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Abstract
Can world knowledge learned by large language models (LLMs) be used to act in
interactive environments? In this paper, we investigate the possibility of grounding
high-level tasks, expressed in natural language (e.g. “make breakfast”), to a chosen
set of actionable steps (e.g. “open fridge”). While prior work focused on learning
from explicit step-by-step examples of how to act, we surprisingly find that if
pre-trained LMs are large enough and prompted appropriately, they can effectively
decompose high-level tasks into mid-level plans without any further training. How-
ever, the plans produced naively by LLMs often cannot map precisely to admissible
actions. We propose a procedure that conditions on existing demonstrations and
semantically translates the plans to admissible actions. Our evaluation in the recent
VirtualHome environment shows that the resulting method substantially improves
executability over the LLM baseline. The conducted human evaluation reveals a
trade-off between executability and correctness but shows a promising sign towards
extracting actionable knowledge from language models.
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Figure 1: Executability v.s. semantic correctness of generated plans (left), sample plans by different models
(right), and example environment execution (bottom). Large models can produce action plans indistinguishable
from those by humans, but frequently are not executable in the environment. Using our techniques, we can
significantly improve executability, albeit at the cost of correctness. More samples can be found in Appendix A.5.

*Equal advising. Correspondence to Wenlong Huang <wenlong.huang@berkeley.edu>.
Code and videos at https://huangwl18.github.io/language-planner
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1 Introduction

Large language models (LLMs) have made impressive advances in language generation and under-
standing in recent years [10, 39, 40, 5]. See [4] for a recent summary of their capabilities and impacts.
Being trained on large corpora of human-produced language, these models are thought to contain a
lot of information about the world [42, 23, 3] - albeit in linguistic form.

We ask whether we can use such knowledge contained in LLMs not just for linguistic tasks, but to
make goal-driven decisions that can be enacted in interactive, embodied environments. But we are
not simply interested in whether we can train models on a dataset of demonstrations collected for
some specific environment – we are instead interested in whether LLMs already contain information
necessary to accomplish goals without any additional training.

More specifically, we ask whether world knowledge about how to perform high-level tasks (such as
“make breakfast”) can be expanded to a series of groundable actions (such as “open fridge”, “grab
milk”, “close fridge”, etc) that can be executed in the environment. For our investigation, we use
the recently proposed VirtualHome environment [38]. It can simulate a large variety of realistic
human activities in a household environment and supports the ability to perform them via embodied
actions defined with a verb-object syntax. However, due to the open-ended nature of the tasks,
it is difficult to autonomously evaluate their success. We rely on human evaluation (conducted on
Mechanical Turk) to decide whether sequences of actions meaningfully accomplish posed tasks.

We find that large GPT-3 [5] and Codex [7] models, when prompted with a single fixed example of a
task description and its associated sequence of actions, can produce very plausible action plans for
the task we’re interested in. Such completions reflect the information already stored in the model
– no model fine-tuning is involved. Additionally, we only observe this effect in the larger models.
Unfortunately, despite their semantic correctness, the produced action plans are often not executable
in the environment. Produced actions may not map precisely to admissible actions, or may contain
various linguistic ambiguities.

We propose several tools to improve executability of the model’s outputs. First, we enumerate all
admissible actions and map the model’s output phrases to the most semantically-similar admissible
action (we use similarity measure between sentence embeddings produced by a RoBERTa model [27]
in this work, but other choices are possible). Second, we use the model to autoregressively generate
actions in a plan by conditioning past actions that have been made admissible via the technique above.
Such on-the-fly correction can keep generation anchored to admissible actions. Third, we provide
weak supervision to the model by prompting the model with a known task example similar to the
query task. This is somewhat reminiscent of prompt tuning approaches but does not require access to
gradients or internals of the model.

Using the above tools to bias model generation, we find that we improve executability of action plans
from 18% to 79% (see Figure 1) without any invasive modifications to model parameters or any extra
gradient or internal information beyond what is returned from the model’s forward pass. This is
advantageous because it does not require any modifications to the model training procedure and can
fit within existing model serving pipelines. However, we do find there to be some drop in correctness
of the action sequences generated with the above tools (as judged by humans), indicating a promising
step, but requiring more research on the topic.

To summarize, our paper’s contributions are as follows:

• We show that without any training, large language models can be prompted to generate
plausible goal-driven action plans, but such plans are frequently not executable in interactive
environments.

• We propose several tools to improve executability of the model generation without invasive
probing or modifications to the model.

• We conduct a human evaluation of multiple techniques and models and report on the
trade-offs between executability and semantic correctness.
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Task: Shave
Step 1: Grab razor
Step 2: Wash razor
Step 3: Switch on razor

Task: Apply lotion
Step 1: Pour lotion into right hand
Step 2:

Task: Shave
Step 1: Grab razor
Step 2: Switch on razor
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Task: Apply lotion
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Pre-Trained
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Frozen

Step 1: Squeeze out a glob of lotion Step 1: Pour lotion into right hand
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Pre-Trained Causal LLM
Frozen

Zero-Shot Planning via Causal LLM Translation to Admissible Action
Step-By-Step

Autoregressive Generation

Prompt Prompt

Figure 2: We investigate the possibility of extracting actionable knowledge from pre-trained large language
models (LLMs). We first show surprising finding that pre-trained causal LLMs can decompose high-level
tasks into sensible mid-level action plans (left). To make the plans executable, we propose to translate each step
into admissible action via another pre-trained masked LLM (middle). The translated action is appended to the
prompt used for generating the remaining steps (right). All models are kept frozen without additional training.

2 Evaluation Framework

Simulating open-ended tasks that resemble naturalistic human activities requires an environment to
support a rich set of diverse interactions, rendering most existing embodied environments unsuitable
for our investigation. One exception is VirtualHome [38], which we evaluate on as it models complex
human activities, though only in a household setting. To measure correctness of the generated action
plans, for which evaluating computationally is inherently difficult for these open-ended tasks, we
conduct a human evaluation similar to Puig et al. [38]. We note that since no further training is
involved throughout our investigations, the observations and findings presented in this paper should
also translate to similar embodied environments, likely even beyond the household domain.

2.1 Evaluated Environment: VirtualHome

Preliminaries In VirtualHome, activities are expressed as programs. Each program consists of a
sequence of textual action steps, where each step is written as: [action] hargi(idx). Each
action refers to one of the 42 atomic actions supported in VirtualHome, such as “walk” and “open”.
Full list of atomic actions can be found in Appendix A.4. Different actions take in different numbers
of arg, such as “bedroom” and “fridge”, that are necessary for specifying an interaction. Associated
with each arg is a unique id specifying the corresponding node in the environment graph, in case
of multiple instances of the same object class are present in the graph. For the sake of simplicity,
we omit the id in the remaining discussions of this paper and allow automatic assignment by the
environment. An example program is shown below for the task “Relax on sofa”:

[WALK] hliving_roomi(1)
[WALK] htelevisioni(1)
[FIND] htelevisioni(1)
[SWITCHON] htelevisioni(1)
[FIND] hsofai(1)
[SIT] hsofai(1)
[TURNTO] htelevisioni(1)
[WATCH] htelevisioni(1)

Evaluated Tasks We use the ActivityPrograms knowledge base collected by Puig et al. [38] for
evaluation. It contains 2821 different entries annotated by Amazon Mechanical Turk (MTurk) workers.
Each entry contains 1) a high-level task name (e.g. “Watch TV”), 2) detailed instructions expressed
in natural language to complete the task (e.g. “Sit on my couch directly opposite my TV, switch on
my TV with the remote control and watch”), and 3) an executable program containing all necessary
steps for a robotic agent (example above). We omit the use of detailed instructions (2) as we desire
direct extraction of executable programs (3) from only high-level task names (1). There are 292
distinct high-level tasks in the knowledge base, from which we randomly sample 88 held-out tasks
for evaluation. The remaining 204 tasks are used as demonstration set from which we are allowed
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Algorithm 1: Generating Action Plans from Pre-Trained Language Models
Notation Summary:
LMP : text completion language model (also referred as Planning LM)
LMT : text embedding language model (also referred as Translation LM)
{(Ti, Ei)}Ni=1: demonstration set, where T is task name and E is example plan for T
C: cosine similarity function
P : mean token log probability under LMP

Input: query task name Q, e.g. “make breakfast”
Output: action plan consisting of admissible env actions, e.g. “open fridge”

Extract most similar example (T ⇤, E⇤) whose T ⇤ maximizes C(LMT (T ), LMT (Q))
Initialize prompt with (T ⇤ + E⇤ +Q)
while max step is not reached do

Sample LMP with current prompt to obtain k single-step action phrases
for each sample â and each admissible env action ae do

Calculate ranking score by C(LMT (â), LMT (ae)) + � · P (â)
end for
Append highest-scoring env action a⇤e to prompt
Append a⇤e to output
if > 50% samples are 0-length or highest score < ✏ then

break
end if

end while

to select as example(s) for prompting language models, or in the case of supervised fine-tuning
baselines, they are used to fine-tune pre-trained language models.

2.2 Metrics

A program that commands the agent to wander around in a household environment is highly executable
but is mostly not correct. On the other hand, a program composed of natural language instructions
annotated by humans is likely correct but cannot be executed, because its format is ambiguous and
may lack necessary common-sense actions (e.g. fridge must be opened before an agent can grab
things from it). We thus consider two axes for evaluation: executability and correctness.

