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Abstract—With the rapid advancement in machine learning (ML), ML-based Intrusion Detection Systems (IDSs) are widely deployed
to protect networks from various attacks. One of the biggest challenges is that ML-based IDSs suffer from adversarial example (AE)
attacks. By applying small perturbations (e.g., slightly increasing packet inter-arrival time) to the intrusion traffic, an AE attack can flip
the prediction of a well-trained IDS. We address this challenge by proposing ManDa, a MANifold and Decision boundary-based AE
detection system. Through analyzing AE attacks, we notice that 1) an AE tends to be close to its original manifold (i.e., the cluster of
samples in its original class) regardless of which class it is misclassified into; and 2) AEs tend to be close to the decision boundary to

minimize the perturbation scale. Based on the two observations, we design MANDA for accurate AE detection by exploiting
inconsistency between manifold evaluation and IDS model inference and evaluating model uncertainty on small perturbations. We
evaluate MANDA on both binary IDS and multi-class IDS on two datasets (NSL-KDD and CICIDS) under three state-of-the-art AE
attacks. Our experimental results show that MANDA achieves high true-positive rate (98.41%) with a 5% false-positive rate.

Index Terms—Adversarial example (AE), AE detection, intrusion detection system

1 INTRODUCTION

HE increasing scale and complexity of modern net-

works and the tremendous amount of applications
running on them render communication and networking
systems highly vulnerable to various intrusion attacks. An
intrusion detection system (IDS) plays a significant role in
safeguarding networks from malicious attacks [2]. There
are mainly two types of IDS: signature-based detection [3]
and anomaly-based detection [4]. Signature-based detection
schemes work by extracting the traffic signature and com-
paring it to those in a pre-built knowledge base. As a result,
they are only effective in detecting known attacks but cannot
detect attacks outside the knowledge base. Anomaly-based
detection aims to detect deviations from an established
normal traffic model. With the advancement in ML in recent
years, ML techniques are increasingly used to train the
“norm” model that represents the normal benign traffic
and then to evaluate the credibility of incoming traffic.
Considering intrusion attacks are ever-evolving these days,
ML-based methods show much greater potential as they
require little or no prior knowledge to work on emerging
novel attacks.

ML technologies have seen great success in domains
such as computer vision and natural language process-
ing [5], [6], [7]. While applying to network intrusion detec-
tion, state-of-the-art IDSs usually employ advanced neural
networks (e.g., LSTM) and learning schemes (e.g., meta-
learning and active learning). An important security attack
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common to almost all machine learning models is the ad-
versarial example (AE) attack [8], [9]. In such an attack, the
adversary is able to craft a sample, often by applying small
perturbations, which can mislead a well-trained model to
output an arbitrary label other than its true label with a
high probability. For an IDS, an attacker can launch AE
attacks to significantly increase the false-positive rate and
false-negative rate, rendering the IDS practically useless.

AE attacks have become more and more sophisticated
that AE attacks on ML-based IDSs are becoming a real threat
to network security. Lin et al. [10] leveraged a generative
adversarial network (GAN) to transform original malicious
traffic into adversarial traffic to fool the IDS. Wu et al. [11]
employed deep reinforcement learning (DRL) to automat-
ically and adaptively generate adversarial traffic flow to
deceive the detection model. Rigaki et al. [12] utilized a
GAN to adapt the Command and Control (C2) channel of
malicious traffic to mimic a legitimate application’s traf-
fic (e.g., the Facebook chat network traffic), and therefore
evaded the IDS. Shu et al. [13] employed active learning and
GAN to launch AE attacks on ML-based IDS, demonstrating
the capability to compromise an IDS using only limited
prior knowledge. The above attacks [10], [11], [12], [13], [14]
confirm that AEs are inevitably turning into a huge threat to
ML-based IDSs.

To defend against AE attacks, one can generally take two
routes: 1) improving the robustness of an IDS model against
adversarial perturbations, or 2) developing an auxiliary AE
detector to reject suspicious inputs [15] before proceeding
to the IDS. Defense schemes in the first category [16], [17]
usually need to customize the IDS models to every AE
attack encountered. Considering many novel AE attacks are
yet to come, we opt to design an effective AE detector as the
defense, i.e., the second route.

In this paper, we propose MANDA, a MANifold and



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Decision boundary-based AE detection scheme for ML-
based IDS. It is observed that the benign or malicious traffic
events usually reside in a low-dimensional manifold (i.e.,
a cluster) embedded in the ambient feature space. An ML-
based IDS aims to learn a decision boundary that discrimi-
nates malicious network traffic from benign network traffic.
To explain the intuitions behind MANDA clearly, we use
an AE generated from a malicious network event for an
example. The AE fools the IDS model (i.e., evades the IDS)
by traversing the decision boundary of the IDS model. To
preserve the malicious property of the intrusion traffic, the
crafted AE should be inside or at least close to the malicious
manifold. Therefore, although the IDS model classifies the
AE as ‘benign’, a manifold detector is still highly likely
to discriminate it into the manifold of ‘malicious’ samples.
This motivates us to leverage such inconsistency between
the IDS decision boundary and the manifolds to detect an
AE. In addition, given that AEs are usually closer to the
decision boundary of the IDS model than normal samples, it
is expected that when small noise is added, the classification
result of an AE is more likely to change than that of a
clean sample. This motivates us to use such changes of IDS
classification results to detect an AE.

We further demonstrate that MANDA is also effective on
multi-class IDS. A multi-class IDS differentiates multiple
types of intrusion from benign network traffic with a single
model, while a two-class IDS only detects one type of
intrusion. As discussed above, MANDA is composed of two
building blocks: a manifold-based (Manifold) method and
a decision-boundary-based (DB) method. Manifold shows
similar performance in multi-class intrusion detection as is
shown in two-class IDS. In order to improve the perfor-
mance of DB in multi-class IDS, we propose to adjust noise
magnitude based on the different inter-class distances. The
contributions of our paper are summarized as follows:

o We systematically investigate practical AE attacks
and defenses of recent ML-based IDSs. To the best
of our knowledge, we are the first to investigate
AE attacks for IDS in problem-space rather than
in feature-space, and also the first to propose an
effective AE detection scheme to defend against such
attacks.

e We propose MANDA, a novel MANifold and Deci-
sion boundary-based AE detection scheme for ML-
based IDS. MANDA is designed by exploiting unique
features we observe while trying to categorizing
AE attacks from the viewpoint of machine learning
model and data manifold. Based on our AE catego-
rization, MANDA combines two building blocks (i.e.,
Manifold and DB) to achieve effective AE detection
regardless of which AE attack is used.

o We demonstrate that Manifold generalizes well to
multi-class IDS. We improve the performance of DB
on multi-class IDS by customizing the noise mag-
nitude for each decision boundary according to the
inter-class distance and achieve effective AE detec-
tion on multi-class IDS.

e Our experimental results show that MANDA achieves
98.41% true-positive rate (TPR) with 5% false-
positive rate (FPR) under CW attack, the most pow-

2

erful AE attack, and over 0.97 AUC-ROC under three
frequently-used attacks (FGSM attack, BIM attack,
and CW attack) on the NSL-KDD dataset. On the CI-
CIDS dataset, MANDA achieves as high as 98.50% TPR
with 5% FPR under CW attack. We also demonstrate
that MANDA outperforms Artifact [18], a state-of-
the-art solution on AE detector, on both IDS task and
image classification task.

