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Abstract—Stress is a central factor in our daily lives, impacting
performance, decisions, well-being, and our interactions with
others. With the development of IoT technology, smart wearable
devices can handle diverse operations, including networking and
recording biometric signals. It has also increased stress awareness
among users with the wearables’ enhanced data processing capa-
bility. Edge computing on such devices enables real-time feedback
and in turn preemptive identification of reactions to stress. This
can provide an opportunity to prevent severe consequences that
might result if stress is left unaddressed. Edge computing can
also strengthen privacy by implementing stress prediction on
local devices without transferring personal information to the
public cloud.

This paper presents a framework for real-time stress predic-
tion, specifically for police training cadets, using wearable devices
and machine learning with support from cloud computing. It
includes an application for Fitbit and the user’s accompanying
smartphone to collect heart rate fluctuations and corresponding
stress levels entered by users and a cloud backend for persisting
data and training models. Real-world data for this study was
collected from police cadets during a police academy training
program. Machine learning classifiers for stress prediction were
built using this data through classic machine learning models
and neural networks. To analyze efficiency across different envi-
ronments, the models were optimized using model compression
and other relevant techniques and tested on cloud and edge
environments. Evaluation using real data and real devices showed
that the highest accuracy came from XGBoost and Tensorflow
neural network models, and on-edge stress prediction models
produced lower latency results.

I. INTRODUCTION

Stress often occurs when we become pressured by events
that overwhelm our capacity to deal with them [1]. This
can be particularly consequential in the workplace. Stress is
inversely related to job performance and negatively affects
decision-making processes [2]. Law enforcement work in
particular comes with many unexpected threats and challeng-
ing demands. According to a study conducted by Griffin
et al. [3], chronic stress increases the perception of threats
and the aggression of responses to those threats. It becomes
immediately clear that identifying and addressing symptoms
of acute stress among officers is critical, as stress can oth-
erwise become chronic, leading to loss in job performance,
poor officer health, and potentially problematic behaviors [4].
Furthermore, despite wide variation from person to person [5],
increased cardiovascular activation (e.g., heart rate) generally
is associated with more intense physical and emotional states,
including stress [6].

There is utility in understanding whether frequent or cumu-
lative increases in heart rate can predict feelings of stress;
which features or properties of the heart rate signal are
predictive; and the time course for optimal predictions. This
has real-world implications for police officers, who must be
aware of and manage their stress and physiological arousal in
real time. To address and ultimately mitigate the potentially
detrimental effects of stress in police officers as they navigate
their ever-changing field, we investigated stress prediction
through the collection of biometric data via wearables, used
that data to create machine learning models, and analyzed the
success of those models on the edge.

As described in this paper, we leveraged machine learning
and edge computing techniques for stress prediction. The
machine learning approach allowed us to draw relevant pre-
dictions from a large volume of data collected over time.
With the growth of machine learning techniques and models,
this paper investigates the use of classic models as well as
modern neural networks, giving us the ability to generalize
results beyond our dataset. Edge computing, combined with a
machine learning approach, creates a faster and more reliable
stress prediction mechanism. With all the computing power
moved to the local devices, users can achieve strong data
privacy and fast prediction speed.

We developed a framework for real-time stress prediction
using wearable devices and machine learning with support
from cloud computing. We utilized Fitbit, a commercial
wearable device, to collect biometrics including heart rate
data and developed a custom application to collect stress
level ratings that participants could manually input into the
Fitbit. We used Amazon Web Services (AWS) to securely
store data and train machine learning classifiers. Our custom
Fitbit application generated prompts, triggered by heart rate
fluctuation thresholds (35% increase above resting heart rate,
based on previous research and pilot testing), with 5 stress
level buttons to collect user input, as inspired by empirically-
proven strategies. We created a secure web application with
a dashboard to allow users and researchers to monitor each
Fitbit device and view all the collected data.

