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Abstract

The online list-labeling problem is an algorithmic primitive with a large literature of upper bounds,
lower bounds, and applications. The goal is to store a dynamically-changing set of n items in an array of
m slots, while maintaining the invariant that the items appear in sorted order, and while minimizing the
relabeling cost, defined to be the number of items that are moved per insertion/deletion.

For the linear regime, where m = (1+Θ(1))n, an upper bound of O(log2 n) on the relabeling cost has
been known since 1981. A lower bound of Ω(log2 n) is known for deterministic algorithms and for so-
called smooth algorithms, but the best general lower bound remains Ω(logn). The central open question
in the field is whether O(log2 n) is optimal for all algorithms.

In this paper, we give a randomized data structure that achieves an expected relabeling cost of O(log3/2 n)
per operation. More generally, if m = (1 + ε)n for ε = O(1), the expected relabeling cost becomes
O(ε−1 log3/2 n).

Our solution is history independent, meaning that the state of the data structure is independent of the or-
der in which items are inserted/deleted. For history-independentdata structures, we also prove a matching
lower bound: for all ε between 1/n1/3 and some sufficiently small positive constant, the optimal expected
cost for history-independent list-labeling solutions is Θ(ε−1 log3/2 n).

http://arxiv.org/abs/2203.02763v3


1 Introduction

The online list-labeling problem is one of the most basic and well-studied algorithmic primitives in data

structures, with an extensive literature spanning upper bounds [3, 7, 10, 12, 16–18, 34, 40–42, 75–77], lower

bounds [23,27–29,65,78], variants [2,3,8,18,25,26,34,64], and open-problem surveys [33,65]. The problem

has been independently re-discovered in many different contexts [2,34,64,74], and it has found extensive ap-

plications to areas such as ordered maintenance [9,10,16,26], cache-oblivious data structures [12–14,17,21],

dense file maintenance [74–77], applied graph algorithms [45, 47, 60, 71–73], etc. (For a detailed discussion

of related work and applications, see Section 8.)

The list-labeling problem was originally formulated [41] as follows. An algorithm must store a set of n

elements (where n changes over time) in sorted order in an array of m ≥ n slots. Elements are inserted and

deleted over time, with each insertion specifying the new element’s rank r ∈ {1,2, . . . ,n+1} among the other

elements that are present (e.g., inserting at rank 1 means that the inserted element is the new smallest element).

To keep the elements in sorted order in the array, the algorithm must sometimes move elements around. The

cost of an algorithm is the number of elements moved during the insertions/deletions.1

The list-labeling problem is well understood in the regime where m $ n. In the pseudo-exponential

regime, when m
n = 2nΩ(1)

, it is possible to achieve O(1) amortized cost per operation [7]. In the polynomial

regime, when m
n = nΘ(1), the amortized cost becomes O(logn) [2,34,44]. These bounds are known to be tight

for both deterministic and randomized algorithms [6, 7, 24].

It has remained an open problem, however, what happens in the linear regime, where m = (1+ ε)n for

some ε = Θ(1). In 1981, Itai, Konheim, and Rodeh [41] showed how to achieve amortized cost O(log2 n),
and posed as an open question whether any algorithm could do better. Despite a great deal of subsequent

work on alternative solutions (including deterministic, randomized, and deamortized algorithms) for the same

problem [8, 10, 16, 18, 40, 42, 75–77], the bound of O(log2 n) has remained unimproved for four decades.

Starting in 1990, there has been a long line of work towards establishing a matching Ω(log2 n) lower

bound [23, 24, 27–29]. It is known that any deterministic algorithm requires Ω(log2 n) amortized cost per

insertion [23]. And the same lower bound holds for smooth algorithms, where the relabelings are restricted

to evenly rebalance elements across a contiguous subarray [29]. This second lower bound is surprisingly

strong: it applies even to randomized algorithms and even to the offline problem, where the entire sequence of

operations is known a priori. However, the best general lower bound remains Ω(logn) [24].

These lower bounds tell us that, if an algorithm is to beat the O(log2 n) bound, then the algorithm must

be both randomized and non-smooth. Whether or not any such algorithm is possible has remained the central

open question [23, 24, 27–29, 41] in this research area (see also discussion of the problem in open-problem

surveys and textbooks [33, 49, 65]). Several sources [27–29] have conjectured that Θ(log2 n) cost is optimal

in general.

Breaking through the log2 n barrier. We present a randomized list-labeling algorithm that achieves ex-

pected cost O(log3/2 n) per insertion/deletion in the linear regime (Corollary 15). In breaking through the

log2 n barrier, we establish that there is a fundamental gap between deterministic and randomized algorithms

for online list labeling. Our result is the first asymptotic improvement in the linear regime in the 40-year

history of the problem.

The original O(log2 n) upper bound by Itai et al. [41] also extends to the dense regime of ε = o(1), where

the bound on amortized cost becomes O(ε−1 log2 n) [3, 19, 78]. Extending our algorithm to the same regime,

we achieve expected cost O(ε−1 log3/2 n) (Theorem 14).

Applying our result to the insertion-only setting, the array can be filled from empty to full (i.e., n = m) in

1To accommodate the many ways in which list labeling is used, some works describe the problem in a more abstract (but equivalent)

way: the list-labeling algorithm must dynamically assign each element x a label !(x) ∈ {1,2, . . . ,m} such that x ≺ y ⇐⇒ !(x)< !(y),
and the goal is to minimize the number of elements that are relabeled per insertion/deletion—hence the name of the problem.
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total expected time O(n log2.5 n) (Corollary 16). This improves over the previous state of the art of O(n log3 n),
which was known to be optimal for deterministic algorithms [23]—again we have a separation between what

can be achieved with deterministic and randomized algorithms.

A surprising aspect of our results is how they contrast with the polynomial regime m = n1+Θ(1), where

randomized and deterministic algorithms are asymptotically equivalent [6,7,24]. Our final upper-bound result

considers a continuum between these regimes, where m = ω(n)∩no(1). In this sparse regime there is a folk-

lore bound [2, 34, 44] of O
(

log2 n
log(m/n)

)

, which continuously deforms between O(log2 n) for the linear regime

and O(log n) for the polynomial regime. Using our techniques (Theorem 29), we achieve expected cost

O

(

log3/2 n
√

log(m/n)

)

.

Thus we achieve asymptotic improvements for list labeling for all m = n1+o(1).

An unexpected tool: history independence. One research area that our algorithms build directly upon is

the study of history-independent data structures: a data structure is said to be history independent [50, 53] if

its current state reveals nothing about the history of the past operations beyond the current set of elements that

are present.

History independence is typically viewed as a security guarantee, with the intent being to minimize the risk

incurred by a security breach. Research on history-independent data structures [20, 22, 35, 36, 38, 50, 52, 53]

(as well as on history-independent list labeling [8] specifically) has focused on history independence as an end

goal, with the question being whether history independence can be achieved without any increase in running

time.

We find that, in the context of list labeling, history independence is actually a valuable algorithmic tool

for building faster randomized data structures. History independence allows for us to have a data structure

with vulnerabilities (i.e., certain spots where an insertion would be expensive) while (1) keeping those vul-

nerabilities hidden from the adversary; and (2) preventing the adversary from having any control over where

those vulnerabilities appear. This simple paradigm plays an important role in allowing our randomized data

structures to bypass the log2 n barrier.

A matching lower bound for history-independent data structures. Finally, we show that our bounds in

the dense regime are asymptotically optimal for any history-independent data structure: there exists a posi-

tive constant c such that, for all 1/n1/3 ≤ ε ≤ 1/c, the expected insertion/deletion cost when m = (1+ ε)n is

necessarily at least Ω(ε−1 log3/2 n) for any history-independent data structure (Theorem 18).

This means that, if there exists a randomized data structure that achieves better bounds than those in this

paper, then the data structure must fundamentally be adaptive in how it responds to the history of the opera-

tions being performed. Of course, by being adaptive, such a data structure would also implicitly surrender the

structural anonymity that history independence offers, revealing information about where the “hotspots” are

within the data structure. Our results suggest that log3/2 n is a potentially fundamental barrier—whether or

not the bounds achieved in this paper are optimal in general remains an enticing open problem.

Paper outline. The rest of this paper proceeds as follows. Section 2 gives preliminaries. Section 3 gives an

intuitive overview of our upper bound and proof techniques. Sections 4 and 5 present our upper bounds for the

linear/dense regime. A key technical idea is to control the local density of the array via a random process that

we call a Zeno random walk—we describe and analyze this random walk in Section 4. Section 5 then gives

our (history-independent) list-labeling data structure and uses the bounds on Zeno random walks to analyze

it. Section 6 presents our lower bound for history-independent list-labeling data structures. Section 7 gives

a black-box reduction for transforming dense list-labeling solutions into sparse list-labeling solutions—this

yields our upper bound for the sparse regime. Finally, Section 8 discusses related work in more detail.
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2 Preliminaries

In this section, we formally define the list-labeling problem and history independence—we then outline the

classical O(log2 n) solution [41] and a more recent history-independent variation on that solution [8].

The list-labeling problem. A list-labeling data structure stores a dynamically changing set of size n ≤ m in

an array of m slots. It supports two operations:

• INSERT(r), r ∈ {1,2, . . . ,n+ 1}: This operation adds an element whose rank is r. This increments n

and also increments the ranks of each of the elements whose ranks were formerly in {r, . . . ,n}.

• DELETE(r), r ∈ {1,2, . . . ,n}: This operation removes the element whose rank is r. This decrements n

and also decrements the ranks of each of the elements whose ranks were formally in {r+1, . . . ,n}.

The list-labeling algorithm must maintain the invariant that the elements appear in sorted order (by rank)

within the array. The cost of an insertion/deletion is the number of elements that are moved within the array

during the insertion/deletion (including the element being inserted/deleted). In the case where n = Ω(m), we

will further guarantee (for our upper bounds) that the maximum gap between any two consecutive elements

in the array is at most O(1) positions—this extra guarantee is often required for applications of list labeling in

which algorithms perform range queries within the array, e.g., [12, 13, 60, 72, 73].

