RobustFed: A Truth Inference Approach for Robust Federated

Learning
Farnaz Tahmasebian Jian Lou Li Xiong
Emory University, Alumni Xidian University Emory University
Atlanta, GA, USA Xi’an, China Atlanta, GA, USA
tahmasebian.farnaz@gmail.com jlou@xidian.edu.cn Ixiong@emory.edu
ABSTRACT Client 1 Client 3

Federated learning is a prominent framework that enables clients
(e.g., mobile devices or organizations) to collaboratively train a
global model under a central server’s orchestration while keep-
ing local data private. However, the aggregation step in federated
learning is vulnerable to adversarial attacks as the central server
cannot enforce clients’ behavior. As a result, the performance of
the global model and convergence of the training process can be
affected under such attacks. To mitigate this vulnerability, existing
works have proposed robust aggregation methods such as median
based aggregation instead of averaging. While they ensure some
robustness against Byzantine attacks, they are still vulnerable to la-
bel flipping and Gaussian noise attacks. In this paper, we propose a
novel robust aggregation algorithm inspired by the truth inference
methods in crowdsourcing by incorporating the clients’ reliability
into aggregation. We evaluate our solution on three real-world
datasets with a variety of machine learning models. Experimental
results show that our solution ensures robust federated learning
and is resilient to various types of attacks, including noisy data
attacks, Byzantine attacks, and label flipping attacks.

CCS CONCEPTS

- Computing methodologies — Artificial intelligence.

KEYWORDS

Federated learning; Robustness; Adversarial attack; Truth discovery

ACM Reference Format:

Farnaz Tahmasebian, Jian Lou, and Li Xiong. 2022. RobustFed: A Truth
Inference Approach for Robust Federated Learning. In Proceedings of the 31st
ACM International Conference on Information and Knowledge Management
(CIKM °22), October 17-21, 2022, Atlanta, GA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3511808.3557439

1 INTRODUCTION

Federated learning (FL) has emerged as a promising collaborative
learning framework that builds a shared model across multiple
clients (e.g., devices or organizations) while keeping the clients’
data private [1, 23, 24]. FL among multiple organizations is also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA

© 2022 Association for Computing Machinery.
ACMISBN978-1-4503-9236-5/22/10...$15.00
https://doi.org/10.1145/3511808.3557439

3Fg” VB

‘\“ /’
— BN e - —
X 2

Client 2 Client k

3G 23 5 i
1G oL

> Download global model

& Upload local model updates

Figure 1: Overview of Cross-silo Federated Learning (FL)
Framework

known as cross-silo FL, which we will focus on in this paper. Such
a framework can be applied in various domains, such as conversa-
tional Al and healthcare [3, 23-25]. Training a generalizable model
for these domains requires a diverse dataset. Accessing and ob-
taining data from multiple organizations and centralizing them
in a third-party service provider can be impractical considering
data privacy concerns or regulations. Yet, we still wish to use data
across various organizations because a model trained on data from
one organization may be subject to bias and poor generalization
performance. FL makes it possible to harness the data for joint
model training with better generalization performance without the
requirement to share raw private local datasets [1].

In a cross-silo FL framework (as shown in Figure 1), there is a
semi-honest global coordinating server and several participating
clients. The global server controls the learning process and aggre-
gates the model parameters submitted by clients during multiple
communication rounds. The clients train the same model locally us-
ing their local datasets. Then, they share their updated local model
parameters, not their raw data, with the server, which aggregates all
their contributions and broadcasts back the updated global model
parameters.

The most commonly used aggregation algorithm is called Fed-
erated Averaging (FedAvg) [24] that takes a weighted average of
the local model parameters. This aggregation method is vulnera-
ble to adversarial attacks or unintentional errors in a system. Due
to strategic adversarial behavior (e.g., label-flipping and Gaussian
noise attacks [5, 8, 13, 17, 29]) or infrastructure failures (e.g., Byzan-
tine faults [20] where client nodes act arbitrarily), the clients can
send malicious (manipulated) or arbitrary values to the server. Thus,
the global model can be affected severely. Robust FL against such
potential behaviors or failures is essential.

https://doi.org/ 1 0 . 1 1 4 5 / 3 5 1 1 8 0 8 . 3 5 5 7 4 3 9
https://doi.org/ 1 0 . 1 1 4 5 / 3 5 1 1 8 0 8 . 3 5 5 7 4 3 9

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Recently, several methods have been proposed to mitigate at-
tacks in FL or distributed learning [5, 7, 10, 11, 29, 34]. They are
mainly based on statistical robust aggregation such as median or
trimmed mean instead of averaging. While they perform well under
Byzantine attacks, they fail under other types of attacks such as
label-flipping and Gaussian noise attacks.

In this paper, we propose a novel defense method using a truth
inference approach for robust aggregation against such attacks
in FL. Truth inference is a key component of crowdsourcing that
aggregates the answers of the crowd (i.e., workers) to infer the
true label of tasks (e.g., traffic incidents, image annotation) [18, 27].
We make this connection for the first time that the model param-
eter aggregation can be formulated as a truth inference problem,
i.e., each client is a worker, the local parameters (answers) by the
workers need to be aggregated to estimate the global parameter
(label). The key idea is to explicitly model the reliability of clients
and take them into consideration during aggregation. Such an ap-
proach has shown promising results in crowdsourcing compared
to simple aggregation approaches such as majority voting (or aver-
aging). However, there are several challenges and opportunities in
applying the truth inference approach for robust FL (compared to
crowdsourcing). First, an attacker can manipulate the local training
data (e.g., adding noise or flipping the labels) to affect the model
parameters (versus directly changing the model parameters). The
server only observes the model parameters without access to the
data. Hence, a direct application of the truth inference approach on
the model parameters cannot detect the malicious clients reliably.
Second, FL requires multi-round communication of the local model
parameters to the server. This dynamic information creates both
challenges and opportunities in detecting unreliable clients. Finally,
as in many practical settings, the server does not have access to any
golden validation dataset for validating the local models in order
to detect unreliable clients.

