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Abstract—In this work we compare three practical versions
of a receding horizon Linear Quadratic Tracking (LQT) con-
troller in terms of practical considerations such as compu-
tational speed and online storage requirements. This work
is motivated by the need for effective tracking control of
one stage of a dual-stage piezoelectric actuator in non-raster
scanning for atomic force microscopy; this application sets
challenging requirements on the needed sample rates and
tracking bandwidth but also implies that the signal to be
tracked is periodic. The first and second versions of our LQT
controller compute all relevant values offline, storing what is
needed for replay at runtime, with the second version using the
steady-state values of the controller gains and the first version
using the optimal, finite horizon values. The third approach
computes the feedforward term that is based on the reference
signal at runtime, requiring more computation than the first
two but providing significant flexibility in implementation since
the reference can be changed during a run. However, the online
computation implies that only a limited planning horizon can be
handled. These approaches are compared through simulation.
The third method was implemented and validated on a physical
dual-stage system.

I. INTRODUCTION

The atomic force microscope (AFM) measures mechanical
and material properties at the nanometer-scale, including
topology, material moduli, and surface potential [1]-[4]. The
standard approach to construct an image of the signal of
interest is to raster the tip of the AFM over the sample
surface, constructing the image pixel-by-pixel. This leads
to slow frame rates, typically well below one frame per
second. There are in general three classes of approaches to
yield high-speed AFM (HS-AFM) [5]: (1) improving system
dynamics, (2) using advanced controller designs, and (3)
employing alternative scan paths. From this last category,
the authors have previously introduced the Local Circular
Scan (LCS), illustrated in Fig. 1(b), a scheme that drives
the cantilever tip in a small circle, using the measurements
in real time to center the circle on and track a sample
feature such as an edge [6]. This approach improves the
imaging rate without increasing scanning speed or altering
the underlying dynamics of the system. While LCS can be
applied to standard AFMs, the pattern is especially well-
suited for a particular actuator structure known as a dual-
stage system.

Dual-stage actuators (DSAs), Fig. 1(al-a3), consist of
a low-speed, long-range actuator (LRA) connected serially
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Fig. 1: Dual-stage actuator (DSA) concept: (al) schematic of
the long-range actuator (LRA) and short-range actuator (SRA)
connected in series, (a2) lumped-parameter model where the SRA is
attached to the LRA mass element, and (a3) dual-input single-output
block diagram. (b) Local circular scan (LCS) algorithm concept,
where the coarse path is defined by the sample of interest and low
amplitude high-frequency circles are executed along the sample.
(c) Proposed control structure for a single DSA. Figured reused
from [7] with permission (©[2021] IEEE).

with a high-speed, short-range actuator (SRA). This combi-
nation allows the dual-stage system to perform a long range,
high bandwidth, and high resolution motion. The concept
of DSA is widely implemented in hard disk drives (HDDs),
optical alignment systems, and probe-based microscopes [8]—
[11]. Combined with LCS, the LRA can be utilized to track
the sample path, while the SRA is dedicated to track the
low-amplitude, high-frequency sinusoidal signal.

Despite a single, combined output, we have shown that
DSAs are both observable and controllable [12]. Therefore,
an observer can be designed to provide estimates of the
actuator states in order to deploy controllers for the LRA
and SRA (Fig. 1(c)). With this structure, a variety of
controllers can be chosen, including simple proportional-
integral-derivative (PID) controllers, complementary filters,
and optimal controllers such as robust H., control and
model predictive control (MPC) [9], [10], [13], [14]. These
controllers will of course have different performance char-
acteristics in terms of behavior, robustness, simplicity, and
implementability.

In [7], we developed a DSA controller specific to the



LCS setting that used a receding horizon linear quadratic
tracking (LQT) controller for the SRA to accomplish the
high frequency, repetitive motion, combined with a model
predictive control for the LRA to track the long range,
low frequency sample path. The feasibility and tracking
performance of this approach were demonstrated through
simulation.

