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mappings between words in analogy problems minimally 
more complex than the standard A:B::C:D format. Rather 
than each analog consisting of a single word pair, analogs are 
triplets composed of three words (see Figure 1). One type of 
problem involved category triplets, in which the source was 
an ordered set of category names (e.g., clothing : sweater : 

turtleneck), and the target consisted of three scrambled words 
(e.g., dog, animal, beagle) that could also form an ordered set 
of categories. For each problem participants were asked to 
create a valid analogy by using their mouse to drag each of 
the randomly ordered target terms under one of the terms in 
the ordered source triplet. 
 The triplet mapping problem provides a basic paradigm for 
investigating analogical reasoning using simple relational 
structures. When the source and target analogs involve 
multiple pairwise relations of the same type, as in category 
triplets, inherent mapping ambiguities arise. For example, 
animal : dog considered alone could map to either clothing : 

sweater or sweater : turtleneck, because all of these pairs 
instantiate the superordinate-of relation. Lu et al. (2022) 
found that people were able to reliably solve such triplet 
problems; a comparable requirement to integrate multiple 
relations arises in many other relational reasoning paradigms, 
such as transitive inference (Andrews & Halford, 1998; 
Waltz et al., 1999). To resolve ambiguity in local mappings, 
a reliable analogy model must assess relation similarities and 
also integrate across relations based on mapping constraints. 
 Category relations are one of several general types of 
semantic relations that exhibit the logical property of 
transitivity (i.e., for relation r, A r B and B r C jointly imply 
A r C). For any transitive relation, it is possible to form triplet 
mapping problems, the solution of which requires both 
eduction of relations between pairs of concepts and 
integration of multiple relations. An important question is 
whether the solution to mapping problems based on transitive 
relations depends solely on their logical form, or on the 
semantic representations of different relations. If the logical 
form of structures directly determines analogical mapping (as 
predicted, for example, by structure-mapping theory; 
Gentner, 1983), we would expect constant mapping 
performance regardless of semantic relations. In contrast, if 
mapping performance varies across different transitive 
relations, this would suggest that the semantics of relations 
plays an important role in analogical mapping and reasoning. 
 Here we compare human performance on triplet problems 
involving three types of transitive relations: category (e.g., 
bird : parrot : parakeet), linear order (e.g., pebble : rock : 

boulder), and causal (e.g., lightning : fire : smoke).  All of 
these relations constitute formal structures based on transitive 
relations. According to a taxonomy of forms proposed by 
Kemp and Tenenbaum (2008), for categories, the ordering is 
part of a hierarchy; for linear orders, the relation is itself an 
ordering; for causal relations, the ordering is a chain within a 
causal network (Waldmann, 2017). 
 If mapping of ordered relations depends solely on their 
formal property of transitivity, then the three relation types 
would yield mapping problems of approximately the same 

difficulty. On the other hand, if each type of transitive 
relation has its own semantic representation (as vector-based 
models of analogy assume), then mapping difficulty may 
vary across types. To explore this issue, we performed an 
experiment to determine how well people are able to solve 
triplet mapping problems based on the three types of 
transitive relations. In addition, we also compared human 
performance with several recent models of mapping based on 
vector representations of word embeddings and relations.  

Experiment: Mapping Triplets Based on 

Transitive Relations 

Method 
 

Participants A total of 561 participants (Mage = 40.85, SDage 
= 12.44, 288 female, 265 male, 6 gender non-binary, 2 gender 
withheld; located in the United States, United, Kingdom, 
Ireland, South Africa, New Zealand, Canada, and Australia) 
were recruited via Amazon Mechanical Turk and received a 
payment of $1. Of these, 27 participants reported not paying 
attention while completing the task and were therefore 
excluded from analyses, resulting in a final sample of 534. 
The study was approved by the Office of the Human 
Research Protection Program at the University of California, 
Los Angeles, and participants provided informed consent. 
The study was pre-registered online on AsPredicted and can 
be accessed at: https://aspredicted.org/B2M_28Y.       

   
Materials and Procedure Each participant completed three 
verbal analogy problems, each based on pairs of triplets 
(three words) of one of three types. The three triplet types 
instantiated three classes of semantic relations, each formally 
transitive: category member, linear order, and cause-effect. 
The triplets were primarily based on norms of word pairs 
instantiating the three relations, reported by Jurgens, 
Mohammed, Turney and Holyoak (2012); some causal word 
pairs were drawn from stimuli used in a study by Fenker, 
Waldmann, and Holyoak (2005). 