To address these challenges, we derive the clients’ reliability
score by solving an optimization problem over multiple iterations
of FL. We then incorporate the reliability of each client in the ag-
gregation. Our approach is based on two main insights. First, the
existing truth inference approaches rely entirely on the derived
reliability of the workers for aggregation. In our case, since the
model parameters may not accurately reflect the reliability of the
workers due to the different kinds of attacks (e.g., label-flipping),
we use a pruning algorithm that removes clients with outlier relia-
bility, which mitigates the impact of the malicious clients during
aggregation. Second, we exploit the multi-round model parame-
ters submitted by the clients for evaluating the client’s reliability
in a more robust way. We briefly summarize our contributions as
follows.

o We develop a novel robust aggregation method for FL against
potential adversarial attacks and Byzantine failures of clients.
The method explicitly models the clients’ reliability based
on their submitted local model parameters and incorporates
them into aggregation, hence providing a robust estimate of
the global model parameters.

o We further enhance the aggregation method by exploiting
the multi-round communication of FL and considering the

Farnaz Tahmasebian, Jian Lou, and Li Xiong

model parameters submitted by the clients both in the previ-
ous rounds and the current round for evaluating the client’s
reliability.

e We compare our proposed method to several baselines on
three image datasets. The results show that our proposed
aggregation methods mitigate the impact of attacks and out-
perform other baselines.

2 RELATED WORKS

In this section, we provide a brief review of adversarial attacks
including poisoning attacks and Byzantine attacks on federated
learning (FL) along with the existing defense and robustness meth-
ods. Subsequently, we briefly review truth inference methods in
crowdsourcing.

2.1 Adversarial Attacks on Federated Learning

In federated learning (FL), all the participants agree on a common
learning objective and model structure. The attacker aims to com-
promise the global model by uploading malicious updates to the
global server [24]. The adversary can control the local training
dataset, local hyper-parameter of the model, and local model pa-
rameters to be uploaded.

In this section, we mainly consider data poisoning attacks, in
which malicious clients create poisoned training samples and inject
them into their local training dataset [10]. Then, the local model is
trained on the dataset contaminated with such poisoned samples.
The purpose of this attack is to manipulate the global model to mis-
classify on test datasets. These attacks can be further divided into
two categories: 1) label-flipping attacks [10] and 2) noisy features
attack [10]. The label-flipping attack occurs where the labels of
training examples of one class are flipped to another class while the
data features remain unchanged. For example, an attacker can train
a local model with cat images labeled as a dog and then share the
poisoned local model for aggregation. A successful attack forces a
model to incorrectly predict cats to be dogs. In the noisy features
attacks, the adversary adds noise to the features while keeping
the class label of each data point intact [10]. Noisy data and the
backdoor attacks fall in this type of attack [32, 33].

FL is vulnerable to poisoning attacks. Studies [4, 6, 10, 29] show
that just one or two adversarial clients are enough to compromise
the performance of the global model. Thus, developing a robust
method against these attacks is essential. Fung et al. [10] proposed
a defense method, called FoolsGold, against data poisoning attack
in FL in a non-IID setting. Their solution differentiates the benign
clients from the adversary ones by calculating the similarity of
their submitted gradients. Other techniques use the recursive Bayes
filtering method [26] to mitigate the data poisoning attack. In some
studies [4, 28], researchers assume that the global server has ac-
cess to a golden validation dataset that represents data distribution
from clients. The server can detect adversaries by assessing the
effectiveness of provided updates on improving the global model’s
performance. If the updates do not improve the global model’s
performance, the client is flagged as a potential adversary [4]. How-
ever, this method requires the validation dataset which is difficult
to achieve in practice.

RobustFed: A Truth Inference Approach for Robust Federated Learning

2.2 Byzantine-Robust Federated Learning

Byzantine clients aim to prevent the global model’s convergence or
lead the global model to converge to a poor solution by uploading
modified updates. In some scenarios, the Byzantine clients can
add Gaussian noise to the gradient estimators, then send these
perturbed values to the server. The Byzantine gradients can be hard
to distinguish from the benign clients by the methods described
for data poisoning attacks since their variance and magnitude are
similar to the benign gradient submissions. In some other scenarios,
the Byzantine clients can also upload random or even adversarially
crafted gradient vectors to cause desired attack purposes.

Byzantine-robust methods have been studied in recent years [2,
5-7, 14, 21, 26, 34]. Most existing methods assume that data is
distributed IID among clients and are based on robust statistical
aggregation. A common aggregation method against the Byzantine
attack is based on the median of the updates [7]. This method aggre-
gates each model parameter independently. It sorts the local models’
Jjth parameters and takes the median as the jth parameter for the
global model. Trimmed mean [34] is another method that sorts jth
parameters of all local models, then removes the largest and small-
est of them, and computes the mean of the remaining parameters as
the jth parameter of the global model. Krum [5] selects one of the
local models that are similar to other models as the global model.
Krum first computes the nearest neighbors to each local model.
Then, it calculates the sum of the distance between each client and
their closest local models. Finally, it selects the local model with the
smallest sum of distance as the global model. Aggregation methods
such as Krum and trimmed mean need to know the upper bound of
the number of compromised clients. Other methods extend Krum,
such as Multi-Krum [5] and Bulyan [14]. Multi-Krum combines
Krum and averaging. Bulyan combines Krum and trimmed mean. It
iteratively applies Krum to local models then applies trimmed mean
to aggregate the local models. [6] leverages the ensemble learning
approach to guarantee the security of FL against Byzantine clients,
this method significantly increases computational overhead and
storage cost.

2.3 Truth Inference Methods

Crowdsourcing aggregates the crowd’s wisdom (i.e., workers) to
infer the truth label of tasks in the system, which is called truth
inference. The simplest method is majority voting, which works
well if all workers provide answers to all of the tasks. However, it
fails when data is sparse and workers may be unreliable, as in many
practical settings. Effective truth inference, especially given sparse
data, requires assessment of workers’ reliability. There exist vari-
ous approaches to infer the truth of tasks [9, 12, 16, 19, 22, 31, 36],
including direct computing [16], optimization [16, 22], probabilis-
tic graphical model (PGM) [9, 19, 31], and neural network based
approaches [35].

