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Abstract

Analogy problems involving multiple ordered relations of the
same type create mapping ambiguity, requiring some
mechanism for relational integration to achieve mapping
accuracy. We address the question of whether the integration
of ordered relations depends on their logical form alone, or on
semantic representations that differ across relation types. We
developed a triplet mapping task that provides a basic paradigm
to investigate analogical reasoning with simple relational
structures. Experimental results showed that mapping
performance differed across orderings based on category,
linear order, and causal relations, providing evidence that each
transitive relation has its own semantic representation. Hence,
human analogical mapping of ordered relations does not
depend solely on their formal property of transitivity. Instead,
human ability to solve mapping problems by integrating
relations relies on the semantics of relation representations.
We also compared human performance to the performance of
several vector-based computational models of analogy. These
models performed above chance but fell short of human
performance for some relations, highlighting the need for
further model development.
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Introduction

The solution of verbal analogy problems (e.g., tool :
hammer :: flower : rose) is a longstanding focus of work in
psychology and educational testing (e.g., Sternberg & Nigro,
1980). More recently, computational models that can solve
verbal analogies based on representations of word meanings
have been developed both in artificial intelligence (Al) (e.g.,
Mikolov et al., 2017; Turney, 2013) and cognitive science
(Lu, Wu, & Holyoak, 2019). A core problem that these
computational models must address is the eduction of
relations (Spearman, 1923): retrieving or computing the
unstated semantic relation between the two words in each pair
(e.g., the relation between the source pair fool and hammer,
and that between the target pair flower and rose). A general
solution is to make use of vector representations
(embeddings) that capture important aspects of the meanings
of individual words, generated by machine learning models
such as Word2vec (Mikolov et al., 2017), which are trained
on large text corpora. The relation between any two words
can then be educed ecither by the generic operation of
computing the difference vector between the paired words, or

by additional learning mechanisms that enable generation of
explicit representations of relations as vectors in a
transformed relation space (Lu et al., 2019; Ichien, Lu, &
Holyoak, 2022). Once relation vectors have been created, an
analogy can be evaluated by assessing the similarity of the
relation vectors for the source and target pairs (e.g., by
computing cosine similarity).

Solving verbal analogies presented in the form 4:B::C:D
does not require mapping of individual concepts, because the
format itself specifies clear correspondences (4> C, B> D).
In order to extend vector-based computational models of
analogy to more complex problems in which each analog
involves multiple relations between more than two concepts
(necessitating a mapping process), the models must be
augmented with some mechanism to integrate multiple
relations so as to identify the optimal mappings between
concepts in source and target analogs. One approach is to
organize vector representations of both concepts and the
relations between them into attributed graphs, in which
concepts correspond to nodes and relations to edges (Lu et
al., 2022). Given a pair of attributed graphs, a probabilistic
graph matching algorithm can then be applied to identify the
optimal mappings between source and target concepts by
maximizing graph similarity under a soft isomorphism
constraint.

Lu et al. (2022) introduced a paradigm for testing the
ability of both humans and computational models to find
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Figure 1: Time-course of an example category triplet
problem.



mappings between words in analogy problems minimally
more complex than the standard A:B::C:D format. Rather
than each analog consisting of a single word pair, analogs are
triplets composed of three words (see Figure 1). One type of
problem involved category triplets, in which the source was
an ordered set of category names (e.g., clothing : sweater :
turtleneck), and the target consisted of three scrambled words
(e.g., dog, animal, beagle) that could also form an ordered set
of categories. For each problem participants were asked to
create a valid analogy by using their mouse to drag each of
the randomly ordered target terms under one of the terms in
the ordered source triplet.

The triplet mapping problem provides a basic paradigm for
investigating analogical reasoning using simple relational
structures. When the source and target analogs involve
multiple pairwise relations of the same type, as in category
triplets, inherent mapping ambiguities arise. For example,
animal : dog considered alone could map to either clothing :
sweater or sweater : turtleneck, because all of these pairs
instantiate the superordinate-of relation. Lu et al. (2022)
found that people were able to reliably solve such triplet
problems; a comparable requirement to integrate multiple
relations arises in many other relational reasoning paradigms,
such as transitive inference (Andrews & Halford, 1998;
Waltz et al., 1999). To resolve ambiguity in local mappings,
a reliable analogy model must assess relation similarities and
also integrate across relations based on mapping constraints.

