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ABSTRACT
Federated learning is a prominent framework that enables clients

(e.g., mobile devices or organizations) to collaboratively train a

global model under a central server’s orchestration while keep-

ing local data private. However, the aggregation step in federated

learning is vulnerable to adversarial attacks as the central server

cannot enforce clients’ behavior. As a result, the performance of

the global model and convergence of the training process can be

affected under such attacks. To mitigate this vulnerability, existing

works have proposed robust aggregation methods such as median

based aggregation instead of averaging. While they ensure some

robustness against Byzantine attacks, they are still vulnerable to la-

bel flipping and Gaussian noise attacks. In this paper, we propose a

novel robust aggregation algorithm inspired by the truth inference

methods in crowdsourcing by incorporating the clients’ reliability

into aggregation. We evaluate our solution on three real-world

datasets with a variety of machine learning models. Experimental

results show that our solution ensures robust federated learning

and is resilient to various types of attacks, including noisy data

attacks, Byzantine attacks, and label flipping attacks.
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1 INTRODUCTION
Federated learning (FL) has emerged as a promising collaborative

learning framework that builds a shared model across multiple

clients (e.g., devices or organizations) while keeping the clients’

data private [1, 23, 24]. FL among multiple organizations is also
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Figure 1: Overview of Cross-silo Federated Learning (FL)
Framework

known as cross-silo FL, which we will focus on in this paper. Such

a framework can be applied in various domains, such as conversa-

tional AI and healthcare [3, 23–25]. Training a generalizable model

for these domains requires a diverse dataset. Accessing and ob-

taining data from multiple organizations and centralizing them

in a third-party service provider can be impractical considering

data privacy concerns or regulations. Yet, we still wish to use data

across various organizations because a model trained on data from

one organization may be subject to bias and poor generalization

performance. FL makes it possible to harness the data for joint

model training with better generalization performance without the

requirement to share raw private local datasets [1].

In a cross-silo FL framework (as shown in Figure 1), there is a

semi-honest global coordinating server and several participating

clients. The global server controls the learning process and aggre-

gates the model parameters submitted by clients during multiple

communication rounds. The clients train the same model locally us-

ing their local datasets. Then, they share their updated local model

parameters, not their raw data, with the server, which aggregates all

their contributions and broadcasts back the updated global model

parameters.

The most commonly used aggregation algorithm is called Fed-

erated Averaging (FedAvg) [24] that takes a weighted average of

the local model parameters. This aggregation method is vulnera-

ble to adversarial attacks or unintentional errors in a system. Due

to strategic adversarial behavior (e.g., label-flipping and Gaussian

noise attacks [5, 8, 13, 17, 29]) or infrastructure failures (e.g., Byzan-

tine faults [20] where client nodes act arbitrarily), the clients can

send malicious (manipulated) or arbitrary values to the server. Thus,

the global model can be affected severely. Robust FL against such

potential behaviors or failures is essential.

https://doi.org/ 1 0 . 1 1 4 5 / 3 5 1 1 8 0 8 . 3 5 5 7 4 3 9 
https://doi.org/ 1 0 . 1 1 4 5 / 3 5 1 1 8 0 8 . 3 5 5 7 4 3 9 


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Farnaz Tahmasebian, Jian Lou, and Li Xiong

Recently, several methods have been proposed to mitigate at-

tacks in FL or distributed learning [5, 7, 10, 11, 29, 34]. They are

mainly based on statistical robust aggregation such as median or

trimmed mean instead of averaging. While they perform well under

Byzantine attacks, they fail under other types of attacks such as

label-flipping and Gaussian noise attacks.

In this paper, we propose a novel defense method using a truth

inference approach for robust aggregation against such attacks

in FL. Truth inference is a key component of crowdsourcing that

aggregates the answers of the crowd (i.e., workers) to infer the

true label of tasks (e.g., traffic incidents, image annotation) [18, 27].

We make this connection for the first time that the model param-

eter aggregation can be formulated as a truth inference problem,

i.e., each client is a worker, the local parameters (answers) by the

workers need to be aggregated to estimate the global parameter

(label). The key idea is to explicitly model the reliability of clients

and take them into consideration during aggregation. Such an ap-

proach has shown promising results in crowdsourcing compared

to simple aggregation approaches such as majority voting (or aver-

aging). However, there are several challenges and opportunities in

applying the truth inference approach for robust FL (compared to

crowdsourcing). First, an attacker can manipulate the local training

data (e.g., adding noise or flipping the labels) to affect the model

parameters (versus directly changing the model parameters). The

server only observes the model parameters without access to the

data. Hence, a direct application of the truth inference approach on

the model parameters cannot detect the malicious clients reliably.