We worked closely with a local metropolitan police training
academy to collect biometric data and stress perception scores
from police training cadets. Data was collected over the course
of 4 months across 15 different cadets. Our team worked
with each individual cadet to prepare and maintain their data



collection from Fitbit devices and to gather overall study
feedback.

Using the data collected, we built classification models to
categorize stress experiences from features of heart rate using
machine learning. We employed binary classification methods
(not stressed vs. stressed) using both classic models and a
neural network. Then, we deployed the stress classification
models on smartphones to predict stress ratings in proximity
to the user without sending the data to the cloud. To optimize
the neural network for edge use, we applied quantization to
reduce the model size.

The most significant results of our study are as follows:
• The best accuracies for the stress prediction models were

96.98% from XGBoost and 95.98% from a Tensorflow
neural network using an over-sampled data extraction
approach.

• Quantization reduced the stress prediction model size by
2x and maintained the accuracy as before the quantiza-
tion.

• Several trials proved that on-edge stress prediction with
the quantized model saved nearly 200ms compared to in-
cloud stress prediction.

The rest of the paper is organized as follows: Section 2
investigates the related works; Section 3 presents our data
collection strategies; Section 4 details our approach to machine
learning based stress prediction; Section 5 presents our edge
computing based stress prediction solution; and Section 6
concludes the paper.

II. RELATED WORKS

A. Efficacy of Wearable Devices in Clinical Domains
Wearable devices as a health monitoring and management

tool are increasing in popularity and functionality. Seamless
integration with smartphone devices and real-time data collec-
tion have made it simple and convenient for users to learn more
about their health, mental, and physiological states without any
external involvement. As wearable devices continue to grow
in popularity, studies have begun to leverage their health data
collection capabilities to learn more about human behaviors
and tendencies.

A study conducted by Beniczky et al. [7] investigated the
use of wearable devices to detect and predict seizures for
patients with epilepsy. Through the use of the sensors on the
device, the researchers were able to collect electrocardiogram
(ECG), heart rate variability (HRV), and accelerometer data.
These data were then fed into machine learning models to
create predictive models for generalized tonic-clonic seizures.
Results showed that the noninvasive wearable devices were
able to detect such seizures with 90%-96% accuracy. Rykov
et al. [8] were able to leverage wearable devices in the
same capacity to screen for depression-related biomarkers,
collecting sleep patterns, physical activity, and psychological
measurements to evaluate mental states. Models created in this
depression detection domain were able to reach 82% accuracy.

The ability to make diagnoses and predictions like these in
real-world contexts rather than typical evaluations in controlled

environments demonstrate the feasibility of using wearable
devices to extend clinical research. It becomes clear that
wearable devices have capabilities that far surpass traditional
data collection techniques, allowing for data collection in
broader and more extensive contexts.

B. Stress Prediction using Machine Learning and Wearable
Devices

With the promising results from wearable devices in clinical
domains, several studies have leveraged data collected from
wearable devices in machine learning based stress prediction.
Lawanont et al. [9] and Dai et al. [10] both investigated the
use of wearable devices to detect stress in controlled stress
scenarios. Using the Fitbit and the Fossil Gen4 Explorist,
commercially available wearable devices, both studies col-
lected several different data points during controlled exper-
iments. Some inputs included heart data—specifically root
mean square of successive differences (RMSSD) and inter-beat
interval metrics, sleep data—including rapid eye movement
(REM), deep and light sleep time, and other collected metrics
like calories, steps, and intensity of movement. Can et al. [11]
similarly leveraged wearable devices in the stress prediction
domain, collecting heart rate variability data, accelerometer
data, and temperature data, but took the research a step further:
attempting to detect stress in situ. Research in real-life contexts
is rather rare; stress can be all-consuming. Simply put, as
researchers, we do not have much context when we gather data
in daily-life contexts, and rely on self-reported information
as ground truth. Our work is among the first of its kind to
investigate stress prediction in real-world settings.