Category relations are one of several general types of
semantic relations that exhibit the logical property of
transitivity (i.e., for relation r, 4 » B and B r C jointly imply
A r C). For any transitive relation, it is possible to form triplet
mapping problems, the solution of which requires both
eduction of relations between pairs of concepts and
integration of multiple relations. An important question is
whether the solution to mapping problems based on transitive
relations depends solely on their logical form, or on the
semantic representations of different relations. If the logical
form of structures directly determines analogical mapping (as
predicted, for example, by structure-mapping theory;
Gentner, 1983), we would expect constant mapping
performance regardless of semantic relations. In contrast, if
mapping performance varies across different transitive
relations, this would suggest that the semantics of relations
plays an important role in analogical mapping and reasoning.

Here we compare human performance on triplet problems
involving three types of transitive relations: category (e.g.,
bird : parrot : parakeet), linear order (e.g., pebble : rock :
boulder), and causal (e.g., lightning : fire : smoke). All of
these relations constitute formal structures based on transitive
relations. According to a taxonomy of forms proposed by
Kemp and Tenenbaum (2008), for categories, the ordering is
part of a hierarchy; for linear orders, the relation is itself an
ordering; for causal relations, the ordering is a chain within a
causal network (Waldmann, 2017).

If mapping of ordered relations depends solely on their
formal property of transitivity, then the three relation types
would yield mapping problems of approximately the same

difficulty. On the other hand, if each type of transitive
relation has its own semantic representation (as vector-based
models of analogy assume), then mapping difficulty may
vary across types. To explore this issue, we performed an
experiment to determine how well people are able to solve
triplet mapping problems based on the three types of
transitive relations. In addition, we also compared human
performance with several recent models of mapping based on
vector representations of word embeddings and relations.

Experiment: Mapping Triplets Based on
Transitive Relations

Method

Participants A total of 561 participants (Mage = 40.85, SDage
=12.44, 288 female, 265 male, 6 gender non-binary, 2 gender
withheld; located in the United States, United, Kingdom,
Ireland, South Africa, New Zealand, Canada, and Australia)
were recruited via Amazon Mechanical Turk and received a
payment of $1. Of these, 27 participants reported not paying
attention while completing the task and were therefore
excluded from analyses, resulting in a final sample of 534.
The study was approved by the Office of the Human
Research Protection Program at the University of California,
Los Angeles, and participants provided informed consent.
The study was pre-registered online on AsPredicted and can
be accessed at: https://aspredicted.org/B2M 28Y.

Materials and Procedure Each participant completed three
verbal analogy problems, each based on pairs of triplets
(three words) of one of three types. The three triplet types
instantiated three classes of semantic relations, each formally
transitive: category member, linear order, and cause-effect.
The triplets were primarily based on norms of word pairs
instantiating the three relations, reported by Jurgens,
Mohammed, Turney and Holyoak (2012); some causal word
pairs were drawn from stimuli used in a study by Fenker,
Waldmann, and Holyoak (2005).

By presenting each participant with just one problem of

Table 1: Examples of Triplets used in Experiment

Relation type Triplet examples

clothing: sweater: turtleneck
weapon: gun: rifle
reptile: lizard: iguana

Category

second: minute: hour
past: present: future
penny: nickel: quarter

Linear order

exercise: fitness: health
nuts: allergy: rash
salt: thirst: drink

Causal



each type, we minimized any opportunity to learn the general
structure of the problems (as our focus was on initial
analogical mapping, rather than schema induction). For each
problem, an ordered set of three terms (e.g., clothing :
sweater : turtleneck) appeared in a fixed position on the top
of the screen, and a set of three randomly ordered terms (e.g.,
dog, mammal, beagle) appeared on the left (see Figure 1).
Participants were instructed to create a valid analogy by
clicking and dragging each of the randomly-ordered terms to
a box below the corresponding fixed term. Examples of each
type are provided in Table 1. FEach problem was formed
using two triplets randomly drawn from a pool of eight, and
were shown in either order (56 possible pairs for each triplet
type). The presentation order of the three triplet problems was
counterbalanced across participants.