Executability Executability measures whether an action plan can be correctly parsed and satisfies

the common-sense constraints of the environment. To be correctly parsed, an action plan must
be syntactically correct and contain only allowed actions and recognizable objects. To satisfy the
common-sense constraints, each action step must not violate the set of its pre-conditions (e.g. the
agent cannot grab milk from the fridge before opening it) and post-conditions (e.g. the state of the
fridge changes from “closed” to “open” after the agent opens it). We report the average executability
across all 88 tasks and all 7 VirtualHome scenes.

Correctness Unlike most embodied environments where the completion of a task can be easily
judged, the ambiguous and multimodal nature of natural language task specification makes it impracti-
cal to obtain a gold-standard measurement of correctness1. Therefore, we conduct human evaluations
for the main methods. For the remaining analysis, we rely on a match-based metric that measures
how similar a generated program is to human annotations. Specifically, we follow Puig et al. [38]
and calculate the longest common subsequence (LCS) between two programs, normalized by the
maximum length of the two. In the presence of multiple human-written programs for a single task,
we take the maximum LCS across them. However, we note that the majority of the tasks only have
one human annotation, but there are often many plausible ways to complete a certain task, making

1One approach could be measuring the similarity of the final environment state produced by executing
predicted and human-written programs, but initial state must be kept fixed for each task, which are not appropriate
for many tasks due to their open-ended nature.
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this metric imperfect at evaluation program correctness2. Although correlation between the two is
shown by Puig et al. [38], we consider it only as a proxy metric in replacement of unscalable human
evaluation.

3 Method

In this section, we investigate the possibility of extracting actionable knowledge from pre-trained
language models without further training. We first give an overview of the common approach to query
large language models (LLMs) and how it may be used for embodied agents in Section 3.1. Then we
describe an inference-time procedure that addresses several deficiencies of the LLM baseline and
offers better executability in embodied environments. We break down the proposed procedure into
three individual components, each discussed in Section 3.2, 3.3, 3.4. Pseudo-code is in Algorithm 1.

Since LMs excel at dealing with natural language text instead of the specific format required by
VirtualHome as described in Section 2.1, we only expose natural language text to LMs. To do
this, we define a bi-directional mapping for each atomic action that converts between the natu-
ral language format and the program format. For instance, “walk to living room” is mapped to
[WALK] hliving_roomi(1). Full list of the mappings is in Appendix A.4.

3.1 Querying LLMs for Action Plans

Previous works have shown that large language models pre-trained on a colossal amount of data would
internalize rich world knowledge that can be probed to perform various downstream tasks [39, 5].
Notably, autoregressive LLMs can even perform in-context learning, an ability to solve tasks using
only contextual information without gradient updates [5]. Contextual information is given as part
of the input prompt and LMs are asked to complete the remaining text. It often consists of natural
language instructions and/or a number of examples containing the desired input/output pairs.

We adopt the same approach to query LLMs to generate action plans for high-level tasks. Specifically,
we prepend one example high-level task and its annotated action plan from the demonstration set to
the query task, as shown in Figure 2. To obtain text completion results, we sample from autoregressive
LLM using temperature sampling and nucleus sampling [18]. We refer to this LM as Planning LM
and the approach using this LM for plan generation as Vanilla hLMi, where hLMi is replaced by
specific language model such as GPT-3.

To improve the generation quality, we follow Chen et al. [7] to sample multiple outputs for each query.
However, unlike Chen et al. [7] who investigate program synthesis and can choose the sample with
highest unit test pass rate, we only consider the setting where one sample is allowed to be evaluated
for each task. This is because repetitive trial-and-error is equivalent to probing the environment for
privileged information, which should not be considered viable in our setting. For Vanilla hLMi, to
choose the best action plan X⇤ among k samples (X1, X2, ..., Xk), each consisting of ni tokens
Xi = (xi,1, xi,2, ..., xi,ni), we select the sample with highest mean log probability as follows:

argmax
Xi

✓
P✓(Xi) :=

1

ni

niX

j=1

log p✓(xi,j |xi,<j)

◆
where ✓ parameterizes the Planning LM. (1)

3.2 Admissible Action Parsing by Semantic Translation

One issue arises when naively following the above approach to generate action plans: the plan
expressed in free-form language often cannot be mapped to unambiguous actionable steps and thus is
not executable by a robotic agent. Many reasons can cause such failures: 1) the output does not follow
pre-defined mappings of any atomic action (e.g. “I first walk to the bedroom” is not of the format
“walk to hPLACEi”), 2) the output may refer to atomic action and objects using words unrecognizable
by the environment (e.g. “microwave the chocolate milk” where “microwave” and “chocolate milk”
cannot be mapped to precise action and object), or 3) the output contains lexically ambiguous words
(e.g. “open TV” should instead be “switch on TV”).

2Although LCS has a mathematical range of [0, 1], we measure the LCS between different human-written
programs for the same task and find an empirical maximum of 0.489.
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Instead of developing a set of rules to transform the free-form text into admissible action steps, we
propose to again leverage world knowledge learned by language models to semantically translate the
action. For each admissible environment action ae, we calculate its semantic distance to the predicted
action phrase â by cosine similarity:

C(f(â), f(ae)) :=
f(â) · f(ae)

kf(â)kkf(ae)k
where f is an embedding function. (2)

To embed the output action phrase and environment actions, we use a BERT-style LM [10, 27]
pre-trained with Sentence-BERT [41] objective, to which we refer as Translation LM3. The action
embedding is obtained by mean-pooling the last layer hidden states across all tokens in that action
phrase. While the set of admissible actions in our environment is discrete and possible to exhaustively
enumerate, sampling or projection can be employed in larger discrete or continuous action spaces.

3.3 Autoregressive Trajectory Correction

Translating each step of the program after the entire program has been synthesized lacks consideration
of achievability of individual steps and subjects to compounding errors. In practice, LLMs might
output compounded instructions for a single step, even though it cannot be completed using one
admissible action in the environment. To this end, we can instead interleave plan generation and
action translation to allow for automatic trajectory correction. At each step, we first query Planning
LM to generate k samples for a single action (â1, â2, ..., âk). For each sample â, we consider both its
semantic soundness and its achievability in the environment. Specifically, we aim to find admissible
environment action ae by modifying the ranking scheme described in Equation 1 as follows:

argmax
ae


max

â
C(f(â), f(ae)) + � · P✓(â)

�
where � is a weighting coefficient. (3)

Then we append the translated environment action ae to the unfinished text completion. This way
all subsequent steps will be conditioned on admissible actions instead of free-form action phrases
generated by Planning LM. Furthermore, we can use Translation LM to detect out-of-distribution
actions, those outside the capabilities of a robot, and terminate a program early instead of mapping to
a faulty action. This can be achieved by setting a threshold ✏ such that if maxâ,ae C(f(â), f(ae)) +
� · P✓(â) < ✏ at step t, the program is terminated early. Since we now sample Planning LM for
individual steps instead of an entire sequence, another termination condition we consider is when
> 50% of current-step samples are 0-length (excluding leading or trailing non-English text tokens).

3.4 Dynamic Example Selection for Improved Knowledge Extraction

So far in the text, we always give the same example in the prompt for all query tasks. However,
consider the task of “ordering pizza”. Prompting LLMs with this task may give the assumption that
the agent is initialized in front of a computer, and the LLMs may guide the agent to search for a pizza
store and click “checkout my cart”. Although these are reasonable and feasible in the real world,
such assumption cannot always be made as these interactions may not be supported in simulated
environments. In fact, the closest series of actions that human experts give in VirtualHome may be
“walking to a computer”, “switching on the computer”, and “typing the keyboard”. Without being
fine-tuned on these data, LLMs would often fail at these tasks.

To provide weak supervision at inference time, we propose to select the most similar task T and its
example plan E from the demonstration set to be used as the example in the prompt. Specifically, we
re-use the same Translation LM introduced in Section 3.2 and select (T ⇤, E⇤) whose high-level task
name T ⇤ maximizes C(f(T ), f(Q)), where Q is the query task. This approach bears resemblance to
several recent works [37, 13, 26, 43]. An example is shown in Figure 2 where “Shave” is the most
similar to the query task “Apply lotion”.

FINAL METHOD Combining the various improvement discussed above, we refer to the final
method as Translated hLMi , where hLMi is replaced by specific language model used such as GPT-3.

3Note that this is a different LM than the GPT-style Planning LM. Using a single LM for both purposes could
as well be possible and likely more efficient, but we leave such investigation to future works.
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Figure 3: Visualization of VirtualHome programs generated by our approach. The top row shows the execution
of the task “Complete Amazon Turk Surveys”, and the bottom row shows the task “Get Glass of Milk”. We show
LLMs not only can generate sensible action plans given only high-level tasks but also contains the actionable
knowledge that can be extracted for grounding in embodied environments.

4 Results

In this section, we first show that language models can generate sensible action plans for many
high-level tasks, even without any additional training. Then we highlight its inadequacy when naively
applied to embodied environments and demonstrate how this can be improved by again leveraging
world knowledge learned by LLMs. Visualization of generated programs is shown in Figure 3.