Recently, two experimental studies compared state-of-the-art
truth inference methods in a “normal” setting and “adversarial”
setting [30, 36]. The “adversarial” environment is where workers
intentionally or strategically manipulate the answers. In the “nor-
mal” setting, the study [36] concluded that truth inference methods
that utilize a PGM have the best performances in most settings
where the type of tasks are binary and single label. The study in

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

the “adversarial” settings [30] focusing on binary tasks showed
that neural networks and PGM based methods are generally more
robust than other methods for the binary type of tasks.

In our FL setting, since we are dealing with model parameters
that are numeric and updates that are dense (i.e. a subset of par-
ticipants submit their model parameters in each round), we use
an optimization based truth inference method PM as the under-
lying method. Based on this experiment study [30], PM method
has achieved higher robustness in comparison with the majority
voting (MV) in both targeted and untargeted attack scenarios in an
“adversarial” environment. We note that our framework is flexible
in adopting any truth inference method.

3 PRELIMINARIES
3.1 Federated Learning (FL)

In an FL framework, instead of sharing data, the participating clients
share the model parameters to take advantage of the joint data
and improve the global model’s generalization. FL consists of K
clients and a global server G. The same model architecture is shared
among the global server and all clients. Each client ¢; has their own
local dataset D; = {xi, xll,} where |Dj| = I;. The total number of

samples across all the clients is Zszl l; = 1. The goal of FL is to keep
the data local and learn a global model with n parameters wg € R"
which minimizes the loss among all samples D = U,I-(: 1 Di in the
aim that the model generalizes well over the test data Dyeg;-

In a typical algorithm [24], at each time step ¢, a random subset
from the clients is chosen for synchronous aggregation, i.e. the
global server computes the aggregated model, then sends the latest
update of the model to all selected clients. Each client ¢; € K uses
their local data D; to train the model locally and minimize the loss
over its own local data. After receiving the latest global model, the
clients starts the new round from the global weight vector wé and
run model for E epochs with a mini-batch size B. At the end of each

round, each client obtains a local weight vector wélfl and computes

its local update 55;"1 = wit —wé, then sends the corresponding local
updates to the global server, which updates the model according
to a defined aggregation rule. The simplest aggregation rule is a

weighted average, i.e., Federated Averaging (FedAvg), formulated
as follows, where a; = ZT’ and ZzK:I a; =1,

K
t+1 t t+1
wg :wG+Eai-5i . (1)
i=1

3.2 Adversarial Model

We assume any of the clients can be attackers who have full access
to the local training data, model structure, learning algorithms,
hyperparameters, and model parameters. The adversary’s goal is
to ensure the system’s performance degrades or causes the global
model to converge to a bad minimum.

In this paper, we mainly consider the data poisoning attack and
Byzantine attack. The data poisoning attack is applied in the local
training phase and divided into label-flipping and noisy data attacks.
In each round, the attacker trains a new local model (based on the
global model from the previous round) on the poisoned training
data and uploads the new model parameters to the server. Byzantine

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Farnaz Tahmasebian, Jian Lou, and Li Xiong

| I Client 3
Remove outlier !
based on reliability | O B +H

o
-
Client 1 . I & Calculate
o4olC ! L0 rlisbility
oo I % score
- Temporal data +

truth inference

Federated
average
algorithm

&> Upload local model updates

Remove outlier
based on reliability Hikad

1

Figure 2: Overview of Proposed Methods

attack directly changes the model parameters to be uploaded to
the server. For the adversarial model, we follow two assumptions:
(1) The number of adversaries is less than 50% of entire clients; (2)
the data is distributed among the clients in an independent and
identically (IID) fashion.

4 ROBUST AGGREGATION BY TRUTH
INFERENCE

We present our proposed robust aggregation method in this section.
The key idea is to explicitly model the reliability of clients inspired
by truth inference algorithms and take them into consideration dur-
ing aggregation. We first introduce the truth inference framework
and utilize it in FL to estimate the reliability of provided updates by
clients in each round. We further improve it by removing the out-
lier clients before aggregation to address its limitations of correctly
detecting malicious clients in data poisoning attacks. Finally, we
incorporate the multi-round historical model parameters submitted
by the clients for more robust aggregation. The high-level system
model is illustrated in Figure 2. The server comprises two modules:
(1) the reliability score calculator; and (2) the aggregator. The server
aggregates the client updates based on three proposed methods
that are improved upon each other.

4.1 RobustFed Overview

We first explain how we map the model aggregation problem in FL
to the truth inference problem in crowdsourcing. Due to the open-
ness of crowdsourcing, the crowd may provide low-quality or even
noisy answers. Thus, it is crucial to ensure crowdsourcing’s quality
by assigning each task to multiple workers and aggregating the
answers by different workers to infer each task’s correct response.
The goal of truth inference is to determine the true answer based
on all workers’ answers for each task.

Figure 3 shows an example given three workers W={wy, wo, w3}
and five tasks T={t, 2, .., t5}, the goal is to infer the true answer
for each task. For example, worker w; provides 1.72 as an answer
to task t4. A naive solution to infer the true answer per task is
Majority Voting (MV) or averaging. Based on Figure 3, the truth
derived by MV for task #; is 1.77, which is inferred incorrectly. A
more advanced method such as PM [22] models the reliability of

<> Download global model
2 "6% Observations Inference
St~ W1 Wy W3 Tasks MV PM | Ground Truth
t, 1172 170 1.90) 1.77 1.72 1.72
t [162 161 185 t 169 1.62 1.62
t; (174 172 1.65 t; |1.70 1.74 1.75
ty 1172 170 1.85 ty 1.76 1.72 1.71
ts |72 L71 185 ts [1.76 172 1.73

Figure 3: Example of Crowdsourcing System

each worker explicitly and resolves conflicts from different sources
for each entry. Compared with the ground truth answers, it is clear
that worker wj and wy provide more accurate information (more
reliable) while w3 is not very reliable. By modeling and learning the
reliability of workers, PM provides more accurate results compared
with averaging.