Before working on the three experimental problems,
participants read instructions that explained the triplet
analogy task using two examples, each involving different
relations than the experimental problems. The triplets in the
first example were barber : scissors : hair and bandage :
nurse : wound, and the triplets of the second example were
finger : hand : arm and leaf : branch : tree. The instructions
stated that an analogy is valid if the relations among the terms
in the two triplet sets match each other. Participants needed
to complete the second example correctly in order to begin
the experimental problems.

Results

Human Performance Mapping responses were first coded
as correct only if all three words were mapped correctly in a
problem. As there are six possible orderings of three items,
chance-level performance would be 0.17. Mean mapping
accuracy of the participants was 0.69 for category triplets,
0.77 for linear order triplets, and .48 for causal triplets. A one-
way repeated measures ANOVA, with triplet type (category,
linear order, causal) as a within-subjects factor, revealed a
significant main effect of semantic relation on mapping
accuracy, F(2,1066) = 68.387, p < .001. Using a Bonferroni
correction for multiple comparisons, mapping accuracy was
reliably higher for linear order triplets than for category (p =
.003) or causal triplets (p < .001), and accuracy was higher
for category triplets than causal triplets (p <.001).

We also analyzed mapping accuracy for each of the three
individual role positions within each triplet problem. Role-
based mapping accuracy was coded as 1 if the correct target
word was mapped to its corresponding source word, scored
separately for each of the three words in the target triplet. The
means are shown in Figure 2. We conducted a two-way
ANOVA on mapping accuracy for each role, with triplet type
and role position (word 1, 2, and 3) as within-subject factors.
Mauchly’s test indicated a violation of the sphericity
assumption, ¥*(9) = 85.949, p < .001. Given a violation of
sphericity (€ = 9.27), we report Huyn-Feldt corrected results.
This analysis revealed significant main effects of triplet type,
F(1.97, 1051.035) = 70.00, p < .001, and role position,
F(1.94, 1034.16) = 10.40, p < .001, as well as a significant

Role1 ORole2

—

ERole 3

o o
(=3 o

I

e
0

}

Mapping accuracy
°© o ©o ©°
LoL = i

e

Category Linear order Causal

Figure 2: Mean mapping accuracy for words in each of
three roles, by triplet type. Error bars reflect + 1 SEM.

interaction, F(3.738, 1992.29) = 8.086, p < .001. These
results indicate that specific semantic relations affect not only
overall mapping accuracy, but also accuracy for individual
roles in transitive triplets.

To further examine the impact of semantic relations on
mapping accuracy for individual roles, we conducted nine
pairwise comparisons between role positions within each
triplet type, using a Bonferroni correction for multiple
comparisons. For category triplets, accuracy was reliably
higher for the first role than the second (p < .01) or third (p
< .001), with no significant difference between the second
and third roles. For linear order triplets, accuracy for the
second role was reliably higher than for the first (p =.001) or
third role (p = .006), with no reliable difference between the
first and third roles. For causal triplets, accuracy was reliably
higher for the first role than for the second (p = .016) or third
(p = .009), with no significant difference between the second
and third. Thus for category and causal triplets, accuracy was
highest for the first word; whereas for linear order triplets,
accuracy was highest for the middle word.

Mapping Semantic Relations with Vector-
Based Computational Models

We implemented several vector-based models that are
capable of computing the semantic relation between any two
words, and then integrating multiple relations to identify the
optimal mapping between analogs. Each model simulates
mapping performance on each of the 56 triplet problems used
in the human experiment. For the present simulations,
mappings were considered correct only if all three entities in
the target were correctly mapped to the source (chance
performance = 0.17).

We tested models based on four different methods for
creating vector representations of semantic relations. These
methods were: two versions based on sentence embeddings
generated by a recently-developed model for natural
language processing (NLP), Bidirectional —Encoder
Representations from Transformers (BERT) (Devlin et al.,
2019); a version based on an earlier NLP method to create
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word embeddings, Word2vec (Mikolov et al., 2013; Zhila et
al., 2013), and vector representations of word-pair relations
generated by a model of relation learning, Bayesian Analogy
with Relational Transformations (BART) (Lu et al., 2019).
Each of these four sets of relation embeddings was used with
an exhaustive algorithm for finding the optimal mapping
between two triplets. In addition, two of the sets of relation
embeddings (based on Word2vec and BART) were also
coupled with an algorithm for Probabilistic Analogical
Mapping (PAM) (Lu et al., 2022), which is more
computationally efficient than the exhaustive algorithm.
Thus, a total of six computational models were implemented
and used to simulate human performance.