These studies employed classification-based models to de-
tect stress. Among these, the Lawanot et al. study [9] achieved
an 84.10% accuracy with the Decision Tree model (no F1-
score reported), the Dai et al. study [10] achieved an 82.3%
accuracy and 62.3% F1-score with the Support Vector Machine
(SVM) model, and the Can et al. [11] study achieved 92.19%
accuracy and 90.30% F1-score among other significant results.
Through such key findings, we can learn that there is great
promise in leveraging empirically-chosen classification models
to predict stress-controlled situations.

Furthermore, with increased demand for stress management
in law enforcement domains, a handful of studies involving
wearable devices, machine learning, and behavior prediction
have been conducted. Tiwari et al. [12] proposes stress predic-
tion through the use of heart rate variability, breathing analyses
from three varying “waves” of data collection. Each wave
consisted of a different assessment—beginning with daily wear
to gauge baseline levels, and moving on to shooting range
exercises and intervention simulation exercises. Similarly, in
Erickson et al. [13], heart rate and sleep data were collected
through in-class, day, and night field training. Both studies
used the collected data as inputs into classification models,
including SVM (most accurate for [12]), Logistic Regres-
sion, Random Forest (most accurate for [13]), and Adaboost.
Though there are stress prediction and detection studies in

2



the law enforcement field, most data is collected in controlled
environments with an understanding of the adjoining context.

Built upon the findings of these stress prediction studies in
both general and law enforcement domains, our work makes
several new contributions: 1) we developed an end-to-end
system with a custom wearable app to prompt users for real-
time inputs based on physiological signals; 2) we used this
system to collect multiple months of data from real users
in real-world scenarios; and 3) we proposed the use of edge
computing for real-time stress prediction.

C. Machine Learning on Edge Devices

Due to the immediate and dynamic nature of stress and
how it manifests, it is important to look into studies that
implement real-time, on-edge machine learning to guide our
stress prediction initiative.

Chen et al. [14] and Mauldin et al. [15] provided in-depth
research about the capability of mobile devices for training and
inferencing with deep learning models. Chen et al. leveraged
the CIFAR-10 dataset, containing millions of images used
to train computer-vision models. These data were fed into
various deep learning models, significantly, the Convolutional
Neural Network (CNN). Mauldin et al., proposing a real-time
fall detection system, leveraged external wearable datasets
in several models, including SVM, Naive Bayes Classifier,
and a Deep Neural Network (DNN) which was the most
accurate. The former study found that training operations
contribute most significantly to the latency, especially for the
gradient calculation of the backward path. As a result, the
study concluded that it is possible to run both training and
inference on mobile devices provided that models’ complexity
is reduced. The latter study similarly concluded that it is
possible to run machine learning inference on mobile devices,
provided a lightweight model. It becomes clear from these
works that mobile-inference is possible in real-time machine
learning deployments.

Ogden et al. [16] and Guo et al. [17] delved deeper into on-
edge vs. in-cloud latency with their respective deployments.
Ogden et al. mainly focused on which model compression
techniques to use, which model to choose for mobile inference,
and when to depend on servers. They proved that the quantized
models have significantly smaller model size; moreover, load-
ing the 8-bit quantized model did not contribute significantly
to inference time, compared with other models. Additionally,
through an analysis of various devices and internet connection
strength, they determined that mobile-based inference only
proved effective on high-performance smartphones, while on-
edge inference was more reliable, with lower latency observed
even in poor network conditions.

Guo et al. [17] tested on-edge vs. on-cloud latency, but
observed varying results. The evaluation metrics used in this
study were latency, power consumption, and resource usage.
They found that the on-cloud approach outperforms on-edge.
They share, however, that this conclusion is dependent on the
performance capabilities of the smartphone and the model
size. With manipulation of these two parameters, there is a

high possibility for low latency through on-edge deployment.
Though both conclusions differ, this lays the groundwork
for additional research between on-edge and in-cloud model
deployments to improve real-time feedback.

Built upon these edge-computing-based machine learning
studies, this paper proposes a new edge computing based
solution for stress prediction and addresses the unique chal-
lenges brought by developing an accurate and fast model for
predicting stress in real time from real users’ biometric inputs.