We can map the model aggregation at the server in FL into
the truth inference problem by considering the model’s weight
parameters as tasks. In both crowdsourcing and FL, we deal with
unlabeled data. In crowdsourcing, the true label of tasks are not
available; in FL, the true parameters of the model are unknown
(the server does not have access to any validation dataset). The
parameter aggregation can be considered as a numeric task (as
versus binary task).

Let 651- = {651_ [1], 651_ [2],..., §£i [N]} be the local updates shared
by client ¢; at round t. Let K = {c1,c2,...ck} be the set of sam-
pled clients at round . Hence, at round ¢, the updated parameters
6;(are collected from K clients. Given the updated parameters 612
provided by K clients, the goal of truth inference is to infer the
reliability of each clients R = {rc,, ...r¢, } and incorporate this relia-
bility score into the aggregation method in order to determine the
global updates.

Algorithm 1 shows the truth inference framework for numeric
tasks. The reliability of each worker i € [k] is denoted as r,. It
initializes clients’ reliability with the same reliability as r¢, = 1.
Also, it initializes the estimated truth for each weight parameter
as the median of all values provided by the clients. Then it adopts
an iterative approach with two steps, 1) inferring the truth, and 2)
estimating client reliability.

RobustFed: A Truth Inference Approach for Robust Federated Learning

Algorithm 1: RobustFed

1 Provided parameters by local clients & = U,K: 1 6c;> th

2 R:Uf: 17Te;

3 Initialize clients’ reliability (r, = 1 for i € K)

4 Initialize inferred truth of each update parameter (Ag) as
the median of local updates of 8

5 while True do

6 // Step 1: Inferring the Truth

7 for each weight parameter j € N do

8 Inferring the Ag based on &) and R using Eq 11

9 end

10 // Step 2: Estimating client reliability

11 for each client do

12 ‘ estimate R based on 8; and Ag using Eq 4
13 end

14 if converge then

15 ‘ break

16 end

17 end

4.2 RobustFed Details (Aggregation Method)

In this section, details of our proposed aggregation method are
provided. To begin each round, we compute the reliability level of
each client by applying the truth inference method.

The idea is that benign clients provide trustworthy local updates,
so the aggregated updates should be close to benign clients’ up-
dates. Thus, we should minimize the weighted deviation from the
true aggregated parameters where the weight reflects the reliability
degree of clients. Based on this principle, we utilize the PM method,
which is a truth inference method applicable in numerical tasks [22].
First, by minimizing the objective function, the values for two sets
of unknown variables A and R, which correspond to the collection
of truths and clients’ reliabilities are calculated. The loss function
measures the distance between the aggregated parameters (esti-
mated truth) and the parameters provided by client (observation).
When the observation deviates from the estimated truth, the loss
function return a high value. To constrain the clients’ reliabilities
into a certain range, the regularization function is defined and it
reflects the distributions of clients’ reliabilities.

Intuitively, a reliable client is penalized more if its observation is
quite different from the estimated truth. In contrast, the observation
made by an unreliable client with low reliability is allowed to be
further from the truth. To minimize the objective function, the
estimated truth relies more on the clients with high reliability. The
estimated truth and clients’ reliabilities are learned together by
optimizing the objective function through a joint procedure. We
formulate this problem as an optimization problem as follows:

K
min) re, - dist (Ag, 8L),
RA;C “ @

st. (R =1,

where r¢;, 651‘ and Ag represent client ¢;’s reliability, provided
update by client c; at time ¢, and aggregated updates at time ¢ on the

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

global server, respectively. Also dist (Ag, 6&) is a distance function
from the aggregated updates of all clients to the clients’ provided
update. The goal is to minimize the overall weighted distance to the
aggregation parameters in the global server in a way that reliable
clients have higher weights (importance).

In our problem, the type of parameters provided by clients are
continuous, therefore Euclidean distance is used as a distance func-

. N (A i \2 .
tion, Zj:l (AG - 6{,1) , where N is the number of local parame-

ters and 5&. indicates the j-th local parameter shared by client c;.
The client ¢;’s reliability is modeled using a single value r¢;.

Each client reliability r¢, is required to be constrained into a cer-
tain range, therefore {(R) that reflects the distributions of client’s
reliability is specified as a regularization function:

K

L(R) =) exp(-ra). 3
i=1

Intuitively, workers with answers deviating from the inferred
truth tend to be more malicious. The algorithm iteratively conducts
the following two steps, 1) updating the client’s reliability and 2)

updating the estimated truth for parameters.

Updating Reliability. To update the client’s reliability, we fix
the values for the truths and compute the clients’ reliability that
minimizes the objective function subject to the regularization con-
straints. Initially, each client is assigned with the same reliability,
Vie % r¢;=1. The reliability score of each client after each iteration
is updated as:

N dist(AL, 81)

S, T dist(AL 67

Equation 4 indicates that a client’s reliability is inversely propor-
tional to the difference between its observations and the truths at
the log scale.

©

re; = —log

THEOREM 4.1. Suppose that the truths are fixed, the optimiza-
tion problem Eq 2 with constraint is convex. Furthermore, the global
optimal solution is calculated based on Eq 4.

Proor. Given that the truths are fixed, there is only one set of
variable R for the optimization problem Eq 2. Let’s define another
variable t;, = exp (—r¢,;) and express the optimization problem based
on this new variable as follows to prove the convexity of Eq 2:

K
min Z ~logtc, - dist (Ag, 8%,),
R,A i=1

K
St b =1
i=1

This optimization function is linear combination of negative
logarithm functions and thus it is convex. To solve this optimization
problem, the method of Lagrange multipliers could be used. The
Lagrangian of Eq 5 is given as:

(©)

K

K
Z—log te; - dist (Ag, 8%,) +A(Ztci -1), (6)

i=1 i=1

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

where A is a Lagrange multiplier. The A can be derived by setting
the partial derivative of Lagrangian with respect to ¢, to be 0,

M, =dist(Ag , 8E), (7
and given the constraint that Zfi 1 te; = 1 we can derive A as:
ck N .
A= Z dist(AL , 7). (8)
k'=cy j=1
Given that r¢, = —log(tc;), we can derive Eq 4.]