We will typically use an additional parameter ε such that either n ≤ (1− ε)m or m ≥ (1+ ε)n (the spe-

cific convention that we follow will differ from section to section to optimize for simplifying the algebraic

manipulation in each section).

From the perspective of the list-labeling data structure, the elements that it stores are black boxes—the

only information that the data structure knows about its elements is their sorted order. This allows for list

labeling to be used in applications where the elements are from arbitrary universes.

Finally, it is important to emphasize that the insertions/deletions are performed by an oblivious adversary,

who does not get to see the random decisions made by the list-labeling data structure. If the adversary were

to be adaptive, then, trivially, no randomized list-labeling data structure could incur expected cost any better

than the worst-case cost of the best deterministic list-labeling data structure.

History independence. A data structure is said to be history independent [8, 20, 22, 35, 36, 38, 50, 52, 53] if,

given access to the current state of the data structure, the only information that an adversary can deduce is the

current set of elements; that is, the adversary gains no information about the history of operations performed.

In the list-labeling data structure the current set of elements is specified only by their relative ranks, so the only

information that an adversary can deduce is the number of elements.

History independence plays an important supporting role throughout this paper. Indeed, although history

independence does not on its own improve the asymptotics of list labeling, it does create a natural abstraction

for how to separate the behavior of the data structure that we are designing from the actions of the user.

There are several basic mathematical properties of history independence that will be useful in both our

upper and lower bounds. Define the array configuration of a list-labeling data structure to be the boolean

vector in {0,1}m indicating which n positions of the array contain elements. We have the following properties

of a history-independent data structure for list-labeling:

Property 1.

(a) Whenever the array contains n elements, its array configuration A satisfies A ∼ Cn,m, where Cn,m is some

probability distribution over array configurations.

(b) Whenever an insertion is performed at rank r ∈ {1,2, . . . ,n+ 1} in an array with n elements, the array

configurations A0 and A1 before and after the insertion satisfy (A0,A1) ∼ In,m,r, where In,m,r is a joint
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distribution between Cn,m and Cn+1,m.2

(c) Whenever a deletion is performed at rank r ∈ {1,2, . . . ,n+1} in an array with n+1 elements, the array

configurations A1 and A0 before and after the deletion satisfy (A0,A1) ∼ Dn,m,r, where Dn,m,r is a joint

distribution between Cn,m and Cn+1,m.

These properties imply that the (probability distribution on the) behavior of the algorithm on any given

operation is fully determined by n, m, the operation (insertion or deletion), and the rank r of the element being

inserted/deleted. In our upper bounds, we will further have that Dn,m,r = In,m,r; we call any list-labeling data

structure with this property insertion/deletion symmetric.

2.1 The Classical Solution and its History-Independent Analogue

List labeling with weight-balanced trees. The original solution to list labeling [41], due to Itai et al. [41] in

1981, can be described in terms of weight-balanced trees [34,58,59]. For brevity, we will describe the solution

here for the linear regime, where m = (1+Θ(1))n, but the same solution directly generalizes to all regimes

from dense (n = (1− ε)m) to polynomial (m = n1+Θ(1)).

Consider an array of size m, and impose a tree structure on it, where the root node represents the entire

array, the nodes in the i-th level of the tree represent disjoint sub-arrays of size m/2i−1, and the leaf nodes

represent sub-arrays of size Θ(log n). We keep the tree tightly weight balanced, meaning that, for any pair of

sibling nodes x and y, their densities are always within a 1±O(1/ log n) factor of each other. In particular,

whenever an insertion or deletion breaks this invariant for some pair of siblings x and y, we take the elements

in the sub-array x∪ y and rearrange them to be distributed evenly across that sub-array.3

This tight weight balancing ensures that all of the nodes in the tree have densities that are within a factor

of (1+O(1/ log n))O(log n) = O(1) of each other. By selecting the constants in the algorithm appropriately,

one can ensure that every leaf has more slots than it has elements, which guarantees the correctness of the

data structure. On the other hand, in order to maintain such tight weight balancing, one must rebuild nodes a

factor of O(logn) more often than in a standard weight-balanced binary search tree [34, 58, 59], leading to an

amortized cost of O(log2 n).
Intuitively, the above data structure would seem to be the asymptotically optimal approach to maintaining

tightly-balanced densities within an array—the known lower bounds for list labeling [23,27–29] confirm that

this is the case for both deterministic and smooth data structures. The upper bounds in this paper reveal that,

perhaps surprisingly, it is not the case for randomized data structures. Randomization fundamentally reduces

the cost to maintain a tightly weight-balanced tree.

History-independent list labeling. To understand how history independence can be achieved in the context

of list labeling, it is helpful to first understand it in the context of balanced binary search trees. The clas-

sic example of a balanced binary tree with a history-independent topology is the randomized binary search

tree [5, 66] (or, similarly, the treap [5, 66]), which maintains as an invariant that, at any given moment, the

structure of the tree is random (i.e., that within each subtree, the root of that subtree is a random element).

This can be achieved with reservoir sampling [5, 8, 48, 66, 70]—in particular, whenever a new item is added

to a subtree of (former) size r, the element becomes the new root with probability 1/(r+1) (in which case the

subtree is rebuilt from scratch). This simple approach yields an expected time of O(logn) per operation.

As shown by Bender et al. [8], the same basic approach can be used to achieve history-independent list

labeling. Now, the tree is random across all tightly balanced trees—that is, within each subtree T contain-

ing elements x1 < x2 < · · · < xk, the root is a random element xi of those satisfying |i− k/2| ∈ O(k/ log n).
As before, this structure can be maintained using reservoir sampling. However, the restriction that the tree

2A probability distribution X is a joint distribution between distributions A and B if (A,B)∼ X =⇒ A ∼ A, B ∼ B .
3This approach is both deterministic and smooth, and thus consistent with the assumptions made by lower bounds [6, 27–29].
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must be tightly balanced increases the frequency with which subtrees are rebuilt, so that the expected cost per

operation becomes O(log2 n), just as for the standard solution to list labeling.

3 Technical Overview

In this section, we present an intuitive overview of our upper bound and proof techniques. Comprehensive

technical details can be found in Sections 4 and 5. For simplicity, we shall assume in this section that m = 2n.

Intuitively, our starting point is the history-independent list labeling solution by Bender, et al. [8]. As

described in Section 2, in [8], the root of any subtree of size k is a random element of the middle O(k/ logn)
elements of the subtree. We call this middle set of elements the candidate set.

A natural idea for decreasing the cost of this algorithm is to increase the size of the candidate set to δk for

some δ = ω(1/ log n). This way, the root would be resampled less often, resulting in fewer total rebalances.

However, there is a problem with this approach: the subarrays representing the nodes in the i-th level of the

tree have densities bounded between 1
2(1−δ)i and 1

2 (1+δ)i, but this means that nodes in the Θ(log n)-th level

can overflow with a density of 1
2 (1+δ)Θ(log n) = ω(1). Thus, having δ = ω(1/ log n) violates the correctness

of the algorithm.

Notice, however, that most nodes in the i-th level of the tree avoid a density of the form 1
2(1+δ)i. Indeed,

if we were to perform a random walk down the tree, then the node that we encountered on our i-th step would

likely have a density bounded above by 1
2(1+ δ)O(

√
i). This means that, if we only wanted most nodes to

behave well, then we could set δ close to 1√
log n

.

In order to obtain the benefits of δ ≈ 1/
√

log n while maintaining the correctness of δ ≈ 1/ log n, we

smoothly adjust the candidate set size for each subtree as a function of the subtree’s density. We show that

almost all subtrees are sparse enough to support a “large” candidate set (δ ≈ 1/
√

logn), while only a small

fraction of subtrees require “smaller” candidate sets (with δ closer to 1/ log n). This means that most parts of

the array support fast insertions/deletions, while only a small portion of the array is slow to insert/delete to.

While we have made progress by ensuring that most of the array can support fast updates, this is not suffi-

cient to prove the final bound. Specifically, if the adversary knows which parts of the array are slow to update,

they could simply focus all of their insertions/deletions on these slow parts of the array, causing the total cost

to be large. Instead, we would like to hide the slow parts of the array from the adversary. More precisely,

we are concerned about two distinct problems: the adversary could create dense regions through their inser-

tion sequence (e.g., by concentrating insertions in one location), or, the adversary could detect dense regions

created by the algorithm (e.g., through prior knowledge of the algorithm’s distribution of states.)

History independence comes into play in guarding against these problems. By definition, the first problem

cannot happen with a history-independent algorithm, since the configuration of the array does not depend on

the adversary’s specific sequence of insertions. For the second problem, we add an additional layer of random-

ness called a random shift. At the start of the algorithm, we insert random number k ∈ [m] of dummy elements

at the front of the array, and m− k at the end. This converts a potentially adversarial insertion at rank j to a

uniformly random insertion of rank between j and j+m. Together with history independence, the random

shift ensures that the adversary cannot target specific regions of the array.

To analyze our algorithm, we introduce the notion of a Zeno random walk, which is a special type of

bounded random walk where the step size decreases as the distance to a boundary decreases. The Zeno walk

captures the way in which the densities of subproblems evolve if we perform a random walk down our tree. Our

analysis of this random walk (Proposition 4) allows us to bound the cost of a random insertion (Lemma 12).

Finally, we extend this analysis for a random insertion to an arbitrary insertion using the ideas outlined above

of history independence and a random shift, achieving an expected O(log3/2 n) cost for any insertion/deletion.
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4 Zeno’s Random Walk

This section describes and analyzes a simple but somewhat unusual type of random walk that we will refer to

as a Zeno walk—this random walk will play an important algorithmic role in later sections.

Let δ ∈ (0,1/2]. A Zeno walk Z0,Z1,Z2, . . . starts at Z0 = 0 and deterministically satisfies Zi ∈ (−1,1) for

all i. We define αi = 1− |Zi| to be the distance between Zi and the nearest boundary 1 or −1. We determine

Zi+1 from Zi as follows:

• An adaptive adversary selects a quantity δi ≤ δ, possibly as a function of Z0,Z1, . . . ,Zi.

• Zi+1 is then set to be one of Zi +αiδi or Zi −αiδi, each with equal probability.