Sampling from LMs Pre-trained LMs are sensitive to sampling parameters and the specific exam-
ple given in the prompt. For all evaluated methods, we perform hyperparameter search over various
sampling parameters, and for methods using a fixed prompt example, we report metrics averaged
across three randomly chosen examples. To select the best run for each method, we rank the runs by
the sum of LCS and executability, each normalized by human-expert scores. Further details are in
Appendix A.1.

Model Choices For Planning LM, we evaluate a representative set of causal language models.
For Translation LM, we mainly use Sentence-RoBERTa-355M and provide relevant ablations in
Section 5.3. GPT-3 and Codex are accessed using OpenAI API, and the remaining models are accessed
through open-source packages, Hugging Face Transformers [55] and SentenceTransformers [41], all
without additional training (except for the fine-tuning baseline).

4.1 Do LLMs contain actionable knowledge for high-level tasks?

We first investigate whether LLMs can generate sensible action plans expressed in free-form language.
We use the approach described in Section 3.1 to query pre-trained LLMs. To evaluate the correctness
of generated action plans, we conduct human evaluations. For each model, we ask 10 human
annotators to determine – by answering “Yes” or “No” – whether each task can be completed using
provided action steps. To provide a reference of how humans might rate the action plans provided
by other humans, we also ask annotators to rate the human-written action plans included in the
VirtualHome dataset for the same set of tasks. In contrast to the free-form text output by LLMs,
humans wrote the plans using a graphical programming interface that enforces strict syntax and a
chosen set of atomic action vocabulary, which limit the expressivity and the completeness of their
answers4. More details of our human evaluation procedure can be found in Appendix A.2.

We show the human evaluation results in Figure 1, where the y-axis shows correctness averaged
across all tasks and all annotators. Surprisingly, when LLMs are large enough and without imposed
syntactic constraints, they can generate highly realistic action plans whose correctness – as deemed
by human annotators – even surpasses human-written action plans. We also observe some level of
correctness for smaller models such as GPT-2. However, inspection of its produced output indicates

4 Puig et al. [38] also conduct a human evaluation on 100 randomly sampled human-written programs and
show that 64% of them are complete (i.e. contain all necessary steps). Readers are encouraged to refer to Puig
et al. [38] for a more comprehensive analysis of the dataset.
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Language Model Executability LCS Correctness
Vanilla GPT-2 117M 18.66% 3.19% 15.81% (4.90%)
Vanilla GPT-2 1.5B 39.40% 7.78% 29.25% (5.28%)
Vanilla Codex 2.5B 17.62% 15.57% 63.08% (7.12%)
Vanilla GPT-Neo 2.7B 29.92% 11.52% 65.29% (9.08%)
Vanilla Codex 12B 18.07% 16.97% 64.87% (5.41%)
Vanilla GPT-3 13B 25.87% 13.40% 49.44% (8.14%)
Vanilla GPT-3 175B 7.79% 17.82% 77.86% (6.42%)

Human 100.00% N/A 70.05% (5.44%)
Fine-tuned GPT-3 13B 66.07% 34.08% 64.92% (5.96%)

OUR FINAL METHODS
Translated Codex 12B 78.57% 24.72% 54.88% (5.90%)
Translated GPT-3 175B 73.05% 24.09% 66.13% (8.38%)

Table 1: Human-evaluated correctness and evaluation results in VirtualHome. Although action plans generated
by large language models can match or even surpass human-written plans in correctness measure, they are
rarely executable. By translating the naive action plans, we show an important step towards grounding LLMs
in embodied environments, but we observe room to achieve this without trading executability for correctness.
We also observe a failure mode among smaller models that lead to high executability. For correctness measure,
standard error of the mean across 10 human annotators is reported in the parenthesis.

that it often generates shorter plans by ignoring common-sense actions or by simply rephrasing
the given task (e.g. the task “Go to sleep” produces only a single step “Go to bed”). These failure
modes sometimes mislead human annotators to mark them correct as the annotators may ignore
common-sense actions in their judgment as well, resulting in a higher correctness rate than the quality
of the output shows.

4.2 How executable are the LLM action plans?

We analyze the executability of LLM plans by evaluating them in all 7 household scenes in Virtual-
Home. As shown in Table 1, we find action plans generated naively by LLMs are generally not very
executable. Although smaller models seem to have higher executability, we find that the majority of
these executable plans are produced by ignoring the queried task and repeating the given example of
a different task. This is validated by the fact that smaller models have lower LCS than larger models
despite having high executability, showing that this failure mode is prevalent among smaller models.
In contrast, larger models do not suffer severely from this failure mode. Yet as a result of being more
expressive, their generated programs are substantially less executable.

4.3 Can LLM action plans be made executable by proposed procedure?

We evaluate the effectiveness of our proposed procedure of action translation. We first create a bank
of all allowed 47522 action steps in the environment, including all possible combinations of atomic
actions and allowed arguments/objects. Then we use an off-the-shelf Sentence-RoBERTa [27, 41] as
Translation LM to create embeddings for actions and output text. For better computational efficiency,
we pre-compute the embeddings for all allowed actions, leaving minor computation overhead for
our procedure over the baseline methods at inference time. As shown in Table 1, executability of
generated programs is significantly improved. Furthermore, we also observe improved LCS because
the translated action steps precisely follow the program syntax and thus are more similar to the plans
produced by human experts. Sample output is shown in Figure 1 and a larger random subset of
generated samples can be found in Appendix A.5.

To validate their correctness, we again perform human evaluations using the same procedure from
Section 4.1. Results are shown in Table 1. We find that despite being more similar to human-written
plans as they follow strict syntax, the programs are deemed less correct by humans compared to their
vanilla counterparts. By examining the output, we observe two main sources of errors. First, we
find Translation LM is poor at mapping compounded instructions to a succinct admissible action,
e.g. “brush teeth with toothbrush and toothpaste”. Second, we find that the generated programs are
sometimes terminated too early. This is partly due to the imperfect expressivity of the environment;
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certain necessary actions or objects are not implemented to fully achieve some tasks, so Translation
LM cannot map to a sufficiently similar action. This is also reflected by our human evaluation results
of the programs written by other humans, as only 70% of the programs are considered complete.

5 Analysis and Discussions

5.1 Ablation of design decisions

We perform ablation studies for the three components of our proposed procedure, described in
Section 3.2, 3.3, and 3.4 respectively. As shown in Table 2, leaving out any of the three components
would all lead to decreased performance in both executability and LCS. An exception is Translated
GPT-3 w/o Trajectory Correction, where we observe a slight improvement in LCS at the expense of a
considerable drop in executability. Among the three proposed components, leaving out action transla-
tion leads to the most significant executability drop, showing the importance of action translation in
extracting executable action plans from LLMs.

Methods Executability LCS
Translated Codex 12B 78.57% 24.72%
- w/o Action Translation 31.49% 22.53%
- w/o Dynamic Example 50.86% 22.84%
- w/o Trajectory Correction 55.19% 24.43%

Translated GPT-3 175B 73.05% 24.09%
- w/o Action Translation 36.04% 24.31%
- w/o Dynamic Example 60.82% 22.92%
- w/o Trajectory Correction 40.10% 24.98%

Table 2: Ablation of three proposed techniques.

5.2 Are the generated action plans grounded in the environment?

Since successful execution of correct action plans directly measures grounding, we calculate the
percentage of generated action plans that are both correct and executable. We deem an action plan
to be correct if 70% or more human annotators decide it is correct. Human-written plans are 100%
executable, of which 65.91% are deemed correct. Results for LMs are shown in Figure 4.

Although smaller LMs such as GPT-2 can generate highly executable action plans as shown in
Table 1, these executable plans mostly are not correct, as they often repeat the given example or
do not contain all necessary steps. Increasing model parameters can lead to some improvement in
generating plans that are both executable and correct, yet it scales poorly with the parameter count. In
the meantime, action translation offers a promising way towards grounding actionable knowledge by
producing executable and correct plans, though a large gap remains to be closed to reach human-level
performance (65.91%).
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Figure 4: Percentage of both executable and correct action plans generated by LMs.
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5.3 Effect of Different Translation LMs

In this section, we study the effect of using different Translation LM. We compare two size variants of
Sentence BERT and Sentence RoBERTa [10, 27, 41] trained on the STS benchmark [6] and a baseline
using averaged GloVe embeddings [35]. Results are shown in Table 3. Notably, we do not observe
significant differences in executability and LCS across different variants of BERT and RoBERTa. We
hypothesize that this is because any language models trained on reasonably large datasets should be
capable of the single-step action phrase translation considered in this work. However, simply using
average GloVe embeddings would lead to significantly reduced performance.

Translation LM Parameter Count Executability LCS
CODEX 12B AS PLANNING LM
Avg. GloVe embeddings - 46.92% 9.71%
Sentence Bert (base) 110M 73.21% 24.10%
Sentence Bert (large) 340M 75.16% 20.79%
Sentence RoBERTa (base) 125M 74.35% 22.82%
Sentence RoBERTa (large) 325M 78.57% 24.72%
GPT-3 175B AS PLANNING LM
Avg. GloVe embeddings - 47.40% 12.16%
Sentence Bert (base) 110M 77.60% 24.49%
Sentence Bert (large) 340M 67.86% 21.24%
Sentence RoBERTa (base) 125M 72.73% 23.64%
Sentence RoBERTa (large) 325M 73.05% 24.09%

Table 3: Effect of different Translation LMs on executability and LCS.

