
#BHUSA @BlackHatEvents 

TruEMU: an extensible, open-source, 
whole-system iOS emulator

Speaker: Trung Nguyen

Team members: Antonio Binachi, Kyungtae Kim, Dave Jing Tian

#BHUSA @BlackHatEvents 

August 10-11, 2022

BRIEFINGS



#BHUSA @BlackHatEvents 

whoami
• Trung Nguyen Hoang - @ntrung03
• Undergraduate CS student at Purdue University
• Focus on macOS/iOS research
• Used to blog about CTF challenges

• https://trungnguyen1909.github.io/blog/

https://trungnguyen1909.github.io/blog/


#BHUSA @BlackHatEvents 

Agenda
• Current state of iOS Research
• TruEmu’s design goal
• Implementing TruEmu
• Using TruEmu for Research
• TruEmu’s Future and Roadmap



#BHUSA @BlackHatEvents 

We need to talk about iOS research



#BHUSA @BlackHatEvents 

Using real devices
• Security Research Device Program by Apple

How current iOS research is done



#BHUSA @BlackHatEvents 

Using real devices
• Security Research Device Program by Apple
• Apple Internal devices (dev-fused devices)

How current iOS research is done



#BHUSA @BlackHatEvents 

Using real devices
• Security Research Device Program by Apple
• Apple Internal devices (dev-fused devices)
• Off-the-shelf jailbroken devices

How current iOS research is done



#BHUSA @BlackHatEvents 

Using real devices
• Security Research Device Program by Apple
• Apple Internal devices (dev-fused devices)
• Off-the-shelf jailbroken devices

How current iOS research is done



#BHUSA @BlackHatEvents 

Using real devices
• Security Research Device Program by Apple
• Apple Internal devices (dev-fused devices)
• Off-the-shelf jailbroken devices
• Off-the-shelf non-jailbroken devices
• ARM Macs

How current iOS research is done



#BHUSA @BlackHatEvents 

Emulation comes to the rescue
• Third party commercial iOS emulator

How current iOS research is done



#BHUSA @BlackHatEvents 

Emulation comes to the rescue
• Third party commercial iOS emulator
• VMApple

How current iOS research is done



#BHUSA @BlackHatEvents 

Emulation comes to the rescue
• Third party commercial iOS emulator
• VMApple

How current iOS research is done



#BHUSA @BlackHatEvents 

Emulation comes to the rescue
• Third party commercial iOS emulator
• VMApple
• Aleph Security’s xnu-qemu-arm64

How current iOS research is done



#BHUSA @BlackHatEvents 

Shortcomings of Aleph Security’s xnu-qemu-arm64 

• Supports only 2 iOS version
• Limited hardware support
• Hard to maintain and also abandoned

How current iOS research is done



#BHUSA @BlackHatEvents 

TruEmu came to the rescue



#BHUSA @BlackHatEvents 

TruEmu’s design goal
• Free-to-use iOS emulator for security research
• Out-of-box support for a wide range of iOS versions
• Easy to debug
• Can be used for fuzzing

TruEmu came to the rescue



#BHUSA @BlackHatEvents 

TruEmu’s notable features
• Model actual hardware
• Support from iOS 14 to the latest iOS 16
• iPhone 6S SecureROM
• Out-of-box Kernel debugging support
• USB support (with Firmware Restore)
• Apple’s custom CPU features (SPRR/GXF, custom PAC)
• We are Open source

• http://github.com/TrungNguyen1909/qemu-t8030

TruEmu came to the rescue

http://github.com/TrungNguyen1909/qemu-t8030


#BHUSA @BlackHatEvents 

Implementing TruEmu



#BHUSA @BlackHatEvents 

How does a new device get modeled
1. Look for information from the device tree
2. Build a stub model and log MMIO accesses
3. A mix of dynamic and static reverse engineering the protocol
4. Write code to emulate needed responses
5. Profit

Implementing TruEmu



#BHUSA @BlackHatEvents 

1. Reading the device tree
• Can be found in iOS IPSW
• Contains a rich amount of peripherals information for iOS
• Used to match driver

Implementing TruEmu



#BHUSA @BlackHatEvents 

1. Reading the device tree
• Contains a rich amount of peripherals information for iOS
• Used to match driver

Implementing TruEmu



#BHUSA @BlackHatEvents 

2. Building the stub model
• Map a dummy memory region to the MMIO address
• Log accesses and back trace, disassemble the related code
• Try driving the interrupt lines to see how iOS responses