What makes the Zeno walk unusual is that, the closer it gets to −1 or 1, the smaller its steps become (since

the i-th step has its size multiplied by αi). The result is that (as in Zeno’s paradox), the walk can get arbitrarily

close to ±1 but can never reach ±1.

We will be interested in Zeno walks Z1, . . . ,Z! where the relationship between δ and the length ! of the

walk is δ = O(1/
√
!). To gain some intuition here, consider the case where δi = δ = 1/

√
! for all i, and let

us compare the Zeno walk Z1, . . . ,Z! to a standard unbiased random walk X1, . . . ,X! that changes by ±1/
√
!

on each step. After ! steps, the random walk X1, . . . ,X! deviates from the origin by O(1) in expectation (but

could deviate by much more) and has the property that each step is deterministically the same size. The Zeno

walk does the complement of this: it deviates from the origin by at most 1 deterministically, but to do this it

decreases the size of the i-th step by a factor of 1/αi. The key property that we will prove (Proposition 3) is

that, although the multiplier 1/αi can potentially be large, the expected value satisfies O(1/αi) = O(1) for

i ∈ [!]. With this intuition in mind, we can now begin the analysis.

Define Yi := ln(1/(1−Zi)). Rather than analyze the Zi’s directly, we will instead analyze the Yi’s. We will

see that the sequence Y1,Y2, . . . behaves similarly to the standard random walk X1,X2, . . . that we described in

the previous paragraph (except that (1) Yi is slightly biased and (2) Yi can never go below ln0.5). To make this

more precise, the next lemma shows that the random walk Y1,Y2, . . . takes steps of size at most O(δ) and has

bias at most O(δ2) per step.

Lemma 2. For i ≥ 0, we have that

|Yi+1 −Yi|= O(δ) (1)

deterministically, and that
∣

∣

∣
E[Yi+1 −Yi |Y1, . . . ,Yi,δi]

∣

∣

∣
= O(δ2). (2)

Proof. Define

γi =
αiδi

1−Zi
.

Note that, if Zi ≥ 0, then γi = δi, and otherwise γi < δi. Since Zi+1 = Zi ± (1−Zi)γi, we have that

Yi+1 = ln

(

1

1−Zi ± (1−Zi)γi

)

= ln

(

1

1−Zi
·

1

1± γi

)

= ln

(

1

1−Zi

)

+ ln

(

1

1± γi

)

= Yi + ln

(

1

1± γi

)

.
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By a Taylor approximation, we know that ln
(

1
1±γi

)

is within O(γ2
i ) of±γi. That is,Yi+1 can be computed from

Yi by first adding ±γi at random to Yi, and then adding/subtracting an additional O(γ2
i ). We therefore have that

|Yi+1 −Yi|≤ γi +O(γ2
i )≤ δi +O(δ2

i )≤ O(δ)

and that
∣

∣

∣
E[Yi+1 −Yi |Y1, . . . ,Yi,γi]

∣

∣

∣
≤ O(γ2

i )≤ O(δ2
i )≤ O(δ2).

Using Lemma 2, we can now bound E[1/α!] for the != O(1/δ2)-th step of a Zeno walk:

Proposition 3. For != O(1/δ2), we have E[1/α!] = O(1).

Proof. By symmetry, it suffices to show that

E[1/α! · IZ!≥0] = O(1),

where IZ!≥0 is 0-1 indicator random variable for the event Z! ≥ 0. Note that

E[1/α! · IZ!≥0] = E[1/(1−Z!) · IZ!≥0]

≤ E[1/(1−Z!)],

so we can complete the proof by showing that

E[1/(1−Z!)] = O(1). (3)

Let c be a sufficiently large positive constant and define the sequence X1,X2, . . ., where

Xi = Yi − i · cδ2.

This means that Xi+1 −Xi = Yi+1 −Yi − cδ2, so we can think of the Xi’s as being a modification of the Yi’s that

eliminates any upward bias that the Yi’s might have (recall by Lemma 2 that the Yi’s have bias at most O(δ2)).
Formally, one can apply Lemma 2 to deduce that the Xi’s are a supermartingale with bounded differences

of O(δ). That is, by (2) we have E[Xi+1 | X1, . . . ,Xi] ≤ Xi (so the Xi’s form a supermartingale) and by (1) we

have |Xi+1 −Xi|≤ O(δ) (so the martingale has bounded differences of O(δ)).
We can apply Azuma’s inequality for supermartingales with bounded differences to deduce the following

tail bound. For k ≥ 1, we have

Pr[Xi ≥ δk
√

i]≤ e−Ω(k2).

Unrolling the definition of Xi, we get that

Pr[ln(1/(1−Zi))≥ δk
√

i+ icδ2]≤ e−Ω(k2).

Plugging in i = != O(1/δ2), we conclude that

Pr[ln(1/(1−Z!))≥ Ω(k)]≤ e−Ω(k2).

This further simplifies to

Pr
[

1/(1−Z!)≥ eΩ(k)
]

≤ e−Ω(k2),

which implies (3), and completes the proof.
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We conclude the section by generalizing Zeno walks to take place in an arbitrary interval (λ− ε,λ+ ε).
This works exactly as before, except that now the Zeno walk begins at Z0 = λ; it deterministically stays in the

interval (λ−ε,λ+ε); it sets αi = ε− |Zi −λ| to be the distance from Zi to the nearest boundary λ−ε or λ+ε;

and then Zi+1 = Zi ±αiδi where δi ≤ δ is selected by an adversary. Equivalently, a sequence {Zi} is a Zeno

walk in the interval (λ− ε,λ+ ε) if {(Zi −λ)/ε} is a Zeno walk in (−1,1) (and the two Zeno walks have the

same parameter δ as each other). Thus we get the following generalization of Proposition 3.

Proposition 4. Consider a Zeno walk in (λ− ε,λ+ ε). For != O(1/δ2), we have E[1/α!]≤ O(ε−1).

5 The Zeno Embedding: a Data Structure for m ≥ (1+ ε)n

In this section, we give a list-labeling solution for m ≥ (1+ ε)n that achieves expected cost O(ε−1 log3/2 n)
per insertion and deletion. We will treat m ∈ N and ε ∈ (0,1) as being fixed, and we will allow the number n

of elements to vary subject to the constraint that m ≥ (1+ ε)n. We will also assume without loss of generality

that n is at least a sufficiently large positive constant.

We construct and analyze the data structure in three phases. First, we describe a certain type of static

construction, which we call the Zeno embedding, for how to embed n elements into m slots. Then we show

how to dynamize the Zeno embedding in order to efficiently implement random insertions/deletions. Finally,

we present one last modification to the Zeno embedding in order to implement arbitrary insertions/deletions

efficiently.

5.1 The Static Zeno Embedding

The Zeno embedding treats the array as having a simple recursive structure: the level-0 subproblem consists

of the entire array; and the level-i subproblems each consist of either .m/2i/ or 0m/2i1 contiguous slots in the

array.

Each level-i subproblem S is either a base case (meaning it does not have child subproblems) or has two

recursive children. If S has q ∈ {.m/2i/,0m/2i1} slots, then the children of S have .q/2/ and 0q/21 slots,

respectively. Here we are taking advantage of the basic mathematical fact that

{..m/2i//2/,.0m/2i1/2/,0.m/2i//21,00m/2i1/21} ⊆ {.m/2i+1/,0m/2i+11}.

For each level-i subproblem S, define |S| to be the number of elements stored in that subproblem, and

define the density µS of the subproblem to be

µS =
|S|

n/2i
.

Note that in the definition of µS, the denominator is the average number of elements per level-i sub-

problem, which means that µS can be greater than 1. In fact, we will guarantee deterministically that µS ∈
[1− ε/2,1 + ε/2]. The upper bound will ensure correctness (i.e., that no subproblem overflows), and the

lower bound will ensure that every pair of consecutive elements are within O(1) slots of each other.

We can now describe how to implement a given level-i subproblem S. Define

αS = ε/2− |1−µs|

to be the distance between µS and the nearest boundary {1−ε/2,1+ε/2}. Let x1, . . . ,x|S| denote the elements

of S in sorted order. Define the pivot candidate set for S to be

CS =

{

xi

∣

∣

∣

|S|
2

−
n

2i
·

αS√
logn

≤ i ≤
|S|
2

+
n

2i
·

αS√
logn

}

.

8



Roughly speaking, CS consists of the elements representing the middle Θ(αS/
√

logn)-fraction of the sub-

problem.

If |CS| ≤ 4, we declare S to be a base case, and we spread the elements of S evenly across its slots.

Otherwise, we define the pivot pS for S to be an element of CS chosen uniformly at random. The elements

xi ≤ pS are recursively placed in S’s left child, and the elements xi > pS are recursively placed in S’s right child.

Later on, when we discuss the dynamic Zeno embedding, we will see several ways that one can im-

plement the random choice of pS. For concreteness, we will mention one natural approach here: define

h0,h1,h2, . . . ,hO(log n) to be an independent sequence of hash functions4 where each hi maps each element to a

uniformly random real number in [0,1], and set

pS = argminx∈CS
hi(x).

The key property of the Zeno embedding is that if we perform a random walk down the recursive tree, then

the densities µS that we encounter form an O(log n)-step Zeno walk in the interval [1− ε/2,1+ ε/2]:

Lemma 5. Fix any outcomes for the hash functions h0,h1,h2, . . .. Consider a random walk S0,S1,S2, . . . ,S!
down the recursion tree, where each Si+1 is a random child of Si, and S! is a base-case subproblem. Then the

sequence {µSi
}!i=1 is a Zeno walk on [1− ε/2,1+ ε/2] with δ = O(1/

√
logn).

Proof. Recall that a Zeno walk on [1−ε/2,1+ε/2] is any walk Z0 ,Z1, . . . that starts at 1 and takes the following

form: each step Zi+1 −Zi is randomly ±αiδi for some δi ≤ δ (that may be chosen by an adversary) and where

αi = ε/2− |1−Zi|. Or, equivalently, each step Zi+1 −Zi is randomly ±βi for some βi ≤ δ(ε/2− |1−Zi|).
Consider a non-base-case subproblem Si, and let A and B be the child subproblems of Si. By construction,

∣

∣|A|− |B|
∣

∣= O

(

n

2i
·

αS√
logn

)

.