By presenting each participant with just one problem of 

Relation type Triplet examples 

Category 

clothing: sweater: turtleneck 

weapon: gun: rifle 

reptile: lizard: iguana 

Linear order 

second: minute: hour 

past: present: future 

penny: nickel: quarter 

Causal 

exercise: fitness: health 

nuts: allergy: rash 

salt: thirst: drink 

Table 1: Examples of Triplets used in Experiment 





 4 

word embeddings, Word2vec (Mikolov et al., 2013; Zhila et 
al., 2013), and vector representations of word-pair relations 
generated by a model of relation learning, Bayesian Analogy 

with Relational Transformations (BART) (Lu et al., 2019). 
Each of these four sets of relation embeddings was used with 
an exhaustive algorithm for finding the optimal mapping 
between two triplets. In addition, two of the sets of relation 
embeddings (based on Word2vec and BART) were also 
coupled with an algorithm for Probabilistic Analogical 

Mapping (PAM) (Lu et al., 2022), which is more 
computationally efficient than the exhaustive algorithm. 
Thus, a total of six computational models were implemented 
and used to simulate human performance. 
 In exhaustive mapping, for each problem all alternative 
mappings are considered between an ordered source triplet 
(e.g., tool : ax : hatchet) and each of the six possible orderings 
for the entities in a target triplet (e.g., bird : parakeet : parrot, 
parrot : bird : parakeet, etc.). All representations are derived 
from word embeddings: high-dimensional vector 
representations of individual word meanings computed from 
hidden layers of activation in Natural Language Processing 
(NLP) models (implemented as artificial neural networks) 
that have been trained to predict word and/or sentence 
sequences within vast text corpora. For all models based on 
exhaustive mapping, the predicted correct mapping is 
obtained by selecting the one of the six possible mappings 
that minimizes cosine distance. 

 
BERT BERT is an NLP model that takes full sentences as 
input and is equipped with a transformer block, which 
enables the model to generate embeddings of individual 
words in input sentences that are context-dependent: 
sensitive to both the identity and order of other words used in 
that sentence (Devlin et al., 2019). Although it represents 
verbal input as unstructured vectors of activation, BERT 
embeddings have been used to recover structural properties   
of sentences that approximate those posited by theoretical 
linguists (Manning et al., 2020). In the present simulations, 
we examined the extent that such representations could be 
used to find correspondences across instances of transitive 
relations. 

We acquired sentence embeddings from BERT through the 
Transformer Model for MATLAB toolbox1, using the bert-
base model pre-trained on the BooksCorpus (800M words) 
(Zhu et al., 2015) and the English Wikipedia corpus (2,500M 
words) (Devlin et al., 2019). In order to represent each 
ordering of a given triplet, we used each of two methods. The 
first employed a generic sentence across all three triplet 
types, in which words representing each entity within a triplet 
were embedded in the following structure: “A is a related to 
B, which is related to C.” Within this skeletal sentence, we 
replaced the first word in an ordered triplet with A, the second 
word with B, and the third word with C (e.g., the ordering 
tool : ax : hatchet yielded “Tool is related to ax, which is 

 
1 https://github.com/matlab-deep-learning/transformer-models 

related to weapon”).  
The second method for obtaining embeddings from BERT 

employed a specific sentence for each triplet type, specifying 
the particular semantic relation instantiated by that triplet: 
For category triplets: “A is a category of B, which is a 
category of C;” for linear order triplets: “A goes before B, 
which goes before C;” and for causal triplets: “A causes B, 
which causes C.” 

In order to examine BERT’s performance on analogy 
triplet problems, we adopted two methods for extracting 
representations of generic and specific sentences, spanning 
the source analog and the 6 different orders of the target 
analog for each problem. Using the first method, we 
computed the mean of the individual word embeddings 
constituting each input sentence to generate a unified 
sentence embedding. Using the second method, we simply 
extracted the embedding for the [CLS] classification token 
for each input sentence. Because the first method 
outperformed the second, we report results using the first 
method.  

