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Figure 1: HERD framework: (1) Given human demonstrations in sensor glove signals [1] or visual
data [2], (2) expert policies on an embodied human hand, i.e. a five-finger dexterous robot, can be
trained. (3) We then design continuous robot evolution to connect the five-finger dexterous robot
and a target commercial two-finger-gripper robot. A smooth curriculum of policy optimization on
the intermediate robots that gradually evolve towards the target robot allows (4) the expert policies
to be transferred to the target robot even in challenging sparse-reward tasks.

Abstract: The ability to learn from human demonstration endows robots with the
ability to automate various tasks. However, directly learning from human demon-
stration is challenging since the structure of the human hand can be very different
from the desired robot gripper. In this work, we show that manipulation skills
can be transferred from a human to a robot through the use of micro-evolutionary
reinforcement learning, where a five-finger human dexterous hand robot gradually
evolves into a commercial two-finger-gripper robot, while repeated interacting in
a physics simulator to continuously update the policy that is first learned from
human demonstration. To deal with the high dimensions of robot parameters, we
propose an algorithm for multi-dimensional evolution path searching that allows
joint optimization of both the robot evolution path and the policy. Through exper-
iments on human object manipulation datasets, we show that our framework can
efficiently transfer the expert human agent policy trained from human demonstra-
tions in diverse modalities to a target commercial robot.

1 Introduction

Learning from human demonstrations [3] is a promising direction to enable robots to perform di-
verse manipulation capabilities. Recent large-scale visual datasets of human activity [2, 4, 5, 6, 7]
have highlighted the need for enabling robotic agents to learn from human activities to perform di-
verse tasks in real-world environments. Existing paradigms for learning from human demonstration
generally follow the pipeline of demonstration conversion, i.e. (1) convert demonstrated human
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states to robot states and then (2) train the robot policy. Though step (2) can be solved by existing
imitation learning approaches [8, 9, 10, 1], step (1) is extremely difficult. Efforts to address step (1)
include human-robot observation matching such as [11], and converting human demonstrations to
robots by human-robot interaction [12, 13] or human-in-the-loop teleoperation [14, 15]. However,
these solutions are highly situational and task-specific and require significant human intervention
for each individual task, therefore are not scalable and cannot automatically generalize to new tasks.

We propose a new paradigm for learning from human demonstration — policy transformation, i.e.
(1) train policy on embodied human hand dexterous robot and then (2) transfer the policy from
dexterous hand robot to the target robot. Many existing methods have been shown successful in
learning control policy for dexterous hand robots from human demonstration [1, 16] and can easily
solve step (1) of our pipeline. A general and automatic solution of step (2) would render a scalable
solution of learning from human demonstration. The key challenge to step (2) is the huge dynamics
discrepancy between the dexterous hand robot and the target robot. The discrepancy stems from
the mismatch in robot morphology and kinematics. Unfortunately, statistical matching imitation
learning approaches such as [8, 9, 10, 17] assume the teacher and student robotic agents share the
same or similar transition dynamics, therefore are ineffective in solving the problem.

In this paper, we present a framework named HERD (short for Human Evolution to Robot for Learn-
ing from Demonstration) with a new perspective on solving the problem of learning from human
demonstration — continuous robot evolution. Following the philosophy introduced in the seminal
work of REvolveR [18], the core idea of our framework is to define a continuous interpolation be-
tween the dexterous hand robot and a target robot that have different morphology. Then an expert
dexterous hand robot policy learned with methods such as [1, 16] can be transferred to the target
robot through training on a sequence of intermediate robots that gradually evolve into the target
robot. The policy is continuously updated through repeated interaction in a physics engine that
contains the intermediate robots, as illustrated in Figure 1.

To instantiate the idea, we develop two solutions for the evolution from five-finger dexterous robot
to two target commercial robots respectively: a Sawyer robot with a two-finger Rethink gripper,
and a Jaco robot with a three-finger Jaco gripper. The solutions precisely match the dynamics of
target commercial grippers. To deal with the high dimensions of robot parameters, we propose an
algorithm for automatically searching evolution paths in high-dimensional robot parameter space
that allows joint optimization of both robot evolution and the policy, based on online estimation of
reward gradient with respect to robot evolution.

We conduct experiments on transferring human expert demonstrations of manipulation tasks in di-
verse modalities to the target commercial robots. We show that HERD can successfully transfer the
expert dexterous hand robot policy trained from Hand Manipulation Suite sensor glove demonstra-
tions [1] to the target robots even with sparse rewards. On DexYCB dataset [2], we demonstrate that
our approach can also transfer the expert policy trained with visual human demonstrations to the
target robots. In addition, we show that the proposed multi-dimensional robot evolution path search
algorithm can significantly improve the policy transferring efficiency.