Since |A|+ |B|= |Si|, we have that µA +µB = 2µSi
and

|µA −µB|=
∣

∣|A|− |B|
∣

∣

n/2i+1
= O

(

αSi√
logn

)

.

Thus, since Si+1 is randomly one of A or B, we have that µSi+1 is randomly one of

µSi
+βi or µSi

−βi,

where

βi = |µA −µB|/2 = O

(

αSi√
logn

)

= O(δ(ε/2− |1−µs|)) .

Thus the sequence {µs} is a Zeno walk on [1− ε/2,1+ ε/2] with δ = O(1/
√

logn).
For clarity, we remark that the definition of the Zeno walk includes an adaptive adversary who chooses

δi < δ. The adversary for the Zeno walk in this lemma simply chooses a pivot uniformly at random from the

pivot candidate set, which determines δi.

The reason that Lemma 5 is important is that it allows for us to bound the quantities α−1
S . Indeed, we use

Proposition 4 to prove the following inequality.

4Technically, our data structure does not necessarily have access to the internal values of elements, so it cannot compute a hash

hi(x) of any given element. However, we can simulate a hash function hi by assigning each element x a random value hi(x) when the

element is inserted.
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Lemma 6. Let Si be the set of level-i subproblems. Then

1

2i ∑
S∈Si

α−1
S = O(ε−1).

Proof. Fix any outcomes for the hash functions h0,h1,h2, . . .. Consider a random walk S0,S1,S2, . . . ,S! down

the recursion tree, where each Si+1 is a random child of Si, and S! is a base-case subproblem. Lemma 5 tells

us that {µSi
}!i=1 is a Zeno walk on [1− ε/2,1+ ε/2] with δ = O(1/

√
logn) (and, moreover, αSi

corresponds

to αi in the Zeno walk).

For i ∈ [0, log m], define αi to be αSi
if Si exists and 0 otherwise (i.e., if i > !). Proposition 4 tells us that,

for each i ∈ [0, log m],
E[1/αi] = O(ε−1). (4)

On the other hand, each level-i subproblem has probability exactly 1/2i of being Si. Thus

E[1/αi] =
1

2i ∑
S∈Si

α−1
S . (5)

Combined, (4) and (5) imply the lemma.

It is interesting to note that, whereas Lemma 5 is a statement about random walks, Lemma 6 is a determin-

istic bound on the α−1
S s, even though it uses a probabilistic argument to derive the bound.

Lastly, we also need to explicitly show that no subproblem ever overflows:

Lemma 7. Each level-i subproblem S satisfies |S|≤ .m/2i/.

This lemma is a technicality that is essentially immediate from the fact that each subproblem S has density

µS ≤ 1+ε/2. The only difficulty in the proof comes from the necessity to carefully handle floors/ceilings. We

defer the proof to Appendix A.

5.2 Dynamizing the Zeno Embedding

We now describe a dynamic version of the Zeno embedding; we will treat m and ε as fixed, and allow n to vary

subject to the constraint that n ≥ (1+ ε)m.

We note that, in this section we will focus on analyzing random insertions/deletions, that is, an inser-

tion/deletion that is performed at a random rank (in an array with arbitrary contents). Our solution will be

history independent, and we will see in the next subsection that this allows the random-rank assumption to be

removed.

Implementing insertions and deletions. To implement an insertion/deletion in the Zeno embedding, we

simply update the embedding to account for the element being added/removed. More concretely, we can

implement an insertion/deletion of an element x as follows. We will describe the process recursively, focus-

ing on how to insert/delete x into a given level-i recursive subproblem S. The insertion/deletion of x may

change the values of µS,αS,CS, and pS. Note that the values of Cs and pS can change regardless of whether

the insertion/deletion of x takes place in the candidate set. If it changes the pivot pS, or if S is a base-case,

then we implement the insertion/deletion by rebuilding the entire subproblem from scratch, incurring a cost

of O(n/2i). Otherwise, we recursively insert/delete x into either the left child (if x ≤ pS) or the right child (if

x> pS). Once the insertion/deletion is complete, the Zeno embedding will be the same as if it were constructed

from scratch on the current set of elements.

As described in the static Zeno embedding, there are multiple ways to implement randomly choosing

a pivot. One way is to use the hash functions hi described in the previous subsection. This means that a

10



level-i subproblem S being inserted/deleted into gets rebuilt if argmini{hi(x) | x ∈ CS} is changed by the in-

sertion/deletion. We note that, in this construction, the hash functions are fixed at the very beginning and are

never resampled (even when subproblems are rebuilt).

Another way to implement the random choice of pivot is to use reservoir sampling [5, 8, 48, 66, 70]. This

means that, when a subproblem is first built (or rebuilt), it picks a random x ∈CS to be the pivot; whenever an

element x is added to CS, it has probability 1/|CS ∪{x}| of becoming the pivot; and whenever an element x is

removed from CS, if x was the pivot, then a random element in CS \{x} is chosen as the new pivot. Like the

hashing method, reservoir sampling maintains as an invariant that each candidate in CS is equally likely to be

the pivot.

Each of the two methods (hashing and reservoir sampling) have their own benefits: reservoir sampling can

be used to immediately obtain an algorithm in the RAM-model that has the same asymptotic running time as

its list-labeling cost, while hashing, on the other hand, ensures that the embedding is deterministic after fixing

the hash functions. In our formal arguments, we use the hash function method, but this can easily be replaced

with reservoir sampling.

Analyzing a random insertion/deletion. To begin analyzing the dynamic Zeno embedding, we observe

that, by construction, the dynamic Zeno embedding is insertion/deletion symmetric and history independent.

Observation 8. The dynamic Zeno embedding is insertion/deletion symmetric and history independent.

Due to the insertion/deletion symmetry, the expected cost of a random insertion on an array with n ele-

ments is the same as the expected cost of a random deletion on an array with n+ 1 elements. Thus we need

only analyze the expected cost of a random deletion.

We will analyze the probability that the deletion of an element x causes the rebuild of a subproblem. More

precisely, we say that a subproblem S is rebuilt if the pivot of S changes, while the pivots of all of the ancestors

of S do not change.

Next, we will prove that, if we delete an element x, and S is the level-i subproblem that contains x, then the

probability that S is rebuilt is O(|CS|−1).

Lemma 9. If an element x is deleted from a subproblem S, then S is rebuilt with probability

O
(

|CS|−1
)

.

Proof. If S is a base-case subproblem, either before or after the deletion, then |CS| = O(1), and the lemma is

trivial. Now, suppose S is not a base-case subproblem.

LetCS denote the pivot candidate set prior to the deletion of x, and letCS denote the pivot candidate set after

the deletion. Each time that we add/remove an element to/from CS, the probability that pS = argminx∈CS
hi(x)

changes is Θ(1/|CS|). It therefore suffices to show that CS and CS have a symmetric difference of at most O(1)
elements.

We can think of the transformation of CS into CS as taking place in three steps. First we update

αS = ε/2−
∣

∣

∣

∣

1−
|S|

n/2i

∣

∣

∣

∣

to become

αS = ε/2−
∣

∣

∣

∣

1−
|S|−1

n/2i

∣

∣

∣

∣

.

This changes αS by at most ± 1
n/2i , which changes the set

CS =

{

xi

∣

∣

∣

|S|
2

−
n

2i
·

αS√
logn

≤ i ≤
|S|
2

+
n

2i
·

αS√
log n

}

(6)
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by at most O(1) elements. Second, we replace |S| in (6) with |S|−1. This again changes the set CS by at most

O(1) elements. Third, we remove the element x; if x = x j for some j, then the removal of x has the effect of

decrementing the index of each xi with i ≥ j. This again changes CS by at most O(1) elements.

Combined, the three steps complete the transformation of CS into CS, meaning that CS and CS have a

symmetric difference of O(1) elements, as desired.

Lemma 9 immediately implies a bound on the expected cost incurred from rebuilding S.

Lemma 10. If an element x is deleted from a level-i subproblem S, the expected cost incurred from possibly

rebuilding S is

O

(

n/2i

|CS|

)

.

Proof. A rebuild of S costs Θ(n/2i). Thus the lemma follows from Lemma 9.

Observe that, by design,
n/2i

|CS|
= O(α−1

S

√

logn).

This is where Lemma 6 comes into play: it tells us that even though n/2i

|CS | may be large for some subproblems S,

it cannot be consistently large across all subproblems. Using this, we can analyze the expected cost to delete

a random element.

Lemma 11. The expected cost to delete a random element x from the Zeno embedding is O(ε−1 log3/2 n).

Proof. Let Si denote the set of level-i subproblems (prior to the deletion). Each S ∈ Si contains Θ(n/2i)
elements, so

Pr[x ∈ S] = Θ

(

1

2i

)

.

If x ∈ S, then we have by Lemma 10 that S incurs expected rebuild cost

O

(

n/2i

|CS|

)

= O(α−1
S

√

logn).

The expected cost from rebuilds in the i-th level of recursion is therefore at most

O

(

∑
S∈Si

1

2i
·α−1

S

√

log n

)

,

which by Lemma 6 is at most

O
(

ε−1
√

log n
)

.

Summing over the O(logn) levels of recursion, the total expected cost of the deletion is O(ε−1 log3/2 n).

Due to the previously described symmetry between insertions and deletions, the same lemma is true for

insertions.

Lemma 12. The expected cost to insert an element x with a random rank in {1,2, . . . ,n+ 1} into the Zeno

embedding is O(ε−1 log3/2 n).
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5.3 Achieving a Bound on Arbitrary Insertions/Deletions.

So far, we have only analyzed random insertions/deletions. At first glance, this may seem like an insignificant

accomplishment. (Indeed, it is already known that random insertions/deletions can be supported in O(ε−1)
amortized time per operation [15].)

What makes the Zeno embedding special is that it is history independent. We will now show how

to reduce the list-labeling problem (with arbitrary insertions/deletions) to the problem of constructing an

insertion/deletion-symmetric history-independent embedding that supports efficient random insertions/deletions.

