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Abstract—The emerging cache coherent Compute Express
Link (CXL) interconnect provides a practical way to disaggregate
cloud memory resources from monolithic servers into memory
pools with DRAM-level access latency. While DRAM-only mem-
ory pool improves the resource utilization and reduces the Total
Cost of Ownership (TCO) for cloud providers, we investigate the
possibility of applying cheaper SSDs to a memory pooling system
to further reduce the cost of cloud servers without sacrificing the
application’s performance. In this study, we build a simulated
CXL-enabled DRAM-SSD hybrid memory pool based on Linux
and commodity hardware, and conduct performance evaluation
by running representative cloud workloads which cover deep
learning training, database, data analytics and video processing
on the testbed. The evaluation results show that a hybrid memory
pool can potentially reduce memory cost while maintaining the
same level of application performance for computation-intensive
applications. For example, with memory overcommit ratio of 2,
the performance degradation of training ResNet50 on ImageNet
dataset is only 2.68%.

Index Terms—Memory Disaggregation, Hybrid Memory Pool,
DRAM, NVMe, SSD, CXL, NUMA

I. INTRODUCTION

Modern applications such as Deep Learning (DL) training,
big data processing, along with the usage of in-memory
database and key-value stores are using more and more
memory to enable fast data processing that is usually beyond
the memory capacity of a local machine [1]. Besides, recent
studies [2], [3] show that public cloud vendors including
Google and Alibaba only utilize half of the memory hardware
resources. Most of the time, up to 25% of DRAM remains
unrented when the processing resources are fully rented [4].
To remedy the above mentioned problems, various memory
disaggregation solutions have been proposed to pool the mem-
ory resources so that memory is managed and scaled as a
whole. The benefits are three-fold. First, memory disaggre-
gation provides better scalability of the memory resources
where memory can be added, removed, or upgraded easily.
This can better satisfy the large memory requirements of
modern applications and help to save the cost of data center
management. Second, it helps improve memory utilization and
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reduce the hardware cost since different types of resources are
disaggregated and not allocated as a whole. Finally, memory
disaggregation provides failure isolation since a single memory
chip failure will not affect other resources and vice versa. This
also helps save the cost of maintenance [3].

However, the largest cost of public cloud still comes from
the memory itself. Public providers, such as Azure, spend half
the server cost on DRAM and the cost will continue to grow
due to memory scaling [4]. Also, DRAM is using two to
three times more power and cooling than SSDs do [5]. At
the same time, NVMe SSDs are getting higher throughput
while continuing be more power-efficient and cost much less,
nearly one fifth the cost of DRAM [6]. To further reduce the
cost from DRAM, SSDs are good candidates for disaggregated
memory pools. They can be incorporated with DRAM to save
even more cost. The addition of fast SSDs to the memory
pool forms another tiered memory architecture in the existing
two-tier memory pooling systems (local memory and remote
memory) which presents new challenges to memory disaggre-
gation in both performance and cost.

Before the emergence of the Compute Express Link
(CXL) [7], Remote Direct Memory Access (RDMA) based
solutions have been proposed to provide an easy-to-use, man-
ageable and scalable memory disaggregation [3], [8]–[10].
RDMA provides high throughput and low memory access la-
tency through kernel bypassing and zero copy. It caches virtual
memory address to physical memory address to avoid frequent
access to host memory for address mapping. However, RDMA
has much higher memory access latency compared to local
DRAM memory when the cache gets full [11]. Further, RDMA
is not cache coherent which still suffers from the overhead of
the traditional DMA style data transfer. Therefore, RDMA-
based memory disaggregation has not been deployed in per-
formance critical cloud environments. Besides RDMA, some
other cache-coherent solutions are also developed [7], [12]–
[14]. Among them, CXL provides easy-to-use native load/store
instructions for memory access. Compared to RDMA, CXL
avoids the DMA overhead for its cache-coherency and reduces
the memory access latency to the scale of nanoseconds. CXL
has become a promising solution for memory disaggregation
compared to other competitors.

In this paper, we are trying to answer the following
questions. First, how to simulate the behavior of the CXL-978-1-6654-5408-7/22/$31.00 ©2022 IEEE



based hybrid memory pool using software based solution in
the absence of real hardware? Second, how does the hybrid
memory pool of both DRAM and SSDs affect the applications
performance compared to DRAM only memory pool in the
cloud environment? Third, how does different compositions
of DRAM and SSDs, or overcommit ratio, change the per-
formance degradation? By answering the three questions, we
would like to shed some light in solving the previously
mentioned challenges of tiered memory disaggregation.