2 Preliminaries

MDP Preliminary We consider a continuous control problem formulated as Markov Decision
Process (MDP). It is defined by a tuple (S, A, T, R, ), where S C R is the state space, A C R4
is the action space, 7 : S x A — & is the transition function, R : S x A — R is the reward
function, and v € [0, 1] is the discount factor. A policy 7 : S — A maps a state to an action where
m(als) is the probability of choosing action a at state s. Suppose M is the set of all MDPs and
p™M =32 4'R(sy, ar) is the episode discounted reward with policy 7 on MDP M € M. The
optimal policy 7%, on MDP M is the one that maximizes the expected value of p™*.

REvolveR [18] Preliminary Liu et al. [18] proposed a technique named REvolveR for transferring
policies from a source robot to a target robot. The core idea is to define an evolutionary sequence
of intermediate robots that connects the source to the target robot. Given source and target robots



represented by two MDPs Mg, Mt € M respectively, REvolveR defines a continuous function
E :[0,1] - M where E(0) = Mg, E(1) = Mry. Then an expert policy T On the source
robot E(0) is optimized by sequentially interacting with each intermediate robot in the sequence
E(a1), E(as),...,E(ak) where 0 < a1 < ag < -+ < ag = 1, until the policy is able to act
(near) optimally on each intermediate robot and eventually transfer the policy to target robot E'(1).
For all 4, |a;41 — ]| is small enough so that each policy fine-tuning step is a much easier task. Our
method is built upon the philosophy of REvolveR to use robot evolution for policy transfer.

Notation We use bold letters to denote the vector variables. Specially, O and 1 are the all-zero
and all-one vectors with proper dimensions respectively. SP~1(¢) = {x € RP | ||z|]s = ¢} isa
(D — 1)-sphere (i.e. a sphere in R? space) with radius ¢ € RT. © is element-wise product.

3 Method

3.1 Human Demonstration to Dexterous Robot Expert Policy

Recent works [1, 16] have shown success in learning five-finger dexterous robot policy from human
hand demonstrations in diverse modalities, such as sensor glove signals [1] and visual data [16],
which made the first step of our proposed paradigm possible. Inspired by this research progress, we
adopt similar approaches to train expert policies on a dexterous robot as illustrated in Figure 1(1)(2).

Sensor Glove Demonstration When recorded in sensor glove signals, human demonstrations are
directly converted to states and actions in a simulator [19] from which a policy is trained with
algorithms such as DAPG [1]. We use the same procedure and obtain the expert policy as in [1].

Visual Demonstration We develop a toolchain for training dexterous policies from human visual
demonstrations of manipulation. Our toolchain includes human and object pose estimation with
visual perception followed by pose fitting of the dexterous robot via inverse kinematics (IK). We
then train the policy by setting the episodes’ initial state to be the state of the grasping frame,
including poses and joint velocity. During training, the initial state gradually moves backward in
time until the desired starting state. For more details, please refer to the supplementary.

3.2 Continuous Dexterous Hand to Target Commercial Robots Evolution

A core hypothesis in our proposed paradigm of learning from human demonstration is the feasibil-
ity of interpolation between a human-hand-like five-finger dexterous robot and a target commercial
robot. In this paper, we present solutions for dexterous-to-commercial-robot interpolation for two
target commercial robots to show this. Since both the dexterous hand robot and the target robots are
complicated in structure, how to design the evolution from the former to the latter is not straight-
forward and has a large design space. The design choice can significantly affect the policy transfer
performance. Following [18], we first match the robot morphology between the dexterous and the
target robot. With the same morphology, we then design a shared high-dimensional robot parameter
space that allows defining an intermediate robot by simply setting these parameters. The evolution
includes both the dexterous hand and arm.

Dexterous Hand to Commercial Gripper Evolution To match the number of fingers, we keep
the thumb and gradually shrink the redundant fingers to be zero-size and zero-mass so that they
eventually disappear. We also gradually change the range of the finger joints to match the desired
joint configuration. In addition, we add new position servo joints to the remaining fingers. The
position servo joints are initially frozen and evolve to have the same range as the target fingers.