Within any history-independent data structure, the expected cost to perform a deletion at rank r on an array

of size m containing n elements can be expressed by a cost function T (m,n,r) only dependent on m, n and

r. Moreover, if the data structure is insertion/deletion symmetric, then the same cost function T expresses the

expected cost for an insertion; specifically, the expected cost to perform an insertion at rank r on an array of

size m containing n elements is T (m,n−1,r).
To reduce from the arbitrary insertion/deletion case to the random insertion/deletion case, we will show

that given any (insertion/deletion-symmetric) history-independent algorithm A with cost function T (m,n,r),
we can construct a history-independent algorithm B with cost function T ′(m,n,r) such that for each individ-

ual rank r, the cost T ′(m,n,r) is upper bounded by the average of the costs T (m,n,r) across all ranks (up to

constant factors).

Lemma 13. Suppose there is an insertion/deletion-symmetric history-independent algorithm A whose cost

is determined by a function T (m,n,r). Then we can construct a new insertion/deletion-symmetric history-

independent algorithm B with cost function T ′(m,n,r) satisfying

T ′(m,n,r) = O

(

1

m+1

2m

∑
j=1

T (2m,m+n, j)

)

for all r.

Proof. Fix a history-independent algorithm A . We will construct a history-independent algorithm B . We

will describe the behavior of the algorithm B on an array of size m with an arbitrary sequence S of inser-

tions/deletions.

To do so, we will construct from S an input to A . The input to A is an array of size 2m with the following

insertion/deletion sequence. First we insert m dummy elements as follows. Let q be a uniformly random

integer in [0,m]. Insert q dummy elements that are treated as taking infinitely small values (i.e.,−∞), and insert

m−q dummy elements that are treated as taking infinitely large values (i.e., ∞). Now, execute the sequence S .

Now, define B as the algorithm that behaves identically to A on A’s subarray [q,q+m] (that is, A’s subar-

ray from the qth slot to the q+mth slot), ignoring the dummy elements. That is, for all i, after the ith insertion

from S , the subarray [q,q+m] of A’s array with the dummy elements removed, is identical to B’s array.

We note that B is well defined in the sense that all elements of S always appear in A’s subarray [q,q+m].
This is simply due to the existence of the dummy elements in A’s array.

Now let us bound the expected cost T ′(m,n,r) for B to perform a deletion at rank r. This corresponds to a

deletion at rank r+q in A , which has cost T (2m,m+n,r+q). Notice, however, that r+q is a random element

in {r,r+1, . . . ,r+m}. Thus,

T ′(m,n,r) =
1

m+1

r+m

∑
j=r

T (2m,m+n, j),

which in turn is at most

O

(

1

m+1

2m

∑
j=1

T (2m,m+n, j)

)

.
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In the case where A is the Zeno embedding, we refer to B as the shifted Zeno embedding. Now, we are

ready to put everything together and prove our main theorem, that the shifted Zeno embedding incurs expected

cost O(ε−1 log3/2 n) per insertion/deletion.

Theorem 14. Let ε ∈ (0,1), and suppose m ≥ (1+ε)n, where m is a static value while n changes dynamically.

The shifted Zeno embedding on an array of size m with n elements incurs expected cost O(ε−1 log3/2 n) per

insertion/deletion.

Proof. Let T (m,n,r) be the cost function associated with the Zeno embedding, and let T ′(m,n,r) be the cost

function associated with the shifted Zeno embedding. From Lemma 13, we know that

T ′(m,n,r) = O

(

1

m+1

2m

∑
j=1

T (2m,m+n, j)

)

. (7)

The right side of Equation 5.3 is within a constant factor of the average value of T (2m,m + n, j) over all

ranks j. Thus, it is within a constant factor of the expected value of T (2m,m + n, j) where j is chosen

uniformly at random over all ranks, which we know from Lemmas 11 and 12, is O(ε−1 log3/2 n). Thus,

T ′(m,n,r) = O(ε−1 log3/2 n), as desired.

The following corollary follows immediately by applying Theorem 14 to an n(1+ ε) sized subarray of a

linearly sized array for any ε < 1.

Corollary 15. There exists a list-labeling algorithm for an array of size m = n(1+Θ(1)) with expected cost

O(log3/2 n) per insertion/deletion.

We can also use the theorem to bound the total cost to insert into every slot in an array.

Corollary 16. There exists a list-labeling algorithm to fill an array of size m from empty to full with expected

total cost O(m log2.5 m).

Proof. We will apply a shifted Zeno embedding in Θ(logm) phases, using an εi, defined below, for phase i

and rebuilding the array between phases. The first phase consists of the first m/2 insertions, and each phase

inserts half as many elements as the preceding phase. This continues until n > m− logm, at which point the

final phase consists of inserting the remaining at most log m elements.

More precisely, let k = 0log m− loglogm1, and define

ni =
m(2i −1)

2i
for i = 0,1, . . . ,k,

and nk+1 = m.

Items are inserted by ranks, specified by r1, . . . ,rm, so that for example, since the first insertion is into an

empty array, r1 = 1. Phase Pi is defined by the insertions r j with j ∈ (ni−1,ni]. We define εi = (2i −1)−1 for

i > 1, and ε1 =
m−1

m .

Let C(Pi) denote the expected total cost of the insertions in phase Pi. For i > 1 and for all j ∈ (ni−1,ni],

(1+ εi) j ≤ (1+ εi)ni =

(

1+
1

2i −1

)(

m(2i −1)

2i

)

= m.

Similarly, in phase P1, we have

(1+ εi) j ≤
(

1+
m−1

m

)

·
m

2
≤ m.
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Therefore, we can apply Theorem 14 to say that for all i, an insertion during phase Pi incurs expected cost

O(ε−1
i log3/2 n) = O(2i log3/2 m),

and

C(Pi) = O
(

2i ·
m

2i
· log3/2 m

)

= O(m log3/2 m).

Summing over the first k = O(logm) phases, this gives expected total insertion cost O(m log2.5 m).
By construction, the final phase has at most logm insertions, and thus has total expected cost O(m logm).

Finally, since the total number of elements in the array is bounded by m, the rebuilds between phases incur

total cost O(m logm), completing the proof.

We conclude the section with a remark.

Remark 17. Many applications of list labeling require that, if m = Θ(n), then the number of empty slots

between any two consecutive elements is at most O(1). The Zeno embedding satisfies this property by design,

since each subproblem has density at least 1− ε/2. The shifted Zeno embedding therefore also satisfies the

same property.

6 A Lower Bound for History-Independent Solutions

The shifted Zeno embedding (Theorem 14) has the property that it is history independent, meaning that the

state of the data structure does not reveal any information about the history of insertions/deletions. In this

section, we prove that the ε−1 log3/2 n bound achieved by the shifted Zeno embedding is, in fact, optimal for

history-independent data structures.

The main result of this section will be the following lower bound:

Theorem 18. Consider any history-independent list-labeling data structure. Let m be the size of the array

and let n = (1− ε)m, where ε is at most some small positive constant and is at least m−1/3. The expected

cost to insert an element with a random rank in {1,2, . . . ,n+1} and then delete the element with rank n+1 is

Ω(ε−1 log3/2 n).

Throughout the rest of the section, let c be a large constant, and assume that m is sufficiently large as a

function of c. Let m−1/3 ≤ ε ≤ 1/c, and set n = (1−ε)m. We shall consider sequences of insertions/deletions,

where each insertion is into an array of n elements and each deletion is from an array of n+1 elements.

To aid in the proof of Theorem 18, let us take a moment to establish several definitions and conventions.

Let J = {2,4,8, . . . ,2.log m/−2}. For each j ∈ [m], define a j-block to be a block of j consecutive slots in the

array, allowing for wrap-around (so there are m possible j-blocks).

Define the density of a j-block to be k/ j, where k is the number of elements in the j-block. Call a j-block

live if it has density at least 1− cε, and dead otherwise. Note that this definition of density is slightly different

from that used for recursive subproblems in the upper-bound section (Section 5) in that we define the density

to be between 0 and 1—this difference will make the algebraic manipulation cleaner in several places.

For each j ∈ J, define the imbalance of a j-block to be |µ1 − µ2|, where µ1 is the density of the first j/2

slots in the block, and µ2 is the density of the final j/2 slots in the block. Define the adjusted imbalance ∆(x)
of a j-block x to be the block’s imbalance if the block is live, and 0 if the block is dead. Finally, define the

boundary set B(x) to be the set of up to three elements in positions {1, j/2, j} of x.

For a given array configuration A, define ∆ j(A) to be the average adjusted imbalance across all j-blocks.

Finally, define ∆ j = EA∼Cn,m[∆ j(A)].
We will split the proof of Theorem 18 into two key components. Section 6.1 proves the following combi-

natorial bound, which holds deterministically for any array configuration.
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Proposition 19. For any array-configuration A with n = (1− ε)m elements,

∑
j∈J

(∆ j(A))
2 = O(ε2).

Section 6.1 also uses Cauchy-Schwarz to arrive at the following corollary.

Corollary 20. For any array-configuration A with n = (1− ε)m elements,

1

|J| ∑j∈J

∆ j(A) = O(ε/
√

logn).

Section 6.2 then gives a lower bound in terms of the ∆i’s on the expected cost that any history-independent

data structure must incur.

Proposition 21. Suppose n = (1− ε)m, where m−1/3 ≤ ε ≤ 1/c and c is some sufficiently large positive con-

stant. Suppose we perform an insertion at a random rank r ∈ {0, . . . ,n+ 1} and then delete the element with

rank n+1. The expected total cost of the insertion/deletion is at least

Ω

(

∑
j∈J

1

∆ j +1/ j

)

.

Note that the expected cost in Proposition 21 is with respect to the randomness introduced by both the

random rank r and the randomness in the history-independent data structure.

