance of
SGD curvature and the loss of the initial parameter w0 in analyzing the divergence of SGD. This framework
has applications in transfer learning, as well as implications including optimistic generalization error. We
observe that our analysis in Theorems 5 and 6 can be combined with the data-dependent framework, and we
now report our data-dependent versions of Theorems 5 and 6. The analysis requires the additional bounded
variance assumption for SGD which we now present: In the rest of this section we assume the variance of
SGD satisfies

ES,z

[
‖∇f(wt; z)−∇Ez(f(wt; z))‖2

]
≤ σ2, ∀t.

We borrow the following lemma from [25] which is a data-dependent version of Lemma 4.

Lemma 6. [25] Assume f is β-smooth, L-Lipschitz, and has a ρ-Lipschitz Hessian. With w0 the initial
weight and wt, wt′ the outputs of SGD on twin datasets S, S′ respectively after t iterations, let ∆t = [wt−wt′ ].
Running SGD on f(w;S) with step size αt =

b
t where b ≤ min{ 2

β ,
1

8β2 lnT 2 } has the following properties:

• The SGD update rule is a (1 + αtψt)-expander and αtL-bounded. Here ψt = min{β, κt} where

κt = ‖∇2f(w0; zt)‖2 +
ρ

2
‖

t−1∑

k=1

αk∇f(wS,k; zk)‖+
ρ

2
‖

t−1∑

k=1

αk∇f(wS′ ;k, zk)‖.

• EA[‖∆t+1‖|∆t0 = 0] ≤ {EA[‖∆t‖|∆t0 = 0][1 + (1− 1
n )αtψt]}+ 2αtL

n .

• ES,S′{EA[‖∆T ‖|∆t0 = 0]} ≤ L
n

(
T
t0

)ζb

, where

ζ = Õ(min{β,Ez [‖∇2f(w0; z)‖2] + ∆∗
1,σ2})

∆∗
1,σ2 = ρ(bσ +

√
bEz[f(w0; z)]− inf

w
Ez[f(w; z)].

Similar to the proof of Theorem 5, we apply Lemma 6 to show a data-dependent version of Theorem 5.

Theorem 7 (Data-dependent version of Theorem 5). Assume f is β-smooth, L-Lipschitz, and has a ρ-
Lipschitz Hessian. Let w0 be the initial weight and wt, wt′ be the outputs of SGD on twin datasets S and
S′ respectively after t iterations. Let ∆t = [wt −wt′ ]. Running SGD on f(w;S) with step size αt =

b
t where

b ≤ min{ 2
β ,

1
8β2 lnT 2 } satisfies

ε̂stab ≤ L2T ζb

ζn1+ζb
. (8)
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We could obtain the ratio Ω(T
(ζb)2

1+ζb /(ES,A[f(wT ;S)]
1

1+ζbn)ζb) by dividing our stability bound in the

results of Theorem 4 of [25]. This factor is less than 1 when T
ζb

1+ζb < ES,A[f(wT ;S)]
1

1+ζbn. Since b ≤
min{2/β, 1/(8β2 lnT 2)} and ζ is bounded above by β, and ES,A[f(wT ;S)] is usually Θ(1), within a large
range of T we have a polynomial improvement over Theorem 4 of [25].

The following lemma is a direct application of Lemma 5. It is also an on-average extension of Lemma 5
part 3.

Lemma 7 (Data-dependent version of Lemma 5). Let wt, w
′
t be outputs of SGD on twin datasets S, S′

respectively after t iterations and let ∆t = wt −w′
t. And let b, ζ be as in Lemma 6. Suppose that tk = ctk−1.

Then the following condition holds:

ES,S′EA[‖∆T ‖|∆tk 6= 0] ≤
( T

tk−1

)ζb L

ζn
+ ES,S′EA[‖∆T ‖|∆tk−1

6= 0]
1

c

(
1 +

tk
n

)
. (9)

Based on the above lemma, we can prove an upper bound of on-average stability with uniform sampling
SGD using the same technique as for Theorem 8.

Theorem 8 (Data-dependent version of Theorem 6). Assume f is β-smooth, L-Lipschitz, and has a ρ-
Lipschitz Hessian. Let wt, wt′ be the outputs of SGD on twin datasets S, S′ respectively after t iterations and
let ∆t = [wt − wt′ ] and δt = EA‖∆t‖. And let ζ follow the same definition as in Lemma 6. Running SGD
on f(w;S) with step size αt =

b
t where b < 1 satisfies

ε̂stab ≤ 16 log(n)L2T ζb

ζn1+ζb
. (10)

We conclude this section with the following lower bound on the uniform stability of SGD with constant
stepsize for non-convex loss functions. We show that for non-convex functions satisfying classical conditions
β-smooth, we cannot avoid a pessimistic bound. Thus, in order to analyze the generalization power of SGD
for deep learning loss functions from an optimization perspective, different conditions are necessary.