In exhaustive mapping, for each problem all alternative
mappings are considered between an ordered source triplet
(e.g., tool : ax : hatchet) and each of the six possible orderings
for the entities in a target triplet (e.g., bird : parakeet : parrot,
parrot : bird : parakeet, etc.). All representations are derived
from word embeddings: high-dimensional vector
representations of individual word meanings computed from
hidden layers of activation in Natural Language Processing
(NLP) models (implemented as artificial neural networks)
that have been trained to predict word and/or sentence
sequences within vast text corpora. For all models based on
exhaustive mapping, the predicted correct mapping is
obtained by selecting the one of the six possible mappings
that minimizes cosine distance.

BERT BERT is an NLP model that takes full sentences as
input and is equipped with a transformer block, which
enables the model to generate embeddings of individual
words in input sentences that are context-dependent:
sensitive to both the identity and order of other words used in
that sentence (Devlin et al., 2019). Although it represents
verbal input as unstructured vectors of activation, BERT
embeddings have been used to recover structural properties
of sentences that approximate those posited by theoretical
linguists (Manning et al., 2020). In the present simulations,
we examined the extent that such representations could be
used to find correspondences across instances of transitive
relations.

We acquired sentence embeddings from BERT through the
Transformer Model for MATLAB toolbox!, using the bert-
base model pre-trained on the BooksCorpus (800M words)
(Zhu et al., 2015) and the English Wikipedia corpus (2,500M
words) (Devlin et al., 2019). In order to represent each
ordering of a given triplet, we used each of two methods. The
first employed a generic sentence across all three triplet
types, in which words representing each entity within a triplet
were embedded in the following structure: “A is a related to
B, which is related to C.” Within this skeletal sentence, we
replaced the first word in an ordered triplet with A, the second
word with B, and the third word with C (e.g., the ordering
tool : ax : hatchet yielded “Tool is related to ax, which is

! https://github.com/matlab-deep-learning/transformer-models

related to weapon”).

The second method for obtaining embeddings from BERT
employed a specific sentence for each triplet type, specifying
the particular semantic relation instantiated by that triplet:
For category triplets: “A is a category of B, which is a
category of C;” for linear order triplets: “A goes before B,
which goes before C;” and for causal triplets: “A causes B,
which causes C.”

In order to examine BERT’s performance on analogy
triplet problems, we adopted two methods for extracting
representations of generic and specific sentences, spanning
the source analog and the 6 different orders of the target
analog for each problem. Using the first method, we
computed the mean of the individual word embeddings
constituting each input sentence to generate a unified
sentence embedding. Using the second method, we simply
extracted the embedding for the [CLS] classification token
for each input sentence. Because the first method
outperformed the second, we report results using the first
method.

Word2vec-diff In contrast to context-dependent word
embeddings created by BERT, static word embeddings
generated from earlier language models like Word2vec
(Mikolov et al., 2013) represent individual word meanings
using single vectors, regardless of their context of use. In
order to compute representations of pairwise relations
between words from Word2vec embeddings, we took a
generic operation: the vector difference (Word2vec-diff)
between words in each pair. This difference-vector approach
to representing relations between individual words has been
used to solve four-term analogy problems relating similar
pairs of concepts (Zhila et al., 2013; but see Peterson, Chen,
& Griffiths, 2020, for evidence of limitations). In order to
represent the relations instantiated in a triplet 4:8:C, we
concatenated vector differences between vectors representing
AandBasf,— fg,BandCas fg — fc,and4and Cas f, —

fc, for source triplets as S = [fa—fe. fe — fc fa— fcl-
Similar operations are used for the target triplet.