2 BACKGROUND AND RELATED WORK

This section reviews the previous work most related to our
paper, including recent intrusion attacks on IDS and adver-
sarial examples in deep learning. No prior work focuses on
defense mechanisms against AE attacks on IDS to the best
of our knowledge.

2.1 Network Intrusion Attacks

The information technology infrastructures, including the
Internet, telecommunication networks, computer systems,
and embedded industrial processors, are subject to vari-
ous network intrusion attacks. A network probing attack
searches for network vulnerabilities by scanning the net-
work’s connections (e.g., port scanning) to launch further
attacks. Another type of network intrusion attack, the ad-
vanced persistent threat (APT) attacks [19], is powerful
in a different way since the attack relies on coordinated
human executions rather than running automated code. In
an APT attack, continuous monitoring and interaction are
conducted persistently to a target entity until the objectives
are achieved. Unlike APT attacks, a distributed denial of
service (DDoS) attack [20] tries to disrupt network opera-
tion by exhausting network resources but usually with no
further goals. A recent prominent example of a DDoS attack
is the Mirai botnet, which took down hundreds of websites,
including Twitter, Netflix, Reddit, and GitHub, for several
hours in October 2016. Today, Mirai mutations are generated
daily, and they can continue to proliferate and inflict real
damage to networks [21].

The recent development in machine learning has enabled
new and powerful ML-based IDSs [20], [22]. At the same
time, the rapid progress in adversarial machine learning
brought out a novel network intrusion attack, i.e., adversar-
ial example attack, to evade an ML-based IDS [10], [11], [12],
[13], [14], [23], [24]. Xu et al. [14] proposed a general method
to find evasive variants for a target classifier automatically.
Their method first uses genetic programming techniques to
manipulate a malicious sample and then obtains its variant
that preserves malicious behavior but is classified as benign
by the classifier. They demonstrated its effectiveness in
two popular PDF malware classifiers. Apruzzese et al. [23]
studied realistic adversarial example attacks performed on
IDS with a focus on identifying botnet traffic by ML classi-
fiers. Their results highlight the effectiveness of adversarial
examples on all botnet detection classifiers they explored.
Wu et al. [11] employed deep reinforcement learning (DRL)
to automatically generate adversarial traffic flow to deceive
a target detection model. In this attack, the reinforcement
learning agent updates the adversarial samples based on
the feedback from the target model, which can adapt to the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

change of the temporal and spatial features of the traffic
flows.

Besides those works aiming to find a perturbation vector
for each specific input, some other works focus on finding a
perturbation generator model. [24] designed a perturbation
generator (a generative adversarial network) model aiming
to generate perturbations that can be applied in real-time
on live traffic. The blind adversarial perturbations can re-
duce the accuracy of state-of-the-art website fingerprinting
by 90% by only adding 10% bandwidth overhead. Lin et
al. [10] proposed IDSGAN, which leverages a generative
adversarial network (GAN) to transform original malicious
traffic into adversarial traffic instances so as to mislead the
IDS to classify it as benign. Rigaki et al. [12] utilized a
GAN to modify the Command and Control (C2) channel
of malicious traffic so as to mimic that of a legitimate
application (e.g. Facebook traffic) and evade detection. Shu
et al. [13] employed active learning and GAN to launch the
adversarial example attack on an ML-based IDS and showed
the great capability to attack an IDS using only limited
prior knowledge. In sum, it is clear that AE attacks are
posing a real threat to today’s ML-based IDS considering the
cost is ultra-low, and AE attacks themselves are constantly
evolving.

2.2 Adversarial Example

Adversarial example (AE) has become one of the most
important research topics in the past few years. It was
first proposed in [8] that the classification result of a ma-
chine learning model on an arbitrary input sample could
change dramatically by just applying intentionally crafted
imperceptible perturbations. Such a perturbed sample is
called an AE. Research on AE involves two main directions:
generating AEs (i.e., AE attacks) and dealing with AEs (i.e.,
AE defenses).

AE attacks. Multiple ways to modify a sample into an
AE have been proposed, which lead to various AE attacks.
Many AE generation methods compute the gradient of the
model’s loss for the input. The fast gradient sign method
(FGSM) [9] moves the current input image along the di-
rection that maximizes the loss to lead to misclassification.
The basic iterative method (BIM) [25] applies FGSM iter-
atively with small steps. The Jacobian-based saliency map
attack (JSMA) [26] seeks the top features that contribute
to misclassification when applying a fixed distortion. It
only perturbs the selected pixels until a misclassification is
achieved. Carlini and Wagner [27] proposed optimization-
based attacks (i.e., CW attacks) to find a successful AE with
the smallest distortion. FGSM, JSMA, and CW are the most
referenced among all known AE attacks.

AE detection. Most defenses for AE attacks are specifi-
cally designed for image input in computer vision research.
For example, image processing techniques such as reducing
color depth [28], [29], reducing image size [30], [31], increas-
ing resolution [32], and rotation or shifting [33] have been
developed to detect AEs. Those methods are designed for
images, and they are either not applicable or not effective
when applied to network traffic-based IDS.

Detection schemes based on statistical testing are not
limited to image input and thus can be applied for IDS.
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Generally, these AE detectors hypothesize that statistical
characteristics of AEs and clean data are different and thus
distinguishable. Grosse et al. [34] applied the kernel-based
two-sample test to distinguish AEs from clean data. Song
et al. [35] leveraged generative models to decide whether
an input sample was drawn from the same distribution
of clean data. Zheng et al. [36] used a Gaussian Mixture
Model (GMM) to approximate the hidden layer distribution
so as to reject samples with hidden states lying in the
low-density regions of the distribution. Feinman et al. [18]
employed kernel-based density estimation to detect AEs.
The drawback of the scheme in [18], [34] is that it requires an
abundance of AEs to build the detector, similar to defense
schemes based on adversarial training [37], [38].

To the best of our knowledge, we are the first to de-
sign AE detection schemes for ML-based IDS. We compare
our scheme to one of the state-of-the-art statistical testing
schemes [18] in IDS and also show its applicability for tasks
with image input.

3 SYSTEM MODEL AND THREAT MODEL

This paper proposes a novel AE detector for ML-based IDS.
We first describe our system model and threat model in this
section.

3.1 Notations

First, let us clarify two types of ‘detection’ tasks in our
paper. The first is ‘intrusion detection’, which is our target
application scenario. In this paper, we consider an intru-
sion detection system, in short IDS, that relies on machine
learning techniques to detect abnormal/malicious network
events. In the remaining part, we refer to the classification
model of an IDS (shown in Fig. 1) as the IDS model,
of which the purpose is to decide whether an input sample
of network events is an intrusion or not. The second is ‘AE
detection’, which is our research goal. An IDS model is
subject to AE attacks. The proposed AE detector, i.e., MANDA,
is placed in front of the intrusion detection module so as to
detect and reject adversarial examples before they are fed
into the IDS model. So the purpose of the AE detector is
to decide whether an input sample is an AE or not. With the
clarification, positive and negative samples of the two, ie.,
IDS model and MANDA, can be defined as follows.
For IDS model

e The input to the IDS is a sequence of net-
work packets. Let us call it a network event. An
malicious input then refers to a network event
that is generated by a malicious attack, such as a
DDoS attack or an instance of Botnet traffic. Ideally,
the IDS will classify a malicious input as positive;
otherwise a false negative will occur, which means
a malicious input has evaded the detection. The
synonyms for “malicious input” include “malicious
data”, “malicious traffic”, or simply “intrusion”.

e We use benign traffic to denote network events
generated from normal network applications. Ideally,
the IDS will classify all benign traffic as negative
samples. Sometimes ‘benign traffic’ is also referred
to as ‘benign data’, ‘benign input’, or ‘normal traffic’.
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TABLE 1: Symbol definition.