Theorem 9. Let wt, w
′
t be the outputs of SGD on twin datasets S, S′, and let ∆t = wt − w′

t. There exists
a non-convex, β-smooth function f , twin sets S, S′ and constants a, γ such that the divergence of SGD after
T > n rounds using constant step size α = a

0.99γ satisfies

εstab ≥ exp(aT/2)/n2

5 Conclusion and Future Work

We first provided matching upper and lower data-independent bounds on the stability of SGD for three kinds
of loss functions: convex, strongly-convex, and non-convex, essentially closing the gap in all cases. We then
provided stronger data-dependent generalization bounds for both convex and non-convex loss functions by
analyzing average-stability, showing that nice properties of data can both improve generalization and also
reduce the need for regularization. At least two interesting open questions arise from our work: a) Can one
obtain data-dependent lower bounds on average-stability that show the tightness of existing analysis? b)
Can one devise properties of data-distributions or loss functions (perhaps motivated by deep learning) that
imply better data-dependent stability bounds?
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Appendices

Lemma 1 (Dynamics of divergence). Let f(w;x) = 1
2w

⊤Aw−yx⊤w. Assume yi = y
′

i = 1 for all i. Suppose
[xi − x′

i]/‖xi − x′
i‖ is an eigenvector of A where A[xi − x′

i] = λxx′ [xi − x′
i]. Let ∆t = wt − w′

t, αt ≤ λxx′

be the step size of SGD and ∆0 = 0. Suppose one runs SGD on f(w;S) and f(w;S′) where S, S′ are twin

datasets and x′⊤
i xj = 0, x⊤

i xj = 0, ∀j 6= i, the dynamics of ∆t are given by:

EA‖∆t+1‖ = (1− αtλxx′)EA‖∆t‖+
αt

n
‖xi − x′

i‖ (11)

Proof. In case the different entry zi, zi is not picked, the gradient difference of f(w; z) and f(w; z′) is

∇f(w; z)−∇f(w′; z′) = A[w − w′]

and in case different entry zi, zi is picked,

∇f(w; z)−∇f(w′; z′) = A[w − w′] + [xi − x′
i]

Since ∆0 = 0, one can inductively show ∆t = θt[xi − x′
i] where θt > 0. Since SGD selects zt = z′t with

probability 1− 1
n and a different entry with probability 1

n we have the following dynamic:

∆t+1 =





(I − αtA)[wt − w′
t] with prob. 1− 1

n

(I − αtA)[wt − w′
t] + αt[xi − x′

i] with prob 1/n.

(12)

EA‖∆t+1‖ =EA [‖∆t+1‖|Index i is not selected]P[Index i is not selected]

+ EA [‖∆t+1‖|Index i is selected]P[Index i is selected]

=(1− 1

n
)‖(I − A)[wt − w′

t]‖+
1

n
‖(I −A)[wt − w′

t] + αt[xi − x′
i]‖

=(1− 1

n
)(1− αtλxx′)θt‖xi − x′

i‖+
1

n
[1− αtλxx′θt + αt]‖xi − x′

i‖

=(1− αtλxx′)EA‖∆t‖+
αt

n
‖xi − x′

i‖

Lemma 2 (Lower bound on divergence). Let f(w;x) = 1
2w

⊤Aw− yx⊤w. Assume yi = y
′

i for all i. Suppose
[xi − x′

i]/‖xi − x′
i‖ is an eigenvector of A where A[xi − x′

i] = λxx′ [xi − x′
i]. Let ∆t be wt − w′

t, αt ≤ λxx′

be the step size of SGD and ∆0 = 0. Suppose one runs SGD on f(w;S) and f(w;S′) where S, S′ are twin

datasets and x′⊤
i xj = 0, x⊤

i xj = 0, ∀j 6= i, we have

EA‖∆T ‖ ≥ ‖xi − x′
i‖

n

T−1∑

t=1

T−1∏

τ=t+1

αt(1 − ατλxx′)

Proof. By iterative applying Lemma 1 we have

EA‖∆T ‖ = (1 − αT−1λxx′)EA‖∆T−1‖+
αT−1

n
‖xi − x′

i‖

= ‖[xi − x′
i]‖

1

n

T−1∑

t=1

αt

T−1∏

τ=t+1

(1 − ατλxx′)
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Theorem 1. Let wt, w
′
t be the outputs of SGD on twin datasets S, S′ respectively, ∆t be wt − w′

t and αt be
the step size of SGD initialized with w0 = w′

0 = 0. There exists a function f which is convex and β-smooth,
L-Lipschitz on domain of wt, w

′
t and twin datasets S, S′ such that the divergence of the two SGD outputs

satisfies:

EA‖∆T ‖ ≥ 1

n

T∑

t=1

αt; εstab ≥
L

2n

T∑

t=1

αt (13)

Proof. The sketch of the proof is as follows: we construct a Huber function [19] so that

1. The function is quadratic within certain region to ensure the divergence of SGD.

2. By carefully choosing the function, SGD will never step out the quadratic region.

3. The function is linear outside the region to ensure the global Lipschitzness.

We start with constructing the quadratic part. Let f(w; z) = 1
2w

⊤Aw − yx⊤w. We choose A = UΣKU⊤ ∈
R

d×d to be a symmetric PSD matrix with rank K where K < d. Let U = [u1, . . . , uK ] be an orthorgonal
matrix representing eigenvectors of A and Σ = diag[λ1, . . . , λK ] where λ1 ≥ λ2 ≥ . . . ≥ λK are non-zero
eigenvalues of A. For twin datasets S = {z1, . . . , zn} and S′ = {z1, . . . , z′i, . . . , zn}, define zi = (v, 0.5)
and z′i = (−v, 0.5) where v⊤Av = 0. For the rest of the data, zj = (xj , 1) for any j 6= i where xj are
unit vectors that lie in the column space of A. Let λ1 = 2 and λK = 1. And the SGD update follows
wt+1 = wt − at(Awt − yx) with initialization w0 = 0.