Intuitively, the above results tell us that any optimal history-independent data structure must behave a lot

like the Zeno embedding. Indeed, Corollary 20 tells us that, no matter how we configure our array A, it is

impossible to achieve imbalances that are consistently ω(ε/
√

logn)—so, if our goal is to maximize the im-

balances in our array, we can’t hope to do any better than the Zeno embedding already does. Proposition 21

then tells us that small imbalances are necessarily expensive to maintain (and, in fact, the asymptotic relation-

ship between cost and imbalance is the same as the one achieved by the Zeno embedding). Combining the

propositions, we can prove the theorem as follows.

Proof of Theorem 18. By Corollary 20, we have

1

|J| ∑j∈J

∆ j = EA∼Cn,m

[

1

|J| ∑j∈J

∆ j(A)

]

≤ O
(

ε/
√

logn
)

. (8)

By Proposition 21, the the expected cost of the insertion/deletion is at least

Ω

(

∑
j∈J

1

∆ j +1/ j

)

. (9)

If ∆ j ≤ 1/
√

n for any j ≥
√

n, then (9) becomes Ω(
√

n) ≥ Ω(ε−1 log3/2 n) (since ε ≥ Ω(n−1/3)), and we are

done. On the other hand, if ∆ j ≥ 1/
√

n for all j ≥
√

n, then (9) is at least

Ω

(

∑
j∈J, j≥

√
n

1

∆ j

)

. (10)

By (8), we know that at least half of the ∆ j’s in the above sum satisfy ∆ j = O(ε/
√

log n). Thus the expected

cost comes out to at least

Ω(ε−1 log3/2 n).
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6.1 Proof of Proposition 19

Although Proposition 19 is a deterministic statement, we will prove it with a probabilistic argument.

For j ∈ J, define the children of a j-block to be the j/2-blocks consisting of the first and last j/2 slots of

the block, respectively. Also, let j∗ = 2.logm/−2 be the largest element of J.

For a j-block x with density µ, define the potential φ(x) to be

φ(x) =

{

0 if x is dead

(µ− (1− cε))2 otherwise.

For a random j-block x, one should think of φ(x) as measuring something similar to (but not quite equal to)

the variance of µ. The key differences between what φ and variance measure is that (1) φ evaluates directly to

0 on any j-block x that is dead (i.e., has density less than 1− cε), and (2) φ examines the square of the distance

between µ and the death-threshold 1− cε, rather than the square of the distance from µ to E[µ] = 1− ε.

Note that 0 ≤ φ(x) ≤ O(ε2) deterministically. On the other hand, we will now see how to relate the

expected potential φ(x) of a random 1-block to the quantity ∑ j∈J(∆ j(A))2.

Lemma 22. Let x be a random 1-block. Then

E[φ(x)] = Ω

(

∑
j∈J

(∆ j(A))
2

)

.

Proof. Let x0 be a random j∗-block, and for i ∈ [log j∗], let xi be a random child of xi−1. This means that each

xi is itself a random 2log j∗−i-block, and that x := xlog j∗ is a random 1-block. Define µi to be the density of xi.

We will argue that

E[φ(xi)−φ(xi−1)] = Ω
(

(∆ j∗/2i(A))2
)

. (11)

This would imply that

E[φ(x)] = E[φ(x0)]+∑
i

E[φ(xi)−φ(xi−1)] = Ω

(

∑
j∈J

(∆ j(A))
2

)

,

as desired.

For the rest of the proof, consider some φi and set j = j∗/2i. We claim that with probability at least

1− 1/c ≥ 0.9, xi−1 is live. Indeed, in expectation at most an ε fraction of the slots in xi−1 are free, so by

Markov’s inequality the probability that more than a cε fraction of the slots in xi−1 are free is at most 1/c ≤ 0.1.

If we condition that xi−1 is live, then its imbalance ∆ satisfies E[∆] = Θ(∆ j∗/2i−1(A)). Furthermore, if xi−1

is live, then we have that φ(xi) is randomly one of

(
√

φ(xi−1)+∆/2)2

or

(max{0,
√

φ(xi−1)−∆/2})2.

Note that the average of these is

0.5(
√

φ(xi−1)+∆/2)2 +0.5(max{0,
√

φ(xi−1)−∆/2})2.

If 0 <
√

φ(xi−1)−∆/2, this average is

φ(xi−1)+∆2/4.
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On the other hand, if 0 ≥
√

φ(xi−1)−∆/2, this average is

0.5 ·φ(xi−1)+∆
√

φ(xi−1)/2+∆2/8

≥ 1.5 ·φ(xi−1)+∆2/8.

Thus, in either case, this average is

≥ φ(xi−1)+∆2/8.

It follows that

E[φ(xi) | xi−1 live]≥ E[φ(xi−1) | xi−1 live]+ ·E[∆2 | xi−1 live]/8

≥ E[φ(xi−1) | xi−1 live]+ ·E[∆ | xi−1 live]2/8

≥ E[φ(xi−1) | xi−1 live]+Ω(∆ j∗/2i−1(A)2).

On the other hand,

E[φ(xi) | xi−1 not live]≥ 0

= E[φ(xi−1) | xi−1 not live].

So we can conclude that

E[φ(xi)]≥ E[φ(xi−1)]+Pr[xi−1 live] ·Ω(∆ j∗/2i(A)2)

≥ E[φ(xi−1)]+0.9 ·Ω(∆ j∗/2i−1(A)2),

hence (11).

We can now prove Proposition 19.

Proof of Proposition 19. Let x be a random 1-block. Then by Lemma 22,

E[φ(x)] = Ω

(

∑
j∈J

∆2
j(A)

)

.

On the other hand, φ(x) = O(ε2) deterministically. Combined, these imply

∑
j∈J

∆ j(A)
2 = O(ε2).

Proof of Corollary 20. Cauchy-Schwarz implies

∑
j∈J

∆ j(A)
2 ≥

(

∑
j∈J

∆ j(A)

)2

/|J|=

(

∑
j∈J

∆ j(A)

)2

/O(log n).

Thus we have

∑
j∈J

∆ j(A)≤ O(
√

logn)
√

∑
j∈J

∆ j(A)2 ≤ O
(

ε
√

log n
)

,

where the final inequality uses Proposition 19. Dividing by |J|= Θ(log n), we have

1

|J| ∑j∈J

∆ j(A) = O(ε/
√

logn).
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6.2 Proof of Proposition 21

In this section, we prove Proposition 21. All of the lemmas in this section assume an array of size m that

initially contains n elements, where n = (1− ε)m.

We begin by establishing that, if we consider an element with random rank t ∈ [n/2], and we examine the

j-block beginning at that element, then there are several basic properties that hold with probability at least 0.9.

Lemma 23. Let j ∈ J and consider a random t ∈ [n/2]. Define x to be the j-block whose first position contains

the current rank-t element. With probability at least 0.9, the following all hold:

• x is live;

• |B(x)| = 3;

• ∆(x)< c∆ j,

Proof. It suffices to show that each individual property holds with probability at least 0.97. Observe that x is

chosen at random from one of n/2 ≥ m/3 j-blocks. It therefore suffices to show that, if we define x′ to be a

uniformly random j-block, then each property holds with probability at least 0.99 for x′.

Note that x′ contains at most ε j free slots in expectation, so by Markov’s inequality the probability that x′

contains ≥ cε j free slots is at most 1/c ≤ 0.01. Thus x′ is live with probability at least 0.99.

We claim that E[3− |B(x′)|] = 3ε. This is because the probability that a given slot is occupied is 1− ε,

so E[|B(x′)|] = 3(1− ε) = 3− 3ε. Thus, E[3− |B(x′)|] = 3ε ≤ 3/c. Thus, by Markov’s inequality we have

Pr[3− |B(x′)|≥ 1] = 3/c ≤ 0.01. Thus |B(x′)|= 3 with probability at least 0.99.

Finally, observe that E[∆(x′)] = ∆ j, so by Markov’s inequality we have Pr[∆(x′) ≥ c∆ j] ≤ 1/c ≤ 0.01.

Thus ∆(x′)< c∆ j with probability at least 0.99.

Call an insertion/deletion critical to a j-block x if: x is live when the operation is performed; and the

operation leads to at least one of the elements in B(x) being rearranged. The next lemma argues that, if we

perform enough insertions/deletions inside a random j-block, then at least one of them will likely be critical.

Lemma 24. Let j ∈ J, let s ∈ [ j/6, j/3], and consider a random t ∈ [n/4− s,n/2− s]. Define x to be the j-

block whose first position contains the element with rank t. Suppose we perform .c j∆ j/+1 insertion/deletion

pairs, where each insertion adds a new element with rank t + s and each deletion removes the highest-ranked

element (i.e., the element with rank n+1). With probability at least 0.6, at least one of the insertions/deletions

is critical to x.

Proof. We know that, with probability at least 0.6, the properties in Lemma 23 hold for x both before the

insertions/deletions are performed and after the insertions/deletions are performed. Suppose for contradiction

that none of the insertions/deletions are critical to x.

Thus, we know that none of the operations rearrange any of the elements in B(x). We additionally claim

that none of the elements in B(x) are deleted. This follows from the fact that we always delete the element

of rank n+ 1, while the highest-ranked element in x is has rank less than n+ 1 for the following reason. The

first element of x is at rank at most n/2, and x contains at most j∗ = 2.logm/−2 ≤ n
4(1−ε) elements. So the last

element of x has rank at most n
2 +

n
4(1−ε) , which is less than n+1 since ε < 1/2.

Additionally, we claim that all of the insertions go into the first j/2 slots of x. This is because otherwise

there would be at most s ≤ j/3 elements in the first j/2 slots, which means that there would be least j/6 empty

slots, which contradicts the fact that x is live.

Thus, during the course of the insertions/deletions, the first j/2 slots in x gain .c j∆ j/+1 elements, while

the second j/2 slots of x remain stable in their number of elements. We know that ∆(x)< c∆ j both before and

after the insertions/deletions are performed. So, over the course of the insertions/deletions, the density of the
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first j/2 slots in x changes by less than 2c∆ j. This means that the number of elements in the first j/2 slots of x

changes by at most j/2 ·2c∆ j = c j∆ j, which contradictions the fact that the first j/2 slots in x gain .c j∆ j/+1

elements.

Using symmetry, we can reinterpret the previous lemma as a statement about a single insertion/deletion

pair.