Implementing TruEmu



#BHUSA @BlackHatEvents 

SPRR/GXF
• Used in both iOS kernel and browser
• Apple’s custom privilege-level
• New levels are created laterally from ARM’s

EL3

GL2EL2

EL0

GL1EL1

TruEmu’s implementation



#BHUSA @BlackHatEvents 

GL2

SPRR/GXF
• Used in both iOS kernel and browser
• Apple’s custom privilege-level
• New levels are created laterally from ARM’s
• GXF: Guarded eXecution Feature
• GENTER: ELx to GLx
• GEXIT: GLx to ELx
• Guarded mode can have different page permission

EL2

EL0

GL1EL1

Implementing TruEmu



#BHUSA @BlackHatEvents 

SPRR/GXF

Index: 0bNNNN

Permission 
register: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Permission: 0bGGEE

Permission bits on page table becomes index in a system register



#BHUSA @BlackHatEvents 

• Jumping to GLx code from ELx code causes a GXF abort
• Except: No write in ELx if exec in GLx

SPRR/GXF

Permission: 0bGGEE

0b00 ---
0b01 r-x
0b10 r--
0b11 rw-



#BHUSA @BlackHatEvents 

• PPL: Page Protection Layer
• Security-sensitive code (Page table, TrustCache) are in PPL
• Normal kernel code (__TEXT, __TEXT_EXEC): 0x24ac000 bytes (≈ 37MiB)
• PPL kernel code (__PPLTEXT): 0x19844 bytes (≈ 102KiB) (368x smaller)
• PPL runs in Guarded mode
• PPL can jump to normal kernel code, but not the other way around

SPRR/GXF + iOS

Page Protection Layer



#BHUSA @BlackHatEvents 

• Browsers use JIT to compile JavaScript code into native code to speed up 
execution

• It creates a page that is both writable and executable to store the result and 
execute

Bulletproof JIT

SPRR/GXF + iOS



#BHUSA @BlackHatEvents 

• JIT pages constantly need to change between write and execute mode
• Changing permission would normally require trapping to kernel and some 

TLB flushes
• Those are slow and hurt performance

Problem with normal JIT

SPRR/GXF + iOS



#BHUSA @BlackHatEvents 

• Just flip the permission bit from userspace
• pthread_jit_write_protect_np:

SPRR comes to the rescue

Read-Execute Read-Write

SPRR/GXF + iOS



#BHUSA @BlackHatEvents 

SPRR/GXF
• We implemented these custom CPU logics in TCG
• New instructions need to be decoded
• Page table permission logic needs to be modified
• Limitation: Changes to permission register requires an expensive TLB flush 

due to QEMU TLB’s limitation

Implementing TruEmu



#BHUSA @BlackHatEvents 

Why we want USB Emulation?
• Restoring: We can now install iOS like a real device
• Networking: SSH?
• Connect to Xcode: Install and run apps (not yet)

Implementing TruEmu



#BHUSA @BlackHatEvents 

Challenges of USB Emulation
• Problem 1: iOS only has drivers for Synopsys USB controllers 

Implementing TruEmu



#BHUSA @BlackHatEvents 

USB Emulation
• iOS uses USB for restoring, syncing, and even networking
• But iOS only have drivers for Synopsys USB controllers 

Implementing TruEmu



#BHUSA @BlackHatEvents 

Implementing TruEmu

USB Emulation
• iOS uses USB for restoring, syncing, and even networking
• But iOS only have drivers for Synopsys USB controllers 



#BHUSA @BlackHatEvents 

USB Emulation
• iOS uses USB for restoring, syncing, and even networking
• But iOS only have drivers for Synopsys USB controllers 

Documentation from 

3rd party manufacturers

Implementing TruEmu



#BHUSA @BlackHatEvents 

Challenges of USB Emulation
• Problem 1: But iOS only has drivers for Synopsys USB controllers
• Problem 2: Actual iPhone 11 uses newer Synopsys Dual-Role-Device, but 

documents are sparse for those
• à We used to modify device tree to make iOS loads old drivers for Synopsys OTG