Symbol Definition

z € R™ input feature vector

F, 0 IDS model and Model parameter

y € R™ output classification probability vector (y = F (6, x))
c(x) the final output label, c(z) = argmax,y([i]

x’ the feature-space AE generated based on

n Adversarial perturbation, ' = x + 7

z, 2 corresponds to « and 2’ in the problem space
J(0,x) loss of F on z

Sdizy differentiable feature set

Snon—diff non-differentiable feature set
the functional feature set

func
non— func the non-functional feature set
Lo the Lo distance between = and 2/
D the upper bound change ratio of a feature
R; the range of the i-th feature
fii the correlation function from j-th feature to i-th feature
St the feature set that correlated to the i-th feature

IDS Management

Fig. 1: System model of ML-based IDS.
For MANDA

e The input to the MANDA system is also sequences
of network packets, i.e.,, network events. We use
adversarial examples (AEs) to refer to the in-
puts intentionally crafted to fool the IDS model, i.e.,
either evading the IDS detection or creating false
positives. The goal of MANDA is to classify those AEs
correctly. We also use ‘adversarial input’ or ‘adver-
sarial sample’ to refer to an AE.

e We use clean example to refer to the network
traffic instances without adversarial perturbations.
The MANDA system is expected to classify a clean
example as negative. A clean example can be either a
malicious traffic instance or a benign traffic instance.
We also use ‘clean input’ or ‘clean sample’ to refer to
it.

To emphasize, an AE can be an input crafted from a ma-
licious input and classified as ‘benign” or one crafted from a
benign input and classified as ‘malicious’. For illustration
purposes, we always stick to the former case across the
paper. In experiments, we explore both cases.

3.2 System Model

A typical architecture of an ML-based IDS is shown in Fig. 1.
Usually, IDS is a passive infrastructure that rarely interferes
with the network traffic under monitoring. An IDS sniffs
the internal interface of the firewall in a read-only mode
and sends alerts to an IDS management server via a read-
and-write network interface [39], [40]. As Fig. 1 shows, an
ML-based IDS is composed of the following modules [4]:

! Feature
| Extractor ’?

&

1
I Monitor make wrong
Lo et
Adversarial decision
! i 4
Examples | 1DS Detection |
\

Fig. 2: Attack model of AE generating attacks.

e Network Traffic Monitor keeps tracking the
ongoing network traffic of a communication and
networking system.

e Feature Extractor processes the raw traffic data
into feature vectors in a pre-defined form.

e Training Phase. In the training phase, an ML
model is trained with both benign and malicious
traffic instances. We refer to the ML model as the
IDS model.

e Detection Phase. In the detection phase, pro-
cessed runtime traffic instances are fed into the
learned model. An alert will be generated if an input
instance is classified as positive by the IDS model.

3.3 Threat Model

In this paper, we focus on AE attacks in which an attacker
aims to mislead the IDS model by slightly modifying its
traffic flow, e.g., enlarging or shortening the length of pay-
load as shown in Fig. 2. The attacker aims to fool the IDS
to either classify a malicious traffic instance as benign (i.e.,
a False Negative) or classify a benign one as malicious (i.e.,
a False Positive). In either case, successful AE attacks may
render the IDS model less effective or practically useless.
Depending on the prior knowledge known to the attacker,
there are three types of attacks on ML-based systems: white-
box attack, gray-box attack, and black-box attack.

e An white-box adversarial attacker knows
both the architecture and weights of the IDS model.

e An gray-box adversarial attacker knows
the IDS model architecture but not the weights. She
is able to query the model while trying to reduce the
number of queries to avoid being suspicious.

e An black-box adversarial attacker has no
information about the architecture and weights of
the IDS model. She is able to query the model while
trying to reduce the number of queries to avoid being
suspicious.

This paper considers the white-box attack to the IDS
system, which is the most powerful among the three types
from the attacker’s perspective. This will allow attackers to
craft adversarial network instances in the most effective and
stealthy manner in order to defeat the IDS system. We use
this powerful threat model to demonstrate the effectiveness
of our defense. We also assume an attacker has black-box
access to the AE detection method.

The general AE generation process can be summarized
as follows. Let F be a m-class classifier with model param-
eter §. The model maps the input (x € R") to the output
(y € R™), ie, y = F(0,z). Note that y[i|,i = 1,....m
denotes the probability that « belongs to ¢-th class, and
y[1] + ... + y[m] = 1. The predicted label of z, c(x), is
the class with the largest y[i], i.e., ¢(z) = arg max; y[é]. The
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objective of AE generation is to search for 2/ = =z + 1 (n
denotes a small perturbation) such that c(z’) # c(x). We
further assume J(0,z) is the loss function on an input z.
The symbols used in the paper are also shown in Table 1.

Among the good amount of AE attacks proposed in
the literature, we choose the four most representative and
effective ones to address in this paper. In what follows, we
provide a brief review of the four attacks and highlight the
techniques used in each of them.

1) FGSM: Goodfellow et al. [9] proposed a fast gradient
sign method (FGSM) to generate AEs. Specifically, an
attacker computes the gradient of the loss function with
respect to x. It then moves the current x along the
direction that maximizes J(6, z). We can represent the
generated AE as:

r' =z + esignV,J (0, x).

2) BIM: Kurakin et al. [25] proposed a basic iterative
method (BIM) which is an extension of FGSM. This
attack applies FGSM multiple times with small steps. At
each time of applying FGSM, BIM clips the pixel value
of intermediate results of each step to ensure that the
generated AE is in the e-neighborhood of the original
input. € is a global parameter to bound the distance
between z and its AE.

xz) =z
T, = clipm(;n;_1 + asignVIJ(G,:L';_l)),i > 1.

3) JsMA: In [26], Papernot et al. proposed the Jacobian-
based saliency map attack (JSMA), which applies it-
erative computation to seek features which contribute
more to mis-classification in each step. For an input
z, the prediction confidence on j-th class is denoted
by fj(z). To generated an AE for a target class ¢, the
applied perturbation needs to satisfy two requirements
simultaneously: a) f;(z) increases and b) f;(x),Vj # t
decreases. The adversarial saliency map (for i-th fea-
ture) is defined as:

0,if 222 <oor 3, 24 50

S(z,t)[i] = Oz Oz,
(@, 8)ld] {82‘;? DI agﬂff) > 0|, otherwise.

4) cW attack In [27], Carlini and Wagner introduced
optimization-based attacks for generating AEs. Three
distance metrics — Lo, Lo, and L, distance — are used
to evaluate the distortion of an AE from its original
input. The AE generation process is formulated as:

min ||z’ — x| +c¢ - max{max{f;(z'): i#£t}— fi(z), =K}
subject to z’ € [0, 1]"

It is worth noting that another well-known AE attack, the

projected gradient descent (PGD) attack [41], is essentially

the same with the BIM attack. We opt for the latter for

convenience. In most cases, the CW attack outperforms the
other three methods in terms of effectiveness and distortion.

4 THE MANDA SYSTEM

In this section, we present the design of MANDA, the pro-
posed AE detector for ML-based IDS, and explain the ratio-
nale behind each design choice. The valid input to an IDS
system is real network traffic flows in the problem-space,
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i.e., pertaining to network packets with physical meanings.
Therefore, the generated AE should also lie in the same
problem-space of IDS. We adapt existing feature-space AE
generation algorithms to problem-space algorithms in order
to generate AEs that can map back to valid real network
events. The key insight for detecting AEs is identifying the
discrepancy between true benign samples and AEs. Such
an intuition motivates us to investigate AE’s position to the
decision-boundary of the IDS model and its position in the
traffic manifolds formed by training samples.