5.4 Can LLMs generate actionable programs by following step-by-step instructions?

Prior works often focus on translating step-by-step instructions into executable programs. Specifically,
instead of only providing a high-level task name, how-to instructions are also provided, as shown
in Figure 5. Although this setting is easier as it does not require rich prior knowledge, how-to

instructions can help resolve much ambiguity of exactly how to perform a high-level task when
multiple solutions are possible. To investigate whether pre-trained LLMs are capable of doing this
without additional training, we include these instructions in the prompt and evaluate LLMs with
the proposed procedure. We compare to a supervised baseline from VirtualHome that trains an
LSTM [17] from scratch on human-annotated data. Since the code to train the baseline is not publicly
released and a different train/test split is likely used, we only show results reported in Puig et al. [38]
as a crude reference. We also cannot compare executability as it is not reported. Results are shown in
Table 4. Surprisingly, without being fine-tuned on any domain data, Translated Codex/GPT-3 can
attain LCS close to supervised methods while generating highly executable programs.

Task:	Read	book
Description:	Walk	to	home	office,	
turn	on	light,	grab	a	book,	sit	in	
chair,	start	to	read	the	book.
Step	1:	Walk	to	home	office
Step	2:	Walk	to	light
Step	3:	Find	light
Step	4:	Switch	on	light
Step	5:	Find	novel
Step	6:	Grab	novel
Step	7:	Find	chair

Step	8:	Sit	on	chair
Step	9:	Read	novel

Task:	Find	dictionary
Description:	Move	towards	the
bookshelf,	scan	the	bookshelf	for
the	dictionary,	when	the
dictionary	is	found,	pick	up	the
dictionary.

Figure 5: An example prompt containing step-by-
step instructions.

Methods Executability LCS
Translated Codex 12B 78.57% 32.87%
Translated GPT-3 175B 74.15% 31.05%

Supervised LSTM - 34.00%

Table 4: Executability and LCS when conditioned
on step-by-step instructions.
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5.5 Analysis of program length

Shorter programs have a natural advantage of being more executable as they need to satisfy less
pre/post-conditions, albeit being prone to incompleteness. To validate the proposed approach does
not simply generate very short programs, we calculate the average program length across the 88
evaluated tasks. Results are shown in Table 5. Mirroring the observations made in Section 4.1 and
Section 4.2, we find smaller LMs such as GPT-2 tend to generate shorter programs than larger models
do while frequently repeating the given executable example. In contrast, larger models like Codex
and GPT-3 can generate more expressive programs with high realism, yet consequently, they often
suffer from executability. We show proposed procedure can find appropriate balance and is capable
of generating programs that are highly executable while maintaining reasonable expressiveness as
measured by program length.

Methods Executability Average Length
Vanilla GPT-2 1.5B 39.40% 4.24
Vanilla Codex 12B 18.07% 7.22
Vanilla GPT-3 175B 7.79% 9.716

Translated Codex 12B 78.57% 7.13
Translated GPT-3 175B 73.05% 7.36

Human 100.00% 9.66

Table 5: Average executability & program length of different methods.

6 Related Works

Large-scale natural language modeling has witnessed rapid advances since the inception of the
Transformer architecture [53]. It has been shown by recent works that large language models (LLMs)
pre-trained on large unstructured text corpus not only can perform strongly on various down-stream
NLP tasks [10, 39, 40, 5] but the learned representations can also be used to model relations of
entities [23], retrieve matching visual features [19], synthesize code from docstrings [15, 7], solve
math problems [8, 46], and even as valuable priors when applied to diverse tasks from different
modalities [28, 52]. Notably, by pre-training on large-scale data, these models can also internalize an
implicit knowledge base containing rich information about the world from which factual answers
(e.g. “Dante was born in hPLACEi”) can be extracted [36, 21, 9, 50, 42]. Compared to prior works in
single-step knowledge extraction, we aim to extract sequential action plans to complete open-ended
human activities while satisfying various constraints of an interactive environment.

Many prior works have looked into grounding natural language in embodied environments. A series
of them parse language instructions into formal logic or rely mainly on lexical analysis to resolve
various linguistic ambiguities for embodied agents [2, 33, 34, 51]. However, they often require many
hand-designed rules or scale inadequately to more complex tasks and environments. Recently, many
efforts have been put into creating more realistic environments with the goal to further advances in
this area [38, 47, 48, 22, 44, 1]. At the same time, by leveraging the better representation power of
neural architectures, a number of works have looked into creating instruction-following agents that
can perform manipulation [29, 30], navigation [11, 54, 31], or both [49, 16, 12]. Recent works also
use language as hierarchical abstractions to plan actions using imitation learning [45] and to guide
exploration in reinforcement learning [32].

Notably, many prior works do not leverage full-blown pre-trained LLMs; most investigate smaller
LMs that require considerable domain-specific data for fine-tuning to obtain reasonable performance.
Perhaps more importantly, few works have evaluated LLMs in an embodiment setting that realizes the
full potential of the actionable knowledge these models already contain by pre-training on large-scale
unstructured text: the tasks evaluated are often generated from a handful of templates, which do not
resemble the highly diverse activities that humans perform in daily lives [14, 20]. The development
of VirtualHome environment [38] enables such possibility. However, relevant works [38, 25] rely
on human-annotated data and perform supervised training from scratch. Due to the lack of rich
world knowledge, these models can only generate action plans given detailed instructions of how
to act or video demonstrations. Concurrent work by Li et al. [24] validates similar hypothesis that
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LMs contain rich actionable knowledge. They fine-tune GPT-2 with demonstrations to incorporate
environment context and to predict actions in VirtualHome, and evaluate on tasks that are generated
from pre-defined predicates. In contrast, we investigate existing knowledge in LLMs without any
additional training and evaluate on human activity tasks expressed in free-form language.

7 Conclusion, Limitations & Future Work

In this work, we investigate actionable knowledge already contained in pre-trained LLMs without any
additional training. We present several techniques to extract this knowledge to perform common-sense
grounding by planning actions for complex human activities.

Despite promising findings, there remain several limitations of this work which we discuss as follows:

Drop in Correctness Although our approach can significantly improve executability of the gen-
erated plans, we observe a considerable drop in correctness. In addition to the errors caused by
the proposed action translation (discussed in Section 4.3), this is partially attributed to the limited
expressivity of VirtualHome, as it may not support all necessary actions to fully complete all evaluated
tasks (correctness is judged by humans). This is also reflected by that Vanilla LMs can even surpass
human-written plans, which are restricted by environment expressivity.

Mid-Level Grounding Instead of grounding the LLM generation to low-level actions by using
downstream data from a specific environment, we focus on high-level to mid-level grounding such
that we evaluate raw knowledge of LLMs as closely and broadly as possible. Hence, we only
consider the most prominent challenge in mid-level grounding that the generated plans must satisfy
all common-sense constraints (characterized by executability metric). As a result, we assume there
is a low-level controller that can execute these mid-level actions (such as “grab cup”), and we do
not investigate the usefulness of LLMs for low-level sensorimotor behavior grounding. To perform
sensorimotor grounding, such as navigation and interaction mask prediction, domain-specific data
and fine-tuning are likely required.

Ignorant of Environment Context We do not incorporate observation context or feedback into
our models. To some extent, we approach LLMs in the same way as how VirtualHome asks human
annotators to write action plans for a given human activity by imagination, in which case humans
similarly do not observe environment context. Similar to human-written plans, we assume the plans
generated by LMs only refer to one instance of each object class. As a result, successful plan
generation for tasks like “stack two plates on the right side of a cup” is not possible.

Evaluation Protocol We measure quality of plans by a combination of executability and correctness

instead of one straightforward metric. To the best of our knowledge, there isn’t a known way to
computationally assess the semantic correctness of the plans due to the tasks’ open-ended and
multi-modal nature. Prior work also adopt similar combination of metrics [38]. We report two
metrics individually to shine light on the deficiencies of existing LLMs which we hope could provide
insights for future works. To provide a holistic view, we report results by combining two metrics in
Section 5.2.

We believe addressing each of these shortcoming will lead to exciting future directions. We also
hope these findings can inspire future investigations into using pre-trained LMs for goal-driven
decision-making problems and grounding the learned knowledge in embodied environments.
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A Appendix

A.1 Hyperparameter Search

For each evaluated method, we perform grid search over the following hyperparameters:

Name Description Search Values
epsilon (✏) Out-of-distribution early termination threshold {0, 0.4, 0.8}

temperature sampling parameter adjusting relative token probabilities {0.1, 0.3, 0.6}

k number of samples generated by Planning LM {1, 10}

beta (�) weighting coefficient in action translation to trade off
semantic and translation correctness

{0.3}

frequence_penalty OpenAI API only; penalize new tokens based on their
existing frequency in the text so far

{0.1, 0.3, 0.6, 0.9}

presence_penalty OpenAI API only; penalize new tokens based on whether
they appear in the text so far

{0.3, 0.5, 0.8}

repetition_penalty Hugging Face Transformers only; penalize new tokens
based on whether repeating existing text

{1.0, 1.2, 1.5, 1.8}

For methods that use fixed example across evaluated tasks, we search over the following three
randomly chosen examples:

Example 1 Example 2 Example 3
Task: Use computer
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Relax on sofa
Step 1: Walk to home office
Step 2: Walk to couch
Step 3: Find couch
Step 4: Sit on couch
Step 5: Find pillow
Step 6: Lie on couch

Task: Read book
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel
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A.2 Details of Human Evaluations

Human evaluations are conducted on Amazon Mechanical Turk. For each method, we generate action
plans for all 88 high-level tasks. To account for the expressivity of the VirtualHome environment [38],
we include action plans written by human experts from the VirtualHome dataset as references in
our human evaluations. The evaluations are conducted in the form of questionnaires containing all
action plans whose order is randomly shuffled and whose corresponding methods are unknown to
the annotators. Human annotators are required to answer all the questions in the questionnaire. For
each question, the annotators need to answer either “Yes” or “No” indicating if they believe the
action plan completes the task. For each method, we report correctness percentage averaged across
10 participated human annotators and all 88 tasks. We further report the standard error of the mean
across human annotators. Screenshot can be found in Figure 6.