 

Word2vec-diff In contrast to context-dependent word 
embeddings created by BERT, static word embeddings 
generated from earlier language models like Word2vec 
(Mikolov et al., 2013) represent individual word meanings 
using single vectors, regardless of their context of use. In 
order to compute representations of pairwise relations 
between words from Word2vec embeddings, we took a 
generic operation: the vector difference (Word2vec-diff) 
between words in each pair. This difference-vector approach 
to representing relations between individual words has been 
used to solve four-term analogy problems relating similar 
pairs of concepts (Zhila et al., 2013; but see Peterson, Chen, 
& Griffiths, 2020, for evidence of limitations). In order to 
represent the relations instantiated in a triplet A:B:C, we 
concatenated vector differences between vectors representing 

A and B as 𝒇𝑨 − 𝒇𝑩, B and C as 𝒇𝑩 − 𝒇𝑪, and A and C as 𝒇𝑨 −
𝒇𝑪, for source triplets as 𝑺 = [𝒇𝑨 − 𝒇𝑩, 𝒇𝑩 − 𝒇𝑪, 𝒇𝑨 − 𝒇𝑪]. 
Similar operations are used for the target triplet.  
  

BART BART uses supervised learning to acquire explicit 
representations of semantic relations (e.g., X is a part of Y) 
and the individual roles that constitute them (e.g., part and 
whole) from unstructured vector representations of individual 
word meanings (Lu et al., 2019, 2022). For the present 
simulations, BART was trained using Word2vec word 
embeddings for word pairs that instantiate a set of relations. 
The learning model acquires weight distributions over 
selected feature dimensions of input word vectors. These 
weight distributions are used to predict the posterior 
probability that a word pair instantiates a particular relation, 
 After relation learning, BART has acquired role-based 
weight distributions that are diagnostic of individual words 
serving the first role of a given relation (e.g., part in the 
relation X is a part of Y), which constitute explicit 
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representations of those relational roles. To do so, BART 
reapplies Bayesian logistic regression to the element-wise 
product of prior-learned relation weight distributions and 
vectors representing the first word of training example word 
pairs. BART’s learning culminates in explicit representations 
of both full semantic relations and the individual roles that 
constitute them. 
 In order to then represent the relation between any pair of 
words A:B, BART applies its learned relation weight 

distributions to generate a relation vector 𝑅𝑒𝑙$% in which 
each element represents the posterior probability of the word 

pair instantiating each of  learned relations: 𝑅𝑒𝑙$% =
〈𝑃(𝑅𝑒𝑙& = 1|𝑓$, 𝑓%), …𝑃(𝑅𝑒𝑙' = 1|𝑓$, 𝑓%)〉.  
 Ichien et al. (2022) found that applying a power 
transformation to BART’s relation vectors, raising the value 
along each dimension to a power of 5 (i.e., “winners take 
most”) improves their ability to predict human judgments of 
relational similarity. We applied that power transformation to 
relation vectors in the present simulations.	
	 BART uses its learned role weight distributions to generate 

a role vector 𝑅𝑜𝑙𝑒$ populated by posterior probabilities 

representing the extent that the first word 	𝑓$	in a given pair 

of word vectors	 𝑓$	 and	 𝑓% instantiates the corresponding 
learned role:		
𝑅𝑜𝑙𝑒$ = 〈𝑃(𝑅𝑜𝑙𝑒& = 1|𝑓$, 𝑓%), . . . , 𝑃(𝑅𝑜𝑙𝑒' = 	1|𝑓$, 𝑓%)〉. 
In order to represent the full relational meaning of a given 

word pair 𝑅$%, we concatenated 𝑅𝑒𝑙$% and 𝑅𝑜𝑙𝑒$ to form the 

relation representation  𝑅$% = [𝑅𝑒𝑙$% , 𝑅𝑜𝑙𝑒$]. 
 In the present simulations, we combined two datasets of 
human-generated word pairs to train BART. The first dataset 
(Jurgens et al., 2012) consists of at least 20 word pairs (e.g., 
engine : car) instantiating each of 79 semantic relations (e.g., 
X is a part of Y). The second dataset consists of at least 10 
word pairs instantiating each of 56 additional semantic 
relations (Popov, Hristova, & Anders, 2017). Across both 
datasets, BART acquired weight distributions for 135 
semantic relations. Since BART’s learned relation weights 
can be expressed as two separate halves (i.e., those associated 
with the first relational role and those associated with the 
second relational role), BART can automatically generate 
representations of the converse of each learned relation by 
swapping the relation weights associated with each 
individual relational role. Thus, upon learning a 
representation of X is a category for Y, BART can also form 
a representation of its converse, Y is a member of category X, 
effectively doubling its pool of learned relations from 135 to 
270 in total. 