Claim 1: ‖U⊤wt‖ ≤ 1
λK

∀ t
Proof : We will proof this claim by induction. For t = 0, w0 = 0 the conclusion holds.
Suppose for wt the claim holds. We have

‖U⊤wt+1‖ = ‖U⊤[(I − αtA)wt + αtyx]‖
= ‖(I − αtΣ)U

⊤wt + αtyU
⊤x‖

≤ (1− αtλK)‖U⊤wt‖+ αt‖U⊤x‖

≤ 1

λK

Next we will proof that in this bounded region, the weight divergence is lower bounded by the summation
of step size.

Claim 2: Suppose w0 = w′
0 = 0, EA‖wT − w′

T ‖ = 1
n

∑T
t=1 αt.

Proof : Following the proof in Lemma 1 and Lemma 2, we could obtain the result.
By Claim 1 and Claim 2 we know that with zero initialization, SGD is bounded in the region ‖Σ 1

2U⊤w‖ ≤
1√
λK

for all t. And the weight divergence is lower bounded in this area by 1
n

∑
αt.

Last, we will define f(w; z) outside the ‖Σ 1
2U⊤w‖ ≤ 1√

λK
region and ensure the global Lipschitzness. By

define

f(w, z) = 1||Σ
1
2 U⊤w||> 1√

λk

{
1√
λk

(||Σ 1
2U⊤w|| − 1

2
√
λk

)− yx⊤w

}

the global Lipschitzness is ensured by choosing L ≤ 1√
λK

.

So the final function f(w;S) is

f(w;S) =
1

n

n∑

j=1

f(w;xj , yj)

= 1||Σ
1
2 U⊤w||≤ 1√

λk

1

2
w⊤Aw + 1||Σ

1
2 U⊤w||> 1√

λk

1√
λk

(||Σ 1
2U⊤w|| − 1

2
√
λk

)− 1

n

n∑

j=1

yjx
⊤
j w
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Theorem 2 (Lower bound for strongly-convex losses). Let wt, w
′
t be the outputs of SGD on twin datasets

S, S′ respectively, ∆t be wt − w′
t and α = 1

2β be the step size of SGD. There exists a function f which

is γ strongly convex and β-smooth, L-Lipschitz on domain of wt, w
′
t and twin datasets S, S′ such that the

divergence and stability of the two SGD outputs satisfies:

EA‖∆T ‖ ≥ 1

16γn
; εstab ≥

1

16γn
(14)

Proof. Similar to Theorem 1’s, we will construct S, S′ and f(w; z) as follows:

1. Let A be a positive definite matrix with minimum eigenvalue to be γ and maximum eigenvalue bounded
by β. And let the eigenvector corresponding with the minimum eigenvalue to be v and ‖v‖ = 1. Let
γ = β

2 . We have the function f(w; z) = 1
2w

⊤Aw − yx.

2. Define the twin datasets S and S′ to be zj = (xj , 0.5) where x⊤
j v = 0 and ‖xj‖ = 1 for all j 6= i. And

let zi = (v, 0.5) and z′i = (−v, 0.5).

In this setting, we have the similar observation as equation 12 in Lemma 1. We have

∆t+1 =





(I − αtA)[wt − w′
t] with prob. 1− 1

n

(I − αtA)[wt − w′
t] +

αt

2 [xi − x′
i] with prob 1/n.

Then by induction, we could obtain that with w0 = w′
0 = 0, ∆t = vθt, where θt > 0 for t > 0. Let τ be

the first time that xi, x
′
i are picked, we have ∆τ+1 = α

2 [xi − x′
i] = vατ . The iterative step of ∆t+1 and ∆t

implies that ∆t+1 = vθt+1 where θt+1 = (1−αγ)θt with probability (1− 1
n ) and θt+1 = (1−αγ)θt +αt with

probability 1
n .

The above construction then yields:

E1:t+1 [‖∆t+1‖|∆t0 6= 0] =E1:t

[(
1− 1

n

)
‖(I − αA)∆t‖+

1

n
‖(I − αA)∆t + αv‖

]

= ‖v‖E1:t

[(
1− 1

n

)
(1 + αβ)θt +

1

n
((1 + αβ)θt + α)

]

= ‖v‖E1:t

[
[(1− αγ)θt] +

α

n

]
(15)

By literately applying Equation 15, we have EA[‖∆T ‖] = θT ≥ (1−( 3
4 )

T )
γn ≥ 1

16γn .

Next we show that f(wT ; z)− f(w′
T ; z) = z⊤[wT − w′

T ].

In case the i-th sample is picked: w⊤
t+1v = (I − α)v⊤Awt − α

2 and w′
t+1

⊤
v = (I − α)v⊤Aw′

t +
α
2 . In case

i-th sample is not picked w⊤
t+1v = (1 − αγ)w⊤

t v and w′
t+1

⊤
v = (1 − αγ)w′

t
⊤
v. Therefore, by induction one

can show w⊤
t+1v = −w′

t+1
⊤
v.