The contributions of this paper are as follows. 1) We
designed a valid software simulator of CXL-based hybrid
memory pool by leveraging the cache coherent NUMA archi-
tecture [15]. 2) We evaluated four representative workloads
to show the performance degradation of employing hybrid
memory pool compared to DRAM-only memory pool. 3) We
altered the composition of DRAM and SSDs in the hybrid
memory pool and present the tradeoff between performance
and cost.

In the following sections, Section II describes the methodol-
ogy to build the simulated CXL-enabled hybrid memory pool.
Section III conducts the performance evaluation by running
representation cloud workloads on the simulated memory pool.
Section IV introduces related works and Section V concludes
the paper.

II. METHODOLOGY

(a) CXL-enabled Memory
Pool (b) Simulated testbed

Fig. 1: Architecture Overview

A. Testbed Architecture

Figure 1a shows a common way to implement CXL-enabled
memory pool hardware [4], [16]. CXL supports a variety
of use cases via three protocols: CXL.io, CXL.cache, and
CXL.memory. Among them, CXL.memory allows the host
to access attached memory using load/store commands. The
memory pool has multiple CXL.memory endpoints that can
be directly connected to the host CPUs, through which the
host CPUs can access the memory pool using load/store
commands. However, the hardware and software management
of the memory pool is done by the memory pool itself and is
transparent to the host CPUs.

As there is no real CXL-enabled memory pool at this time,
we simulate the memory pool by leveraging the cache coherent
NUMA architecture that is widely available on today’s multi-
socket systems. There are two reasons to choose NUMA
architecture. First, NUMA architecture is cache coherent and
uses load/store commands as CXL. Second, from the host
CPUs’ point of view, the memory provided by the attached
memory pool has similar memory access latency compared
to memory from the remote NUMA nodes [7]. Even with
SSDs added to the memory pool, an intelligent memory
migration algorithm can help amortize the memory access
latency. Figure 1b shows an example of the architecture of
the simulated testbed. We are using only 2 NUMA nodes here
for simplicity but in reality, the architecture can be expanded
to a group of NUMA nodes.

NUMA node 1 serves as the local memory for the VMs
running on socket 1’s CPUs. NUMA node 2 and NVMe
SSD form the tiered hybrid memory pool. In case of page
allocation, pages are preferably allocated on NUMA node
1. When NUMA node 1 is under pressure, pages are then
allocated in the hybrid memory pool. Inside the memory pool,
most frequently used pages are cached in NUMA node 2. A
page will be evicted from the NUMA node 2 to the NMVe
SSD when NUMA node 2 is under pressure. Pages can migrate
between NUMA node 1 and memory pool with the support of
the hypervisor [17]. In this way, a tiered memory system is
formed. NUMA node 1 is the first tier with the lowest memory
access latency. The hybrid memory pool is the second tier with
higher memory access latency. Within the memory pool, there
is a sub-tiered memory system with NUMA node 2 as the first
tier and NVMe SSD as the second tier.

B. Software Simulation
To control how much memory should be allocated from the

memory pool to guest VMs which run the applications, we
modified the Linux cgroups [18] to allow separate memory
control policy for each memory tier. In the simulation, the ap-
plication has different cgroups memory limits for NUMA node
1 (first tier) and hybrid memory pool (second tier). Within the
hybrid memory pool, another set of cgroups memory limits
is set for NUMA node 2 (first tier) and NVMe SSD (second
tier) respectively. In this way, we are able to simulate the tiered
memory system.

Considering the large latency gap between DRAM and
SSD, we use Linux swap to simulate page migration between
NUMA node 2 and the NVMe SSD as the data access
latency overwhelms the page fault handling overhead. Swap
happens when NUMA node 2 runs out of memory. If a guest
VM accesses the pages that have been swapped out by the
hypervisor, page faults caused by Extended Page Table (EPT)
violation are generated. Note that using real CXL hardware
can potentially achieve better application performance since
in the simulation, page fault handling is removed from the
guest VM but still happens on the host side.

NUMA node 1 only migrates memory pages with NUMA
node 2. To ensure that no pages on NUMA node 1 are swapped
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out to NVMe SSD, we pin the memory pages of a VM that are
allocated to NUMA node 1 in DRAM. This action prevents the
pages allocated to NUMA node 1 from getting evicted. Our
simulator also extends swap to provide an interface so that
different prefetching and cache replacement algorithms can
be easily supported in the hybrid memory pool as a separate
kernel module.

III. EVALUATION

We choose four workloads that cover a large portion of
today’s cloud application categories including video process-
ing, database, data analytic and deep learning training. Each
workload runs inside a VM provisioned by QEMU with KVM
acceleration enabled on a dual socket Linux server (Table I).
We run the workloads on physical machine to get the memory
usage, and then set the VM memory size accordingly.