Exhaustive Mapping 

Each of the four sets of relations embeddings described above 
was paired with a mapping algorithm that performs an 
exhaustive search, comparing an ordered source triplet to all 
six possible orders of a target triplet. This exhaustive 
mapping algorithm selects mappings based on which 

ordering of the target 𝑻8 maximizes its overall similarity with 

the ordered source 𝑺: 

𝑇: = argmax
(∈{( ,( ,( ,( ,( ,( }

1 − 𝑐𝑜𝑠	(𝑆, 𝑇)              (1) 

Probabilistic Analogical Mapping (PAM) 

The second mapping algorithm used in our simulations 
implements a graph-matching procedure that maximizes the 
similarity between two semantic relation networks, 
respectively representing the source and target analogs. 
Formally, semantic relation networks are attributed graphs in 

which each node 𝑵 and each edge 𝑬 is assigned attribute 

embeddings 𝑨. Within semantic relation networks, nodes are 
word embeddings for individual concepts and edges are 

semantic relation vectors between words. 𝑨𝒊𝒊 represents the 
semantic attribute of the 𝒊th concept, and 𝑨𝒊𝒋 indicates the 

relation attribute of the edge between the	𝒊th concept and 𝒋th 
concept.  For the present simulations with PAM, we always 

use Word2vec word embeddings for semantic attribute 𝑨𝒊𝒊 
for the nodes in the attributed graph. In one of two versions, 
for edge attributes 𝑨𝒊𝒋 we use Word2vec-diff vectors, 𝒇𝒊 −

𝒇𝒋; in the other version, we use BART vectors 𝑹𝒊𝒋. 

 We represent the source and target analogs as graphs 𝒈 and 

𝒈′ with concept indices 𝒊, 𝒋, and 𝒊′, 𝒋/,	respectively. 𝑴𝒊𝒊/ = 𝟏 

if the 𝒊th concept node in the source analog maps to the 𝒊′th 
concept node in the target analog. The goal of the model is to 

estimate the probabilistic mapping matrix 𝒎, which consists 

of elements denoting the probability that the 𝒊th node in the 

source analog maps to the 𝒊′th node in the target analog, 

𝒎𝒊𝒊/ = 𝑷(𝑴𝒊𝒊 = 𝟏). PAM adopts a Bayesian approach to 

infer a mapping 𝒎 between concepts in the source and target 
analogs that maximize its posterior probability: 

𝑃(𝑚|𝑔, 𝑔/) ∝ 𝑃(𝑔, 𝑔/|𝑚)𝑃(𝑚), 
with the constraints 

∀0 ∑ 𝑚00/ = 1,0/ ∀0/∑ 𝑚00 = 10              (2) 

The likelihood term 𝑃(𝑔, 𝑔/|𝑚) uses mapping probabilities 
as weights to compute likelihood probabilities based on a 
weighted sum of the semantic similarity between mapped 
concepts and of the relation similarity between mapped 
relations. The prior term favors isomorphism, with one-to-
one correspondence in graph matching.  

To implement the inference in Equation 2, we employ a 
graduated assignment algorithm (Gold & Rangarajan, 1996) 
similar to those previously used in matching problems in 
computer vision (Lu & Yuille, 2005; Menke & Yang, 2020). 
The algorithm incorporates soft assignments in graph 
matching, allowing probabilistic mapping values that lie in 
the continuous range [0,1] rather than requiring deterministic 

one-to-one mapping values. 

Comparisons between Model Predictions and 

Human Performance  

Figure 3 presents mapping accuracy of humans and each of 
the six computational models for each triplet type. For 
category triplets, BART with exhaustive search (.75) and 
with the PAM mapping algorithm (.71) achieved human-
level performance (.69). All the other models showed much 





 7 

Acknowledgements 

Preparation of this paper was supported by NSF Grant BCS-
1827374 to K.J.H and IIS-1956441 to H.L.   

References  

Ahn, W., Kim, N. S., Lassaline, M. E., & Dennis, M. J. 
(2000). Causal status as a determinant of feature centrality, 
Cognitive Psychology, 41, 1-55. 

Andrews, G., & Halford, G. S. (1998). Children's ability to 
make transitive inferences: The importance of premise 
integration and structural complexity. Cognitive 

Development, 13(4), 479–513. 
Devlin, J., Chang, M-W., Lee, K., & Toutanova, K. (2019). 

BERT: Pre-training of deep bidirectional transformers for 
language understanding. Proceedings of NAACL-HLT 

2019, 4171-4186. 
Fenker, D. B., Waldmann, M. R., & Holyoak, K. J. (2005). 

Accessing causal relations in semantic memory.  Memory 
& Cognition, 33, 1036-1046. 

Gentner, D. (1983). Structure-mapping: A theoretical 
framework for analogy. Cognitive Science, 7, 155–170.  