Second, FL requires multi-round communication of the local model

parameters to the server. This dynamic information creates both

challenges and opportunities in detecting unreliable clients. Finally,

as in many practical settings, the server does not have access to any

golden validation dataset for validating the local models in order

to detect unreliable clients.

To address these challenges, we derive the clients’ reliability

score by solving an optimization problem over multiple iterations

of FL. We then incorporate the reliability of each client in the ag-

gregation. Our approach is based on two main insights. First, the

existing truth inference approaches rely entirely on the derived

reliability of the workers for aggregation. In our case, since the

model parameters may not accurately reflect the reliability of the

workers due to the different kinds of attacks (e.g., label-flipping),

we use a pruning algorithm that removes clients with outlier relia-

bility, which mitigates the impact of the malicious clients during

aggregation. Second, we exploit the multi-round model parame-

ters submitted by the clients for evaluating the client’s reliability

in a more robust way. We briefly summarize our contributions as

follows.

• We develop a novel robust aggregationmethod for FL against

potential adversarial attacks and Byzantine failures of clients.

The method explicitly models the clients’ reliability based

on their submitted local model parameters and incorporates

them into aggregation, hence providing a robust estimate of

the global model parameters.

• We further enhance the aggregation method by exploiting

the multi-round communication of FL and considering the

model parameters submitted by the clients both in the previ-

ous rounds and the current round for evaluating the client’s

reliability.

• We compare our proposed method to several baselines on

three image datasets. The results show that our proposed

aggregation methods mitigate the impact of attacks and out-

perform other baselines.

2 RELATEDWORKS
In this section, we provide a brief review of adversarial attacks

including poisoning attacks and Byzantine attacks on federated

learning (FL) along with the existing defense and robustness meth-

ods. Subsequently, we briefly review truth inference methods in

crowdsourcing.

2.1 Adversarial Attacks on Federated Learning
In federated learning (FL), all the participants agree on a common

learning objective and model structure. The attacker aims to com-

promise the global model by uploading malicious updates to the

global server [24]. The adversary can control the local training

dataset, local hyper-parameter of the model, and local model pa-

rameters to be uploaded.

In this section, we mainly consider data poisoning attacks, in

which malicious clients create poisoned training samples and inject

them into their local training dataset [10]. Then, the local model is

trained on the dataset contaminated with such poisoned samples.

The purpose of this attack is to manipulate the global model to mis-

classify on test datasets. These attacks can be further divided into

two categories: 1) label-flipping attacks [10] and 2) noisy features

attack [10]. The label-flipping attack occurs where the labels of

training examples of one class are flipped to another class while the

data features remain unchanged. For example, an attacker can train

a local model with cat images labeled as a dog and then share the

poisoned local model for aggregation. A successful attack forces a

model to incorrectly predict cats to be dogs. In the noisy features

attacks, the adversary adds noise to the features while keeping

the class label of each data point intact [10]. Noisy data and the

backdoor attacks fall in this type of attack [32, 33].

FL is vulnerable to poisoning attacks. Studies [4, 6, 10, 29] show

that just one or two adversarial clients are enough to compromise

the performance of the global model. Thus, developing a robust

method against these attacks is essential. Fung et al. [10] proposed

a defense method, called FoolsGold, against data poisoning attack

in FL in a non-IID setting. Their solution differentiates the benign

clients from the adversary ones by calculating the similarity of

their submitted gradients. Other techniques use the recursive Bayes

filtering method [26] to mitigate the data poisoning attack. In some

studies [4, 28], researchers assume that the global server has ac-

cess to a golden validation dataset that represents data distribution

from clients. The server can detect adversaries by assessing the

effectiveness of provided updates on improving the global model’s

performance. If the updates do not improve the global model’s

performance, the client is flagged as a potential adversary [4]. How-

ever, this method requires the validation dataset which is difficult

to achieve in practice.
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2.2 Byzantine-Robust Federated Learning
Byzantine clients aim to prevent the global model’s convergence or

lead the global model to converge to a poor solution by uploading

modified updates. In some scenarios, the Byzantine clients can

add Gaussian noise to the gradient estimators, then send these

perturbed values to the server. The Byzantine gradients can be hard

to distinguish from the benign clients by the methods described

for data poisoning attacks since their variance and magnitude are

similar to the benign gradient submissions. In some other scenarios,

the Byzantine clients can also upload random or even adversarially

crafted gradient vectors to cause desired attack purposes.

Byzantine-robust methods have been studied in recent years [2,

5–7, 14, 21, 26, 34]. Most existing methods assume that data is

distributed IID among clients and are based on robust statistical

aggregation. A common aggregation method against the Byzantine

attack is based on the median of the updates [7]. This method aggre-

gates each model parameter independently. It sorts the local models’

𝑗th parameters and takes the median as the 𝑗th parameter for the

global model. Trimmed mean [34] is another method that sorts jth

parameters of all local models, then removes the largest and small-

est of them, and computes the mean of the remaining parameters as

the 𝑗th parameter of the global model. Krum [5] selects one of the

local models that are similar to other models as the global model.