Overcommit ratio is set to help us understand the perfor-
mance and cost impact by adopting NVMe SSDs and altering
the composition of DRAM and SSDs in the hybrid memory
pool. Equation 1 shows how the DRAM memory usage is
computed with overcommit ratio. In the equation, we use R
to represent the overcommit ratio, actual m to represent the
actual memory usage from DRAM, req m to represent the
required memory usage of the application.

actual m =
req m

R
(1)

With overcommit ratio set as 1, no NVMe SSD is used and
all the memory of a VM will be allocated on DRAM. When
overcommit ratio is increased, the percentage of NVMe SSD
used is increased. We allocate 50% of the DRAM memory
space on the local NUMA node (first tier), and the rest on the
remote NUMA nodes (second tier). For example, with a 32GB
VM memory size and the overcommit ratio set to 2, at most
16GB of memory space will be allocated on DRAM and the
rest 16GB of memory space is allocated using NVMe SSD.
Of the 16GB of DRAM memory space, 8GB is allocated on
local NUMA node and the rest is on remote NUMA nodes. In
our evaluation, we use one local NUMA node and one remote
NUMA node.

For each workload, we set the overcommit ratio to be 1,
1.5, 2, 3 and 4. In the evaluation, the video encoding VM is
configured to use 4GB of memory and 2 virtual cores, while
the other three workloads VMs are configured to use 64GB
of memory and 32 virtual cores. To understand the baseline
performance of the hybrid memory pool, we use the Linux
default prefetcher for the evaluation.

In the following evaluation, we will evaluate the perfor-
mance and cost tradeoff of the four workloads using hybrid
memory pool (overcommit ratio bigger than 1) compared to
using DRAM-only memory pool (overcommit ratio equal to
1). Each workload runs three times and the mean values are
presented.

TABLE I: Specifications of the testbed.

CPU DRAM SSD GPU QEMU OS Kernel
2x Intel 2x Samsung 8x Ubuntu
Platinum 384GB PM983 NVIDIA 4.2.1 20.04 5.15.37

8268 DDR4 3.5TB V100 focal

(a) Frame Per Second (FPS) (b) Page Fault

Fig. 2: FFmpeg Evaluation Results

A. H.264 Video Encoding

H.264 is a video coding format for full High Definition
(FHD) video and audio. FFmpeg is a suite of programs
and libraries for video encoding, decoding and transcoding.
We used FFmpeg 4.2.1 to encode a 1080P 10-minute long
video to H.264 format using libx264. We use Frames Per
Second (FPS) to measure FFmpeg’s performance. Figure 2a
and Figure 2b show the FFmpeg evaluation results. From the
figures, when overcommit ratio increases from 1 to 1.5, the
performance degrades slightly by 0.3%. When we continue
to increase the overcommit ratio, the performance degradation
does not get much worse, drops by 11.9% for overcommit
ratio of 4. The performance degradation is unified with the
increase of the page fault. Note that although the number
of page faults increases a lot for overcommit ratio of 4, the
performance degradation is not much. This is because FFmpeg
is computation-bounded workloads and the increase in I/Os
does not become the bottleneck of the overall performance.

(a) Transaction Per Min (tpmC) (b) Page Fault

Fig. 3: TPC-C Evaluation Results

B. TPC-C

TPC Benchmark C (TPC-C) is an on-line transaction pro-
cessing (OLTP) benchmark. It is measured in transactions
per minute (tpmC). We used MySQL 8.0.29 as the database.
Figure 3a and Figure 3b show the TPC-C evaluation results
of 1000 warehouses. When overcommit ratio increases from
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1 to 1.5, the performance degrades abruptly by 55.8%. This
degradation is in accordance with the abrupt increase in the
number of page faults. For overcommit ratio 4, the perfor-
mance degradation is the worst, drops by 78.5%.

(a) Query Runtime (b) Page Fault

Fig. 4: TPC-H Evaluation Results

C. TPC-H
TPC Benchmark H (TPC-H) is a decision support bench-

mark. It includes a suite of 22 business ad-hoc queries and con-
current data modifications. We used Greenplum 6.20.3 [19], a
Postgresql compatible Database Management System (DBMS)
for data analytics, as the database deployed on a single VM.
Figure 4a and Figure 4b show the TPC-H evaluation results
of scale factor 30. We use the accumulated runtime of the
22 queries to measure its performance. When overcommit
ratio increases from 1 to 1.5, the performance degrades a
lot by 1.13X. With the increase of the overcommit ratio,
the performance continues to degrade by 5.32X at last. The
number of page faults increases following similar pattern.