III. DATA COLLECTION

A. Overview

This project collected heart rate and stress rating data from
Fitbit devices worn by 15 police cadets during four continuous
months in a rigorous training academy. Stress ratings were
collected directly into the Fitbit when prompted based on
increases in the user’s heart rate. Stress level options ranged
from one to five, with one as “not at all stressed” and five as
“extremely stressed”. We recorded a zero when the cadet did
not respond to the prompt. This scale was chosen through a
widely adopted psychological instrument called the Percieved
Stress Scale (PSS) [18] which has proven to be an effective
measurement for stress perception.

There were two types of data collection pipelines for heart
rates and stress responses, respectively. On one hand, heart
rate data was transmitted to the Fitbit’s remote server by itself
(once a Fitbit gets synchronized to the smartphone), and could
be retrieved via Fitbit Web API with the credential information
of the user account. On the other hand, stress levels needed the
private database as it was a metric measured and collected by
the custom application. These were stored in key-value format.
After uploading and processing of the data, we created a data
archive containing all cadets’ heart rates and stress responses
to begin creating the machine learning models.

B. Fitbit Application

Fitbit’s network architecture includes the Fitbit watch and
the companion application, a supplementary runtime environ-
ment built to extend application capabilities. Fitbit needs to be
paired with the companion (in this case, a smartphone) through
Bluetooth connection in order to transfer Fitbit-collected data.
Because Fitbit does not have an Internet connection by itself, it
depends on the companion for any other operations, like fetch-
ing information or storing JSON data, except for recording
bio-signals. Upon syncing to the companion, Fitbit sends all
the biometric signals recorded to the remote server. Fitbit also
provides an application on the smartphone to display statistical
data of the recording. While the Fitbit focuses mainly on
recording biometric measurements, the companion can do
more complex operations, such as fetching data or importing
external packages. The Fitbit and companion together can
build a more elaborate application.

Fitbit supplies a Software Development Kit (SDK) and
various Application Programming Interfaces (API) to devel-
opers for custom application development. As this initial
study intended to catch stress occurrence mainly by heart
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Fig. 1. The Architecture of the Stress Management

rate fluctuation, we built a Fitbit application to detect patterns
indicating stress by prompting stress level buttons as shown in
Figure 2. The prompting generation mechanism is when the
heart rate goes above the resting heart rate by 35 percent for
two minutes, the clock’s face changes to the prompted face
with five buttons ranging with five levels, “No Stress”, “A
Little”, “Moderate”, “A Lot”, and “Extremely”. Users enter
their stress levels subjectively. A 30-minute pause period was
programmed to occur between prompts to avoid continuous
prompting. If a user is unable to respond to a given prompt
after 7 minutes, the value is stored as a “missed” prompt in
our database.

Through this custom application, once the user enters the
stress level, Fitbit keeps the stress input data in the file storage
in the CBOR format and sends it to the companion as soon
as the Bluetooth connection is established. The companion
receives the stress file and concatenates it to the existing data
in a key-value format, so the data is temporarily preserved in
the companion.

The companion is responsible for sending the key-value
dataset to the cloud. When the companion receives the file
from Fitbit, it converts the data into a JSON object using the
Fitbit File API. Then it sends the dataset to the cloud database
using Fitbit Fetch API. The Fetch API allows developers
to make GET and POST requests to HTTPS endpoints. To
distinguish each cadet’s data from the others, the Fitbit-
provided unique device identification (ID) number was used
as the partition key in the database.

Fitbit automatically stores biometric data, through the com-
panion, in its remote server, and we can retrieve this data

Fig. 2. This is the clock face of the custom-built Fitbit application. There is
a default face for general use and a prompted screen with a cycle button for
stress inputs from users.

using the Fitbit Web APIs. However, it requires specific
authorization credentials, including access tokens and user
identification. To validate the access tokens, users must go
through the authorization code grant process, which depends
on OAuth 2.0, the protocol to allow a third-party user to access
the resources. OAuth application creates the client ID and
secret for use to invoke the access token. Each access token
is only valid for 8 hours before it needs to be refreshed again.