In this work, we move from simulation to physical ex-
periment, focusing on the LQT controller for the SRA.
Our controllers are deployed on a Field Programmable Gate
Array (FPGA) programmed in the National Instruments
LabVIEW® environment. When designing the controller
for real-world implementation, one must consider several
practical factors, including the available computational power
relative to the necessary sample rate (especially given the
high frequency resonant behavior of the SRA), the amount
of memory available for implementing the code, and storage
space available when considering, for example, using table-
lookup approaches. To explore these considerations, here
we consider three different versions of the LQT controller
which make different tradeoffs in terms of online resource
requirements. We compare their relative performance using
simulations and then demonstrate feasibility through ex-
periments with a physical DSA. Note that while we are
focused here on the SRA, we also implemented a simple
PI controller for the LRA to hold its position constant and
reduce interactions between the two systems.

The remainder of this paper is organized as follows.
Derivations of the proposed receding LQT controller are
provided in Section II. Section III describes simulations
selected to compare control performances for three different
approaches. The experimental results in Section IV demon-
strates the validation of selected method to achieve the reced-
ing LQT controller on SRA of a dual-stage nanopositioner.
The conclusion of this paper was summarized in Section V.

ITI. PRACTICAL LQT: THREE APPROACHES

Dual-stage systems are multi-input, single-output (MISO)
systems. For simplicity, we model two actuators in the
system as independent linear time invariant (LTI) single-
input, single-output (SISO) systems with a single joint out-
put. Note that dual stage systems are typically designed to
yield strong decoupling between the subsystems. Coupling
can, of course, be introduced, but at the cost of a more
complex controller design. We take a discrete-time, state
space modeling approach. Letting [ denote the LRA and s
the SRA, the dynamics of the full MISO system of the DSA
are
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Since there is only one joint output for the two actuators,
it is necessary to construct an observer to determine the state
dynamics of the individual systems. Given that observability

and controllability were established in [12], we use a stan-
dard discrete-time Luenberger observer given by

@(k+1) = [A— LC)&(k) + Bu(k) + Ly(k), ()

where the observer gain L is designed to ensure A — LC
is Hurwitz with eigenvalues that are significantly faster than
those of the DSA dynamics. Note that the matrices A, B and
C represent the joint DSA state-space matrices in (1), and
the column vectors & and u represent the stacked LRA and
SRA states and control signals, respectively.

yl = Cl:i:la gs = Cs:ﬁ& (3)

Under LCS, the SRA should follow a simple sinusoidal
pattern. To achieve this, we utilize an LQT controller. The
LQT controller is an extension of the linear quadratic regu-
lator and is employed when the system output needs to track
a desired reference trajectory and reject disturbances while
also minimizing the (weighted) control signal. In practice,
the control signals are bounded in amplitude by the drive
hardware; under the simple sinusoidal pattern, the choice of
an LQT is generally sufficient for ensuring the bounds are
met through proper choice of the weights in the cost function,
even if such a result is not theoretically guaranteed. An LQT
controller is designed for a fixed, time horizon of N steps and
uses a priori knowledge of the reference signal to achieve
the tracking [15]-[17]. The cost function in discrete time is
given as

1
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where 7, is a sinusoidal reference signal and P, Q, and R,
are weighting matrices for the terminal state, the tracking
performance, and the input effort. (Note that in this work,
we take these matrices to be a simple scalar multiplying the
identity matrix.) Following the standard derivations, the state
feedback control law at the k'" step is

uy(k) = —Kypp(k)&s (k) + Krp(k)v(k+1). 4

The gain matrices and feedforward terms are found by
solving the matrix Riccati equation and vector difference
equation over the finite time horizon,

Kpy(k) = [BIP(k+1)B; + R "'BI P(k + 1)A,, (5a)
P(k) = ATP(k + 1)[As — BsK (k)] + CLQC, (5b)
v(k) = [As — BsKpp (k)T v(k + 1) + CL Qrs(k), (5¢)

Kyp(k) = [B{ P(k +1)Bs + R] ' B, (5d)

with P(N) = CTPC and v(N) = CTPr(N). Kpp(k)
is the optimal feedback gain at time k, and K;¢(k) is a
feedforward gain that depends on the auxiliary sequence v
determined from the reference signal. Note that (5) is a set
of backward difference equations.