(a) Training Time (b) Page Fault

Fig. 5: ResNet50 Evaluation Results

D. ResNet50
ImageNet is an dataset organized according to the WordNet

hierarchy for image classification. We used ImageNet [20] to
train ResNet50 [21] using Pytorch 1.11.0 with 8 GPUs. We
used training time of 15 epochs to measure the performance.
All runs use the same training seed to provide consistent
results. Figure 5a and Figure 5b show the ResNet50 evaluation
results. When overcommit ratio increases from 1 to 1.5, the
performance degrades only by 1%. With the increase of the
overcommit ratio, the performance continues to degrade by
17.9% with overcommit ratio of 4. This is related to the large
increase in the number of page fault.

Fig. 6: Normalized Performance Degradation of Four Work-
loads with Varying Overcommit Ratio

E. Analysis

Figure 6 shows the performance degradation for all four
workloads. From the above evaluation, we find that the hybrid
memory pool involving SSDs does affect the applications
performance. However, the performance degradation is largely
dependent on the application. For computation-intensive work-
loads, like video processing and deep learning training (FFm-
peg has almost 100% CPU utilization and ResNet50 has 74%
GPU utilization on average), the degradation is marginal.
Since the performance bottleneck depends mostly on the
computation instead of the addition of memory access latency
introduced by slower media. Applying SSDs to the memory
pool does reduce cost while maintaining the same level of
performance for these type of workloads. On the other hand,
for database and analytic workloads, such as TPC-C and
TPC-H, which have high requirement to memory latency and
bandwidth, are severely affected by the hybrid memory pool.

F. Total Cost of Memory (TCM)

We compute the TCM using Equation 2. Based on Equa-
tion 1, we use mem p to represent the unit price of DRAM
and SSD p to represent the unit price of NVMe SSD.

TCM = mem p ∗ req m

R
+ SSD p ∗ (req m− req m

R
) (2)

We computed the unit price of the DRAM and NVMe SSD
in Table I as $4.875 [22] and $0.16 [23] per GB, respectively.
Based on our configuration, Figure 7 shows the saved TCM
percentage at different overcommit ratio compared to the
original TCM with overcommit ratio 1. By using NVMe SSD,
even with a mere addition of NVMe SSD at an overcommit
ratio 1.5, we can already save 32% of TCM. What’s more, we
can save up to 72.5% of TCM when overcommit ratio is 4.

IV. RELATED WORKS

A. memory disaggregation

Li et al., [4] employs a Machine Learning (ML) based
predictor to allocate VM memory on local and CXL-enabled
memory pool to achieve tolerable performance degradation.
Based on VM traces, they observed that different workloads
suffer different levels of performance degradation while still
20% of applications do not experience slow down. TMO [24]
dynamically offloads cold memory of applications to cheaper
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Fig. 7: Total Cost of Memory (TCM) Reduction Percentage
with Varying Overcommit Ratio

memory media by monitoring the performance degradation
caused by high memory access latency. However, none of
the existing works has studied the performance degradation of
applications using disaggregated hybrid memory pools which
involves multiple tiers and multiple media.

B. CXL development

Some FPGA-based memory disaggregation have been pro-
posed recently. DirectCXL [25] proposes a CXL-based mem-
ory disaggregation prototype which can be directly accessed
by the host. A software runtime is also developed to manage
the underlying CXL devices and provide accessibility to appli-
cations. ThymesisFlow [26] uses FPGA along with OpenCAPI
to build a rack-scale hardware memory disaggregation proto-
type. In the evaluation, some applications can achieve negli-
gible performance degradation from memory disaggregation
by using the combination of local and remote memory pools.
Byte-addressable SSD [27] is also advocated to provide large
working memory space through high-density NVMe SSD.

V. CONCLUSION

In this paper, we simulate CXL-based memory disaggre-
gation by utilizing both DRAMs and SSDs in the memory
pool. We evaluate some representative workloads and show
the potential of employing the hybrid memory pool to reduce
memory cost for computation-intensive workloads. Given that
we use the simple Linux prefetcher in the evaluation which
only detects sequential access pattern, the large performance
penalty from which the TPC-C and TPC-H suffer does not
mean those types of workloads are prohibited on the hybrid
memory pool as pages may be able to migrate between tiers in
a more intelligent way. Memory disaggregation is an effective
way to improve the memory utilization for cloud providers.
CXL is a promising memory disaggregation solution which
provides high throughput and DRAM-level latency. In order to
reduce cost, memory pools can also utilize cheaper but slower
medias like PMEM or NVMe SSDs.
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