Updating Model Aggregation. By fixing the reliability of clients,
the truths of parameters are updated in a way that minimizes the
difference between the truths and the client’s observations where
clients are weighted by their reliabilities and calculated as:
A Z{il re; - Oc;
Ag = ——m.)
Zszl Te;

Since the truth (model parameters) are continuous data, the loss
function should characterize the distance from the input to the truth
with respect to the variance of entries across clients. One common
loss function is the normalized squared loss, which is defined as:

(A, - 872

dist(A),, 5,7y = —C K7
T (sl .80)

(10)

THEOREM 4.2. Suppose that the clients’ reliabilities are fixed, the
optimization problem Eq 2 with Eq 10 is convex. The truth that mini-
mizes the overall weighted distance should be the weighted average
of the observations as stated in Eq 9.

Proor. For proving the convexity, we plug Eq 10 into the objec-
tive function Eq 2 and then let the partial derivative with respect to

Aé be 0. Therefore, we can get the optimal truth showninEq9. O

At the aggregation step, the global server incorporates the pro-
vided parameters of each clients based on their reliability. Hence,
the global parameters are updated as follows:

1 _ to st
we =wgt Z Te; " % SCi ' (11)
ieK

4.3 Reduce Effect of Malicious Clients:
RobustFed,

RobustFed incorporates the reliability of every client in the ag-
gregation but does not include explicit mechanisms to detect and
exclude malicious clients. To reduce the effect of malicious clients,
we further propose RobustFed, to detect non-reliable clients at
each round and discard their participation during the aggregation
phase.

Algorithm 2 summarizes RobustFed; method. After obtaining
the reliability of each clients, the median (f) and standard deviation
(o) of the reliabilities are computed for all the clients who partic-
ipated in round t. The clients whose reliability fit in the range of
[@— o, i+ 0] are selected as a candidate, and the global parameters
are updated as follows: wgl = th + 2ie[Cand] rgi s 55:’1.

We note that a straightforward method is to remove the clients
with lowest reliability scores. Intuitively, we expect the server to

Farnaz Tahmasebian, Jian Lou, and Li Xiong

Algorithm 2: Robust Aggregation (RobustFed..)

1 selected clients K?, R? (reliability of all clients), Wé, wgl

Cand (set of clients’ candidate) initialized to 0@
R! « getClientsReliablity()
4 i, 0 «— median(R?), std(R?)

)

@

5 fori € K do

6 if [1—0'<=r£i <= fi+ o then

7 ‘ Add ¢; to Cand

8 end

9 end

10 WE;H — Wé; + 2ie[Cand] ré,» tait 55?—1

assign a higher reliability to honest clients and a lower score to
the malicious ones. In our experimental studies, we indeed observe
this when no attack happens or under specific types of attacks such
as Byzantine or data noise attacks. However, under label-flipping
attack, we observe that the RobustFed method assigns higher re-
liability to the malicious clients. This is because the gradients of
the malicious clients can be outliers under such attacks and signifi-
cantly dominates (biases) the aggregated model parameters, and
hence has a high reliability because of its similarity to the aggre-
gated values. Therefore, in our approach, we disregard the clients
with reliability deviating significantly from the others.

4.4 Incorporate the Multi-round
Communication: RobustFed;

Given the multi-round communication between the clients and
the server in FL, RobustFed and RobustFed, only consider one
round and ignore the temporal relationship among model parame-
ters in multiple rounds. Ignoring this temporal relationship might
miss important information of the parameters shared by clients
at each round. Intuitively, under data poisoning or label flipping
attacks, considering the parameters over multiple rounds will more
effectively reveal malicious clients. To take advantage of temporal
information, we propose RobustFed; to incorporate the statistical
information of the previous rounds during the reliability estimation.
Incorporating the statistical information is dependent on the way
the clients are selected in each round described as follows.

Static Setting: The server selects the same set of clients at each
round to participate in training the global model. Therefore, we
add the statistics of the model parameters (weights) from previous
rounds as new tasks in addition to the vector of model parameters
of current round. These statistics are the number of large weights,
number of small weights, median of weights and average of weights.
The reliability is then evaluated based on all statistics and the pa-
rameters submitted in current round.

Dynamic Setting: The server dynamically selects a set of clients to
join FL and participate in training the global model in each round.
Since each client may participate with different frequency, we only
add median and average of weights from the previous rounds as
new tasks in addition to the vector of model parameters of current
round.

RobustFed: A Truth Inference Approach for Robust Federated Learning

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

Y ey Sg—y

min, max| Range of 0.9
benign clients’ reliability
[min, max] Range of
malicious clients’ reliability
......... The median -/+ std of
clients’ reliability

\
e N~

A =
TN
AVAVEIRS

a -~
A W

Reliability Score
Reliability Score

6 8 10 12 14 16 18 20 22 2¢ 26 28 30

Iteration

Iteration

(a) Flipping(RobustFed) (b) Byzantine(RobustFed)

10 12 14 16 18 20 22 2 26 28 30

Re[iabilit}' Score

Reliability Score

8 10 12 14 16 18 20 22 24 26 28 30

Iteration

6 8 10 12 14 16 18 20 22 2¢ 26 28 30

Iteration

(c) Flipping(RobustFed.) (d) Byzantine(RobustFed.,)

Figure 4: Range of Clients’ Reliability on FMNIST dataset (10 clients, 30% malicious clients)

5 EVALUATION
5.1 Experiment Settings

Datasets. We use the following three public datasets.

o MNIST: this dataset contains 70,000 real-world hand written
images with digits from 0 to 9 with 784 features. We split
this dataset into a training set and test set with 60,000 and
10,000 samples respectively.

o Fashion-MNIST (fMNIST): this dataset consists of 28x28 gray
scale images of clothing and footwear items with 10 types
of classes. The number of features for this dataset is 784. We
split this dataset into a training set and test set with 60,000
and 10,000 samples respectively.

o CIFAR-10: this dataset contains 60,000 natural color images
of 32x32 pixels in ten object classes with 3,072 features. We
split this dataset into a training set and a test set with 50,000
and 10,000 samples respectively.