C. Web Application

To handle multiple devices and data collection pipelines,
we created a web application dashboard. The web application
enables monitoring of the data collection for each user and
shows the device information on the dashboard, such as battery
status and the last synced time to their smartphone. It also
provides tools for data retrieval and processing, including
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Fig. 3. As seen on our web application, this graph is a visualization of 24 hours of heart rate and stress data from one user. The blue lines represent heart
rate in bpm, and the dots represent stress prompts, ranging from no-answer (on the axis line) to 4.

downloading interfaces that convert JSON data to CSV format
and visualization page to analyze the heart rate data with stress
inputs, as shown in Figure 3.

We implemented this web application using a serverless
static web application through AWS. The benefit of static web
hosting is that it minimizes the initial cost and eliminates the
need for a hosting server, such as an EC2 instance. Instead,
the web application runs in the S3 bucket, where HTML, CSS,
and JS files are stored. The bucket has a feature to host an
application with a designated AWS domain. However, since
Fitbit only allows the HTTPS protocol to communicate with
the outside, we purchased the private domain for the website
and connected it to the S3 bucket using Route53, CloudFront,
and Certificate Manager.

We employed DynamoDB, a non-relational key-value
NoSQL database, to store all of our collected data. The key-
value data is easy to query by the partition key or sort key,
like extracting heart rate values for a specific user given start
and end dates. Next, it is a non-relational database that allows
scaling both vertically and horizontally, which is important
to support data generated continuously from many wearable
devices.

Most importantly, we utilized AWS Lambda functions to al-
low our static web application to act as a standard server. AWS
Lambda is a serverless computing service that executes code
without establishing a server. It is event-driven, executed only
when the service is requested. Lambda helps the application
build data processing functions by accessing other resources
provided by AWS such as DynamoDB and S3. It can handle
up to 250MB of code, and the execution time cannot be more
than 15 minutes, which is sufficient for our needs. In the case
of our application, we built lambda functions for creating and
logging in user accounts and uploading and retrieving recorded
data to the interface.

We also utilized the API Gateway to build APIs. Our
application runs in RESTful APIs, which requests and re-
sponds in JSON format with four methods, including CREATE
(post), READ (get), UPDATE (put), and DELETE (delete).

AWS’s API Gateway provides users in the backend with the
endpoint to access data in other services, such as DynamoDB.
It also controls authentication to filter out unidentified requests.
In our application, we built endpoints and mapped them to
Lambda functions so that end-users can access and upload
data. More specifically, the companion uploads the stress level
data through an API gateway endpoint to DynamoDB.

Note that in this research, we obtained the cadets’ permis-
sions to store their data in the cloud and use the security
mechanisms provided by AWS to protect the data. In real
use scenarios, users may not permit their private data to
leave their personal devices. Our system can be extended to
employ privacy-preserving machine learning methods such as
federated learning to support such scenarios.

IV. MACHINE LEARNING BASED STRESS MANAGEMENT

A. Problem Definition

As stated earlier, this research aimed to build a real-time
stress prediction solution using machine learning. Our initial
goal was to detect the patterns of heart rate that could indicate
stress. Heart rate was collected through Fitbit Versa 3, and
the user provided real-time stress perception scores using the
device. Our dataset, comprised of these data points, proved
to be suitable for supervised learning algorithms, due to its
labeled nature. The labels were also categorical variables, so
we decided to employ classification algorithms to determine
the input instances as “stressed” or “not stressed”. Table I
shows the distribution of stress levels from all the prompts
that the users received. Stress level 0 indicates no response at
the time of the stress prompt, while 1-5 indicates the increasing
scale of stress.