Dexterous Arm to Commercial Robot Arm Evolution A major challenge of arm evolution is the
different ways of arm mounting. In simulation, the dexterous robot elbow joint is usually modeled
as a virtual free joint that can move freely in the 3D space, while the commercial robot arms are
usually mounted on fixed bases. Another challenge is the huge difference in the numbers of arm
joints and joint physical parameters. Our solution is to attach the free joint of the dexterous arm to
the end effector of the target robot and treat the entire dexterous robot as a de facto large gripper.
During evolution, both the dexterous arm and the elbow free joint gradually shrink to zero so that
the dexterous robot eventually evolves to be firmly attached to the target robot end effector.
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Figure 2: Continuous hand-to-robot evolution. We show one possible evolution path from human
dexterous hand (o« = 0) to a commercial Sawyer robot with two-finger Rethink gripper (¢ = 1).
From left to right, we show intermediate agents along the path. Zoom in for better view.
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The above evolution process is illustrated in Figure 2. Our evolution solution includes the chang-
ing of D = 42 independent robot parameters, such as body sizes and mass, and joint ranges and
damping. More details on the evolution process can be found in the supplementary material.

3.3 Multi-dimensional Continuous Robot Evolution for Policy Transfer

As shown in Section 3.2, the evolution from a human-like dexterous robot to a target commercial
robot is an extremely high-dimensional problem in robot parameter space (e.g. D = 42). This
means there exist numerous choices of intermediate robot sequences that connect source to target
robots. However, previous work REvolveR [18] assumes the same and uniform evolution progress
hard-coded for all robot parameters and could be sub-optimal. We envision that when transferring
the policy through intermediate robots, the optimal robot evolution should be flexible and able to
smartly bypass difficult robot configurations to reach the target robot efficiently. In this section, we
introduce an algorithm for automatically finding such optimized evolution strategy. We formulate
the problem as a joint optimization of both robot evolution and the policy.

Problem Statement Suppose the source and target robot morphology is matched using the method
in [18] or Section 3.2. Therefore the D kinematics parameters of the source and target robots can be
mapped to the same space denoted as s, @1 € R”. Continuous function F : [0, 1]” — M defines
an intermediate robot by interpolation between all pairs of kinematic parameters 8 = (1 — &) ®
0s + a ® O where « € [0, 1]P is the evolution parameter that describes the evolution progress of
each of the D kinematics parameters. Given an expert policy ﬂ}(o) on the source robot F'(0), the
overall goal is to find the optimal policy W}(l) on target robot F'(1). Note that the formulation of
REvolveR [18] is a special case of our problem setting with & = .- 1 and « € [0, 1].

Differentiable Evolution Path Search (DEPS) We adopt multi-dimensional robot evolution as a
solution to the above problem as illustrated in Figure 3(a). Suppose there is a robot evolution path
7= (F(aw), Flar), F(ow),...,Flak_1), F(ak)) where ag = 0, ax = 1. In k-th phase, the
policy optimization objective is to maximize the expected reward E[p™*(®#)] on robot F(cx,). For
all k, the evolution parameter step size £ = ||y — ag1||2 is sufficiently small. In this way, we
decompose the difficult robot-to-robot policy transfer problem into a sequence of K easy problems.

The optimal solution to the above problem requires finding the optimal evolution path 7 together
with policy optimization. We propose an algorithm named Differentiable Evolution Path Search
(DEPS) to find both the optimized robot evolution path 7 in tandem with policy optimization. Given
the current evolution parameter oy, we aim to find the next best evolution parameter oy, 11 = o +1i
as well as its optimal policy w;(akﬂ). The optimization objective is formulated as

1
max  max L =E[pmFeetle)] _ Z N1 — (o + Ii)||2 (1)
U, ||k [|2=¢€ “ 2

where A € RT is a weighting factor. The first term optimizes the policy reward while the second
term encourages the evolved robot to move close to the target robot. Since step size & is small, we



Algorithm 1 Multi-dimensional Robot Evolution Policy Transfer

—
\ 1: Notation Summary:
\ : 2: a € [0,1]”: robot evolution parameter; F' : [0,1]° — M:
ﬂ continuous robot evolution function; 7 (): expert policy on
T the source robot; & € R™: evolution step size; ¢ € R: reward
\9 \ threshold; A € R™: weight factor; A, € (0, 1): shrink ratio;

3: a+ 0,7+ Ty, L ~ SP71(€) // initialization
4: while ¢ # 1 do

5:  ifE[pmT(@t] < ¢ then

6:

7

8

a=0 SP=1(g) 81,082,...,0, ~ SPY(E), 80 + 0// sample &; vectors
execute 7 and p; < p™F (@) i {0,... ,n}
o : : compute Jacobian J from §; and p; according to Eq.(4)
T 9 L d/|T]ls+ A1 - @)/|[L - als
Y».azl 100 L i€
Si/ 1 \\ NNk + g 11: forein0,1,..., N, do
L 12: B ~ Uniform(1 — A{, 1)
(b) 13: sample rollouts and train 7 on robot F'(a + 3 - 1)
14: end for

Figure 3: (a) Possible robot evolution 15:  end if

paths from source to target robot. (b) 16: « < min{max{o + 1,0}, 1} // make sure stay in [0, 1]
Computation of the next evolution pa- 17: end while

rameter «v;, .1 = v + [y in the path. 18: return 7w

assume L is locally differentiable w.r.t. l. Then the direction of l;, can be estimated by

Iy = VoL = Vo E[pmT(@)] A1 —ap) =T+ A1 - ay) 2)
a=aoy
where J = V4E[p™F(®] is the Jacobian of expected reward w.r.t. evolution parameter c. The
Jacobian J can be estimated by finite difference with Monte-Carlo sampling of . Concretely, we
sample n random vectors 81, 8o, . .., 8, with £2-norm of £&. Suppose 6o = 0. For each 6;, we
execute 7 on robot F(ay + &;) to get episode reward p; = p™F (ax+8:) By the definition of
Jacobian, if there were no noise, ideally we should have

J . 67 — pﬂ'iF(ak+51) — pTr’F(ak) = pPi — Po, \V/Z (3)

However, there is usually inevitable noise in the policy rollout and p;. Let p = [p1,p2,...,pn] "
and A = [d1, 09, . ..,0,]. The gradient can be estimated by Least Squares Minimization

J~(ATA) T AT (p—po- 1) 4)

Since the scale of the episode reward p™ (@) and therefore J is task-dependent and can be arbitrary,
to stabilize the evolution path search we scale both J and 1 — ¢, in Equation (2) to be unit vectors
to obtain the direction of evolution progression as follows

be = J/|[ ]2 + A1 = ag)/[|1 = agll2 )

The next evolution parameter is obtained by a1 = oy + £ - Ui /||lk||2, where & is the evolution
step size. The geometric interpretation of Equation (5) is illustrated in Figure 3(b).

We point out that the optimization objectives of our DEPS in Equations (2) and (5) can be viewed
as a generalization of multiple previous works. When A — +o0, the problem reduces to vanilla
REvolveR [18] where @ = o - 1; when A — 0, the problem reduces to unrestricted robot and policy
joint optimization such as [20] and [21]. Note that when A > 1, {a, }, is guaranteed to converge to
1, because it is easy to show for all I with £2-norm of &, ||1 — (a1 +1)|]2 < ||1 — agllz —EA—1].

Policy Optimization along the Evolution Path Given the next evolution parameter a1 = o +
lj; and the optimized policy 7p(q,,), the next goal is to find the optimal policy w;(aHl) on robot



F(ctgy1). Instead of directly fine-tuning mp(q,) On o1, we adopt the following optimization
objective with randomized evolution progression similar to [18] to achieve the goal:

TF(auy,) = Argmax - pmF(entBle) (6)

™ B~ Uniform(1—A7,1)

where \; € (0,1) is the ratio of range shrinkage and ¢ € N is the iteration counter. The above
optimization objective allows the policy to be fine-tuned on a set of randomly sampled robots within
a range along the I to improve the stability and robustness of training while also ensuring the
sampled evolution parameter « to converge to a1 = o + I, when e — +o0. In practice, a batch

of 3 in Equation (6) is sampled in each iteration. The overall algorithm is illustrated in Algorithm 1.

4 Related Work

Learning from Human Demonstration Human demonstrations are often collected in terms of
trajectories that could be obtained by teleoperation via virtual reality, motion capture markers, or
kinesthetic control of robot. A policy is then learned by cloning the demonstrations [22, 23, 24, 25,
26, 27] or through inverse reinforcement learning [25, 28, 29, 30, 31]. In contrast to these methods,
in our approach, the human does not control the robot to which the demonstration is transferred.

Human demonstrations need not always be in the form of state space information and a recent line of
work rely on visual demonstration to enhance the scalability of data collection as it is much easier to
watch humans than ask them to collect demos [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. Although in our
case, the demonstrations are converted to the state space of the dexterous hand robot through inverse
kinematics, they are originally collected by watching humans. Different from these prior works, we
use the demonstration to transfer the policy to very different robots than the demonstrator.