For MNIST and fMNIST datasets, we use a 3-layer convolutional
neural network with dropout (0.5) as the model architecture. The
learning rate and momentum are set as 0.1 and 0.9, respectively. For
CIFAR-10, we use VGG-11 [15] as our model. The dropout, learning
rate and momentum are set as 0.5, 0.001, 0.9, respectively.

Baseline Aggregation Methods. We consider the following ag-
gregation methods.

o FedAvg [24]: FedAvg computes the average of the clients’
local model updates as the global model update, where each
client is weighted by its number of training examples.

e Median [34]: Median is a coordinate-wise aggregation rule
that considers each model parameter individually. For each
model parameter, the server collects its values in all local
model updates and sorts them. Median uses the median value
of each parameter as the corresponding parameter value in
the global model update.

e Trimmed Mean (Trim_mean) [34]: Trimmed mean is another
coordinate-wise aggregation rule. The server also sorts the
values of each individual parameter in all local model updates.
The server removes the largest k and the smallest k values,
and then computes the mean of the remaining n — 2k values

as the value of the corresponding parameter in the global
model update. We set k to be 2.

e Krum [5]: Krum selects one of the n local model updates in
each iteration as the global model update based on a smallest
Euclidean distance to global model parameters.

Experiment Setup and Adversarial Attacks:. We split the train-
ing data equally across all clients. For selecting clients to participate
in each round, two selection methods are considered: 1) static mode
and 2) dynamic mode. In the static mode, the number of clients are
set to be 10 and at each iteration, the same set of clients are chosen.
In the dynamic mode, the server randomly selects 10 clients from
the pool of 100 clients in each round.

We assume that 30% of the clients are adversary by default unless
otherwise specified. We consider three attack scenarios.

o Label-Flipping Attacks: Adversaries flip the labels of all local
training data of one specific class to another class (e.g., class
#1 to #2) and train their models accordingly. All the adversary
clients flip labels in the exact same way.

o Noisy Data: In MNIST and FMNIST, the inputs are normal-
ized to the interval [0,1]. For the selected malicious clients,
we added uniform noise to all the pixels, so that x « x+ U(-
1.4,1.4). Then we cropped the resulting values back to the
interval [0,1].

e Byzantine Attack: Adversaries perturb the model updates
and send the noisy parameters to the global server: 5{ — 51? +
€, where € is a random perturbation drawn from a Gaussian
distribution with p = 0 and o = 20.

5.2

Effect of Attacks on Reliability Score of Clients. Figure 4 shows
the reliability range of malicious and benign clients under label-
flipping and Byzantine attacks in static mode learned by RobustFed
and RobustFed;, correspondingly. We observe that RobustFed as-
signs higher reliability to benign workers and vice versa under
Byzantine attack and noisy data attack as expected. However, the
opposite behavior is observed under flipping attack. As we dis-
cussed, this is likely because the gradients of the malicious clients
are outliers under such attacks and significantly dominates (biases)
the aggregated model parameters, and hence has high reliability

Experiment Results

CIKM 22, October 17-21, 2022, Atlanta, GA, USA Farnaz Tahmasebian, Jian Lou, and Li Xiong

—#— RobustFed+(Flipping) == RobustFed+(Byzantine)
== RobustFed+(NoisyData) - RobustFed_t(Flipping)
¢+ RobustFed_t (Byzantine) **»* RobustFed t(NoisyData)

0.74 0.924 0.994
0.94
0.65+ 0.98-
5‘ Z‘ 0.88 E;
s I 0.86]
5 069 g " 3 0971
(&) Q Q
< < 0.84 <
0.55
0.82 0.96
0.5 : : : : 081 : : : ‘ : : : : :
1 1.5 2 2.5 3 1 1.5 2 2.5 3 1 1.5 2 2.5 3
Number of Malicious Clients Number of Malicious Clients Number of Malicious Clients

Figure 5: Effect of Number of Malicious Clients on CIFAR_10, FMNIST and MNIST Datasets (Left to Right)

Table 1: Aggregation Method Comparison in Static & Dynamic Mode
(30% malicious clients)

Static Mode
Dataset Attack FedAvg ‘ Median ‘ Trim_mean ‘ Krum ‘ RobustFed | RobustFed; | RobustFed;
CIFAR_10 Clean 70.25 70.75 70.78 57.75 68.05 69.74 69.75
Byzantine 10.0 55.01 10.29 57.24 44.64 59.66 54.67
Flip Label 51.37 41.34 46.74 10.0 10.0 52.34 51.10
Noisy 67.51 68.31 68.22 57.67 67.22 67.64 67.80
Average Performance 42.96 54.838 41.75 41.63 40.62 59.88 58.19
Robustness 0.14 0.58 0.15 0.17 0.15 0.75 0.73
FMNIST Clean 91.15 90.95 91.05 87.79 91.05 91.05 91.07
Byzantine 10.0 89.20 10.0 87.66 81.25 90.62 84.59
Flip Label 79.05 77.58 73.23 10.0 14.55 80.38 83.52
Noisy 89.25 89.20 89.32 84.78 84.09 87.74 89.0
Average Performance | 59.433 85.32 57.51 60.81 59.96 85.9 85.7
[Robustness 0.11 0.85 011 [o1l [016 0.88 0.92
MNIST Clean 99.29 99.31 99.34 98.51 99.01 99.3 99.32
Byzantine 11.35 98.18 11.35 97.43 91.35 98.21 98.34
Flip Label 94.58 97.80 94.47 11.35 11.40 95.56 96.34
Noisy 92.08 93.01 88.26 83.16 80.04 96.74 96.82
Average Performance 66 96.33 64.69 63.98 60.93 96.8 97.2
Robustness 0.11 0.98 0.11 0.12 0.12 0.96 0.97
Dynamic Mode
Dataset ‘ Attack ‘ FedAvg ‘ Median ‘ Trim_mean ‘ Krum ‘ RobustFed ‘ RobustFed, ‘ RobustFed; ‘
CIFAR_10 Clean 69.22 69.58 68.22 56.69 67.87 69.22 67.25
Byzantine 12.53 44.93 10.00 61.49 55.0 58.78 60.56
Flip Label 10.0 35.00 10.07 10.32 11.56 57.73 55.53
Noisy 63.27 63.35 61.18 61.36 61.67 63.43 63.78
Average Performance 28.6 47.76 27.08 44.39 42.74 59.98 56
Robustness 0.14 0.5 0.146 0.18 0.17 0.83 0.825
FMNIST Clean 91.68 92.00 88.26 89.79 91.79 91.98 91.87
Byzantine 10.0 88.90 25.0 90.36 81.35 89.85 83.00
Flip Label 10.0 68.23 10.25 11.04 11.35 70.93 78.24
Noisy 89.08 88.12 86.13 81.12 89.24 90.01 90.24
Average Performance | 36.36 81.75 40.46 60.84 60.64 83.49 83.82
Robustness 0.11 0.74 0.12 0.12 0.12 0.77 0.85
MNIST Clean 99.32 99.35 99.28 99.01 99.32 99.34 99.33
Byzantine 11.35 97.05 10.01 96.37 96.27 97.07 94.38
Flip Label 10.28 94.63 10.54 11.35 12.16 94.99 95.23
Noisy 80.12 96.67 95.34 94.23 87.37 96.10 96.07
Average Performance 33.91 95.95 38.63 67.31 65.26 96.05 95.22
Robustness 0.1 0.95 0.1 0.11 0.12 0.96 0.95