B. Data Processing

As mentioned above, our work is appropriate for classifi-
cation models of supervised learning given its labeled nature.
We began by extracting heart rate segments from the original,
continuous heart rate data for each user. To capture heart
rate leading up to the stress prompt (programmed to generate
when the current heart rate exceeds 35% above the baseline
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Stress level Numerical value Number of responses
No Response 0 9578
Not Stressed 1 2935

A Bit Stressed 2 355
Moderate 3 89

A Lot 4 19
Extremely Stressed 5 5

TABLE I
DISTRIBUTION OF STRESS RESPONSES

for 2 minutes), we extracted the 2 minutes of data prior to
the prompt. Each heart rate segment was then mapped to
corresponding stress levels to label each of them as stressed or
unstressed. We converted the stress level to “0” for unstressed
and “1” for stressed for binary classification. Since we let
users indicate their stress in five different levels, we can map
them into ”unstressed” and ”stressed” in different ways: 1) To
include dat with stress levels from 2 to 5 as ”stressed”, and 2)
To include data with stress levels from 3 to 5 as ”stressed”.
The reason for these two options is because of the ambiguity
of the stress level 2. Therefore, we processed the datasets in
two ways separately according to how to map the stress levels.

The pre-processed raw dataset includes the prompting
threshold, resting heart rates, and 40 samples of heart rates.
The granularity of heart rates recorded by Fitbit is between 5
to 10 seconds, so the 40 samples of heart rates represent about
2 to 3 minutes of data prior to the prompt. Since the resting
heart rates are calculated by Fitbit automatically, we did not
have to go through feature extraction steps to get those values.

The next step is feature extraction. Since we set the prompt-
ing algorithm based on how heart rate fluctuates compared to
the resting heart rate, we extracted the features representing
distribution and fluctuation-related aspects of heart rate. There
were seven features extracted from the heart rate. The primary
five were 1) mean, 2) standard deviation, 3) minimum and 4)
maximum value of the heart rate, and 5) resting heart rate.
The additional two features were 6) the difference between
mean heart rate from the resting heart rate by percentage
(DiffRest) [9] and 7) the root mean square of successive
difference between normal heartbeats (RMSSD) which Fitbit
uses for calculating heart rate variability from heartbeats.

One issue we faced was the unbalanced nature of the dataset.
Over 85% of the dataset contained unstressed instances. To
avoid a learning bias across our models, we explored two
approaches for dataset balancing: 1) To under-sample the
majority class by randomly choosing as many instances as the
number of the minority, and 2) To over-sample the minority
instances using Synthetic Minority Over-Sampling Technique
(SMOTE) [19]. The former method actually reduced the size
of the data, proving to be ineffective for training sessions;
however, it presented the ability to learn both stressed and
unstressed equally. The latter increased the dataset size and
the effectiveness of the learning stage, but created similar but
synthetic sampled instances. Lastly, to ensure all attributes had
equal, unbiased influence, we implemented standard scaling
on all the dataset columns to make them have the same

distribution with 0 means and the unit standard deviation.

C. Training Models

Approach “Stressed” levels “Not Stressed” levels Resampling method
1 2 to 5 1 Under-sampling
2 2 to 5 1 SMOTE
3 3 to 5 1 to 2 Under-sampling
4 3 to 5 1 to 2 SMOTE

TABLE II
FOUR APPROACHES FOR TRAINING MODELS

We considered four approaches for training models as
specified in Table II. We trained models separately by how we
defined ”stressed” (level 2 to 5 or 3 to 5) and how we balanced
the dataset (under-sampling or over-sampling). Regarding
classification algorithms, we considered four classic models
and TensorFlow’s feed-forward network. The set of classic
models include Decision Tree, Random Forest, Adaboost,
and XGBoost. The first three models were imported from
Scikit-learn (Sklearn) [20], which provide not only reliable
classification models but also useful built-in functions for the
machine learning process, such as train test split or standard
scalaer. Before running the dataset for training, we split the
dataset into a training set (80%) and a testing set (20%) to
evaluate models’ capability to handle unseen data.