Figure 6: Screenshot of human evaluation interface, conducted as a Google Forms questionnaire.
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A.3 All Evaluated Tasks

The evaluated tasks are part of the ActivityPrograms dataset collected by Puig et al. [38]. Some of the
task names may contain misspelling(s).

1. Apply lotion
2. Arrange folders
3. Breakfast
4. Browse internet
5. Brush teeth
6. Change clothes
7. Change sheets and pil-

low cases
8. Collect napkin rings
9. Complete surveys on

amazon turk
10. Compute
11. Decorate it
12. Do homework
13. Do work
14. Draft home
15. Draw picture
16. Dry soap bottles
17. Dust
18. Eat cereal
19. Eat cheese
20. Eat snacks and drink

tea
21. Empty dishwasher and

fill dishwasher
22. Entertain
23. Feed me
24. Find dictionary
25. Fix snack
26. Get glass of milk
27. Give milk to cat
28. Go to sleep
29. Grab things
30. Hand washing

31. Hang keys
32. Hang pictures
33. Iron shirt
34. Keep cats inside while

door is open
35. Keep cats out of room
36. Leave home
37. Listen to music
38. Look at mirror
39. Look at painting
40. Make bed
41. Make popcorn
42. Organize closet
43. Organize pantry
44. Paint ceiling
45. Pay bills
46. Pick up toys
47. Play musical chairs
48. Prepare pot of boiling

water
49. Push all chairs in
50. Push in desk chair
51. Put alarm clock in bed-

room
52. Put away groceries
53. Put away toys
54. Put clothes away
55. Put mail in mail orga-

nizer
56. Put on your shoes
57. Put out flowers
58. Put up decoration
59. Read
60. Read newspaper

61. Read on sofa
62. Read to child
63. Read yourself to sleep
64. Receive credit card
65. Restock
66. Scrubbing living room

tile floor is once week
activity for me

67. Style hair
68. Switch on lamp
69. Take jacket off
70. Take shoes off
71. Tale off shoes
72. Throw away paper
73. Try yourself off
74. Turn off TV
75. Turn on TV with re-

mote
76. Turn on radio
77. Type up document
78. Unload various items

from pockets and place
them in bowl on table

79. Use laptop
80. Vacuum
81. Walk to room
82. Wash dirty dishes
83. Wash face
84. Wash monitor
85. Wash teeth
86. Watch horror movie
87. Wipe down sink
88. Write book
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A.4 Natural Language Templates for All Atomic Actions

VirtualHome requires action steps specified in a specific format, yet language models are trained to
deal with mostly natural language. We thus define a natural language template for each atomic action
and only expose the converted natural language text in all operations involving language models,
i.e. autoregressive generation and action translation. After we obtain an entire generated program
expressed in natural language, such as those in Figure 1 and Figure 2, we then convert each action
step to the VirtualHome syntax. Full list of the atomic actions and their natural language templates
can be found below.

Atomic Action in VirtualHome Syntax Natural Language Template
[CLOSE] harg1i(1) close harg1i
[CUT] harg1i(1) cut harg1i
[DRINK] harg1i(1) drink harg1i
[DROP] harg1i(1) drop harg1i
[EAT] harg1i(1) eat harg1i
[FIND] harg1i(1) find harg1i
[GRAB] harg1i(1) grab harg1i
[GREET] harg1i(1) greet harg1i
[LIE] harg1i(1) lie on harg1i
[LOOKAT] harg1i(1) look at harg1i
[MOVE] harg1i(1) move harg1i
[OPEN] harg1i(1) open harg1i
[PLUGIN] harg1i(1) plug in harg1i
[PLUGOUT] harg1i(1) plug out harg1i
[POINTAT] harg1i(1) point at harg1i
[POUR] harg1i(1) harg2i(1) pour harg1i into harg2i
[PULL] harg1i(1) pull harg1i
[PUSH] harg1i(1) push harg1i
[PUTBACK] harg1i(1) harg2i(1) put harg1i on harg2i
[PUTIN] harg1i(1) harg2i(1) put harg1i in harg2i
[PUTOBJBACK] harg1i(1) put back harg1i
[PUTOFF] harg1i(1) take off harg1i
[PUTON] harg1i(1) put on harg1i
[READ] harg1i(1) read harg1i
[RELEASE] release
[RINSE] harg1i(1) rinse harg1i
[RUN] harg1i(1) run to harg1i
[SCRUB] harg1i(1) scrub harg1i
[SIT] harg1i(1) sit on harg1i
[SLEEP] sleep
[SQUEEZE] harg1i(1) squeeze harg1i
[STANDUP] stand up
[SWITCHOFF] harg1i(1) switch off harg1i
[SWITCHON] harg1i(1) switch on harg1i
[TOUCH] harg1i(1) touch harg1i
[TURNTO] harg1i(1) turn to harg1i
[TYPE] harg1i(1) type on harg1i
[WAKEUP] wake up
[WALK] harg1i(1) walk to harg1i
[WASH] harg1i(1) wash harg1i
[WATCH] harg1i(1) watch harg1i
[WIPE] harg1i(1) wipe harg1i
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A.5 Random Samples of Action Plans

Human Vanilla GPT3-175B Translated GPT3-175B (Ours)
Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find bed
Step 4: Turn to bed
Step 5: Look at bed
Step 6: Sit on bed
Step 7: Sleep

Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find pajamas
Step 4: Put on pajamas
Step 5: Find slippers
Step 6: Put on slippers
Step 7: Get in bed
Step 8: Sleep

Task: Go to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Lie on bed
Step 4: Sleep

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Type on keyboard

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find computer
Step 4: Grab computer
Step 5: Find chair
Step 6: Sit on chair
Step 7: Browse internet

Task: Browse internet
Step 1: Walk to home office
Step 2: Walk to desk
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Find mouse
Step 8: Grab mouse
Step 9: Turn to computer
Step 10: Point at computer

Task: Wash teeth
Step 1: Stand up
Step 2: Walk to bathroom
Step 3: Walk to sink
Step 4: Find sink
Step 5: Turn to sink
Step 6: Look at sink
Step 7: Find teeth
Step 8: Wash teeth

Task: Wash teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Turn on faucet
Step 4: Grab toothbrush
Step 5: Put toothpaste on tooth-
brush
Step 6: Put toothbrush in mouth
Step 7: Brush teeth
Step 8: Rinse mouth out with wa-
ter
Step 9: Turn off faucet
Step 10: Walk back to bedroom

Task: Wash teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Switch on faucet
Step 5: Walk to toothbrush
Step 6: Grab toothbrush

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to tooth paste
Step 3: Find tooth paste
Step 4: Grab tooth paste
Step 5: Find toothbrush
Step 6: Grab toothbrush

Task: Brush teeth
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Turn on water
Step 4: Grab toothbrush
Step 5: Put toothpaste on tooth-
brush
Step 6: Put toothbrush in mouth
Step 7: Brush teeth

Task: Brush teeth
Step 1: Find toothbrush
Step 2: Turn to toothbrush
Step 3: Point at toothbrush
Step 4: Wash toothbrush

Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find vacuum cleaner
Step 4: Switch on vacuum
cleaner
Step 5: Switch off vacuum
cleaner

Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to vacuum
Step 3: Find vacuum
Step 4: Grab vacuum
Step 5: Find chair
Step 6: Sit on chair
Step 7: Vacuum

Task: Vacuum
Step 1: Walk to home office
Step 2: Walk to dresser
Step 3: Open dresser
Step 4: Find vacuum cleaner
Step 5: Grab vacuum cleaner
Step 6: Pull vacuum cleaner
Step 7: Plug in vacuum cleaner
Step 8: Switch on vacuum
cleaner
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Task: Change sheets and pillow
cases
Step 1: Find pillow
Step 2: Turn to pillow
Step 3: Look at pillow
Step 4: Grab pillow

Task: Change sheets and pillow
cases
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Change sheets and pillow
cases
Step 4: Walk to kitchen
Step 5: Walk to sink
Step 6: Wash sheets and pillow
cases
Step 7: Walk to bedroom
Step 8: Put sheets and pillow
cases on bed
Step 9: Walk to living room
Step 10: Sit on couch

Task: Change sheets and pillow
cases
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find sheets
Step 4: Grab sheets
Step 5: Find pillow
Step 6: Grab pillow