• We eventually implemented the new Synopsys USB controller

Implementing TruEmu



#BHUSA @BlackHatEvents 

USB bus
• There are 2 USB sides: host and device
• iOS supports both
• iOS uses device mode to connect with PCs
• QEMU does not support device mode

Implementing TruEmu



#BHUSA @BlackHatEvents 

USB bus
• We connect the iOS VM to a Linux VM using UNIX pipes

Implementing TruEmu



#BHUSA @BlackHatEvents 

Using TruEmu for research



#BHUSA @BlackHatEvents 

Emulation - Demo

Using TruEmu for research



#BHUSA @BlackHatEvents 

Emulation - Demo

Using TruEmu for research



#BHUSA @BlackHatEvents 

Emulation - Demo

Using TruEmu for research



#BHUSA @BlackHatEvents 

Emulation - Demo
• We went through the Restore process of iOS
• We got a bash shell and explored iOS using various commands
• We SSHed into our iOS machine

Using TruEmu for research



#BHUSA @BlackHatEvents 

Reverse Engineer - Demo

Using TruEmu for research



#BHUSA @BlackHatEvents 

Reverse Engineer - Demo
• We set breakpoints, stepping, and exploring SecureROM memory
• We also found a bug in SecureROM that prevents it from resetting on panic

Using TruEmu for research



#BHUSA @BlackHatEvents 

Reverse Engineer - Demo
• We set breakpoints, stepping, and exploring SecureROM memory
• We also found a bug in SecureROM that prevents it from resetting on panic

Using TruEmu for research



#BHUSA @BlackHatEvents 

Snapshot
• Our iOS boot time is great (5s), but still not good enough for fuzzing
• Using VM snapshots to start at the fuzzable state immediately (0.5s / cycle)

Using TruEmu for greybox fuzzing



#BHUSA @BlackHatEvents 

Code coverage
• AFL uses code coverage to maximize the number of paths reached
• We are running emulation using TCG, which is a JIT compiler
• TCG compiles emulated code into basic blocks
• à Records coverage when a block is being executed

Using TruEmu for greybox fuzzing



#BHUSA @BlackHatEvents 

USB fuzzing

Using TruEmu for greybox fuzzing



#BHUSA @BlackHatEvents 

USB fuzzing

Using TruEmu for greybox fuzzing



#BHUSA @BlackHatEvents 

Syscall fuzzing

Using TruEmu for greybox fuzzing



#BHUSA @BlackHatEvents 

Syscall fuzzing

Using TruEmu for greybox fuzzing



#BHUSA @BlackHatEvents 

Current challenges
• Problem 1: Timer interrupts interfere with coverage result

• Partial Solution: Mask all interrupts

• However, our thread is the only one running, so only simple bugs can be found

• Problem 2: Apple does not provide KASAN builds for iOS
• Potential solution: Hooks allocator’s functions?

Using TruEmu for greybox fuzzing



#BHUSA @BlackHatEvents 

TruEmu’s future and roadmap



#BHUSA @BlackHatEvents 

Future features
• Framebuffer
• Touch screen
• Working GUI
• SEP
• GPU?
• Fuzzer

TruEmu’s future and roadmap



#BHUSA @BlackHatEvents 

We need you!
• Our code is open-sourced at:

• http://github.com/TrungNguyen1909/qemu-t8030

• Aid our reverse engineering process through direct/indirect ways

• Contribute to our repo
• Support Linux on ARM Macs efforts

TruEmu’s future and roadmap

http://github.com/TrungNguyen1909/qemu-t8030


#BHUSA @BlackHatEvents 

Projects that were helpful for us
• Asahi Linux – Linux on Apple Silicon: https://asahilinux.org
• Corellium – Linux Sandcastle, Linux M1 (abandoned): http://github.com/corellium
• Aleph Security – xnu-qemu-arm64 (abandoned):

• http://github.com/alephsecurity/xnu-qemu-arm64

• National Science Foundation (NSF) under Award Number CNS-2145744

Shoutout

https://asahilinux.org/
http://github.com/corellium
http://github.com/alephsecurity/xnu-qemu-arm64


#BHUSA @BlackHatEvents 

• iOS full emulation is hard, but it is possible!

• iOS devices’ hardware internals and their emulation in a QEMU-based system.
• How TruEMU can be used to enable multiple security applications

• We hope to lower the entry barrier to iOS security research!

Takeaways