In practice, there typically is no fixed end time N; this
is particularly true in LCS-based AFM imaging where the



extent of the sample being tracked and imaged is not
known a priori. We thus implement a receding horizon LQT
with a look ahead of N steps. As is common, we apply
the first control in the planned sequence and then re-plan
from the next time step. (One could also apply multiple
control steps before replanning.) From (4), we see that u(0)
depends on the measured state at the current time, the gain
matrices K ;;,(0) and Ky,(0) (which in turn depend on the
terminal values defined by the weighting matrices), and the
auxiliary signal v(1). These can all be solved for either
online or offline, backwards from their terminal conditions.
The choice of what to do online versus what to do offline
has implications in terms of computational complexity and
memory requirements. From these considerations we define
three approaches to implementing the LQT.

Approach I uses a completely offline approach. This
method has the lowest computational cost since it simply
takes a measurement from the observer and then inserts
that value into (4) to get the next control value. Note that
regardless of time horizon, only the values of the gain
matrices at k = 0 are needed at runtime. Similarly, only
the value v(1) of the auxiliary signal is needed. Unlike the
gain matrices, however, this term depends on the reference
signal at the end of the horizon. In the receding horizon
approach, the value of r5(NN) is changing as time moves
forward and we must therefore compute and store v(1) for
every point in the reference signal. For a generic signal, this
implies an infinite length sequence and thus a completely
offline approach is not viable. In our setting, however, r(-)
is a periodic signal. Thus, while the auxiliary signal is not
periodic as a function of NV, it is periodic in terms of the
time during the run with a period equal to that of the
reference signal. One need only precompute and store the

values v(1,s) for s = 1,2,..., N,. where s is in index into
(one period of) the reference signal and
fs
N, =2 (©6)
fref

Here fs is the sampling rate, and f,.; is the frequency
of the periodic reference signal. So long as N, is not too
large (which depends on the physical hardware used), this
is approach is quite feasible. However, when using a high
sampling rate (to control, e.g., a high () system with high-
speed resonances) for tracking a relatively slow reference
signal, N, could become quite large, requiring significant
onboard resources to store the vector v(1,-). In addition, the
values of v(1,-) depend on the reference signal so if this
is changed, the entire sequence must be calculated again,
implying such a change cannot be made at runtime. However,
since the size of the gain matrices K ,(0) and K s¢(0) and
of the vector v(1,-) do not depend on the horizon N, that
horizon can be chosen to be of arbitrary length without any
impact at run time.

Approach II is very similar to Approach I but recognizes
that, so long as (Ag, Bs) is reachable and (A, Csy/Q) is
observable, the gain matrices Ky, and Ky will reach steady
state values Ky, and Kyyo, when N — oco. This second

method, then, replaces the true optimal gains K,(1) and
K5(1) with there steady state values. One could then use
the steady state matrices in the computation of the auxiliary
signal, simplifying the offline computations. However, we
found that doing so led to very poor performance and thus
Approach 1T still uses the same v(1,-) as calculated in the
first approach. As a result, Approach II has the same online
requirements and offline complexity as Approach I; the only
difference is in the gains used. Since we are using a receding
horizon approach, it is reasonable to conjecture that these
infinite-horizon matrices may have better performance.

By contrast, Approach III computes the auxiliary signal
online. Unlike the previous two approaches, the available
computational power will limit the horizon N. The maximum
value of N can be quite low, especially when high sample
rates are needed as in the high-frequency, highly-resonant
system of the DSA. We see from (5c) that the gains are
needed at every step of the horizon, not just at k¥ = 0. While
these could be computed online, doing so will further limit
the size of V. Since N is typically small in this setting, we
pre-compute and store these matrices, replaying them at run
time to compute the auxiliary signal. In addition, the entire
reference signal sequence must be stored. However, this is
a scalar at each point in time (over N, time points) and
thus the required space is not onerous. One major benefit of
this approach is that the reference signal can be changed at
runtime as needed, provided some often useful flexibility to
an implementation.

Note that one could imagine several other variations on
these three approaches. One other natural choice is a fully
online computation of all terms. This would use the least
amount of memory but would also require significant online
resources; we found that in our setting such an approach was
not practical on the physical hardware we had. Use of the
infinite horizon gains to compute the auxiliary signal online
is a reasonable idea but we found it to work quite poorly in
practice as the auxiliary signal was then far from the true
one.

Table I summarizes the description of the the three ap-
proaches. In the table, p is the dimension of the state space
system. Note that the storage requirements does not include
the common elements such as the state matrices since those
are needed by all three approaches.