Learning Controllers for New Robot Morphology Evolutionary methods to get new shapes date
back to the early days of automata theory from Von Neumman [42]. In early 90s, Karl Sims showed
the effectiveness of evolutionary methods in optimizing robot shapes and controllers [43, 44]. These
works laid the foundation of the area where not only robots are optimized but also controllers are
transferred across evolved robots. In recent years, many works have revived this idea using deep
learning based graph evolution [45, 46, 47, 48, 49]. Our work does not treat the morphological
evolution in the form of graph networks but rather gradually morphs the source robot to target robot.

Relation to Path Planning Our robot evolution path search problem is similar to the problem of
path planning [50, 51, 52, 53, 54, 55]. However, unlike ordinary planning where the obstacles are
known, in our problem the difficult robot configurations are unknown. Moreover, in ordinary path
planning, evaluating the cost of a path is cheap, while in our case, transferring the policy to a new
robot requires a large number of policy optimization iterations and is computationally costly.

5 Experiments

Our experiment is designed to verify the following two hypotheses: (1) our proposed DEPS al-
gorithm can find optimized evolution paths in high-dimensional robot parameter space to improve
policy transfer over vanilla linear evolution path [18]; (2) our HERD framework can learn from
human demonstrations recorded in diverse modalities including sensor glove signal and visual data.

Experiment Settings We conduct experiments in MuJoCo physics simulation engine [56]. We
adopt the five-finger dexterous hand robot provided in the ADROIT platform [57]. The high-fidelity
models of the target robots and grippers are imported from robosuite environment [58] and have
been used in previous robotics publications that eventually transferred their experiments to real
robots such as [59, 60]. We use NPG [61] as the RL algorithm for policy optimization. Due to the
nature of robot-to-robot policy transfer, the total number of RL iterations it takes to reach the goal of
a certain success rate or episode reward cannot be set beforehand. So we instead report the number
of policy training iterations and simulation epochs needed to reach 80% success rate on the tasks.

5.1 Learning from Sensor Glove Signal Demonstrations

Tasks and Demonstrations We use the three tasks from the Hand Manipulation Suite (HMS) [1]:
Hammer, Relocate, and Door. In Hammer, the task is to pick up the hammer and smash the nail into



Figure 4: Visualization of policies on evolving intermediate robots on Hand Manipulation Suite
tasks [1]. We show the results of the learned policies on Door, Hammer and Relocate tasks in three
rows respectively. Zoom in for better view.

Demo Door Hammer Relocate

Agent | # of sim epochs [# of train iters | # of sim epochs [# of train iters | # of sim epochs | # of train iters

608700 £ 79410]50725 + 6617 | 248460 + 9732 | 20705 £ 811 [693540 + 11886057795 £ 9905
00 00 0 00 00 00

DAPG [1] Sawyer [245659 £ 2493420471 £ 2077|161047 = 14027|13420 £+ 1168 | 114335 & 15343 | 9527 £ 1278

REvolveR [18] ADROIT 273663 £ 28236[14302 £ 1843] 110198 £ 4407 | 6356 274 | 163611 £ 2859 | 8808 + 450

HERD (Ours) [57] [201190 £ 23466|11229 £ 1166| 91674 = 6557 | 4434 £+ 605 | 145158 £ 4207 | 8294 £ 1265

Reward
Shaped

From Scratch None

Sparse

Table 1: Target Sawyer Robot Performance on Hand Manipulation Suite tasks [1]. The evalu-
ation metrics is the number of simulation epochs and policy optimization iterations needed to reach
80% task success rate, shown as the “mean =+ standard deviation” from runs with 5 random seeds.

the board; In Relocate, the task is to pick up the ball and move it to the target position; In Door, the
task is to turn the door handle and fully open the door. We use a sparse reward setting where only
task completion is rewarded. For each task, HMS [1] provided 25 human demonstrations recorded
as palm and finger locations using a sensor glove named CyberGlove III. Then the expert policy on
the dexterous robot is trained using DAPG [1].

Qualitative Results We provide visualization of the policies on the intermediate robots learned
during evolution with our HERD in Figure 4. Starting from the dexterous robot, our proposed DEPS
algorithm is able to find the next optimized evolved robot. The policy is also able to iteratively adapt
to new evolved robots and successfully transfer to the target robots.