By the fact that ∆t = θtv, we know w⊤
t+1v

⊥ = w′
t+1

⊤
v⊥. Combing the fact that w⊤

t+1v = −w′
t+1

⊤
v and

w⊤
t+1v

⊥ = w′
t+1

⊤
v⊥ we have w⊤

t Awt = w′
t
⊤
Aw′

t which implies f(wT ; z) − f(w′
T ; z) = z⊤[wT − w′

T ] by the
construction of f(wT ;S). Hence we have

sup
z

EA[f(wT ; z)− f(w′
T ; z)] = EA[wT − w′

T ]
⊤v = θT ≥ 1

16γn

Theorem 3 (Data-dependent stability of SGD with inversely bounded Rayleigh quotient). Suppose a loss
function f(w, z) is of the form

f(w, S) =
1

n

n∑

j=1

fyj
(w⊤xj) +

µ

2
w⊤w,

15



where fy(w
⊤x) satisfies (1) |f ′

y(·)| ≤ L , (2) 0 < γ ≤ f ′′
y (·) ≤ β, (3) S, S′ are sampled from D which is

(ξ, n, µ
γ ) -inversely Rayleigh quotient with a bounded support on x: ‖x‖ ≤ R and 4) µ = Ω( γ

n4 ). Let wt and

w′
t be the outputs of SGD on S and S′ after t steps, respectively. Let the divergence ∆t := wt − w′

t and
α ≤ µ

2β2R2 be the step size of SGD. Then,

ESEA‖∆T ‖ ≤ 4LR

ξγn
, and εstab(D) ≤ 16L2R2

ξγn
.

Proof. For simplicity we omit the dependence of f on yj so that fyj
(w⊤xj) = f(w, zj). Note that the gradient

of the loss function is ∇fyj
(w⊤

t xj) = f ′
yj
(w⊤

t xj)xj and the Hessian is ∇2fyj
(w⊤

t xj) = f ′′
yj
(w⊤

t xj)xjx
⊤
j . The

stochastic gradient step of fyj
(w⊤

t xj) is

wt+1 = wt − αtf
′
yj
(w⊤

t xj)xj .

The dynamics of the divergence can be described as:

ES,1:t+1‖∆t+1‖ = ESE1:t[
1

n

∑

j 6=i

‖∆t − αt[f
′
yj
(w⊤

t xj)− f ′
yj
(w′

t
⊤
xj)]xj‖

+
1

n
‖∆t − αt[f

′
yi
(w⊤

t xi)xi − f ′
y′

i
(w′⊤

t xi)x
′
i]‖]

(16)

Note that [f ′
yj
yj(w

⊤
t xj) − f ′

yj
(w′⊤

t xj)]xj can be rewritten as f ′′
yj
(w

θj
t

⊤
xj)xjx

⊤
j ∆t where w

θj
t = (1 − θj)wt +

θjw
′
t, 0 < θj < 1. Similarly we can also rewrite f ′

yi
(w⊤

t xi)xi − f ′
y′

i
(w′⊤

t xi)x
′
i as

f ′
yi
(w⊤

t xi)xi − f ′
y′

i
(w′⊤

t x′
i)x

′
i =

1

2
{f ′

yi
(w⊤

t xi)xi − f ′
yi
(w′⊤

t xi)xi}+
1

2
{f ′

y′

i
(w⊤

t x
′
i)x

′
i − f ′

y′

i
(w′⊤

t x′
i)x

′
i}

+
1

2
{f ′

yi
(w′⊤

t xi) + f ′
yi
(w⊤

t xi)}xi −
1

2
{f ′

y′

i
(w⊤

t x
′
i) + fy′

i
(w′⊤

t x′
i)}x′

i

=
1

2
f ′′
yi
(wθi

t

⊤
xi)xix

⊤
i ∆t +

1

2
f ′′
y′

i
(wθ′

i

t

⊤
x′
i)x

′
ix

′
i
⊤
∆t

+
1

2
{f ′

yi
(w′⊤

t xi) + f ′
yi
(w⊤

t xi)}xi −
1

2
{f ′

y′

i
(w⊤

t x
′
i) + fy′

i
(w′⊤

t x′
i)}x′

i

(17)

Let Hj = xjx
⊤
j , Hi =

1
2{xix

⊤
i + x′

ix
′
i
⊤} and H = 1

n

∑
j Hj .

Next we show the gradient of term µ
2w

⊤w is bounded. This is because wt+1 = (1−αtµ)wt −αtf
′(w⊤

t )xj

which implies that ‖wt‖ ≤ RL
µ which implies that µ‖w‖ ≤ RL.