4.1 Problem-Space AE Attack on IDS

This section demonstrates how we generate AEs on IDS
in problem-space. The concept of problem-space attack
arises from the need for generating physically meaningful,
domain-specific attack instances instead of only tweaking
adversarial samples in a feature space [42]. The problem-
space of an IDS is comprised of all possible traffic instances
in the form of sequences of network packets. In contrast, the
feature-space of an IDS is comprised of all possible feature
vectors in the form of numerical entries representing packet
length, packet inter-arrival time, etc. Prior AE generation
algorithms [25], [26], [27] only focus on image inputs where
the problem-space and the feature-space AEs are the same,
i.e., a vector of pixels. The problem-space AE attacks on
network flow-based IDS have not been investigated yet. Our
work is to fill this gap.

It takes two steps to generate an AE in the problem
space. First, we generate a feature-space AE z’ from a clean
input z. Second, we design a mapping function to project 2’
to the problem-space and obtain the ultimate problem-space
AE 2'. The corresponding representation of z in problem-
space is denoted by z.

Traditional inverse mapping techniques [43], [44] are
ineffective in mapping instances from feature-space to
problem-space in our problem context because the mapping
is neither invertible nor differentiable. We modify the AE
generation approaches by nullifying the perturbations on
non-differentiable features to make the mapping differen-
tiable. We use x[i] and «’[i] denotes i-th feature of x and «’
respectively. The features are divided into two parts: {Sq;f,
Snon—diff}~ We force that a'[i] = z[i] for i € Snon—diff-
Hence, we get 2'[i] = z[i] for i € Spon—aifs. After getting
rid of non-differentiable features, we map the differentiable
features of z back to z. In an IDS, non-differentiable features
are categorical features, e.g., “‘protocol type’, ‘service type’,
etc. Nullifying perturbations on such non-differentiable fea-
tures helps to get a meaningful AE. On the other hand, we
also demand that an AE preserves its original functionality,
e.g., an intrusion flow maintains its attacking capability;
a benign traffic flow retains its benign functionality. We
refer to staying meaningful and maintaining the original
functionality as preserving intrinsic property. We discuss
how to help keep the intrinsic property below.

We observe that an attack may lose its malicious prop-
erty if the attacker is allowed to manipulate features of
a network traffic flow arbitrarily. Another observation is
that an AE generated by the popular adversarial generation
methods does not try to maintain potential data correlations
between feature pairs. Such AE will be easily filtered by
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configuring data correlations as basic filtering rules. We
refer to either scenario as losing AE’s intrinsic properties.
We summarize some general guidelines by adding several
constraints on the AE generation to alleviate the problem.
Compared to unconstrained AE generation, our AE gener-
ation method is more likely to preserve the properties and
validity of an instance. Readers are referred to the detailed
study in [45], [46] on preserving the properties of a network
traffic flow in AE generation. These guidelines apply to
various problem spaces, including but are not limited to
IDS.

1) Differentiate the functional features S,y from non-
functional features Spon— func. Try not to change the
value of the functional features. Here the functional
features are the features that directly impact the func-
tionality of the instance. Take IDS problem space as
an example, the ‘port number’ and ‘network service
used’ are functional features for IDS. A simple way to
differentiate functional features is to set features with
categorical values as functional features by default. For
example, the ‘protocol type’ that takes three possible
categorical values (i.e., 'icmp’, “tcp” and "udp’) is a func-
tional feature. Note that domain expertise is needed to
determine the ultimate set of functional features as non-
categorical features can also be functional.

2) Make sure that the value of a modified feature is still a
valid one. The value of the modified feature needs to be
in the range if the feature value is continuous. Features
with discrete values should remain in the set of valid
values after modification.

3) Keep a small perturbation magnitude for the non-
functional features. The intrinsic properties of an in-
stance may change because of non-functional features
of which the perturbation magnitude is large enough.

4) Make a consistent modification on features that are
correlated to each other. It is not realistic to assume that
all features are independent of each other. Adding per-
turbations independently on correlated features may
harm the validity of an instance.

The guidelines help to preserve an instance’s intrinsic
properties and validity at our best. We name the AE that
follows the guidelines as a problem-space AE. We try to
preserve the properties of adversarially generated examples
by adding multiple constraints (i.e., guidelines). Note that
it is still possible that a problem-space AE deviates from
its desired properties or becomes invalid after perturbation.
In our paper, compared to feature-space AE generation,
we include the following restrictions for problem-space AE
generation:

2" — ||y < Lo,

||Cl3,[l] — QD[Z]H <px*xR;ifie (Sdiff N Smm_func),
iL'l[Z] = SE[Z], ifi € (Snonfdiff U Sfunc);

@[] = fii(2'[1]), j € Storr

where 2’ is an AE generated from x, R; denotes its range,
Ly denotes the maximum Lo distance between x and z’.
Saips corresponds to the set of differentiable features and
p the maximum change ratio. Only the differentiable and

non-functional features are eligible to modify. S¢,,.,. denotes

6

indexes of features that are correlated to feature i and fj; is
the correlation function from feature j to feature i.

4.2 Properties of AE

First, we dive into manifold learning to facilitate the
understanding of our AE categorization scheme. Manifold
learning assumes that input data reside on or close to a
low-dimensional manifold embedded in the ambient space
[47]. For example, a plane is a manifold revealed by a
group of three-dimensional data if these data points lie in
a plane (a flat, 2-dimensional surface). Manifold learning
refers to the process of automatically learning the geometric
and topological properties of a given manifold [48]. Most
manifold learning methods focus on data representation as
in [49], [50], [51]. Let M be a manifold model. Formally, we
refer to the inference on an input x as ‘manifold evaluation’,
denoted by M (x). Similar to machine learning, the output
of manifold evaluation is also a vector showing the proba-
bilities of x locating in each sub-manifold (i.e., each class).

Next, we look back to AE for IDS again. The IDS model,
F, maps an input sample = to a confidence vector y €
{po,p1}. The final predicted class is c¢(x) = arg max F (6, z).
¢(x) = 1 indicates that z is classified as malicious while
c(x) = 0 indicates that = is classified as benign. We use
x' = x+n to denote an AE generated from z. There are two
attack scenarios: 1) ¢(z) = 1 (the true label of z is also 1)
while the goal of AE attack is ¢(z') = 0; and 2) ¢(z) = 0
(the true label of z is also 0) while the goal of AE attack is
c(z") = 1. All the analysis on the first attack scenario is also
applicable to the second attack scenario as our defense does
not depend on the value of ¢(z). In what follows, we use
the first attack scenario for consistent illustration purposes
(we consider AEs of both scenarios in our experiments). We
assume that x' needs to keep the essential property of its true
class, i.e., ‘malicious’. In other words, although 2’ is closer to
‘benign’ class in the eye of the IDS model, it does not totally
comply with the property of ‘benign’ class. Otherwise, =’
would not be an AE, rather a new instance of ‘benign’ class
that yields no attack impact.

Assuming that AE needs to keep the essential property of its
true class (which is confirmed by our experimental results),
successful AEs can be categorized into two cases:

o Case A: ' is close to the manifold of the ‘malicious’
class but far from the manifold of the ‘benign’ class.
This frequently occurs when malicious and benign
manifolds are fully separable from each other.

e Case B: &’ is close to both manifolds. This happens
when both manifolds are close to each other or even
overlapping (i.e., cannot separate from each other
perfectly).