Task: Wash dirty dishes
Step 1: Walk to dining room
Step 2: Walk to sink
Step 3: Find sponge
Step 4: Grab sponge
Step 5: Find faucet
Step 6: Switch on faucet
Step 7: Put sponge on sink
Step 8: Grab sponge
Step 9: Find dish soap
Step 10: Grab dish soap
Step 11: Pour dish soap into
sponge
Step 12: Put back dish soap
Step 13: Find plate
Step 14: Grab plate
Step 15: Scrub plate
Step 16: Rinse plate
Step 17: Find dishrack
Step 18: Put plate on dishrack
Step 19: Find plate
Step 20: Grab plate
Step 21: Scrub plate
Step 22: Rinse plate
Step 23: Put plate on dishrack
Step 24: Rinse sponge
Step 25: Put back sponge
Step 26: Switch off faucet

Task: Wash dirty dishes
Step 1: Walk to kitchen
Step 2: Walk to sink
Step 3: Wash dishes
Step 4: Dry dishes
Step 5: Put dishes away

Task: Wash dirty dishes
Step 1: Walk to dining room
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Switch on faucet
Step 5: Walk to plate
Step 6: Grab plate
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Task: Feed me
Step 1: Walk to dining room
Step 2: Walk to plate
Step 3: Find plate
Step 4: Grab plate
Step 5: Find food
Step 6: Grab food
Step 7: Put food on plate
Step 8: Find food
Step 9: Grab food
Step 10: Put food on plate
Step 11: Find fork
Step 12: Grab fork
Step 13: Eat plate
Step 14: Eat plate

Task: Feed me
Step 1: Walk to kitchen
Step 2: Walk to refrigerator
Step 3: Open refrigerator
Step 4: Grab food
Step 5: Find plate
Step 6: Put food on plate
Step 7: Find fork
Step 8: Put fork on plate
Step 9: Find spoon
Step 10: Put spoon on plate
Step 11: Find cup
Step 12: Pour water in cup
Step 13: Walk to table
Step 14: Sit at table
Step 15: Eat food

Task: Feed me
Step 1: Walk to dining room
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find food
Step 8: Grab food
Step 9: Find plate
Step 10: Put food on plate

Task: Breakfast
Step 1: Walk to dining room
Step 2: Walk to food
Step 3: Grab food
Step 4: Walk to bedroom
Step 5: Walk to television
Step 6: Switch on television
Step 7: Walk to bed
Step 8: Lie on bed
Step 9: Turn to television
Step 10: Watch television
Step 11: Eat food

Task: Breakfast
Step 1: Walk to kitchen
Step 2: Find cereal
Step 3: Pour cereal into bowl
Step 4: Pour milk into bowl
Step 5: Walk to living room
Step 6: Sit on couch
Step 7: Eat cereal

Task: Breakfast
Step 1: Walk to dining room
Step 2: Walk to freezer
Step 3: Find freezer
Step 4: Open freezer
Step 5: Find bread
Step 6: Grab bread
Step 7: Close freezer
Step 8: Find toaster
Step 9: Plug in toaster
Step 10: Put bread on plate
Step 11: Switch on toaster

Task: Read
Step 1: Find novel
Step 2: Grab novel
Step 3: Walk to bedroom
Step 4: Walk to chair
Step 5: Sit on chair
Step 6: Read novel

Task: Read
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Read
Step 1: Walk to home office
Step 2: Walk to light
Step 3: Find light
Step 4: Switch on light
Step 5: Find novel
Step 6: Grab novel
Step 7: Find chair
Step 8: Sit on chair
Step 9: Read novel

Task: Style hair
Step 1: Find towel
Step 2: Turn to towel
Step 3: Point at towel
Step 4: Wash towel
Step 5: Turn to towel
Step 6: Look at towel
Step 7: Squeeze towel
Step 8: Walk to bathroom

Task: Style hair
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Find hairbrush
Step 4: Grab hairbrush
Step 5: Find chair
Step 6: Sit on chair
Step 7: Style hair

Task: Style hair
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Find hair
Step 4: Grab hair
Step 5: Find comb
Step 6: Grab comb
Step 7: Find brush
Step 8: Grab brush
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Task: Pick up toys
Step 1: Walk to bedroom
Step 2: Walk to toy
Step 3: Find toy
Step 4: Grab toy
Step 5: Walk to filing cabinet
Step 6: Open filing cabinet
Step 7: Put toy on filing cabinet
Step 8: Find toy
Step 9: Grab toy
Step 10: Walk to filing cabinet
Step 11: Put toy on filing cabinet
Step 12: Find toy
Step 13: Grab toy
Step 14: Walk to filing cabinet
Step 15: Put toy on filing cabinet
Step 16: Close filing cabinet

Task: Pick up toys
Step 1: Walk to living room
Step 2: Walk to toy box
Step 3: Find toy box
Step 4: Grab toy box
Step 5: Find chair
Step 6: Sit on chair
Step 7: Pick up toys

Task: Pick up toys
Step 1: Find toy
Step 2: Turn to toy
Step 3: Point at toy
Step 4: Wash toy

Task: Decorate it
Step 1: Walk to home office
Step 2: Walk to centerpiece
Step 3: Find centerpiece
Step 4: Grab centerpiece
Step 5: Walk to table
Step 6: Put centerpiece on table
Step 7: Find drawing
Step 8: Grab drawing
Step 9: Find wall
Step 10: Turn to wall
Step 11: Put drawing on wall
Step 12: Find drawing
Step 13: Grab drawing
Step 14: Turn to wall
Step 15: Put drawing on wall

Task: Decorate it
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel
Step 8: Decorate it

Task: Decorate it
Step 1: Walk to table
Step 2: Walk to centerpiece
Step 3: Look at centerpiece
Step 4: Grab centerpiece
Step 5: Point at centerpiece

Task: Put away groceries
Step 1: Walk to dining room
Step 2: Walk to freezer
Step 3: Find freezer
Step 4: Open freezer
Step 5: Find food
Step 6: Grab food
Step 7: Put food in freezer
Step 8: Close freezer

Task: Put away groceries
Step 1: Walk to kitchen
Step 2: Walk to refrigerator
Step 3: Open refrigerator
Step 4: Grab milk and eggs
Step 5: Close refrigerator
Step 6: Walk to counter
Step 7: Put milk and eggs on
counter
Step 8: Walk to cabinet
Step 9: Open cabinet
Step 10: Put away milk and eggs
Step 11: Close cabinet
Step 12: Walk to refrigerator
Step 13: Grab orange juice and
bread
Step 14: Close refrigerator

Task: Put away groceries
Step 1: Walk to kitchen
Step 2: Walk to fridge
Step 3: Open fridge
Step 4: Put food in fridge
Step 5: Close fridge
Step 6: Walk to dining room
Step 7: Walk to livingroom
Step 8: Walk to bedroom
Step 9: Walk to bathroom
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Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find desk
Step 6: Open desk
Step 7: Find check
Step 8: Grab check
Step 9: Put check on desk
Step 10: Find pencil
Step 11: Grab pencil
Step 12: Close desk

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to pencils
Step 3: Find pencils
Step 4: Grab pencils
Step 5: Find paper
Step 6: Sit on chair
Step 7: Draw picture

Task: Draw picture
Step 1: Walk to home office
Step 2: Walk to wall
Step 3: Walk to drawing
Step 4: Find drawing
Step 5: Turn to drawing
Step 6: Look at drawing
Step 7: Touch drawing
Step 8: Pull drawing
Step 9: Push drawing

Task: Entertain
Step 1: Walk to home office
Step 2: Walk to cheese
Step 3: Find cheese
Step 4: Find food
Step 5: Find couch
Step 6: Sit on couch
Step 7: Find wine glass
Step 8: Grab wine glass
Step 9: Drink wine glass

Task: Entertain
Step 1: Walk to living room
Step 2: Walk to entertainment
center
Step 3: Find remote
Step 4: Grab remote
Step 5: Find chair
Step 6: Sit on chair
Step 7: Entertain self

Task: Entertain
Step 1: Walk to livingroom
Step 2: Walk to couch
Step 3: Find couch
Step 4: Sit on couch

Task: Type up document
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find computer
Step 6: Switch on computer
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find check
Step 10: Grab check
Step 11: Read check
Step 12: Find coffee cup
Step 13: Grab coffee cup
Step 14: Drink coffee cup
Step 15: Put back coffee cup
Step 16: Find keyboard
Step 17: Type on keyboard

Task: Type up document
Step 1: Walk to home office
Step 2: Walk to keyboard
Step 3: Find keyboard
Step 4: Grab keyboard
Step 5: Find chair
Step 6: Sit on chair
Step 7: Type document

Task: Type up document
Step 1: Walk to home office
Step 2: Walk to computer
Step 3: Find computer
Step 4: Switch on computer
Step 5: Find chair
Step 6: Sit on chair
Step 7: Turn to computer
Step 8: Look at computer
Step 9: Find keyboard
Step 10: Grab keyboard
Step 11: Type on keyboard
Step 12: Stand up
Step 13: Find printer
Step 14: Switch on printer
Step 15: Find printing paper

Task: Put on your shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find feet both
Step 8: Put shoes on feet both

Task: Put on your shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Put on shoes