By Equation 17, Equation 16 can be written as

ESE1:t


 1

n

∑

j 6=i

‖(1− αtµ)∆t − αt[f
′
yj
(w⊤

t xj)− f ′
yj
(w′

t
⊤
xj)]xj‖+

1

n
‖(1− αtµ)∆t − αt[f

′
yi
(w⊤

t xi)xi − f ′
y′

i
(w′⊤

t xi)x
′
i]‖




≤ ESE1:t

[ 1
n

∑

j 6=i

‖((1− αtµ)I − αtf
′′
yj
(w

θj
t

⊤
xj)xjx

⊤
j )∆t‖

+
1

n
‖((1− αtµ)I −

αt

2
[f ′′

yi
(wθi

t

⊤
xi)xix

⊤
i + f ′′

y′

i
(wθ′

i

t

⊤
x′
i)x

′
ix

′
i
⊤
])∆t‖

]
+

2αtLR

n

≤ ESE1:t
1

n

∑

j

‖((1− αtµ)I − αtγHj)∆t‖
]
+

2αtLR

n

16



≤ ESE1:t

[√ 1

n

∑

j

‖((1− αtµ)I − αtγHj)∆t‖2
]
+

2αtLR

n

= ESE1:t

√
1

n

∑

j

[
(1 − αtµ)2‖∆t‖2 − 2(1− αtµ)αtγ∆⊤

t Hj∆t + α2
t γ

2‖Hj∆t‖2
]
+

2αtLR

n

≤ ESE1:t

√
(1 − αtµ)2‖∆t‖2 − 2αt(1− αtµ)γ∆⊤

t H∆t + α2
tβ

2R2‖∆t‖2 +
2αtLR

n

≤ ESE1:t

√
(1 − αtµ)‖∆t‖2 − 2αt(1 − αtµ)γ∆⊤

t H∆t − αt(µ− αtµ2 − αtβ2R2)‖∆t‖2 +
2αtLR

n

≤ ESE1:t

√
(1 − αtµ)‖∆t‖2 − 2αt(1 − αtµ)γ∆⊤

t H∆t +
2αtLR

n

≤
∗
ESE1:t

√
(1 − αtµ− 2αtγξS)‖∆t‖2 +

2αtLR

n

≤ ESE1:t

[
(1− αt(γξS + µ)

2
)‖∆t‖

]
+

2αtLR

n

≤ ES

[
(1− αt(γξS + µ)

2
)E1:t‖∆t‖+

2αtLR

n

]

where in inequality (∗) we apply the fact that ξS Rayleigh quotient bounded condition implied ∆tH∆t ≥
ξS‖∆t‖2 since ∆t ∈ Span{x1, .., xi, x

′
i, ..., xn}. Fix αt = α we have

ES [‖∆t‖] ≤ ES

[
4LR

n(γξS + µ)

]
≤ 4LR

n(γξ + µ)
≤ 4LR

nγξ

and the theorem follows.

Claim 1. Suppose xt0 = 0, xt+1 = (1 + a
0.99t )xt +

y
t , we have xT ≥ y( Tt0 )

a if a > 0 is a sufficiently small
constant.

Proof. In the proof we use following inequality:

ea ≤ 1 +
a

0.99
≤ e

a
0.99

where a > 0 is a sufficiently small constant.

xT =

T∑

t=t0+1

y

t

T∏

s=t+1

(1 +
a

0.99s
)

≥
T∑

t=t0+1

y

t
exp

(
a

T∑

s=t+1

1

s

)

≥
T∑

t=t0+1

y

t
exp (a log(T/t))

≥ yT a
T∑

t=t0+1

1

t1+a

≥ y

(
T

t0

)a

(18)
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Lemma 3 (Divergence of non-convex loss function). There exists a function f which is non-convex and
β-smooth, twin datasets S, S′ and constant a > 0 such that the following holds: if SGD is run using step size
αt =

a
0.99βt for 1 ≤ t < T , and wt, w

′
t are the outputs of SGD on S and S′, respectively, and ∆t := wt − w′

t,
then:

∀1 ≤ t0 ≤ T, EA [‖∆T ‖|∆t0 6= 0] ≥ 1

2n

(
T

t0

)a

(19)

Proof. Consider the function f(w, z) = 1
2w

⊤Aw − yw⊤x , and choose A to have positive and negative
eigenvalues. We set the minimum eigenvalue of A equal to −β and all other eigenvalues with absolute value
at most β. We select twin datasets for such A as follows. We set all elements in S \ {xi} = S′ \ {x′

i} to lie
in the column space of A. Also, ∀j 6= i, choose xj such that x⊤

j Axj > 0, and choose any yj equals 0.5.

Let v be such that v⊤Av = −β and ‖v‖ = 1. Finally, let xi = v, yi = 0.5, x′
i = −v, y′i = 0.5.

In this setting, one observes that the divergence ∆t follows the following dynamic:

∆t+1 =





(I − αtA)∆t with prob. 1− 1
n

(I − αtA)∆t +
αt

2 [xi − x′
i] with prob 1/n.





.

We first observe that ∆t := wt−w′
t is of the form vθt, where θt > 0. This can be shown using induction. Let

τ be the first time that xi, x
′
i are picked, we have ∆τ+1 = ατ

2 [xi − x′
i] = vατ . The iterative step of ∆t+1 and

∆t implies that ∆t+1 = vθt+1 where θt+1 = (1+αtβ)θt with probability (1− 1
n ) and θt+1 = (1+αtβ)θt +αt

with probability 1
n .