Fig. 3 illustrates Case A and Case B for two-
dimensional data. In practice, the dimension of a manifold
depends on the dimension and distribution of input sam-
ples. It is noted that the two cases (i.e.,, Case Aand Case B)
are not mutually exclusive. They may coexist for the same
IDS model at different segments of the decision boundary.

Note that if 2’ is far away from the manifold of the
‘malicious’ class and close to that of the ‘benign’ class, 2’ is
not a successful AE because z’ breaks the above assumption



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

(1) Case A (2) Case B

f
x’ /‘
.

~\_ Classifier Boundary O Manifold of Positive Class e» Clean Data
— Adversarial Direction OManifold of Negative Class % AE

Fig. 3: The illustration of AEs in the 2-D view.

of AE needs to keep the essential property of its true class. The
same argument applies to the case that 2’ is far from both
manifolds.

4.3 MANDA

Here we introduce our AE detection scheme, MANDA, which
is based on the above AE categorization. We assume that the
IDS model has high accuracy on clean data since it makes
less sense to discuss detecting AEs already misclassified by
the IDS model. A clean input needs to traverse the decision
boundary of the IDS model to be an AE. As mentioned in
Section 1, MANDA consists of two components, Manifold
and DB. Manifold combines both z’s classification and
manifold evaluation results to detect AEs. If the two outputs
of z are inconsistent, x is highly likely to be an AE. DB
examines whether an input x is near the decision boundary
of the IDS model to detect AE. Specifically, if we add small
Gaussian noise to z and the corresponding y (and thus ¢(z))
changes frequently, x is highly likely to be an AE. We want
to emphasize that both Manifold and DB can be used as
a stand-alone AE detection scheme while MANDA combines
them together for better performance.

4.3.1 Manifold

For case 2 in Fig. 3, an AE lies in (or near) the manifold
of the 'malicious’ class but far from the ’benign’ class.
Meanwhile, the output label from the IDS model on the AE
is ‘benign’. Therefore, the IDS model results and manifold
evaluation results on the same input are inconsistent. On
the contrary, results for a clean input tend to be consistent.
Thus intuitively, we can use the inconsistency between the
IDS model and manifold evaluation as a criterion for AE
detection.

In order to capture the data manifold for positive (i.e.,
‘malicious’) and negative (i.e., ‘benign’) class, we employ
a transductive learning model proposed by Zhou et al. in
[52]. The learning method explores the intrinsic structure
revealed collectively by a group of labeled and unlabeled
data points. It guarantees both local consistency and global
consistency of known data points. In other words, (1) nearby
points are likely to have the same label, and (2) points on
the same structure (typically referred to as a manifold) are
likely to have the same label. The learned manifold evalu-
ation model is sufficiently smooth concerning the intrinsic
data structure. We use this learning method to obtain the
manifold for each class in this paper.

Algorithm 1 Score-Compute() for Criterion 1 & 2

Input: input z € R”, IDS model F(#), learned manifold M
Output: score;, scores

: p < M(x) # Confidence vector of manifold evaluation
: q < F(0,z) # Classifier output
2 scorey < |Ipll + llall — |lp + 4l

: fori=0to N do

z; =z +N(0,0%)

Di < ]'-(0, xl)

: end for N N
scores & LI pill = & [
: return score;, scores

# Criterion 1

# Criterion 2

0PN DD PN

Algorithm 2 Manifold

Input: inputz € R”, IDS model F(6), learned manifold M,
threshold
Output: isAdversarial € {False, True}

1: scorey, ~+— Score-Compute(z, F, M)
2: if (score; > 71) then

3:  isAdversarial < True

4: end if

5: return isAdversarial

Detection Criterion 1 We conclude an input as an AE if an
inconsistency occurs between manifold evaluation and IDS model.

For implementation, we first compute score; by compar-
ing the confidence vector from the manifold evaluation and
the one from the IDS model as shown in Algorithm 1. Next,
we compare score; to an optimal threshold 7; to decide
whether an input sample is an AE or not (see Algorithm 2).
The threshold 7; is selected by examining the statistics of
clean data points’ scores. In the evaluation section, we select
the 95 percentile of the clean data points’ scores as 7;.

4.3.2 DB

Different from Case A, the two manifolds of ‘malicious’
and ‘benign’ classes are not fully separable in Case B. Here
we have the following proposition:

PROPOSITION 1: In IDS, if

(i) the two manifolds of ‘malicious” and 'benign’ classes are not
fully separable but most instances are still distinguishable;
(i) IDS classifier F is with optimized accuracy;
(ili) = is a clean malicious (or benign) input and ' is x's
corresponding AE, i.e., c(x)=1(or 0), ' =x+n, c(z') =0
(or 1); and
(iv) ' keeps the essential property of ‘malicious’ class.

Then, x' is very close to the decision boundary of F with high
probability.

For Case B in Fig. 3, an AE should be very sensitive to
small perturbations. Based on Proposition 1, we use whether
an input is close to the decision boundary as a secondary
criterion for AE detection. This criterion can falsely conclude
a clean input close to the boundary as an AE. Due to the
curse of dimensionality, very few correctly classified clean
inputs are close to the boundary [53]. Our experimental
results also verify such a hypothesis.

DB needs to evaluate whether an input is a near-
boundary example in high-dimensional space. We achieve
this goal by evaluating the uncertainty of the IDS model’s



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Algorithm 3 DB

Algorithm 4 MANDA

Input: input z € R", IDS model F(6), learned manifold M,
threshold 75
Output: isAdversarial € {False, True}
1: ~, scoreg < Score-Compute(z, F, M)
2: if (scoreg > T9) then
3:  isAdversarial < True
4: end if
5: return isAdversarial

output when the input is applied with a small additive
perturbation. For a near-boundary example, such a small
perturbation may cause it to traverse the decision bound-
ary. Consequently, the outputs of the IDS model become
very unstable when an input is applied with perturbations.
Conversely, a small perturbation on an input away from the
boundary will hardly lead to such a change. We compute
model uncertainty on an input with additive Gaussian
perturbation N'(0,0?) in Algorithm 1. For an input z, the
uncertainty of output from the IDS model is evaluated
as the variance of the confidence vector F (6, ;) of input
x; =z +N(0, 02) (iEN i <N):

Zuﬂ)xz ZfG:m

Similar to Manlfold, DB uses an optlmal threshold for
scorey to decide whether z is an AE or not. Due to space
limit, we do not include the pseudocode of DB here.

scoreg =

M

Detection Criterion 2 We conclude an input with high model
uncertainty on small perturbations as an AE.

We illustrate DB method in Algorithm 3. DB first com-
putes scorez using Eq. 1. Next, DB compares scores to an
optimal threshold 7 to decide whether an input sample is
an AE or not. Note that the threshold 75 is selected similarly
as 7.

4.3.3 MANDA (Manifold+DB)

MANDA is designed to make the best of Manifold and DB
for AE detection. We first generate some AEs using the clean
training dataset. We mix these AEs with the clean training
inputs together and use X to denote the mixed inputs.
Next, MANDA obtains [scorer, scores] of each input in X by
executing Algorithm 1. We attach label 1 to [scorey, scores]
if the input is an AE and label 0 if the input is clean. Next,
we create a new dataset ([S1,S2], Yadv) where [Sq,Sa2]
represents the set of score for each input. Finally, MANDA
trains a logistic regression model on the new dataset and
uses it for AE detection. Algorithm 4 illustrates the process
of MANDA.