Krum first computes the nearest neighbors to each local model.

Then, it calculates the sum of the distance between each client and

their closest local models. Finally, it selects the local model with the

smallest sum of distance as the global model. Aggregation methods

such as Krum and trimmed mean need to know the upper bound of

the number of compromised clients. Other methods extend Krum,

such as Multi-Krum [5] and Bulyan [14]. Multi-Krum combines

Krum and averaging. Bulyan combines Krum and trimmed mean. It

iteratively applies Krum to local models then applies trimmed mean

to aggregate the local models. [6] leverages the ensemble learning

approach to guarantee the security of FL against Byzantine clients,

this method significantly increases computational overhead and

storage cost.

2.3 Truth Inference Methods
Crowdsourcing aggregates the crowd’s wisdom (i.e., workers) to

infer the truth label of tasks in the system, which is called truth

inference. The simplest method is majority voting, which works

well if all workers provide answers to all of the tasks. However, it

fails when data is sparse and workers may be unreliable, as in many

practical settings. Effective truth inference, especially given sparse

data, requires assessment of workers’ reliability. There exist vari-

ous approaches to infer the truth of tasks [9, 12, 16, 19, 22, 31, 36],

including direct computing [16], optimization [16, 22], probabilis-

tic graphical model (PGM) [9, 19, 31], and neural network based

approaches [35].

Recently, two experimental studies compared state-of-the-art

truth inference methods in a “normal” setting and “adversarial”

setting [30, 36]. The “adversarial” environment is where workers

intentionally or strategically manipulate the answers. In the “nor-

mal” setting, the study [36] concluded that truth inference methods

that utilize a PGM have the best performances in most settings

where the type of tasks are binary and single label. The study in

the “adversarial” settings [30] focusing on binary tasks showed

that neural networks and PGM based methods are generally more

robust than other methods for the binary type of tasks.

In our FL setting, since we are dealing with model parameters

that are numeric and updates that are dense (i.e. a subset of par-

ticipants submit their model parameters in each round), we use

an optimization based truth inference method PM as the under-

lying method. Based on this experiment study [30], PM method

has achieved higher robustness in comparison with the majority

voting (MV) in both targeted and untargeted attack scenarios in an

“adversarial” environment. We note that our framework is flexible

in adopting any truth inference method.

3 PRELIMINARIES
3.1 Federated Learning (FL)
In an FL framework, instead of sharing data, the participating clients

share the model parameters to take advantage of the joint data

and improve the global model’s generalization. FL consists of 𝐾

clients and a global server𝐺 . The same model architecture is shared

among the global server and all clients. Each client 𝑐𝑖 has their own

local dataset D𝑖 = {𝑥𝑖
1
, ....𝑥𝑖

𝑙𝑖
}, where |𝐷𝑖 | = 𝑙𝑖 . The total number of

samples across all the clients is

∑𝐾
𝑖=1

𝑙𝑖 = 𝑙 . The goal of FL is to keep

the data local and learn a global model with 𝑛 parameters𝑤𝐺 ∈ R𝑛
which minimizes the loss among all samples 𝐷 =

⋃𝐾
𝑖=1

𝐷𝑖 in the

aim that the model generalizes well over the test data D𝑡𝑒𝑠𝑡 .
In a typical algorithm [24], at each time step 𝑡 , a random subset

from the clients is chosen for synchronous aggregation, i.e. the

global server computes the aggregated model, then sends the latest

update of the model to all selected clients. Each client 𝑐𝑖 ∈ 𝐾 uses

their local data D𝑖 to train the model locally and minimize the loss

over its own local data. After receiving the latest global model, the

clients starts the new round from the global weight vector𝑤𝑡
𝐺
and

run model for 𝐸 epochs with a mini-batch size 𝐵. At the end of each

round, each client obtains a local weight vector𝑤𝑡+1𝑐𝑖
and computes

its local update 𝛿𝑡+1𝑐𝑖
=𝑤𝑡+1𝑐𝑖

−𝑤𝑡
𝐺
, then sends the corresponding local

updates to the global server, which updates the model according

to a defined aggregation rule. The simplest aggregation rule is a

weighted average, i.e., Federated Averaging (FedAvg), formulated

as follows, where 𝛼𝑖 =
𝑙𝑖
𝑙
and

∑𝐾
𝑖=1

𝛼𝑖 = 1,

𝑤𝑡+1𝐺 = 𝑤𝑡𝐺 +
𝐾∑︁
𝑖=1

𝛼𝑖 · 𝛿𝑡+1𝑖 . (1)

3.2 Adversarial Model
We assume any of the clients can be attackers who have full access

to the local training data, model structure, learning algorithms,

hyperparameters, and model parameters. The adversary’s goal is

to ensure the system’s performance degrades or causes the global

model to converge to a bad minimum.