Task: Put on your shoes
Step 1: Find shoes
Step 2: Turn to shoes
Step 3: Point at shoes
Step 4: Wash shoes
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Task: Watch horror movie
Step 1: Walk to home office
Step 2: Walk to remote control
Step 3: Find remote control
Step 4: Grab remote control
Step 5: Find couch
Step 6: Sit on couch
Step 7: Find television
Step 8: Switch on television
Step 9: Turn to television
Step 10: Watch television

Task: Watch horror movie
Step 1: Walk to home office
Step 2: Walk to horror movie
Step 3: Find horror movie
Step 4: Grab horror movie
Step 5: Find chair
Step 6: Sit on chair
Step 7: Watch horror movie

Task: Watch horror movie
Step 1: Find television
Step 2: Switch on television
Step 3: Find cd player
Step 4: Switch on cd player
Step 5: Switch off cd player
Step 6: Find remote control
Step 7: Switch on remote control
Step 8: Switch off remote control

Task: Turn on radio
Step 1: Walk to home office
Step 2: Walk to stereo
Step 3: Find stereo
Step 4: Find electrical outlet
Step 5: Turn to electrical outlet
Step 6: Plug in stereo
Step 7: Switch on electrical outlet
Step 8: Switch on stereo

Task: Turn on radio
Step 1: Walk to home office
Step 2: Walk to radio
Step 3: Find radio
Step 4: Grab radio
Step 5: Find chair
Step 6: Sit on chair
Step 7: Turn on radio

Task: Turn on radio
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find remote control
Step 6: Grab remote control
Step 7: Find radio
Step 8: Point at radio
Step 9: Switch on radio
Step 10: Put back remote control

Task: Look at mirror
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror

Task: Look at mirror
Step 1: Walk to bathroom
Step 2: Walk to mirror
Step 3: Look in mirror

Task: Look at mirror
Step 1: Walk to bedroom
Step 2: Walk to mirror
Step 3: Find mirror
Step 4: Turn to mirror
Step 5: Look at mirror
Step 6: Find face
Step 7: Turn to face
Step 8: Look at face
Step 9: Find hair
Step 10: Turn to hair
Step 11: Look at hair
Step 12: Find dress
Step 13: Turn to dress
Step 14: Look at dress

Task: Leave home
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Put on shoes

Task: Leave home
Step 1: Walk to front door
Step 2: Open front door
Step 3: Walk to car
Step 4: Open car door
Step 5: Get in car
Step 6: Close car door
Step 7: Drive to work

Task: Leave home
Step 1: Find shoes
Step 2: Grab shoes
Step 3: Put on shoes

Task: Walk to room
Step 1: Walk to home office
Step 2: Walk to home office

Task: Walk to room
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Walk to room
Step 1: Walk to dining room
Step 2: Walk to livingroom
Step 3: Walk to bedroom
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Task: Hang pictures
Step 1: Walk to bedroom
Step 2: Walk to drawing
Step 3: Find drawing
Step 4: Grab drawing
Step 5: Find wall
Step 6: Put drawing on wall
Step 7: Turn to drawing
Step 8: Look at drawing
Step 9: Find drawing
Step 10: Grab drawing
Step 11: Put drawing on wall
Step 12: Turn to drawing
Step 13: Look at drawing

Task: Hang pictures
Step 1: Walk to home office
Step 2: Walk to box of pictures
Step 3: Find box of pictures
Step 4: Grab box of pictures
Step 5: Walk to wall
Step 6: Hang pictures on wall

Task: Hang pictures
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find keys
Step 4: Grab keys
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put keys on hanger

Task: Wipe down sink
Step 1: Walk to dining room
Step 2: Walk to rag
Step 3: Find rag
Step 4: Grab rag
Step 5: Walk to sink
Step 6: Wipe sink
Step 7: Put back rag

Task: Wipe down sink
Step 1: Walk to kitchen
Step 2: Walk to sink
Step 3: Grab sponge
Step 4: Wipe down sink
Step 5: Rinse sponge
Step 6: Put sponge away
Step 7: Wash hands

Task: Wipe down sink
Step 1: Walk to bathroom
Step 2: Walk to cleaning solution
Step 3: Find cleaning solution
Step 4: Grab cleaning solution
Step 5: Find sink
Step 6: Pour cleaning solution
into sink
Step 7: Find faucet
Step 8: Switch on faucet
Step 9: Scrub sink
Step 10: Wash sink

Task: Take shoes off
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Find shoes
Step 5: Take off shoes
Step 6: Find dresser
Step 7: Open dresser
Step 8: Grab shoes
Step 9: Put shoes in dresser
Step 10: Close dresser

Task: Take shoes off
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Grab shoes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Take shoes off

Task: Take shoes off
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes

Task: Give milk to cat
Step 1: Walk to home office
Step 2: Walk to cat
Step 3: Find cat
Step 4: Turn to cat
Step 5: Point at cat
Step 6: Pull cat
Step 7: Find milk
Step 8: Grab milk
Step 9: Find plate
Step 10: Pour milk into plate
Step 11: Touch cat
Step 12: Scrub cat

Task: Give milk to cat
Step 1: Walk to kitchen
Step 2: Walk to fridge
Step 3: Open fridge
Step 4: Grab milk
Step 5: Walk to cat
Step 6: Pour milk into bowl
Step 7: Put bowl on floor
Step 8: Walk away from cat

Task: Give milk to cat
Step 1: Find cat
Step 2: Touch cat
Step 3: Open fridge
Step 4: Touch milk
Step 5: Pour milk into bowl
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Task: Grab things
Step 1: Walk to novel
Step 2: Turn to novel
Step 3: Grab novel

Task: Grab things
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel
Step 8: Grab things

Task: Grab things
Step 1: Find toy
Step 2: Turn to toy
Step 3: Point at toy
Step 4: Wash toy

Task: Use laptop
Step 1: Walk to home office
Step 2: Walk to couch
Step 3: Find couch
Step 4: Sit on couch
Step 5: Find laptop
Step 6: Switch on laptop
Step 7: Turn to laptop
Step 8: Look at laptop
Step 9: Find keyboard
Step 10: Type on keyboard
Step 11: Turn to keyboard
Step 12: Look at keyboard
Step 13: Type on keyboard
Step 14: Turn to laptop
Step 15: Look at laptop

Task: Use laptop
Step 1: Walk to home office
Step 2: Walk to laptop
Step 3: Find laptop
Step 4: Grab laptop
Step 5: Find chair
Step 6: Sit on chair
Step 7: Use laptop

Task: Use laptop
Step 1: Walk to home office
Step 2: Walk to chair
Step 3: Find chair
Step 4: Sit on chair
Step 5: Find laptop
Step 6: Switch on laptop
Step 7: Find mouse
Step 8: Grab mouse
Step 9: Find mousepad
Step 10: Put mouse on mousepad
Step 11: Turn to laptop
Step 12: Point at laptop

Task: Organize pantry
Step 1: Walk to dining room
Step 2: Walk to pantry
Step 3: Find food
Step 4: Grab food
Step 5: Turn to food
Step 6: Look at food
Step 7: Find garbage can
Step 8: Put food on garbage can
Step 9: Find vegetable
Step 10: Grab vegetable
Step 11: Turn to vegetable
Step 12: Look at vegetable
Step 13: Put vegetable on
garbage can
Step 14: Find dry pasta
Step 15: Grab dry pasta
Step 16: Turn to dry pasta
Step 17: Look at dry pasta
Step 18: Put back dry pasta
Step 19: Find food
Step 20: Turn to food
Step 21: Look at food
Step 22: Push food
Step 23: Find noodles
Step 24: Grab noodles
Step 25: Turn to noodles
Step 26: Look at noodles
Step 27: Put back noodles

Task: Organize pantry
Step 1: Walk to kitchen
Step 2: Walk to pantry
Step 3: Find pantry
Step 4: Grab pantry
Step 5: Find chair
Step 6: Sit on chair
Step 7: Organize pantry

Task: Organize pantry
Step 1: Walk to pantry
Step 2: Find pantry
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Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Open dresser
Step 4: Find dress
Step 5: Grab dress
Step 6: Put on dress
Step 7: Close dresser

Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to closet
Step 3: Find clothes
Step 4: Grab clothes
Step 5: Find chair
Step 6: Sit on chair
Step 7: Change clothes

Task: Change clothes
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Find dresser
Step 4: Open dresser
Step 5: Find pants
Step 6: Grab pants
Step 7: Put on pants
Step 8: Find shirt
Step 9: Grab shirt
Step 10: Put on shirt
Step 11: Close dresser

Task: Put up decoration
Step 1: Walk to home office
Step 2: Walk to drawing
Step 3: Find drawing
Step 4: Find centerpiece
Step 5: Grab centerpiece
Step 6: Walk to wall
Step 7: Grab drawing
Step 8: Put drawing on wall
Step 9: Find centerpiece
Step 10: Grab centerpiece
Step 11: Walk to table
Step 12: Put centerpiece on table

Task: Put up decoration
Step 1: Walk to home office
Step 2: Walk to decoration
Step 3: Find decoration
Step 4: Grab decoration
Step 5: Find chair
Step 6: Sit on chair
Step 7: Put up decoration