RobustFed: A Truth Inference Approach for Robust Federated Learning

due to the Euclidean distance based evaluation. Therefore, in our
RobustFed, approach, we disregard the clients with both high and
low reliabilities, which will help mitigate the impact of the malicious
clients.

For RobustFed;, by incorporating the statistical information of
previous rounds, it is able to correctly assign higher reliability to the
benign clients (even though with some fluctuations under flipping
attacks). It’s worth noting that it separates the two types of clients
extremely well under Byzantine attack and successfully recognizes
malicious clients in all attacks, i.e., assigning close to 0 reliability
for them.

Impact of Number of Malicious Clients. We study the impact
of the number of malicious clients on the proposed aggregation
method. As shown in Fig.5, by increasing the number of malicious
clients, the performance of the global model slightly drops. It can be
observed that RobustFed; improves upon RobustFed, for FMNIST
and MNIST datasets that have a higher accuracy on their clean
data (i.e., no attack). However, in the CIFAR_10 dataset that has a
poor performance on clean data, RobustFed; could not improve the
performance.

Robustness Comparison. In this experiment we compare our
robust aggregation methods (RobustFed, RobustFed.., RobustFed;)
with the state-of-the-art baselines. The results of these methods
along with average performance are shown in Table 1. In addition to
reporting the accuracy (in percentage) of the different methods on
clean data and under different attacks, we also report a robustness
metric. The robustness metric is defined as the ratio between the
accuracy of the model against the strongest attack (i.e., lowest
accuracy) over the accuracy on clean data in the benign setting.

In the static mode experiment, clients that participate in each
round are fixed. The total number of clients are set to be 10, in
which 30% of them (i.e., 3 clients) are malicious. As shown in Ta-
ble 1, RobustFed; and RobustFed; provide more consistent and
better robustness against all three types of attacks compared with
all state-of-the-art methods. As expected, FedAvg’s performance
is significantly affected under the presence of malicious clients,
especially in Byzantine and flipping attacks. It is also interesting
to observe that both Krum and Median are very sensitive to label
flipping attacks.

Furthermore, the performance of all RobustFed methods main-
tain accuracy in the benign setting and their performance are com-
parable to the best accuracy, while other methods like Krum sacri-
fices the accuracy on clean data.

It can be observed that both RobustFed,. and RobustFed; methods
achieve higher robustness in the CIFAR_10 dataset in comparison
with other methods. Given that the MNIST dataset has the highest
data quality and CIFAR_10 has the lowest one, the robustness of
both RobustFed methods has impacted less in comparison with
other methods.

In the dynamic mode experiment, at each round, 10 clients
are randomly selected from a pool of 100 clients consisting of 30
malicious clients and 70 normal clients. We observe that RobustFed,
has the overall strongest performance by incorporating historical
information.

Similar to the static mode, the performance of most of the meth-
ods are comparable on clean data except for Krum. We compare the

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

dynamic mode verses static mode, as shown in Table 1, the perfor-
mances in dynamic mode are slightly lower than static mode since
it is more challenging due to the dynamic and sparse participation
of the clients.

6 CONCLUSION & FUTURE WORK

In this paper, we studied the vulnerability of the conventional aggre-
gation methods in FL. We proposed a truth inference approach to
estimate and incorporate the reliability of each client in the aggre-
gation, which provides a more robust estimate of the global model.
In addition, the enhanced approach with historical statistics fur-
ther improves the robustness. Our experiments on three real-world
datasets show that RobustFed; and RobustFed; are more robust
to malicious clients with label flipping, noisy data, and Byzantine
attacks compared to the conventional and state-of-the-art aggre-
gation methods. This study focuses on data with IID distribution
among clients; future research could consider non-IID distribution.

7 ACKNOWLEDGMENTS

This research has been partially supported by National Science
Foundation (NSF) CNS-2124104, CNS-2125530, CNS-1952192, Na-
tional Institutes of Health (NIH) R01LM013712, Cisco Research
#2738379, and Mitsubishi Pharma America #BNI-ALS-005.

REFERENCES

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications

security. 308-318.

Dan Alistarh, Zeyuan Allen-Zhu, and Jerry Li. 2018. Byzantine stochastic gradient

descent. Advances in Neural Information Processing Systems 31 (2018).

[3] Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Kiiderle, Imrana Abdul-
lahi Yari, and Bjorn Eskofier. 2022. Federated Learning for Healthcare: Systematic
Review and Architecture Proposal. ACM Transactions on Intelligent Systems and
Technology (TIST) (2022).

[4] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing Federated Learning through an Adversarial Lens. In International
Conference on Machine Learning. 634-643.

[5] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent.
Advances in Neural Information Processing Systems 30 (2017).

[6] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Provably secure
federated learning against malicious clients. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 6885-6893.