BART BART uses supervised learning to acquire explicit
representations of semantic relations (e.g., X is a part of Y)
and the individual roles that constitute them (e.g., part and
whole) from unstructured vector representations of individual
word meanings (Lu et al., 2019, 2022). For the present
simulations, BART was trained using Word2vec word
embeddings for word pairs that instantiate a set of relations.
The learning model acquires weight distributions over
selected feature dimensions of input word vectors. These
weight distributions are used to predict the posterior
probability that a word pair instantiates a particular relation,

After relation learning, BART has acquired role-based
weight distributions that are diagnostic of individual words
serving the first role of a given relation (e.g., part in the
relation X is a part of Y), which constitute explicit



representations of those relational roles. To do so, BART
reapplies Bayesian logistic regression to the element-wise
product of prior-learned relation weight distributions and
vectors representing the first word of training example word
pairs. BART’s learning culminates in explicit representations
of both full semantic relations and the individual roles that
constitute them.

In order to then represent the relation between any pair of
words A:B, BART applies its learned relation weight
distributions to generate a relation vector Relyz in which
each element represents the posterior probability of the word
pair instantiating each of learned relations: Rel,p =
(P(Rely = 1lfy, fp), .. P(Rely = 1Ify, f3)).

Ichien et al. (2022) found that applying a power
transformation to BART’s relation vectors, raising the value
along each dimension to a power of 5 (i.e., “winners take
most”) improves their ability to predict human judgments of
relational similarity. We applied that power transformation to
relation vectors in the present simulations.

BART uses its learned role weight distributions to generate
a role vector Role, populated by posterior probabilities
representing the extent that the first word f, in a given pair
of word vectors f, and fp instantiates the corresponding
learned role:

Role, = (P(Role; = 1|f4, f5), --., P(Role, = 1|f4, f5))-
In order to represent the full relational meaning of a given
word pair Rz, we concatenated Rel,; and Role, to form the
relation representation R, = [Relyg, Role,].

In the present simulations, we combined two datasets of
human-generated word pairs to train BART. The first dataset
(Jurgens et al., 2012) consists of at least 20 word pairs (e.g.,
engine : car) instantiating each of 79 semantic relations (e.g.,
X is a part of Y). The second dataset consists of at least 10
word pairs instantiating each of 56 additional semantic
relations (Popov, Hristova, & Anders, 2017). Across both
datasets, BART acquired weight distributions for 135
semantic relations. Since BART’s learned relation weights
can be expressed as two separate halves (i.e., those associated
with the first relational role and those associated with the
second relational role), BART can automatically generate
representations of the converse of each learned relation by
swapping the relation weights associated with each
individual relational role. Thus, upon learning a
representation of X is a category for Y, BART can also form
a representation of its converse, Y is a member of category X,
effectively doubling its pool of learned relations from 135 to
270 in total.

Exhaustive Mapping

Each of the four sets of relations embeddings described above
was paired with a mapping algorithm that performs an
exhaustive search, comparing an ordered source triplet to all
six possible orders of a target triplet. This exhaustive
mapping algorithm selects mappings based on which
ordering of the target T maximizes its overall similarity with

the ordered source S

T = argmax
T€{T1,T2,13,T4,T5,T6}

1—cos(S,T) (1

Probabilistic Analogical Mapping (PAM)

The second mapping algorithm used in our simulations
implements a graph-matching procedure that maximizes the
similarity between two semantic relation networks,
respectively representing the source and target analogs.
Formally, semantic relation networks are attributed graphs in
which each node N and each edge E is assigned attribute
embeddings A. Within semantic relation networks, nodes are
word embeddings for individual concepts and edges are
semantic relation vectors between words. A4;; represents the
semantic attribute of the ith concept, and A;; indicates the
relation attribute of the edge between the ith concept and jth
concept. For the present simulations with PAM, we always
use Word2vec word embeddings for semantic attribute A;;
for the nodes in the attributed graph. In one of two versions,
for edge attributes A;; we use Word2vec-diff vectors, f; —
fj; in the other version, we use BART vectors R;;.

We represent the source and target analogs as graphs g and
g' with concept indices i, j, and i', j', respectively. M;;, = 1
if the ith concept node in the source analog maps to the i'th
concept node in the target analog. The goal of the model is to
estimate the probabilistic mapping matrix m, which consists
of elements denoting the probability that the ith node in the
source analog maps to the i'th node in the target analog,
m;;, = P(M;y = 1). PAM adopts a Bayesian approach to
infer a mapping m between concepts in the source and target
analogs that maximize its posterior probability:

P(m|g,g") « P(g,9'lm)P(m),
with the constraints

VXM =1LV, Xymy =1 ()
The likelihood term P(g, g’'|m) uses mapping probabilities
as weights to compute likelihood probabilities based on a
weighted sum of the semantic similarity between mapped
concepts and of the relation similarity between mapped
relations. The prior term favors isomorphism, with one-to-
one correspondence in graph matching.