Quantitative Comparison with Baselines We compare our HERD against the following baseline
methods for learning a policy on the target robot: (1) From Scratch: we train policy on the target
robot from scratch with the RL algorithm under both sparse and dense shaped rewards; (2) DAPG
[1]: a variant of NPG [61] with demonstration-augmented policy gradient. We use the rollouts of
transferred HERD policy on the target robots as the demonstrations for DAPG; (3) REvolveR [18]:
robot-to-robot policy transfer with continuous and linear robot evolution path which is a special case
of our HERD. The results are illustrated in Table 1.

Training RL from scratch never completes the task to receive reward and is not able to learn on these
tasks. Robot-to-robot evolution solutions with sparse rewards are able to successfully transfer the
policy and even significantly outperform training from scratch with shaped rewards. Moreover, our
HERD outperforms REvolveR [18], though the margin in simulation epochs is smaller than RL iter-
ations in that HERD spends additional simulation epochs to obtain Jacobian as in Equation (4). We
notice that our HERD also has advantage over DAPG trained using expert rollouts directly collected
on the target robot. This shows that training a policy while maintaining sufficient reward/success
during robot evolution has advantage over exploration from scratch even with demonstration.

5.2 Learning From Visual Demonstrations

Task and Demonstrations In addition to the demonstration captured by sensor glove, we are also
interested in showing learning from visual human demonstration with our HERD. We use DexYCB
dataset [2] as the source of human demonstration. DexYCB dataset is a multi-view RGB-D video
dataset capturing human hand manipulating YCB objects [62]. We define the task as grasping and



Figure 5: Visualization of policies on evolving intermediate robots on DexY CB dataset manip-
ulations [2]. We show the results of manipulation policies learned from human demonstration on
011_banana, 006 _mustard_bottle and 007 _tuna_fish_can in three rows respectively.

. REvolveR [18] HERD (Ours)

YCB Objects #of sim epochs | # of trainiters | # of simepochs | # of train iters

006 _mustard_bottle | 279563 £ 20115 | 25645 £ 2181 | 253920 + 22745 | 19361 + 1799
007_tuna_fish_can 320951 £ 14466 | 29812 + 1569 | 286550 + 33816 | 23165 + 2693

008_pudding_box 306532 £ 17388 | 28537 £ 1522 | 264512 &+ 32775 | 22866 1 2986
011_banana 52094 £ 2288 4797 £ 262 51811 £ 3490 4022 + 349
025_bowl 817255 £ 46721 | 73799 £ 3892 | 725919 1 59419 | 65957 & 5105

Table 2: Experiments on the DexYCB dataset [2]. The evaluation metrics is the number of sim-
ulation epochs and policy optimization iterations needed to reach task success, shown as the “mean
=+ standard deviation” from runs with 5 random seeds.

then moving the object of interest to the desired position within a distance threshold as demonstrated
in the DexYCB videos. We use 5 YCB objects in Table 2. For each object, we take 2 videos in
different scenes resulting in 10 demonstrations in total. The human hand joint poses and object 6D
poses are estimated by HRNet32 [63] and CozyPose [64] respectively. Then the expert dexterous
policy is trained using the method in Section 3.1. The reward is sparse task completion reward.

Result Analysis and Comparison We compare against REvolveR [18] and illustrate the experi-
ment results in Table 2. Our HERD outperforms REvolveR in terms of policy iterations as well as
most reported simulation epoch metrics. One interesting finding is that the policy for manipulating
011_banana object is the easiest task among all objects. A possible reason is that 011_banana
object has a geometry most suitable for both the dexterous hand and target gripper.

Qualitative Results We visualize the policies on the intermediate robots learned during evolution
with our HERD in Figure 5. Again, our proposed DEPS algorithm is able to find the next optimized
evolved robot while successfully transferring the policy to the target robot. For more details on the
visualizations in this section, please refer to the supplementary video.

6 Conclusion

In this paper, we propose a framework named HERD for learning from human demonstration.
HERD framework utilizes the continuous evolution of robots to transfer the expert policy from em-
bodied dexterous hands to a target robot. We conduct experiments using the human demonstrations
from Human Manipulation Suite [1] and DexYCB dataset [2]. We show that the proposed approach
is able to transfer expert policy trained using human demonstrations in sensor glove signals or visual
data to target two-finger Sawyer and three-finger Jaco robots, even with challenging sparse rewards.

Limitations We expect that our HERD would fail in learning from human demonstrations for robots
with extremely different morphology or function than humans, e.g. learning object manipulation
policy for a robot arm mounted with a suction cup from human manipulation demonstrations.
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