[7] Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed statistical machine

learning in adversarial settings: Byzantine gradient descent. Proceedings of the

ACM on Measurement and Analysis of Computing Systems 1, 2 (2017), 1-25.

Georgios Damaskinos, EI-Mahdi El-Mhamdi, Rachid Guerraoui, Arsany Guirguis,

and Sébastien Rouault. 2019. Aggregathor: Byzantine machine learning via

robust gradient aggregation. Proceedings of Machine Learning and Systems 1

(2019), 81-106.

Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood estima-

tion of observer error-rates using the EM algorithm. Applied statistics (1979),

20-28.

Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2018. Mitigating sybils in

federated learning poisoning. arXiv preprint arXiv:1808.04866 (2018).

[11] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020. The limitations of

federated learning in sybil settings. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020). 301-316.

[12] Alex Gaunt, Diana Borsa, and Yoram Bachrach. 2016. Training deep neural nets to

aggregate crowdsourced responses. In Proceedings of the Thirty-Second Conference

on Uncertainty in Artificial Intelligence. AUAI Press. 242251.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. Badnets:

Evaluating backdooring attacks on deep neural networks. IEEE Access 7 (2019),

47230-47244.

Rachid Guerraoui, Sébastien Rouault, et al. 2018. The hidden vulnerability of dis-

tributed learning in byzantium. In International Conference on Machine Learning.

PMLR, 3521-3530.

[2

[8

[

[10

[13

(14

CIKM 22, October 17-21, 2022, Atlanta, GA, USA

[15]

[16

[17]

(18]

[19

[20]

[21

[22]

[23]

[24]

[25

Yani Ioannou, Duncan Robertson, Jamie Shotton, Roberto Cipolla, and Antonio
Criminisi. [n.d.]. TRAINING CNNS WITH LOW-RANK FILTERS FOR EFFICIENT
IMAGE CLASSIFICATION. ([n. d.]).

Srikanth Jagabathula, Lakshminarayanan Subramanian, and Ashwin Venkatara-
man. 2014. Reputation-based worker filtering in crowdsourcing. In Advances in
Neural Information Processing Systems. 2492-2500.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning 14, 1-2 (2021), 1-210.

David R Karger, Sewoong Oh, and Devavrat Shah. 2011. Iterative learning for
reliable crowdsourcing systems. In Advances in neural information processing
systems. 1953-1961.

Hyun-Chul Kim and Zoubin Ghahramani. 2012. Bayesian classifier combination.
In Artificial Intelligence and Statistics. 619-627.

Leslie Lamport, Robert Shostak, and Marshall Pease. 2019. The Byzantine generals
problem. In Concurrency: the Works of Leslie Lamport. 203-226.

Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. 2019.
RSA: Byzantine-robust stochastic aggregation methods for distributed learning
from heterogeneous datasets. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 1544-1551.

Qi Li, Yaliang Li, Jing Gao, Bo Zhao, Wei Fan, and Jiawei Han. 2014. Resolv-
ing conflicts in heterogeneous data by truth discovery and source reliability
estimation. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. 1187-1198.

Wei Yang Bryan Lim, Sahil Garg, Zehui Xiong, Dusit Niyato, Cyril Leung, Chun-
yan Miao, and Mohsen Guizani. 2020. Dynamic contract design for federated
learning in smart healthcare applications. IEEE Internet of Things Journal 8, 23
(2020), 16853-16862.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273-1282.

Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali De-
hghantanha, and Gautam Srivastava. 2021. A survey on security and privacy of

[26]

[27

[28

&~
2,

[30

[31

(32

[35

[36

Farnaz Tahmasebian, Jian Lou, and Li Xiong

federated learning. Future Generation Computer Systems 115 (2021), 619-640.
Luis Muiloz-Gonzalez, Kenneth T Co, and Emil C Lupu. 2019. Byzantine-Robust
Federated Machine Learning through Adaptive Model Averaging. arXiv preprint
arXiv:1909.05125 (2019).

Vikas C Raykar, Shipeng Yu, Linda H Zhao, Gerardo Hermosillo Valadez, Charles
Florin, Luca Bogoni, and Linda Moy. 2010. Learning from crowds. Journal of
Machine Learning Research 11, Apr (2010), 1297-1322.

Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, and Wojciech Samek. 2019.
Robust and communication-efficient federated learning from non-iid data. IEEE
transactions on neural networks and learning systems 31, 9 (2019), 3400-3413.
Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. 2022.
Back to the drawing board: A critical evaluation of poisoning attacks on produc-
tion federated learning. In IEEE Symposium on Security and Privacy.

Farnaz Tahmasebian, Li Xiong, Mani Sotoodeh, and Vaidy Sunderam. 2020.
Crowdsourcing under data poisoning attacks: A comparative study. In IFIP Annual
Conference on Data and Applications Security and Privacy. Springer, 310-332.
Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad Shok-
ouhi. 2014. Community-based bayesian aggregation models for crowdsourcing.
In Proceedings of the 23rd international conference on World Wide Web. ACM,
155-164.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165-174.
Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed back-
door attacks against federated learning. In International Conference on Learning
Representations.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650-5659.

Li’ang Yin, Jianhua Han, Weinan Zhang, and Yong Yu. 2017. Aggregating crowd
wisdoms with label-aware autoencoders. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence. AAAI Press, 1325-1331.

Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. 2017.
Truth inference in crowdsourcing: is the problem solved? Proceedings of the
VLDB Endowment 10, 5 (2017), 541-552.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Adversarial Attacks on Federated Learning
	2.2 Byzantine-Robust Federated Learning
	2.3 Truth Inference Methods

	3 Preliminaries
	3.1 Federated Learning (FL)
	3.2 Adversarial Model

	4 Robust Aggregation by Truth Inference
	4.1 RobustFed Overview
	4.2 RobustFed Details (Aggregation Method)
	4.3 Reduce Effect of Malicious Clients: RobustFed+
	4.4 Incorporate the Multi-round Communication: RobustFedt

	5 Evaluation
	5.1 Experiment Settings
	5.2 Experiment Results

	6 Conclusion & Future Work
	7 Acknowledgments
	References