The TensorFlow feed-forward network was developed with
six hidden layers activated by the ReLu function. The output
layer was set with a Sigmoid function returning a value
ranging from 0 to 1. If the final return value from an input
instance is lower or equal to 0.5, it is unstressed, which is
labeled as 0. Otherwise, it is stressed labeled as 1. Since we
used binary classification, we used binary cross-entropy for
the loss function.

D. Evaluation

Table III shows the accuracy and F1 scores for each ap-
proach. Approach 1 gave us the worst result. The models could
not distinguish between unstressed and stressed by heart rate
features. This might be because of either insufficient number
of instances or ambiguity of features from stress level 2.
We could gain better results from Approach 2, which over-
sampled the minority class. Approach 3 showed more reliable
results than Approach 1 by not using over-sampling with
synthetic samples. The dataset size was reduced even more
than Approach 1, as it excluded stress level 2 and re-sampled
the unstressed data as many as the number of stress levels
ranging from 3 to 5. Although it does not have a sufficient
dataset, it showed pretty good accuracy and F1 scores by
properly inferencing on the testing set. Lastly, Approach 4
gave us the best results. It excluded stress level 2 and over-
sampled the minority class. The best accuracy it reached
is 96.98% from XGBoost and 95.98% from the Tensorflow
neural network.
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Model Accuracy F1 Score
Approach 1 Decision Tree 61.23% 60.51%

KNN 60.14% 58.33%
Random Forest 64.85% 65.72%
AdaBoost 60.86% 58.33%
XGBoost 70.28% 70.50%
Neural Networks 56.52% 56.52%

Approach 2 Decision Tree 85.29% 85.63%
KNN 81.08% 83.18%
Random Forest 87.63% 88.14%
AdaBoost 71.22% 73.37%
XGBoost 88.60% 88.75%
Neural Networks 87.77% 88.38%

Approach 3 Decision Tree 77.27% 76.92%
KNN 77.27% 72.72%
Random Forest 81.72% 81.83%
AdaBoost 72.12% 71.64%
XGBoost 78.78% 78.12%
Neural Networks 86.36% 88.46%

Approach 4 Decision Tree 91.79% 91.73%
KNN 88.34% 88.73%
Random Forest 94.41% 94.34%
AdaBoost 79.25% 80.15%
XGBoost 96.98% 96.95%
Neural Networks 95.98% 96.02%

TABLE III
EVALUATIONS BY ACCURACY AND F1-SCORE

V. EDGE COMPUTING FOR STRESS PREDICTION

A. In-Cloud vs. On-Edge Stress Prediction

Edge computing enables operation of classification models
on edge device such as smart wearables and smartphones,
alleviating the burdens of reaching the server in cloud. Before
we established the edge-based stress prediction, as a baseline,
we implemented in-cloud stress prediction by running pre-
trained models on EC2 instances with the input from the
companion. On-edge stress prediction, in comparison, uses
the companion, instead of the cloud server, to load models
and predict stress in order to save the communication time
between the companion and server.

Our Fitbit app always maintains the latest 2 to 3 minutes
of heart rates using the queue data structure. When it needs
to request stress prediction, it generates an input instance by
calculating the seven features specified in Section B. It sends a
request with a feature vector to either the companion or cloud
after extracting the features.

For on-edge stress prediction, the companion loads the pre-
trained models and runs the inference. Unlike typical Android
applications, the Fitbit companion cannot load files from the
device’s storage, and thus it has to retrieve the pre-trained
models from the cloud. Specifically, the companion uses the
Fitbit Fetch API to retrieve the models from the AS S3
buckets via HTTPS. There is an initial overhead when the
companion loads the models from cloud into its memory
when it performs the first inference; the following inferences
can directly use the models that are already in memory
(until the app restarts). Because the smartphone has limited
computing power and memory capacity, we considered model
optimization techniques such as quantization for reducing the
complexity and size of the models. Since the Fitbit app and the

companion run in JavaScript, we had to convert the models,
originally written in Python for TensorFlow, to JavaScript
versions, utilizing the TensorFlow library. Among the four
approaches with which we experimented, we chose Approach
4’s model, which achieved the highest accuracies and F1
scores.