Task: Put up decoration
Step 1: Walk to livingroom
Step 2: Walk to table

Task: Make bed
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find sheets
Step 4: Grab sheets
Step 5: Pull sheets

Task: Make bed
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find sheets
Step 4: Find blanket
Step 5: Find pillow
Step 6: Put sheets on bed
Step 7: Put blanket on bed
Step 8: Put pillow on bed

Task: Make bed
Step 1: Stand up
Step 2: Find sheets
Step 3: Find blanket
Step 4: Find pillow
Step 5: Find comforter
Step 6: Find bed

Task: Scrubbing living room tile
floor is once week activity for me
Step 1: Find mop
Step 2: Turn to mop
Step 3: Point at mop
Step 4: Wash mop
Step 5: Turn to mop
Step 6: Look at mop

Task: Scrubbing living room tile
floor is once week activity for me
Step 1: Walk to living room
Step 2: Walk to tile floor
Step 3: Find scrub brush
Step 4: Grab scrub brush
Step 5: Scrub tile floor
Step 6: Put down scrub brush
Step 7: Walk to kitchen

Task: Scrubbing living room tile
floor is once week activity for me
Step 1: Walk to livingroom
Step 2: Walk to mop
Step 3: Find mop
Step 4: Grab mop
Step 5: Walk to bathroom
Step 6: Find bucket
Step 7: Switch on faucet

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find bed
Step 6: Sit on bed
Step 7: Find bookmark
Step 8: Grab bookmark
Step 9: Read novel
Step 10: Put bookmark on novel
Step 11: Sleep

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Find book
Step 4: Grab book
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read book
Step 8: Sleep

Task: Read yourself to sleep
Step 1: Walk to bedroom
Step 2: Walk to bed
Step 3: Lie on bed
Step 4: Sleep
Step 5: Read book
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Task: Hand washing
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Switch on faucet
Step 5: Find soap
Step 6: Grab soap
Step 7: Find hands both
Step 8: Scrub hands both
Step 9: Put back soap
Step 10: Wash hands both
Step 11: Switch off faucet
Step 12: Find towel
Step 13: Grab towel
Step 14: Wipe hands both

Task: Hand washing
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Turn on faucet
Step 4: Grab soap
Step 5: Wash hands
Step 6: Rinse hands
Step 7: Dry hands

Task: Hand washing
Step 1: Walk to bathroom
Step 2: Walk to sink
Step 3: Find faucet
Step 4: Turn to faucet
Step 5: Find hands both
Step 6: Wash hands both

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to desk
Step 3: Find desk
Step 4: Turn to desk
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find check
Step 8: Grab check
Step 9: Squeeze check
Step 10: Stand up
Step 11: Walk to trashcan
Step 12: Put check on trashcan

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to wastebasket
Step 3: Find wastebasket
Step 4: Grab wastebasket
Step 5: Walk to desk
Step 6: Drop paper in wastebas-
ket

Task: Throw away paper
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find paper
Step 6: Grab paper
Step 7: Walk to trashcan
Step 8: Open trashcan
Step 9: Put paper on trashcan
Step 10: Close trashcan

Task: Tale off shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes
Step 4: Find shoes
Step 5: Take off shoes
Step 6: Grab shoes
Step 7: Find mat
Step 8: Put shoes on mat

Task: Tale off shoes
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Tale off shoes
Step 1: Walk to home office
Step 2: Walk to shoes
Step 3: Find shoes

Task: Hang keys
Step 1: Walk to bedroom
Step 2: Walk to dresser
Step 3: Find purse
Step 4: Grab purse
Step 5: Open purse
Step 6: Find keys
Step 7: Grab keys
Step 8: Find bowl
Step 9: Put keys on bowl
Step 10: Close purse
Step 11: Put back purse

Task: Hang keys
Step 1: Walk to home office
Step 2: Walk to key hook
Step 3: Find key hook
Step 4: Grab key hook
Step 5: Find keys
Step 6: Hang keys on key hook
Step 7: Walk to front door
Step 8: Leave house

Task: Hang keys
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find keys
Step 4: Grab keys
Step 5: Walk to wall
Step 6: Find hanger
Step 7: Put keys on hanger

31



Task: Make popcorn
Step 1: Walk to dining room
Step 2: Walk to food
Step 3: Find food
Step 4: Grab food
Step 5: Walk to microwave
Step 6: Turn to microwave
Step 7: Open microwave
Step 8: Put food in microwave
Step 9: Close microwave
Step 10: Switch on microwave

Task: Make popcorn
Step 1: Walk to kitchen
Step 2: Walk to microwave
Step 3: Open microwave
Step 4: Put bag of popcorn in mi-
crowave
Step 5: Close microwave
Step 6: Push buttons on mi-
crowave
Step 7: Wait for popcorn to pop
Step 8: Get bowl out of cupboard
Step 9: Get butter out of fridge
Step 10: Get salt out of cupboard
Step 11: Pour popcorn into bowl
Step 12: Add butter and salt to
bowl
Step 13:

Task: Make popcorn
Step 1: Walk to kitchen
Step 2: Walk to microwave
Step 3: Find microwave
Step 4: Open microwave

Task: Receive credit card
Step 1: Walk to home office
Step 2: Walk to envelope
Step 3: Find envelope
Step 4: Grab envelope
Step 5: Walk to home office
Step 6: Walk to scissors
Step 7: Find scissors
Step 8: Open envelope
Step 9: Find creditcard
Step 10: Grab creditcard

Task: Receive credit card
Step 1: Walk to mailbox
Step 2: Open mailbox
Step 3: Grab credit card
Step 4: Walk to home office
Step 5: Walk to desk
Step 6: Put credit card on desk
Step 7: Sit at desk
Step 8: Look at credit card

Task: Receive credit card
Step 1: Walk to home office
Step 2: Walk to cabinet
Step 3: Find cabinet
Step 4: Open cabinet

Task: Read to child
Step 1: Walk to bedroom
Step 2: Walk to child
Step 3: Find child
Step 4: Greet child
Step 5: Walk to filing cabinet
Step 6: Open filing cabinet
Step 7: Find novel
Step 8: Grab novel
Step 9: Walk to chair
Step 10: Pull chair
Step 11: Sit on chair
Step 12: Turn to novel
Step 13: Look at novel
Step 14: Turn to novel
Step 15: Point at novel
Step 16: Turn to novel
Step 17: Point at novel
Step 18: Read novel
Step 19: Read novel
Step 20: Read novel

Task: Read to child
Step 1: Walk to home office
Step 2: Walk to novel
Step 3: Find novel
Step 4: Grab novel
Step 5: Find chair
Step 6: Sit on chair
Step 7: Read novel

Task: Read to child
Step 1: Walk to child
Step 2: Read book
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Task: Eat cheese
Step 1: Walk to dining room
Step 2: Walk to freezer
Step 3: Open freezer
Step 4: Find cheese
Step 5: Grab cheese
Step 6: Eat cheese

Task: Eat cheese
Step 1: Walk to kitchen
Step 2: Walk to refrigerator
Step 3: Open refrigerator
Step 4: Grab cheese
Step 5: Eat cheese

Task: Eat cheese
Step 1: Walk to dining room
Step 2: Walk to table
Step 3: Find table
Step 4: Turn to table
Step 5: Find chair
Step 6: Sit on chair
Step 7: Find food
Step 8: Grab food
Step 9: Find plate
Step 10: Put food on plate

Task: Unload various items from
pockets and place them in bowl
on table
Step 1: Walk to home office
Step 2: Walk to table
Step 3: Find bowl
Step 4: Grab bowl
Step 5: Put bowl on table
Step 6: Find pants
Step 7: Find bills
Step 8: Grab bills
Step 9: Find phone
Step 10: Grab phone

Task: Unload various items from
pockets and place them in bowl
on table
Step 1: Walk to home office
Step 2: Walk to bowl on table
Step 3: Find bowl on table
Step 4: Grab bowl on table
Step 5: Unload various items
from pockets and place them in
bowl on table

Task: Unload various items from
pockets and place them in bowl
on table
Step 1: Find bowl
Step 2: Turn to bowl
Step 3: Point at bowl
Step 4: Wash bowl

Task: Switch on lamp
Step 1: Walk to bedroom
Step 2: Walk to floor lamp
Step 3: Find floor lamp
Step 4: Switch on floor lamp

Task: Switch on lamp
Step 1: Walk to lamp
Step 2: Switch on lamp
Step 3: Walk to chair
Step 4: Sit on chair
Step 5: Read book

Task: Switch on lamp
Step 1: Walk to bedroom
Step 2: Walk to floor lamp
Step 3: Find floor lamp
Step 4: Turn to floor lamp
Step 5: Switch on floor lamp
Step 6: Find bed
Step 7: Lie on bed

Task: Take jacket off
Step 1: Walk to bedroom
Step 2: Walk to jacket
Step 3: Find jacket
Step 4: Find jacket
Step 5: Take off jacket
Step 6: Find dresser
Step 7: Open dresser
Step 8: Close dresser

Task: Take jacket off
Step 1: Walk to home office
Step 2: Walk to jacket
Step 3: Find jacket
Step 4: Grab jacket
Step 5: Find chair
Step 6: Sit on chair
Step 7: Take jacket off

Task: Take jacket off
Step 1: Walk to home office
Step 2: Walk to jacket
Step 3: Find jacket
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