5 EXPERIMENTAL RESULTS
5.1 Datasets

NSL-KDD. We use the internet traffic dataset, NSL-KDD
[54] (also used in AE attacks in IDS [10], but [9] does
not consider problem-space validity), for our evaluation.
In NSL-KDD, each sample contains four groups of entries,
including Intrinsic Characteristics, Content Characteristics,
Time-based Characteristics, and Host-based Characteris-
tics. There are four categories of intrusion: DoS, Probing,

Input: IDS model F(6), learned manifold M, test data
point z4es: € R™, input dataset X, AE flag Yaav

Output: isAdversarial € {False, True}

1: if training then

2:  S1,S3 + Score-Compute(X, F, M)

3:  model < LogistcRegression(S1, S2, Yadv)

4: else

5.  scorey, scores < Score-Compute (s, F, M)

6: isAdversarial + model(scorey, scorey)

7: end if

8: return isAdversarial

Remote-to-Local (R2L), and User-to-Root (U2R), of which
each contains more attack sub-categories. There are 24 sub-
categories of attacks in the training set and 38 sub-categories
of attacks in the testing set (i.e., 14 sub-categories of attacks
are unseen in the training set). There are 125,973 training
records and 22,544 testing records. Our experiments only
show the evaluations on an IDS model for discriminating
DoS attacks from normal traffic since the results for the other
three attacks are similar. The total number of entries for each
record is 41 (in problem-space), further processed into 121
numerical features as an input-space (feature-space) vector.
CICIDS2017. CICIDS2017 dataset [55] contains benign traf-
fic and 12 up-to-date attacks, which resembles the real-
world Packet Capture (PCAPs) data. The flow-based dataset
is extracted from the PCAPs files using CICFlowMeter!
according to the time stamp, source, and destination IPs,
source and destination ports, protocols. There are 2,416,775
data records after primary preprocessing (e.g., remove
NaN). Each data record, corresponding to a traffic flow,
contains 78 features and is attached with a label indicating
the attack type or benign. We randomly split the dataset into
a training set containing 1,933,420 data records and a test set
containing 483,355 data records.

MNIST. We also evaluate our approach on an image dataset,
MNIST [56], to demonstrate its applicability. The images in
MNIST are handwritten digits from 0 to 9. The correspond-
ing digit of an image is used as its label. Each class has
6,000 training samples and 1,000 test samples. Therefore,
the whole MNIST dataset has 60,000 training samples and
10,000 test samples. All the images have the same size of
28 x 28 and are in grey-level.

5.2 Experiment Settings and Evaluation Metrics

We implemented the problem-space attacks and MANDA
in TensorFlow. We ran all the experiments on a server
equipped with an Intel Core i7-8700K CPU 3.70GHzx12,
a GeForce RTX 2080 Ti GPU, and Ubuntu 18.04.3 LTS. The
IDS model is a multilayer perceptron (MLP) composed of
one input layer, one hidden layer with 50 neurons, and one
output layer. For completeness, we also implemented other
models for IDS, including Logistic Regression (LGR), K-
Nearest Neighbors (KNN), Naive Bayes classifier for multi-
variate Bernoulli (BNB), Decision Tree Classifier (DTC), and
Support Vector Machine (SVM) from scikit-learn library [57].
We implement four AE attacks including FGSM, BIM, CW (the

1. https:/ / github.com/ahlashkari/CICFlowMeter
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aPerturbation is only applied to a subset of features.

TABLE 2: IDS Accuracy under AE Attacks on the NSL-KDD Dataset.

Lo-norm version) and JSMA (cf. Section 3.3). We adapt the
first three to the problem space of IDS. We generate AEs on
the test samples that the IDS model correctly classifies in
each experiment. Note here that we do not generate AEs for
misclassified test samples. Next, we combine the successful
AEs and the same number of clean data points (randomly
selected) together as a mixed dataset, on which we run
all detection algorithms. The benchmark for comparison
is Artifact [18], the same as in [15], [53]. Artifact is
proposed by Feinman et al. in [18] and becomes one of
the state-of-the-art AE detection schemes. Different from
MANDA, Artifact uses kernel density estimation (KDE)
and Bayesian neural network uncertainty as two criteria to
detect AEs.

On the MNIST dataset, we use a convolutional neural
network (CNN) rather than the above MLP as the target
model for AE attacks. The CNN model is comprised of 4
convolutional layers with ReLU activation, followed by 2
fully-connected layers.

We count the True Positives (TPs), False Positives (FPs),
True Negatives (TNs), and False Negatives (FNs) of AE
detection as evaluation metrics defined as follows.

e TP:asample is an AE and detected as an AE.

o FP:asample is a clean sample but detected as an AE.
e TN:asampleis a clean sample and detected as clean.
o FN:asample is an AE but detected as clean.

_ #TPs _ #FPs
Then we have TPR = W’FPR — #TNs+#FPs’

The receiver operating characteristics (ROC) curve is created
by plotting the TPR against the FPR at various threshold set-
tings. The AUC-ROC score is defined as the area under the
ROC curve, and we use AUC to denote it in the following.

5.3 Results of IDS
5.3.1 AE Attacks on NSL-KDD

We show the classification accuracy of the IDS model under
FGSM, BIM and CW attacks in TABLE 2. We draw two main
conclusions from the experimental results. First, the larger
the perturbation AE attacks use (i.e., p), the more powerful
AE attacks are, and hence the less accurate the targeted
IDS model becomes. Recall that p is the maximum change
ratio on each feature of the modifiable feature set Sg; 75 (in
Section 4.1). TABLE 2 shows that model accuracy drops
from 90.64% with p = 0 to 34.51% with p = 10% under
CW attack (the strongest attack investigated). Second, the
success attack rate of feature-space attack (i.e., the last row
in TABLE 2) is higher than that of problem-space attack (i.e.,
any row other than the last in TABLE 2) because the latter
faces more restrictions in generating AEs (See Section 4.1).

Perturbation FGSM BIM CW Y -~ FGSM
restriction (%) | Acc (%) | L2 | Acc (%) Lo Acc (%) | L2 \\\\\ —k BIM
0 90.64 0 90.64 0 90.64 0 570 \\\L§ - Cw
1.0 8448 | 140 | 8384 | 154 | 7702 | 1.08 < A~ g
2.5 71.10 1.51 64.05 1.58 52.61 1.45 < . \.\ =2 —:::
5.0 64.27 1.58 59.48 1.58 42.68 1.58 = -
7.5 60.09 1.67 55.95 1.62 37.47 1.68 S s
10.0 56.63 1.79 52.79 1.67 34.51 1.67 30
None 242 | 257 | 008 153 000 | 0.96 0025 50 7.5 100
Perturbation (%)

Fig. 4: IDS model accuracy from TABLE 2

Problem-space AE attacks can still cause a very low accuracy
of the targeted IDS model with larger p. In what follows, we
stick to p = 5% and explore the detection performance of
our proposed approach under AE attacks.

It is known that AEs generated from one target model
can transfer to other models [58]. TABLE 3 shows the results
of our problem-space AEs generated from the MLP model
and then applied to models including LGR, KNN, BNB,
SVM, and DTC. The significantly decreased accuracy con-
firms that our problem-space AE generation scheme main-
tains the capability of AE to transfer to different models.

TABLE 3: Transferability of AE Attacks.