For in-cloud stress prediction, we built an API server that
handles requests from Fitbit, runs model inference, and returns
the prediction result. Fitbit communicates with the server using
the Fitbit Fetch API to upload, retrieve, and manipulate data
from our storage tables. The companion is merely a bridge
redirecting requests and responses. When requesting stress
prediction, Fitbit uses the POST method of the Fetch API to
send the inference input which contains the heart rate features.
Upon receiving the request, the server proceeds with the stress
prediction method using pre-trained models fetched from the
S3 bucket. Since the cloud has sufficient resources, far more
superior than the companion, the server-side models have not
gone through model optimization processes.

Model Type Value
Original Model Accuracy 85.98%

Topology Size 0.005 MB
Weight Size 3.0 MB

Quantized 8-bit Model Accuracy 84.10%
Topology Size 0.0067 MB
Weight Size 0.774 MB

TABLE IV
ACCURACY AND THE SIZE OF MODELS

B. Evaluation

Since the companion has limited computing resources,
we compressed the model to optimize for the edge device.
We applied quantization to reduce the precision of model
parameters to 8-bits from the original model. There are two
approaches to quantize, post quantization and quantization-
aware training. In this work, we used the quantization-aware
training because it generally creates more accurate quantized
models by considering the error introduced by quantization
during the training process. Table IV shows the accuracy and
the size of models. The topology size slightly increases from
the original to the quantized model, but decreases by 74.2%
for the overall weight size. Most significantly, the accuracy
across both models only varies by 2%.

Figure 4 illustrates the stress prediction latencies and
their breakdowns. We compared three scenarios: original
model on-edge (companion), quantized 8-bit model on-edge
(Companion-8bit), and original model in-cloud (Server-orig).
On one hand, the overall latency difference for both on-edge
scenarios prove to be negligible, with small variation across
data transfer steps. Nonetheless, the quantized model still saves
X% of memory usage, which is still valuable for resource-
limited smartphones. On the other hand, it can be clearly
observed that the in-cloud deployment takes an extra 200ms
on average, mainly contributed by the additional companion
to server data transfer overhead. This result confirms that on-
edge deployment of stress prediction produces lower latency
than in-cloud deployment.
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Fig. 4. This graph shows the latency during each phase for in-cloud and on-
edge stress prediction. For ’server-orig’, it is clear that companion-to-server
adds to the overall latency compared with companion-based models.

VI. CONCLUSION

In this paper, we studied the feasibility of edge machine
learning based stress prediction using wearable devices with
police cadets during a training academy. We focused on heart
rate as an important starting point, and verified that heart rate
recorded by commercial wearable devices can be effectively
used for stress prediction. Unlike other equipment which
records ECG data in milliseconds, Fitbit reads heartbeats in
5 to 10 second granularity, with the option of extracting in
1-second segments. However, with features extracted from the
heartbeats and stress levels provided by participants, we found
that Fitbit-based heartbeat data also can be a validated data
type indicating stressful or non-stressful circumstances, even
when measured under real-world conditions.

Next, we employed five classic classification models and
one neural network for binary classification. After segmenting
heart rate data into 2 to 3-minute windows and extracting five
statistical features and two features representing heart rate
variability, we could apply the dataset to machine learning
algorithms. We also resolved the imbalance of the dataset by
either under-sampling or over-sampling. The best accuracies
were 96.98% from XGBoost and 95.98% from a 6-layer
feedforward neural network using an approach that over-
sampled the minority instances and only used levels 3 to 5
as stressed, instead of including the 2.

Lastly, we optimized our neural network model for edge de-
ployment (on the Fitbit companion) using quantization which
reduced the model size by 74.2% and maintained the accu-
racy as before the quantization. On-edge deployment of the
quantized model to the companion saved approximately 200
milliseconds, proving to be promising as we move forward.
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