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and 
analogical transfer. Cognitive Psychology, 15(1), 1-38. 

Gold, S., & Rangarajan, A. (1996). A graduated assignment 
algorithm for graph matching. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 18(4), 377-
388. https://doi.org/10.1109/34.491619 

Grand, G., Blank, I. A., Pereira, F., & Fedorenko, E. (2022). 
Semantic projection recovers rich human knowledge of 
multiple object features from word embeddings. Nature 

Human Behaviour. doi: 10.1038/s41562-022-01316-8. 
Ichien, N., Lu, H., & Holyoak, K. J. (2022). Predicting 

patterns of similarity among abstract semantic relations. 
Journal of Experimental Psychology: Learning, Memory, 

and Cognition, 48(1), 108-121. 
Jurgens, D. Mohammed, S., Turney, P., & Holyoak, K. J. 

(2012). SemEval-2012 Task 2: Measuring degrees of 
relational similarity. Proceedings of the First Joint 

Converence on Lexical and Computational Semantics 

(*SEM), 356-364. 
Kemp, C., & Tenenbaum, J. B. (2008). The discovery of 

structural form. Proceedings of the National Academy of 

Sciences, USA, 105, 10687-10692. 
Lu, H., Ichien, N., & Holyoak, K. J. (2022). Probabilistic 

analogical mapping with semantic relation networks. 
Psychological Review. 

    https://doi.org/10.1037/rev0000358 
Lu, H., Wu, Y. N., & Holyoak, K. (2019). Emergence of 

analogy from relation learning. Proceedings of the 

National Academy of Sciences, USA, 116, 4176-4181. 
Lu, H., & Yuille, A. (2005). Ideal observers for detecting 

motion: Correspondence noise. In Y. Weiss, B. Scholkopf, 
& J. Platt, Advances in Neural Information Processing 

Systems, 18, 827-834. 
Manning, C. D., Clask, K., Hewitt, J., Khandelwal, U., & 

Levy, O. (2020). Emergent linguistic structure in artificial 
neural networks trained by self-supervision. Proceedings 

of the National Academy of Sciences, USA, 117(48), 
30046-30054. 

Menke, J., & Yang, A. U. (2020). Graduated assignment 
graph matching for realtime matching of image 
wireframes. IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), 5909-5916. 

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., & 
Joulin, A. (2017). Advances in pre-training distributed 
word representations. arXiv preprint: 1712.09405.  

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, 
J. (2013). Distributed representations of words and phrases 
and their compositionality. Advances in Neural 

Information Processing Systems 26, 311-3119. 
Peterson, J. C., Chen, D., & Griffiths, T. L. (2020). 

Parallelograms revisited: Exploring the limitations of 
vector space models for simple analogies. Cognition, 205, 
104440. 

Popov. V., Hristova, P., & Anders, R. (2017). The relational 
luring effect: Retrieval of relational information during 
associative recognition. Journal of Experimental 

Psychology: General, 146(5), 722-745. 
Spearman, C. (1923). The nature of intelligence and the 

principles of cognition. London: Macmillan. 
Sternberg, R.J., & Nigro, G.N. (1980). Developmental 

patterns in the solution of verbal analogies. Child 

Development, 51, 27-38. 
Turney, P. D. (2013). Distributional semantics beyond 

words: Supervised learning of analogy and paraphrase. 
Transactions of the Association for Computational 

Linguistics, 1, 353–366. 
Waldmann, M. R. (2017). Causal reasoning: An introduction. 

In M. R. Waldmann (Ed.), Oxford handbook of causal 

reasoning (pp. 1–9). New York: Oxford University Press. 
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., 

Mishkin, F. S., de Menezes Santos, M., Thomas, C. R., & 
Miller, B. L. (1999). A system for relational reasoning in 
human prefrontal cortex. Psychological Science, 10, 119-
125. 

Yuille, A. L., & Lu, H. (2007). The noisy-logical distribution 
and its application to causal inference. In Advances in 
Neural Information Processing Systems, 20. 

Zhila, A., Yih, W. -t., Meek, C., Zweig, G., & Mikolov, T. 
(2013). Combining heterogenous models for measuring 
relational similarity. Proceedings of the 2013 Conference 

of the North American Chapter of the Association for 

Computational Linguistics: Human Language 

Technologies (pp. 1000-1009). 
Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., 

Torralba, A., & Fidler, S. (2015). Aligning books and 
movies: Towards story-like visual explanations by 
watching movies and reading books. Proceedings of the 
IEEE International Conference on Computer Vision, 19-
27. 

 