TABLE [I: Qualitative comparisons of the three approaches

| Method [ Storage [ Computation | Flexibility |
Approach I pN, 4+ 2p Low Strict
Approach II | pN, +2p Low Strict
Approach IIl | N, 4+ 2pN High Flexible

III. SIMULATION COMPARISON OF LQT APPROACHES

In this section, we compare the performances of the three
different approaches, focusing on tracking error as the metric
of interest. We do this through simulations, using a model of
a multi-axis, dual-stage system in our lab [18] (see Sec. IV
for more details on the physical device.)
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(b) Bode plot of 15t order model, provided by our collaborators.

Fig. 2: Bode plot of SRA system models. (top) (blue) Swept-sine
system ID (to 10 kHz) using on-board capactive sensor with 20 kHz
bandwidth. (red) corresponding fourth order model used for control
design. (bottom) 15th-order model (fit to swept-sine data captured
with a laser vibrometer) used to model the device in simulations.

A. Simulation setup

As our interest here is in using the SRA to realize the
sinusoidal trajectory element of the LCS imaging method,
we consider only the SRA. (Under the assumption of the
controller structure shown in Fig. 1, the controllers for the
SRA and the LRA of the DSA can be designed indepen-
dently.) A swept-sine system identification was performed
on the physical stage in our lab (see Sec. IV); the results
are shown in the blue curve in Fig. 2a. In order to capture
the primary dynamics while limiting the complexity of the
controller, a fourth order model was fit to this data (red curve
in the Bode plot). This model was given by

2.8514 —3.0203 1.2755 —0.1068 1
1 0 0 0 0

A= 0 1 0 0 » B = 0]’
0 0 1 0 0

C = [0.0096 —0.026 0.0258 —0.0094].

To better capture the physical system, a more accurate 15
order model (provided by our collaborators and shown in
Fig 2b) was used to model the actuator in this simulation
comparison. (Details on the high order model can be found in
[18].) Note that the 15" order model used in the simulation
and the 4" order system used to design the controller show
significant differences, most strikingly in the low frequency

gain. We decided to keep this difference in place in the
simulation to explore performance in the face of modeling
error.

To determine the underlying states of the SRA from the
output we implemented a standard Luenberger observer with
eigenvalues selected to be significantly faster than the main
actuator dynamics. The corresponding observer gains were

L=[1529 2192 2720 3008]" . (7)

For all LQT implementations, the weights for the cost
function were set to R = 1, Q@ = 20,000, and P = 0.
This choice reflected the fact that the main consideration
was tracking error; the simple sinusoidal reference was not
expected to require large control excursions so R was kept
low relative to @); if actuator bounds are a stronger consid-
eration a different relative weighting should be selected. The
choice of a zero weight on the terminal condition was in
large part to simplify the implementation. In the simulation
we also enforced an input voltage boundary of +£10 volts
to represent the limitations of the physical hardware. Note
that the controller design assumed unconstrained control. The
reference signal was set to

re.sra = 0.1sin (2r500AL), (8)

where At is the sampling rate (50 ps). With an eye towards
the capabilities of our physical hardware (see Sec. IV), the
look-ahead horizon for Approach III was set to N = 3.
For Approaches I and II, recall that the horizon can be set
arbitrarily long as its choice has no effect on the runtime
complexity of the control implementation. Since there is no
guarantee that longer is better, we ran a series of simulations
where we increased the horizon N. The results, shown in
Fig. 3a, indicate a rapid reduction in tracking error with
increasing horizon up to approximately N = 10. After that
the error essentially saturates, though with some oscillatory
behavior. As a result of these studies, we selected N = 10
for approaches I and II.

In Fig. 3 (b-f) we show the results of simulation runs for
all three approaches. A large tracking error (defined as the
amplitude error only since the phase error is irrelevant to the
LCS application) is evident. This likely arises in larg part
efrom the model mismatch (see Fig. 2). Fig. 3e illustrates
that the infinite horizon gain matrices improve the tracking
performance in Approach II. From Fig. 3b, we see that
Approach II has a slightly longer convergence rate than the
other two. Note that the amplitude error for all systems could
be reduced by using a more accurate model, increasing @,
or by including integral action [19]. However, in practical
systems there will always be modeling error and other issues
that must be considered, such as actuator constraints, when
attempting to overcome it.