The above construction then yields:

E1:t+1 [‖∆t+1‖|∆t0 6= 0] =E1:t

[(
1− 1

n

)
‖(I − αtA)∆t‖+

1

n
‖(I − αtA)∆t + αtv‖

]

= ‖v‖E1:t

[(
1− 1

n

)
(1 + αtβ)θt +

1

n
((1 + αtβ)θt + αt)

]

= ‖v‖E1:t

[
[(1 + αtβ)θt] +

αt

n

]

= (1 +
a

0.99t
)E1:t[‖∆t‖|∆t0 6= 0] +

αt

n
‖v‖

(20)

Now apply Claim 1, with xt = E[||∆t|||∆t0 6= 0] and y = a||v||
0.99βn . This gives us that xT ≥ a||v||

0.99βn (T/t0)
a =

a
0.99βn (T/t0)

a, since ||v|| = 1.
Finally, the claimed bound follows by setting the minimum eigenvalue β = a

0.99 .

Theorem 4 (Lower bound for non-convex loss functions). Let wt, w
′
t be the outputs of SGD on twin datasets

S, S′, and ∆t := wt − w′
t. There exists a function f which is non-convex and β-smooth, twin datasets S, S′

and constants a < 0.1 such that the divergence of SGD after T rounds (n < T ) using constant step size
αt =

a
0.99βt satisfies:

εstab >
T a

6n1+a

Proof. Follow the same construction of f(w; z) and S, S′ in Lemma 3.
We begin the proof with Lemma 3 plus the idea of a “burn-in" period. We have:

EA‖∆T ‖ = EA[‖wt − w′
t‖|∆n = 0]P[∆n = 0] + EA[‖wt − w′

t‖|∆n 6= 0]P[∆n 6= 0]

≥ EA[‖wt − w′
t‖|∆n 6= 0]P[∆n 6= 0]

=

(
1−

(
1− 1

n

)n
)

T a

2n1+a
‖xi − x′

i‖

>
T a

6n1+a
‖xi − x′

i‖

(21)
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By a similar proof as in Theorem 2 we can show w⊤
t v = −w′

t
⊤
v thus f(wT ; z) − f(w′

T ; z) = z⊤[wT − w′
T ]

and by restricting z ∼ Z where Z is the linear span of eigenvectors of A, we have

sup
z

EA[f(wT ; z)− f(w′
T ; z)] = EA[wT − w′

T ]
⊤v = θt >

T a

6n1+a

Lemma 4. [18] Assume f is β-smooth and L-lipschitz. Let wt, w
′
t be outputs of SGD on twin datasets S, S′

respectively after t iterations and let ∆t := [wt − w′
t] and δt = EA‖∆t‖. Running SGD on f(w;S) with step

size αt =
a
βt satisfies the following conditions:

• The SGD update rule is a (1 + αtβ)-expander and 2αtL-bounded.

• EA[‖∆t‖|∆t−1] ≤ (1 + αtδ) ‖∆t−1‖+ 2αtL
n .

• EA[‖∆T ‖|∆tk = 0] ≤
(
T
tk

)a 2L
n .

Theorem 5 (Permutation). Assume f is β-smooth and L-lipschitz. Running T (T > n) iterations of SGD
on f(w;S) with step size αt =

a
βt , the stability of SGD satisfies:

EA‖∆T ‖ ≤ 2LT a

n1+a
, εstab ≤

2L2T a

n1+a
(22)

Proof. Let H = t represents the event that the first time the SGD pick the different entry is at time t:

EA‖∆T ‖ = EA[‖∆T ‖|H ≤ n]P[H ≤ n] + EA[‖∆T ‖|H > n]P[H > n]︸ ︷︷ ︸
0(permutation)

≤ 1

n

n∑

t=1

EA[‖∆T ‖|H = t]

≤
∗

1

n

n∑

t=1

(
T

t

)a
2L

n

≤ 2LT a

n2

∫ n

t=1

1

ta
dt

≤ 2LT a

n1+a

(23)

The inequality (∗) derived by applying Lemma 4.

Lemma 5. Let wt, w
′
t be outputs of SGD on twin datasets S, S′ respectively after t iterations and let ∆t :=

wt − w′
t. Suppose that tk = ctk−1. Then the following conditions hold:

• P[∆tk−1 = 0|∆tk 6= 0] ≤ n
n+tk−1

.

• P[∆tk−1 6= 0|∆tk 6= 0] ≤ 1
c

(
1 + tk

n

)
.

• EA[‖∆T ‖|∆tk 6= 0] ≤ EA[‖∆T ‖|∆tk−1
6= 0] 1c

(
1 + tk

n

)
+
(

T
tk−1

)a 2L
n .