Lemma 25. Let j ∈ J, let s ∈ [ j/6, j/3], and consider a random t ∈ [n/4 − s,n/2− s]. Define x to be the

j-block whose first position contains the element with rank t. Suppose we perform a single insertion/deletion

pair, where the insertion adds a new element with rank t+s and the deletion removes the current highest-ranked

element (i.e., the element with rank n+1). With probability Ω
(

1
. j∆ j/+1

)

, at least one of the insertion/deletion

is critical to x.

Proof. By history independence, the probability distribution of array configurations is only dependent upon

n, m, and r, and these quantities are the same after each insertion/deletion pair in Lemma 24. Thus, Lemma

24 immediately extends to each individual insertion/deletion pair.

The previous lemma analyzes for a specific block x the probability that a specific insertion/deletion pair is

critical to x. Notice, however, that a given insertion/deletion pair can be critical to many j-blocks simultane-

ously. Indeed, by applying Lemma 24 simultaneously for multiple different values of s, we can deduce a lower

bound on the expected number of elements that are rearranged at distance Θ( j) (in rank) from the element

currently being inserted.

Lemma 26. Let j ∈ J. Suppose we perform an insertion at a random rank r ∈ [n/4,n/2] and then we delete

the highest-ranked element (i.e., the element with rank n+ 1). Let qj be the number of elements that are

rearranged by the insertion/deletion, and that have ranks r′ satisfying |r− r′|= Θ( j) after the insertion. Then

E[qj] = Ω

(

1

∆ j +1/ j

)

.

Proof. For s ∈ [ j/6, j/3], define xs to be the j-block beginning with the element whose rank is r− s. Note that

the sets B(xs) are disjoint across s ∈ [ j/6, j/3]. Let Bs be the number of elements in B(xs) that are rearranged

by the insertion/deletion; and let Es be the event that both Bs ≥ 1 and that xs is live.

If xs is live then the elements of Bs have ranks r′ satisfying |r− r′| = Θ( j). Since the Bs’s are disjoint, it

follows that

E[qj]≥ ∑
s∈[ j/6, j/3]

Pr[Es].

For each s ∈ [ j/6, j/3], we have by Lemma 25 that

Pr[Es] = Ω

(

1

. j∆ j/+1

)

.

Thus

E[qj] = Ω

(

j

. j∆ j/+1

)

= Ω

(

1

∆ j +1/ j

)

,

as desired.

Finally, we can deduce a lower bound on the total number of elements that are rearranged by a random

insertion/deletion.
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Lemma 27. Suppose we perform an insertion at a random rank r ∈ [n/4,n/2] and then we delete the highest-

ranked element. The expected total cost of the insertion/deletion is at least

Ω

(

∑
j∈J

1

∆ j +1/ j

)

.

Proof. Let q be the number of elements that are rearranged by the insertion/deletion. For each j ∈ J, de-

fine qj as in Lemma 26. Each element that is rearranged by the insertion/deletion has a rank r′ satisfying

|r′ − r|= Θ( j) for at most a constant number of j ∈ J. That is, each rearrangement is counted by at most O(1)
of the qj’s. Thus

q = Ω

(

∑
j

q j

)

.

By Lemma 26, it follows that

E[q] = Ω

(

∑
j∈J

1

∆ j +1/ j

)

.

Lemma 27 considers an insertion with a random rank r ∈ [n/4,n/2], but this trivially implies the same

claim for a random rank r ∈ {0, . . . ,n} (i.e., Proposition 21). Thus the section is complete.

7 Upper Bound For Sparse Arrays

Define the τ-sparse list-labeling problem to be the list-labeling problem in the regime of n ≤ m/τ. Previously

in this paper, we studied the setting where τ = O(1). In this section, we extend our upper bounds to apply to

the sparse regime where m = τn for some 16 ≤ τ ≤ no(1). We do this via a simple general-purpose reduction

from the sparse setting to the linear setting.

We will prove the following proposition:

Proposition 28. Let T be a non-negative convex function satisfying T (Θ(i)) =Θ(T (i)) for all i and satisfying

T (0) = 0. Let 16 ≤ τ ≤ no(1). If there exists a 2-sparse list-labeling solution whose expected amortized cost is

upper bounded by T (logn), then there exists a τ-sparse list-labeling solution whose expected amortized cost

is upper bounded by

O

(

T

(

logn

logτ

)

· logτ

)

.

Combining Proposition 28 and Corollary 15, we obtain the following upper bound for the sparse regime:

Theorem 29. For 16 ≤ τ ≤ no(1), there exists a solution to the τ-sparse list-labeling problem with expected

amortized cost upper bounded by

O

(

log3/2 n√
logτ

)

.

To prove Proposition 28, we introduce an intermediate problem that we call the bucketed list-labeling

problem. In this problem, there are m buckets and up to N = Ω(m) elements at a time, with elements being

inserted and deleted as in the classical list-labeling problem. Elements must be assigned to buckets so that, if

two elements a and b are assigned to buckets u 5= v, then a < b ⇐⇒ u < v. The cost of adding/removing an
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element to/from a bucket is 0 when that element is inserted/deleted, but the cost of rearranging items is equal

to the sum of the sizes of the buckets containing those items. (So even moving one item from a bucket u to a

bucket v costs |u|+ |v|). Finally, each bucket has a maximum capacity of 8N/m elements.

Our next lemma reduces bucketed list labeling to 2-sparse list labeling.

Lemma 30. Let T be a non-negative convex function. If there exists a 2-sparse list-labeling solution whose

expected amortized cost is upper bounded by T (log n), then there exists a bucketed list-labeling solution whose

expected amortized cost is upper bounded by

O(T (log m)) .

Proof. An important component of our bucketed list-labeling solution is to partition the elements into up to

m/2 disjoint blocks, where each block contains up to 8N/m consecutive elements. We maintain these blocks

using hysteresis: every time that a block’s size falls below 2N/m (due to deletions), we merge it with an adja-

cent block (unless there is only one block in the system); and every time that a block’s size exceeds 8N/m (due

to insertions or merges), we split that block into two blocks of equal size. Note that a block’s size can never

exceed 10N/m because a block of size ≤ 8N/m can be merged with a block of size < 2N/m, and there is no

way to create a larger block. Thus, after a split, the size of each resulting block is between 4N/m and 5N/m.

Starting from an empty array, during a sequence of k insertions/deletions, the number of block splits/merges

will be at most O(km/N).
To construct a bucketed list-labeling solution, we treat the m buckets as slots in an array of size m, and we

treat the up-to-m/2 blocks as elements that reside in that array. This allows for us to treat the bucketed list-

labeling problem as a 2-sparse list-labeling problem: block splits corresponded to element insertions in the

2-sparse list-labeling problem; and block merges correspond to element deletions in the 2-sparse list-labeling

problem.

If an operation incurs cost S in the 2-sparse list-labeling problem, then it incurs cost O(S ·N/m) in the buck-

eted list-labeling problem (since each element in the former problem corresponds to a block of O(N/m) ele-

ments in the latter problem). On the other hand, starting from an empty array, if k insertions/deletions are per-

formed in the bucketed list-labeling problem, the number of insertions/deletions in the 2-sparse list-labeling

problem will only be O(km/N). Combining these with the assumption that the 2-sparse list-labeling problem

incurs cost T (log n), we have that the total cost of the bucketed list-labeling problem is O(T (log(m/2)) ·N/m ·
k ·m/N) = O(kT (logm)), thus the amortized cost of the bucketed list-labeling problem is O(T (log m)).

Next we reduce sparse list labeling to bucketed list labeling.

Lemma 31. Let T be a non-negative convex function satisfying T (Θ(i)) = Θ(T (i)) for all i and satisfying

T (0) = 0. Let 16 ≤ τ ≤ no(1). If there exists a bucketed list-labeling solution whose expected amortized cost

is upper bounded by T (logm), then there exists a τ-sparse list-labeling solution whose expected amortized

cost is upper bounded by

O

(

T

(

logn

logτ

)

· logτ

)

.

Proof. We may assume without loss of generality that τ is a natural number. We prove the result by induction

on τ. The base case of 16 ≤ τ ≤ O(1) is trivial, since we can break the array into Θ(n) chunks of size Θ(1)
and treat each chunk as a bucket in the bucketed list-labeling problem.

Now suppose that ω(1) ≤ τ ≤ no(1). Let c be a large positive constant (to be selected later), and partition

the array into nc/ log τ chunks of size m′ = .m/nc/ log τ/ slots each (possibly orphaning O(nc/ log τ) slots due to

rounding errors). Treat each of the nc/ log τ chunks as a bucket, and assign elements to chunks using bucketed
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list labeling. By assumption, bucketed list labeling has expected amortized cost T (log m)where m is the num-

ber of buckets, and plugging in the value nc/ log τ for m we get that the expected amortized cost of the bucketed

list labeling instance is:

T (log nc/ log τ) = T

(

c logn

logτ

)

per operation. Since T (Θ(i)) = Θ(T (i)), we can further bound the above cost to be at most

c′ ·T
(

logn

logτ

)

, (12)

where c′ is a constant determined by c.

By design, each chunk contains at most n′ = 8n/nc/ log τ elements, so

m′

n′
≥

.m/nc/ log τ/
8n/nc/ log τ

≥
m

16n
≥ τ/16.

Thus we can recursively implement each chunk as an instance of τ
16 -sparse list labeling. By our inductive

hypothesis for τ′ = τ
16 , we have that for every sufficiently large positive constant Q, the expected amortized

cost of performing an insertion/deletion in a given chunk is at most

Q ·T
(

logn′

logτ′

)

· logτ′

= Q ·T
(

(1− c/ log τ+3/ logn) log n

(1−4/ log τ) logτ

)

· (1−4/ log τ) logτ

≤ Q ·T
(

(1−1/ log τ) log n

logτ

)

· logτ (since c ≥ 8)

≤ Q · (1−1/ logτ) ·T
(

logn

logτ

)

· logτ (since T is convex and T (0) = 0)

≤ Q ·T
(

logn

logτ

)

· logτ−Q ·T
(

log n

logτ

)

.