From this exploration, it is clear that there is not a
clear “best” choice of approach for LQT implementation.
Approach II, which uses the steady-state gain matrices,
performed well in this simulations, while requiring the same
amount of computation time and storage space as Approach
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Fig. 3: Simulation results with reference signal (8). (a) Steady state error of (blue) Approach I and (red) Approach 2 as a function of the
look-ahead horizon. (b) Control signal for each approach. All methods stay within the £ 10 V boundary. (c¢) Convergence of error signal
for each approach, showing different convergence rates. (d-e) Output of the SRA under each approach.

I, though with a slight tradeoff in convergence speed. Ap-
proach III had essentially the same dynamics as Approach I
but with somewhat worse error due to the limited horizon.
However, it has the benefit of requiring less storage (at least
for reference signals with periods that are much slower than
the sample rate) and flexibility of implementation. Guided by
these factors, we selected this approach for implementation
as described in the next section.

IV. EXPERIMENTAL RESULTS

To validate our results, we used LQT to control the
SRA on one axis of the experimental multi-axis dual-
stage nanopositioner shown in Fig. 4 (see [18] for device
details). This system consists of two planar piezoelectric
DSAs combined with a mechanical flexure mechanism to
guide and amplify their motion. Samples can be placed on
the central cube and the faces of that cube are used as the
measurement surfaces for capacitive sensors (Series 8810,
Microsense Technologies, Lowell, MA); these sensors have
a 20 kHz bandwidth. They also have a small bias in their
measurement, reading a consistent non-zero value when the
stage positions are zeroed. The high voltage amplifiers accept
input signals from -10 V to 10 V; the SRA has a range of
700 nm and the LRA a range of 13 pm.

We used the same 4" order model, observer gains, and
controller parameters as described in Sec. III. Algorithms
were implemented on a Field Programmable Gate Array
(FPGA) using a multifunction reconfigurable input/output

l

Capacitive
Position Sensor

Fig. 4: Experimental multi-axis dual-stage nanopositioner.

device (National Instruments PCle-7852R), coded through
the LabVIEW® environment with a sampling rate of 20 kHz.
As discussed at the end of Sec. III, Approach III with a
horizon of N = 3 was chosen for implementation.

The reference signal (8) and the gain matrices Ky
and Ky (5) were computed offline and transferred to the
FPGA prior to an experiment. The auxiliary signal v(-) was
computed online. It was observed that the SRA dynamics
depended on the position of the LRA. To mitigate this effect,
a simple proportional-integral controller was implemented
and tuned by hand to hold the LRA fixed at zero.

The measured output from a typical run and the corre-
sponding control signal are shown in Fig. 5(a,b) and an FFT
of the output in Fig. Sc. The system output shows reasonable
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Fig. 5: Experimental results on a single axis of a DSA using an LQT (Approach III) with a horizon of N = 3 on the SRA to track a 500
Hz sinusoidal reference, combined with a PI controller on the LRA to hold it at zero.

tracking, a small amount of noise, and likely some residual
oscillations from unmodeled dynamics. The effect of the
sensor bias is also clearly evident in the offset in the tracking
signal. The amplitude of the output signal is approximately
0.06, significantly below the 0.1 of the reference signal. This
is likely caused by model mismatch and indicates the need
to do good system identification close to runtime.

V. CONCLUSIONS

In this paper, three practical versions of a receding horizon
LQT controller were compared in terms of performance as
well as implementation limitations. The first used offline
computation, allowing for a full optimal implementation with
arbitrary horizon but requiring storage of the auxiliary signal;
the second used the infinite horizon gains in lieu of the opti-
mal values; the third used online computation of the auxiliary
signal, leading to a possible reduction in required memory,
depending on the relative values of the sample rate and the
period of the reference signal, but an increase in computation
required. Perhaps most important, it provided flexibility in
changing the reference signal during runtime. All approaches
performed reasonably well in simulation, leading to the
conclusion that the appropriate choice depends upon the
particular application, driven by the required sample rates,
available memory, and computing power. The version that
computed the auxiliary signal online but used pre-computed,
optimal gain matrices was implemented and used to control
a physical DSA system to validate the approach, showing
good results for tracking a desired sinusoidal reference.
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