Proof. In the proof we will use the following inequality with r ≥ 1:

n− r

n
≤ (1− 1

n
)r ≤ n

n+ r

19



i):

P[∆tk−1
= 0|∆tk 6= 0] =

P[∆tk−1 = 0,∆tk 6= 0]

P[∆tk 6= 0]

= (1 − 1/n)tk−1
1− (1 − 1/n)tk−tk−1

1− (1− 1/n)tk
≤ (1 − 1/n)tk−1 ≤ n

n+ tk−1

(24)

ii):

P[∆tk−1 6= 0|∆tk 6= 0] =
P[∆tk 6= 0,∆tk−1

6= 0]

P[∆tk 6= 0]

=
P[∆tk−1

6= 0]

P[∆tk 6= 0]
=

1− (1− 1/n)tk−1

1− (1− 1/n)tk

≤
1− n

n+tk−1

1− n−tk
n

≤ tk−1

tk
(1 +

tk
n
)

=
1

c
(1 +

tk
n
)

(25)

iii): By applying i) and ii) in the decomposition of E[∆T |∆tk 6= 0] we have

EA[‖∆T ‖|∆tk 6= 0] ≤ EA[‖∆T ‖|∆tk−1
6= 0]P[∆tk−1 6= 0|∆tk 6= 0] + EA[‖∆T ‖|∆tk−1

= 0]P[∆tk−1 = 0|∆tk 6= 0]

≤ EA[‖∆T ‖|∆tk−1
6= 0]

tk−1

tk
(1 +

tk
n
) + (

T

tk−1
)a

2L

n+ tk−1

=
1

c
(1 +

tk
n
)EA[‖∆T ‖|∆tk−1

6= 0] + (
T

tk−1
)a

2L

n+ tk−1

(26)
where the last inequality uses the fact that EA[‖∆T ‖|∆tk = 0] ≤

(
T

tk−1

)a 2L
n .

Theorem 6 (Uniformly Sampling SGD). Assume f is β-smooth and L-lipschitz. Running T (T > n)
iterations of SGD on f(w;S) with step size αt =

a
βt , the stability of SGD satisfies:

EA‖∆T ‖ ≤ 16 log(n)L
T a

n1+a
; εstab ≤ 16 log(n)L2 T a

n1+a
(27)

Proof. We first decompose ∆T as follows by selecting tk = n:

EA‖∆T ‖ =EA[‖∆T ‖|∆tk = 0]P[∆tk = 0]︸ ︷︷ ︸
Term 1 ≤ 2LTa

n1+a (Lemma 4)

+EA[‖∆T ‖|∆tk 6= 0]P[∆tk 6= 0]︸ ︷︷ ︸
Term 2 ≤ 11L log(n)Ta

n1+a

(28)

Term 1 is easily bounded by applying Lemma 4 with αt = a
tβ . To bound Term 2, plug in P[∆tk 6= 0] =

1− (1− 1/n)tk ≤ tk
n and recursively apply point (iii) from Lemma 5 by setting ti+1 = cti. We get:
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EA[‖∆T ‖|∆tk 6= 0]P[∆tk 6= 0]

≤ 2L

n

tk
n

k−1∑

i=1

(
T

ti
)a

n

n+ ti

k−1∏

τ=i+1

(1 +
tτ+1

n
)

tτ
tτ+1

≤ 2L

n

k−1∑

i=1

(
T

ti
)a

ti+1

n+ ti
exp(

k−1∑

τ=i+1

tτ+1

n
)

≤ 2cL

n
exp

(
c

c− 1

) k−1∑

i=1

(
T

ti
)a

ti
n+ ti

≤ 2cLT a

n
exp

(
c

c− 1

) k−1∑

i=1

t1−a
i

n

≤ 2L log(n)T a

n1+a

ca

log c
exp

(
c

c− 1

)

≤ 11 log(n)LT a

n1+a

(29)

In the second and third inequality we use the fact that 1+x ≤ exp(x) and ti+1 = cti to get
∏k−1

τ=i+1(1+
tτ+1

n ) ≤
exp(

∑k−1
τ=i+1

tτ+1

n ) ≤ exp
(

c
c−1

)
. The last inequality is derived by picking c = 4 .

Lemma 6. Assume f is β-smooth L-Lipschitz and ρ-Lipschitz Hessian. Let w0 be the initialization weight
and wt, wt′ be the outputs of SGD on twin datasets S and S′ respectively after t iterations. Let ∆t := [wt−wt′ ].
Running SGD on f(w;S) with step size αt =

b
t satisfies b ≤ min{ 2

β ,
1

8β2 lnT 2 } has the following properties:

1. The SGD update rule is a (1 + αtψt)-expander and a αtL-bounded. Here ψt = min{β, κt} where

κt = ‖∇2f(w0, zt)‖2 +
ρ

2
‖

t−1∑

k=1

αk∇f(wS,k, zk)‖+
ρ

2
‖

t−1∑

k=1

αk∇f(wS′ ,k, zk)‖

2. EA[‖∆t+1‖|∆t0 = 0] ≤ [1 + (1− 1/n)αtψt]EA[‖∆t‖|∆t0 = 0] + 2αtL
n .

3. ES{EA[‖∆T ‖|∆t0 = 0]} ≤ L
n

(
T
t0

)ζb

, where

ζ := Õ(min{β,Ez[‖∇2f(w0, z)‖2] + ∆∗
1,σ2})

∆∗
1,σ2 = ρ(bσ +

√
bEz[f(w0, z)]− inf

w
Ez[f(w, z)])

Proof. 1. We could find this results in [25] equation (16).