Models Acc Acc (%) after attack
(%) | FGSM | BIM | CW | Overall
LGR 89 15 70 52 45
KNN 91 33 33 51 0
BNB 87 34 36 o &
SVM 89 22 7 5 51

5.3.2 Detection Performance on NSL-KDD

Here we show the results of our AE detection schemes
including Manifold, DB, and MANDA.

First, we show ROC curves of detecting FGSM, BIM, and
CW attacks in Fig. 5. We can see that Manifold and MANDA
achieve similar ROC results which outperform both DB and
Artifact. Such results inspire us that most AEs can be suc-
cessfully detected by the inconsistency between IDS model
and manifold model. We further compute the AUC and TPR
(with a fixed FPR) in TABLE 4 to better show the detection
performance. From the table, we can see that the best AUC
score under FGSM attack is achieved by Manifold. For BIM
attack and Cw attack, MANDA outperforms the other detection
methods with 0.9726 and 0.9851 AUC, respectively. We also
show TPR under 5% FPR and 15% FPR in TABLE 4. Our
Manifold achieves the best TPR under FGSM attack with
either 5% FPR or 15% FPR, while MANDA outperforms the
other methods under Cw attack with either 5% FPR or 15%
FPR. For the BIM attack, Manifold achieves the highest
TPR with 5% FPR, while MANDA works best with 15% FPR.

In sum, Manifold and MANDA achieve excellent AE de-
tection performance for IDS models: they achieve both high
AUC score and TPR. As is pointed out in Section 4.3, our DB
detection method is to detect those AEs which Manifold
fails to detect. Therefore, MANDA is able to detect more AEs
while at the risk of more false positive samples. Manifold,
DB, and MANDA are able to detect an AE in around 0.26
millisecond, making them great candidates for fast online
detection.
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Fig. 5: ROC curve of AE detection methods under FGSM, BIM and CW attacks on NSL-KDD.
TABLE 4: AE Detection Performance on the NSL-KDD Dataset
FGSM BIM CW
Detection Method TPR(%) TPR(%) TPR(%)
FPR=5% | FPR=15% | “UCROC | pproso, | FPR=15% | AUCROC | pprose, | RPR=15% | AUCROC
Manifold (Ours) 94.04 100.00 0.9792 98.41 99.98 0.9714 98.38 100.00 0.9805
DB (Ours) 17.27 53.57 0.8471 27.91 98.62 0.9340 71.00 97.91 0.9439
MANDA (Ours) 92.88 99.89 0.9765 98.04 100.00 0.9726 95.93 100.00 0.9851
Artifact [18] 12.60 96.63 0.8984 14.78 96.31 0.9023 28.07 97.66 0.9123
CW attack, C=0.1 CW attack, C=0.2 CW attack, C=0.4 CW attack, C=0.8
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Fig. 6: ROC curves of AE detection under Adaptive CW attacks on the NSL-KDD dataset.

5.3.3 Adaptive AE Attack

We further assume a stronger threat model where an at-
tacker knows the defense mechanism. With this knowledge,
an attacker can launch an adaptive attack to generate ad-
versarial examples that are far from the decision boundary.
Theoretically, the decision-boundary-based detection com-
ponent (DB) will fail to detect this type of adaptive attack
since the confident AE will be far from the decision bound-
ary with high probability. However, the manifold-based
detection component (Manifold) will still be effective in
AE detection. The reason is as follows. Firstly, the generated
AE should maintain its original properties regardless of
its confidence. Therefore, the manifold evaluation is highly
likely to predict this AE to its original class. On the other
hand, the target classifier will classify it as a class other
than the original one. We can still find an inconsistency
between the manifold evaluation and classifier prediction.
In this way, the manifold-based detection component will
successfully detect this AE. We further experimentally eval-
uate this type of adaptive adversarial attack as follows.

We implement the adaptive adversarial attack based
on the CW attack. We enable an adjustable confidence
level of AEs in this attack. Specifically, we use the dif-
ference between the confidence in the adversarial class
and confidence in the ground truth class to represent the
strength of AEs. And we denote this metric as C. We
show MANDA’s performance against AEs with different C’s.

Figure 6(a) 6(b) 6(c) 6(d) show the AE detection results
when C' = 10%, 20%, 40%, and 80% respectively. MANDA
and its two components, i.e., DB and Manifold, are all
included in the figures. We can see that the performance of
DB degrades with the increase of AE confidence as expected.
However, Manifold shows better detection performance
with the increasing AE confidence. The reason is that the
inconsistency between the victim model prediction and the
manifold evaluation increases with C'. MANDA consistently
shows high detection rates under all C' values, indicating
that MANDA is effective against this type of adaptive attack.

5.3.4 AE Attacks on CICIDS

Compared to the NSL-KDD dataset, we build a multiple-
class IDS model on the CICIDS dataset instead of a two-class
model. The IDS model is more powerful as it can not only
detect a malicious incoming traffic flow but also recognize
its attack type. However, this also makes AE detection for
a multi-class IDS much more challenging due to that each
type of attack tends to hide its maliciousness in its own way.
In order to make a meaningful attack, we only consider the
attack scenario where an attacker tries to evade the detection
(i.e., to be benign) but not the scenario where an attacker
pretends to be another attack type or a normal one pretends
to be malicious. The accuracy of IDS on the CICIDS dataset
under no adversarial attack is 98.2% in our evaluation.
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Fig. 7: ROC curve of AE detection under FGSM, BIM and CW attacks on CICIDS. The victim model is multi-class IDS.

TABLE 5: ASR on IDS for the CICIDS Dataset.

Perturbation restriction (%) FGSM BIM | CW
1.0 72.8 87.8 | 100.0
2.5 83.6 90.0 | 100.0
5.0 85.4 90.3 | 100.0
7.5 86.0 90.4 | 100.0
10.0 86.6 92.7 | 100.0
None 99.7 99.7 | 100.0

aPerturbation is only applied to a subset of features.
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Fig. 8: The ROC curve of DB detection method on AEs gener-
ated by FGSM. The victim models are three two-class IDSs:
DoS Intrusion denotes a two-class IDS that differentiate
DoS attack from benign. Similar with Port Scan and DDos.

We show the effectiveness of AE attacks including FGSM,
BIM and CW on the IDS model. To give a clearer view on the
attack effectiveness, TABLE 5 shows the Attack Success Rate
(ASR) instead of the IDS accuracy under attacks as TABLE 2
does. The two evaluation metrics, ASR and IDS accuracy, are
correlated by Accynder—attack = (1 — ASR) * AcCpo—attack
where Accynder—attack denotes the IDS accuracy under AE
attacks and Accyo—qttack denotes the original accuracy of
IDS without attack. For instance, with ASR = 90%, we can
derive that the IDS model accuracy drops to 98.2% * (1 —
90%) = 9.8%.

We observe that the ASR on the CICIDS dataset is
higher than that on the NSL-KDD dataset. One possible
reason is that the IDS models designed for the two datasets
rely on different feature engineering methods. As discussed
above, another reason might be that the AE generation for
a multiple-class model is easier than a binary model. The
observation that AE attacks successfully disrupt two IDSs
built on different feature engineering methods demonstrates
that AE attacks are powerful against IDS.

TABLE 6: FPR of AE Detection When TPR Reaches 0.95 on
the CICIDS Dataset.

Detection Method FGSM BIM CW
Manifold 0.091 0.094 | 0.038

DB 0.828 0.827 | 0.186

MANDA 0.067 0.070 | 0.025
Artifact 0.419 0.439 | 0.653

5.3.5 Detection Performance on CICIDS

We evaluate the performance of MANDA on the CICIDS2017
dataset and compare it with the performance of Artifact.
For better understanding, the preliminaries of the multi-
class ML model are first given.