To implement the inference in Equation 2, we employ a
graduated assignment algorithm (Gold & Rangarajan, 1996)
similar to those previously used in matching problems in
computer vision (Lu & Yuille, 2005; Menke & Yang, 2020).
The algorithm incorporates soft assignments in graph
matching, allowing probabilistic mapping values that lie in
the continuous range [0,1] rather than requiring deterministic

one-to-one mapping values.

Comparisons between Model Predictions and
Human Performance

Figure 3 presents mapping accuracy of humans and each of
the six computational models for each triplet type. For
category triplets, BART with exhaustive search (.75) and
with the PAM mapping algorithm (.71) achieved human-
level performance (.69). All the other models showed much
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Figure 3: Overall mapping accuracy for models (grey bars) and human reasoners (blue bars) for category (light shade),
linear order (middle shade), and causal (dark shade) triplet problems. For models, upper x-axis labels refer to alternative
relation representations, and lower x-axis labels refer to alternative mapping algorithms. Dotted line marks chance

performance (.17). Errors bars reflect & 1 SEM.

worse mapping accuracy for category triplet problems
(between .23 and .41). For humans, accuracy on linear order
triplets was the highest among the three triplet types (.77);
however, all models performed poorly on linear order
problems. The highest accuracy on linear order triplets was
achieved by exhaustive BART (.52) followed by BART
coupled with PAM (.39). The Word2vec-diff models reached
accuracy around 0.3, and the BERT models showed chance-
level performance. For causal triplets, human performance
was much lower than for either of the other two types (.48).
The models performed even worse, with only BART coupled
with PAM achieving above-chance accuracy (.29).

Discussion

Our results show that human performance on mapping
problems involving transitive relations differs substantially
between different semantic relations: most accurate for linear
order relations, followed by category relations, and least
accurate for causal relations. These systematic differences
among semantic relation types imply that each type of
transitive relation has its own semantic representation, and
that mapping is influenced by these semantic representations,
rather than being based solely on the formal property of
transitivity.

One possible explanation for the experimental results is
that people have prior schematic knowledge about linear
orderings based on magnitude, and such existing schemas are
not as easily retrievable for category and causal problems.
Future research could explore how people might improve at
these problems by learning schemas for the semantic
relations (e.g., by completing multiple problems; Gick &
Holyoak, 1983).

The differences in mapping performance across relation
types also provide insights into how humans represent and

map each type of semantic relation in analogical reasoning.
In particular, the three types varied in accuracy across the
three role positions. For category problems, the first word
was mapped most accurately, replicating the pattern reported
by Lu et al. (2022). This finding suggests that the most
abstract category (superordinate) is the most distinctive of the
three. For causal triplets, accuracy was also highest for the
first role, consistent with evidence that the root cause in a
causal chain is most distinctive (Ahn, Kim, Lassaline, &
Dennis, 2000). In contrast, for linear order triplets the middle
role was most accurate. This pattern implies that the most
common error was a reversal of the order between the source
and target (i.e., the first and third roles were reversed, while
the middle role was correct because it remains the same
regardless of the direction of the ordering).

Vector-based models of relation representations are
capable of educing the relation between word pairs; and when
coupled with a mapping algorithm, such models can in
principle compute mappings that require integration of
multiple relations, as is required for our triplet analogies.
However, none of the six specific models we implemented
proved particularly impressive in capturing the pattern of
human performance for all relations examined in the study. It
is possible that humans adopt different representation formats
for different types of relation representations. For example, a
linear ordering could be identified by projecting word vectors
onto a magnitude dimension in a semantic space (Grand et
al., 2022). Causal relations may be represented using special
integration functions (Yuille & Lu, 2007) and learned
through interventions. Hence, our comparison of model and
human performance highlights the need to develop more
sophisticated relation representations (beyond vector-based
models) that can support analogical reasoning.
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