2. According to equation (19) in [25] we could have this conclusion.

3. In [25]’s proof of theorem part 3, we could obtain this inequality.

Theorem 7 (Data-dependent version of Theorem 5). Assume f is β-smooth L-Lipschitz and ρ-Lipschitz
Hessian. Let w0 be the initialization weight and wt, wt′ be the outputs of SGD on twin datasets S and S′

respectively after t iterations. Let ∆t := [wt − wt′ ] and δt = EA‖∆t‖. Running SGD on f(w;S) with step
size αt =

b
t satisfies b ≤ min{ 2

β ,
1

8β2 lnT 2 } has the following properties:

ES [δT ] ≤
LT ζb

ζn1+ζb
, ε̂stab(D, w0) ≤

L2T ζb

ζn1+ζb
(30)
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Proof.
ES [δT ] = ES [δT |H ≤ n]P[H ≤ n] + ES [δT |H > n]P[H > n]︸ ︷︷ ︸

0(permutation)

≤ 1

n

n∑

t=1

ES [δT |H = t]

≤ 1

n

n∑

t=1

(
T

t

)ζb
L

ζn

≤ LT ζb

n2

∫ n

t=1

1

tζb
dt

≤ LT ζb

ζn1+ζb

(31)

Lemma 7 (Data-dependent version of Lemma 5). Let wt, w
′
t be outputs of SGD on twin datasets S, S′

respectively after t iterations and let ∆t := wt − w′
t. And b, ζ follow the same definition in Lemma 6.

Suppose that tk = ctk−1. Then the following condition holds:

ESEA[‖∆T ‖|∆tk 6= 0] ≤ ESEA[‖∆T ‖|∆tk−1
6= 0]

1

c

(
1 +

tk
n

)
+

( T

tk−1

)ζb L

ζn

Proof.
ESEA[‖∆T ‖|∆tk 6= 0] ≤ ESEA[‖∆T ‖|∆tk−1

6= 0]P[∆tk−1 6= 0|∆tk 6= 0]

+ ESEA[‖∆T ‖|∆tk−1
= 0]P[∆tk−1 = 0|∆tk 6= 0]

≤ ESEA[‖∆T ‖|∆tk−1
6= 0]

tk−1

tk
(1 +

tk
n
) + (

T

tk−1
)ζb

L

ζ(n+ tk−1)

=
1

c
(1 +

tk
n
)ESEA[‖∆T ‖|∆tk−1

6= 0] + (
T

tk−1
)ζb

L

ζ(n+ tk−1)

(32)

The second inequality follows Lemma 6.

Theorem 8 (Data-dependent version of Theorem 6). Assume f is β-smooth L-Lipschitz and ρ-Lipschitz
Hessian. Let wt and wt′ be the outputs of SGD on twin datasets S and S′ respectively after t iterations and
let ∆t := [wt − wt′ ] and δt = EA‖∆t‖. And ζ follows the same definition in Theorem 7. Running SGD on
f(w;S) with step size αt =

b
t satisfies b < 1 has the following properties:

ESEA‖∆T ‖ ≤ 16 log(n)L
T ζb

ζn1+ζb
; ε̂stab(D, w1) ≤ 16 log(n)L2 T ζb

ζn1+ζb
(33)

Proof. We follow the assumption and proof in Theorem 6. To bound the Term 1 in Theorem 6, we directly
apply Lemma 6. To bound Term 2, we recursively apply Lemma 7 and set ti+1 = cti. We have

ESEA[‖∆T ‖|∆tk 6= 0]P[∆tk 6= 0]

≤ L

ζn

tk
n

k−1∑

i=1

(
T

ti
)ζb

n

n+ ti

k−1∏

τ=i+1

(1 +
tτ+1

n
)

tτ
tτ+1

≤ L log(n)T ζb

ζn1+ζb

cζb

log c
exp

(
c

c− 1

)

≤ 11 log(n)LT ζb

ζn1+b

(34)
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By applying c = 4 and following same procedure in proving Theorem 6 we obtain the last inequality. There-
fore, we could bound ESEA[‖∆T ‖] by adding two terms together and get

ESEA‖∆T ‖ ≤ 16 log(n)L
T ζb

ζn1+ζb
(35)

Theorem 9. Let wt, w
′
t be the outputs of SGD on twin datasets S, S′, and let ∆t := wt − w′

t. There exists
a function f which is non-convex and β-smooth, twin sets S, S′ and constants a, ζ such that the divergence
of SGD after T rounds (T > n) using constant step size α = a

0.99ζ satisfies:

εstab ≥
1

n2
eaT/2 (36)

Proof. The proof is similar to Theorem 4. Since ∆t ∈ Span{xi − x′
i}, we have:

EA‖∆t+1‖ ≥ (1− 1

n
)(1 + αtβ)E‖∆t‖+

αt

n
‖xi − xi‖

Suppose t0 is the hitting time when ‖∆t0‖ > 0 and ‖∆t0−1‖ = 0 ,‖∆T ‖ ≥ ‖xi−x′

i‖
3n ea(T−t0)/2.

EA‖∆T ‖ = EA[‖wt − w′
t‖|∆1 = 0]P[∆1 = 0] + EA[‖wt − w′

t‖|∆1 6= 0]P[∆1 6= 0]

≥ EA[‖wt − w′
t‖|∆1 6= 0]P[∆1 6= 0]

=
1

n
(
‖xi − x′

i‖
n

eaT/2)

=
‖xi − x′

i‖
n2

eaT/2.

(37)

By a similar proof as Theorem 4 one can obtain the stability lower bound.
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