In a multi-class problem, there exists a decision bound-
ary between every two classes. A decision boundary is a
locus of points on which a posteriori probabilities are the
same, and it can be a point, line, plane, hyperplane, solid,
hypersolid, curved surface, or curved hypersurface [59]. The
definition of decision boundary is as follows:

Definition 1. For a n-class model F with model parameter
0, a decision boundary between class ¢ and j (i, j < n)is
defined as

Dij + {x|F(0,x)[i] = F(0,x)[j]}

where F(6,x) is the confidence vector, and F (6, x)[i] is
the likelihood that the model predicts x as class i.

The inter-class distance between class ¢ and j can be
evaluated by the averaged Euclidean distance between a set
of data points from class i (denoted by ¢,,) and a set of data
points from class j (denoted by ¢,,),

1
Z Z %0 — Xpll,-

lij = 77—
T lemllenl Xo€Cm XpECn,

First, we show ROC curves of detecting FGSM, BIM, and
CW attacks in Fig. 7. Similar as on NSL-KDD, Manifold
and MANDA outperform Artifact on CICIDS. We observe
that the AE detection performance of DB on the CICIDS
dataset is not comparable to other detection methods. The
reason is that we employ a constant Gaussian noise with
o? variance in the current design of DB. The constant noise
magnitude is not able to evaluate the closeness of data
points to their corresponding decision boundaries since the
inter-class distance varies from one to another.

We analyze the performance of DB on multi-class IDS
by a toy example. Assume that we have two data points
X, and xp. X, is most likely from Class 1 or Class 2, and
the inter-class distance is 15 = 1. The Ly norm distance
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Fig. 9: ROC curve of AE detection methods under FGSM, BIM, CW, and JSMA attacks on the MNIST dataset.

from x, to decision boundary D3 is 0.8. We would say
X, is not close to Dis since the ratio 0.8/1 is large. x; is
most likely from Class 3 or Class 4, and l34 = 100. The
Lo norm distance from x;, to decision boundary D3y is also
0.8. xy, is believed to be close to D34 since 0.8/100 is small.
When we employ DB using a Gaussian noise with o = 2
to evaluate the closeness of the two data points to decision
boundaries, we would highly likely get that both x, and
xp are close to decision boundaries. In this way, we made
an FP on x,. When we decrease the o to 0.2, we eliminate
the FP on x,. However, we would make an FN on x;.
Therefore, we need to customize the noise scale according
to the relative position of a data point to different decision
boundaries, which is a potential future work. On the other
hand, Manifold is not sensitive to the inter-class distance
so that we can still achieve good detection performance with
Manifold.

We further verify our hypothesis by exploring the per-
formance of DB when the victim IDS is a two-class IDS
on the same dataset (i.e., CICIDS) in Fig. 8. By comparing
Fig. 8 with Fig. 7, we can see that DB achieves much better
detection performance when the victim model is a two-class
IDS rather than a multi-class IDS.

We further compute the minimum FPR of different de-
tection methods when they achieve 0.95 TPR in TABLE 6.
From the table, we can see that MANDA achieves 0.067 FPR
under FGSM attack. Other AE detection methods result in
higher FPR while achieving the same level of TPR. For
BIM attack and CW attack, MANDA achieves the smallest FPR
among all detection methods. The FPR of DB is larger than
all the other AE detection methods, indicating that it is not
suitable to be used alone. However, we can improve the AE
detection performance of Manifold by incorporating DB to
Manifold as shown in TABLE 6. We note that employing
noise with different variances in DB as discussed above
would improve the detection performance of DB.

In sum, Manifold and MANDA achieve excellent AE
detection performance for IDS models: they achieve both
high AUC scores and TPR. As pointed out in Section 4.3, our
DB detection method is best at detecting those AEs which
are not close to either manifold and Manifold thus fails to
detect. Therefore, MANDA is able to detect more AEs while at
the risk of more false positive samples. Manifold, DB, and
MANDA are able to detect an AE in around 0.26 millisecond,
rendering them great candidates for fast online detection.

5.4 Results on MNIST

We also apply MANDA to the MNIST dataset to evaluate their
performance, to demonstrate that the proposed approach
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Fig. 10: The percentage of AEs that a selected feature (dura-
tion, src_byte, etc) value is increased or decreased.

can potentially be used for other application scenarios. We
add a feature extractor to convert an original image input
(i.e., a pixel vector) into a low-dimensional feature vector
when dealing with an image input. The feature extractor is a
convolutional auto-encoder comprising three convolutional
layers with 32,64, 64 filters as the encoder and three con-
volutional layers with 64,64, 32 filters as the decoder. We
first train the auto-encoder model and then include only the
trained encoder into the main image classification model for
MNIST. Compared with the original input size of 28 x 28,
the size of the extracted high-level features is smaller (i.e.,
64 x 1).

5.4.1 Detection Performance

We show the results of AE detection of the main model
under FGSM, BIM, JSMA and CW attacks in Fig. 9. With a fixed
5% FPR, MANDA achieves 0.89, 0.94, 0.90, and 0.99 TPR under
FGSM, BIM, JSMA, and CW attack, respectively. Compared to
Artifact, MANDA improves TPR under FGSM, BIM, JSMA,
and CW attack by 0.36, 0.19, 0.10, and 0.31, respectively.
Such results confirm that MANDA is effective not only for
network intrusion detection but also for detecting adversar-
ial tampering of images. We will continue to explore more
application scenarios in the future work.

6 LESSONS LEARNED FROM AES AGAINST IDS

One interesting observation in our experiments is that the
AE generation in the problem space of IDS exhibits some
common patterns, which sheds some insights in evading
IDS.

We compare AEs to the corresponding clean traffic flows
and summarize the modification patterns. For each feature,
there are two possible modifications: either increasing or
decreasing the value of the feature. Different types of attacks
need different modification patterns so as to evade IDS.
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We take the DoS attack from the NSL-KDD dataset as an
example to show its modification pattern. We randomly
select 200 instances of DoS traffic flow and apply the AE
attack on the selected traffic flow. Among all the 41 features,
we only allow modifying 6 features as shown in Fig. 10.
The meaning of each feature is available [60]. Among 200
generated AEs, 51 AEs succeed in evading IDS. We summa-
rize the likelihood that a feature is increased or decreased
to achieve a successful evasion attack in Fig. 10. From
Fig. 10 we can see that an attacker is able to evade the
detection by increasing the connection duration, decreasing
the number of connections per second, etc. Such results
provide guidelines to design evasion attacks.

7 CONCLUSIONS

In this paper, we examine three recent AE attacks against
ML-based IDSs. The results confirm that the problem-space
AE attacks are an effective disruption to the IDSs as it
allows malicious events to escape with high probability. We
identify common features of successful AEs and based on
which we design an effective and accurate AE detector,
MANDA. The MANDA system takes on a novel design that
exploits inconsistency between manifold evaluation and
IDS model inference and evaluates model uncertainty on
small perturbations to differentiate AEs from clean network
traffic. Our evaluation of MANDA using the NSL-KDD dataset
and the CICIDS dataset shows that MANDA outperforms
the state-of-the-art statistical test model (i.e., Artifact)
by achieving higher AUC scores and higher true-positive
rate with a 5% false-positive rate. MANDA also performs well
when evaluating using the MNIST dataset, which implies
that the detector may be applied to other domains, e.g., the
computer vision area.
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