Combining this with (12), the total expected amortized cost of an insertion/deletion is at most

c′ ·T
(

log n

logτ

)

+Q ·T
(

logn

logτ

)

· logτ−Q ·T
(

logn

logτ

)

.

Choosing Q to be at least c′, this is at most

Q ·T
(

log n

logτ

)

· logτ,

which completes the proof by induction.

Lemmas 30 and 31 directly imply Proposition 28, completing the section.
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8 Related work

Formulations and reformulations. The list-labeling problem has been independently formulated several

times and under various names. It was first studied by Itai, Konheim and Rodeh [41] as a sparse table scheme

for implementing priority queues. Willard [74] considered the file-maintenance problem, where records are

inserted and deleted in a sequentially ordered file. Dietz [26] formulated the similar order-maintenance prob-

lem of maintaining order in a linked list with efficient insertions. Andersson [2] and Andersson and Lai [3]

studied a version of the problem in the context of balanced binary search trees, which Galperin and Rivest [34]

independently studied under the name scapegoat trees. Raman [64] posited an analogous problem related to

building locality preserving dictionaries.

This problem has mainly been studied in four regimes for the size m of the label array: dense (m =
(1+o(1))n), linear (m = (1+Θ(1))n), polynomial (m = n1+Θ(1)), and superpolynomial (m = nω(1)).

Upper and lower bounds in the linear regime. In the linear regime, Itai, Konheim and Rodeh [41],

first proved that items can be inserted with O(log2 n) amortized cost. Various subsequent works have made

improvements or simplifications to the algorithms achieving this cost, but the upper bound has remained un-

changed. Willard [75–77] deamortized this result to a O(log2 n) worst-case cost. Bender, Cole, Demaine,

Farach-Colton and Zito [10], Bender, Fineman, Gilbert, Kopelowitz and Montes [16] and Katriel [42] pro-

vided simplified algorithms for this result for the order-maintenance problem. Itai and Katriel [40] additionally

simplified the algorithm for the amortized upper bound.

The list-labeling problem where m = (1+ ε)n, and where the gap between any two inserted items is O(1)
is often called the packed-memory array problem, for which bounds of O(ε−1 log2 n) are known [11, 12, 17].

Bender and Hu [18] provided an adaptive packed-memory array algorithm, that is, it matches the O(log2 n)
worst case insertion cost in the linear regime while achieving cost of O(logn) on certain common classes

of instances. Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh and Zage [8] presented a

history-independent packed-memory array which again matches the existing upper bound in the linear regime.

Dietz and Zhang [29] proved a lower bound on insertion costs of Ω(log2 n) amortized per insertion in

the linear regime for the natural class of smooth algorithms, where the relabelings are restricted to evenly

rebalance elements across a contiguous subarray. Bulánek, Koucký and Saks. [23] showed a Ω(log2 n) lower

bound for deterministic algorithms in the linear regime, and thus proved that the best known upper bounds

were tight for deterministic algorithms. The best general lower bound is Ω(log n) in the linear regime [24].

Other upper bounds. In the dense setting, Andersson and Lai [3], Zhang [78], and Bird and Sadnicki [19]

showed an O(n log3 n) upper bound for filling an array from empty to full for m = n. For arrays of polynomial

size, it was known as a folklore algorithm that an amortized O(logn) insertion cost can be achieved by mod-

ifying the techniques in [41]. Kopelowitz [44] extended this to a worst case upper bound. This bound was

also matched in the balanced search tree setting [2,34]. In the superpolynomial array regime, Babka, Bulánek,

Cunát, Koucký and Saks [7] showed an algorithm with amortized O(log n/ loglog m) cost when m =Ω(2logk n),

which implies constant amortized cost in the pseudo-exponential regime of m = 2nΩ(1)
. Devanny, Fineman,

Goodrich and Kopelowitz [25] studied the online house numbering problem, which is similar to the list-

labeling problem, except with the objective to minimize the maximum number of times an element is relabeled.

Other lower bounds. Dietz and Zhang [29] proved a lower bound of Ω(log n) per insertion in the polyno-

mial regime for smooth algorithms. Bulánek, Koucký and Saks [23] showed an Ω(n log3 n) lower bound for

n insertions into an initially empty array of size m = n+n1−ε. Dietz, Seiferas and Zhang [28] proved a lower

bound of Ω(logn) in the polynomial regime for general deterministic algorithms, with a simplification by

Babka, Bulánek, Cunát, Koucký, and Saks [6]. Bulanek, Koucký and Saks [24] also proved that the Ω(logn)
lower bound for the polynomial regime extends to randomized algorithms. In the superpolynomial regime,
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Babka, Bulánek, Cunát, Koucký and Saks [7] showed a lower bound of Ω
(

log n
loglog m−loglog n

)

for m from n1+C

to 2n, which reduces to a bound of Ω(logn) for m = n1+C.

Theoretical Applications. Applications of list labeling include the diverse motivating problems under

which it was first studied, such as priority queue implementation, ordered file maintenance, etc. Hofri and

Konheim [39] studied a similar array structure for use in a control density array, a sparse table that supports

search, insert and deletion by keys. Fagerberg, Hammer and Meyer [32] used upper bounds from [41] for their

rebalancing scheme, which maintains optimal height in a balanced B-tree.

Bender, Demaine and Farach-Colton [12] used the packed-memory array in their cache-oblivious B-

tree algorithm, so our result directly implies an improvement in that scheme. Specifically, insertions into

their B-tree take O(logB N + (log2 N)/B) I/Os, and using our list-labeling algorithm, this is improved to

O(logB N + (log3/2 N)/B) I/Os. Brodal, Fagerberg and Jacob [21] and Bender, Duan, Iacono and Wu [13]

independently simplified the cache-oblivious B-tree algorithm. Bender, Fineman, Gilbert and Kuszmaul [17]

presented concurrent cache-oblivious B-trees for the distributed setting. Bender, Farach-Colton and Kusz-

maul [14] described cache-oblivious string B-trees for improved performance on variable length keys, com-

pressed keys, and range queries. All of these cache-oblivious algorithms use packed-memory arrays.

In their results on the controller problem for managing global resource consumption in a distributed net-

work, Emek and Korman [31] reduced the list-labeling problem to prove their lower bounds. Bender, Cole,

Demaine, Farach-Colton and Zito [10] also applied list labeling lower bounds to the problem of maintain-

ing a dynamic ordered set which supports traversals in the cache-oblivious and sequential-access models.

Kopelowitz [44] studied the predecessor search on dynamic subsets of an ordered dynamic list problem,

which combines the order-maintenance problem with the predecessor problem of maintaining dynamic sets

which support predecessor queries. Nekrich used techniques for linear list labeling from [41] in data struc-

tures supporting various problems related to querying points in planar space, such as orthogonal range report-

ing [54, 55], the stabbing-max problem [57], and the related problem of searching a dynamic catalog on a

tree [56]. Mortensen [51] similarly considered applications to the orthogonal range and dynamic line segment

intersection reporting problems.

Practical Applications. Additionally, a variety of practical applications use the packed-memory array

as an algorithmic component. Durand, Raffin and Faure [30] proposed using a packed-memory array to

maintain sorted order during particle movement simulations for efficient searching. Khayyat, Lucia, Singh,

Ouzzani, Papotti, Quiané-Ruiz, Tang and Kalnis [43] applied it to handle dynamic database updates in their

inequality join algorithms. Toss, Pahins, Raffin and Comba [69] presented a packed-memory quadtree, which

supports large streaming spatiotemporal datasets. De Leo and Boncz [46] presented the rewired memory

array, an implementation of a packed-memory array which improves on its practical performance. Several

works [45, 47, 60, 71–73] implemented parallel packed-memory arrays for the purpose of storing dynamic

graphs with fast updates and range queries. Assessing whether our results can be used to obtain practical

speedups for these applications remains an interesting direction for future work.

Related work on history independence. History independence has been studied for data structures in both

internal and external memory models [8, 20, 22, 35, 36, 38, 50, 52, 53]. Even prior to the formalization of

history independence [50, 53] in the late 1990s, there were several notable early works on hashing and search

trees that implicitly achieved history-independent topologies [1, 4, 5, 61–63, 67, 68]. The notion of history

independence studied in this paper is sometimes referred to as weak history independence—for a survey of

stronger notions of history independence, along with other related work, see recent work [37] by Goodrich,

Kornaropoulos, Mitzenmacher and Tamassia. (Note that, the weaker the notion of history independence that

one uses, the stronger any lower bound on history-independent data structures becomes.)

History independence is typically treated as a security property: the goal is to minimize the amount of
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information that is leaked if an adversary sees internals of the data structure. To the best of our knowledge,

the results in this paper are the first to use techniques from history independence in order to achieve faster

algorithms than were previously possible.
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with polynomially many labels. In ESA, volume 7501 of Lecture Notes in Computer Science, pages

121–132. Springer, 2012.
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A Proof of Lemma 7

Lemma 7. Each level-i subproblem S satisfies |S|≤ .m/2i/.

We remark that Lemma 7 is essentially immediate from the fact that each subproblem S has density

µS ≤ 1+ ε/2. The only difficulty in the proof comes from the necessity to carefully handle floors/ceilings.

Proof. By construction, each level-i subproblem S has

|CS|≤ 2αS ·
n

2i
≤ ε ·

n

2i
.

Thus, if |CS| > 4 (i.e., S is a non-base-case subproblem), we must have εn/2i ≥ 4. Since every base-case

subproblem is the child of a non-base-case subproblem, we have that for base-case subproblems εn/2i−1 ≥ 4.

This means that every subproblem S is in a level i satisfying

εn

2i
≥ 2. (13)

We wish to show that .m
2i /− |S|≥ 0. We know that

⌊m

2i

⌋

− |S|=
⌊m

2i

⌋

−µS
n

2i
≥

m

2i
−µS

n

2i
−1 ≥

(1+ ε)n−µSn

2i
−1.

Since µS ≤ 1+ ε/2, it follows that
⌊m

2i

⌋

− |S|≥
εn/2

2i
−1.

By (13), we can conclude that .m
2i /− |S|≥ 0, as desired.
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