In this paper, we mainly consider the data poisoning attack and

Byzantine attack. The data poisoning attack is applied in the local

training phase and divided into label-flipping and noisy data attacks.

In each round, the attacker trains a new local model (based on the

global model from the previous round) on the poisoned training

data and uploads the newmodel parameters to the server. Byzantine
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Figure 2: Overview of Proposed Methods

attack directly changes the model parameters to be uploaded to

the server. For the adversarial model, we follow two assumptions:

(1) The number of adversaries is less than 50% of entire clients; (2)

the data is distributed among the clients in an independent and

identically (IID) fashion.

4 ROBUST AGGREGATION BY TRUTH
INFERENCE

We present our proposed robust aggregation method in this section.

The key idea is to explicitly model the reliability of clients inspired

by truth inference algorithms and take them into consideration dur-

ing aggregation. We first introduce the truth inference framework

and utilize it in FL to estimate the reliability of provided updates by

clients in each round. We further improve it by removing the out-

lier clients before aggregation to address its limitations of correctly

detecting malicious clients in data poisoning attacks. Finally, we

incorporate the multi-round historical model parameters submitted

by the clients for more robust aggregation. The high-level system

model is illustrated in Figure 2. The server comprises two modules:

(1) the reliability score calculator; and (2) the aggregator. The server

aggregates the client updates based on three proposed methods

that are improved upon each other.

4.1 RobustFed Overview
We first explain how we map the model aggregation problem in FL

to the truth inference problem in crowdsourcing. Due to the open-

ness of crowdsourcing, the crowd may provide low-quality or even

noisy answers. Thus, it is crucial to ensure crowdsourcing’s quality

by assigning each task to multiple workers and aggregating the

answers by different workers to infer each task’s correct response.

The goal of truth inference is to determine the true answer based

on all workers’ answers for each task.

Figure 3 shows an example given three workers W={𝑤1,𝑤2,𝑤3}

and five tasks T={𝑡1, 𝑡2, .., 𝑡5}, the goal is to infer the true answer

for each task. For example, worker𝑤1 provides 1.72 as an answer

to task 𝑡4. A naive solution to infer the true answer per task is

Majority Voting (MV) or averaging. Based on Figure 3, the truth

derived by MV for task 𝑡1 is 1.77, which is inferred incorrectly. A

more advanced method such as PM [22] models the reliability of

Figure 3: Example of Crowdsourcing System

each worker explicitly and resolves conflicts from different sources

for each entry. Compared with the ground truth answers, it is clear

that worker𝑤1 and𝑤2 provide more accurate information (more

reliable) while𝑤3 is not very reliable. By modeling and learning the

reliability of workers, PM provides more accurate results compared

with averaging.

We can map the model aggregation at the server in FL into

the truth inference problem by considering the model’s weight

parameters as tasks. In both crowdsourcing and FL, we deal with

unlabeled data. In crowdsourcing, the true label of tasks are not

available; in FL, the true parameters of the model are unknown

(the server does not have access to any validation dataset). The

parameter aggregation can be considered as a numeric task (as

versus binary task).

Let 𝜹𝑡𝑐𝑖 = {𝜹
𝑡
𝑐𝑖
[1], 𝜹𝑡𝑐𝑖 [2], ..., 𝜹

𝑡
𝑐𝑖
[𝑁 ]} be the local updates shared

by client 𝑐𝑖 at round 𝑡 . Let K = {𝑐1, 𝑐2, ...𝑐𝑘 } be the set of sam-

pled clients at round 𝑡 . Hence, at round 𝑡 , the updated parameters

𝜹𝑡
𝑘
are collected from 𝐾 clients. Given the updated parameters 𝜹𝑡

𝑘
provided by 𝐾 clients, the goal of truth inference is to infer the

reliability of each clients 𝑹 = {𝑟𝑐1
, ...𝑟𝑐𝑘 } and incorporate this relia-

bility score into the aggregation method in order to determine the

global updates.

Algorithm 1 shows the truth inference framework for numeric

tasks. The reliability of each worker 𝑖 ∈ [𝑘] is denoted as 𝑟𝑐𝑖 . It

initializes clients’ reliability with the same reliability as 𝑟𝑐𝑖 = 1.

Also, it initializes the estimated truth for each weight parameter

as the median of all values provided by the clients. Then it adopts

an iterative approach with two steps, 1) inferring the truth, and 2)

estimating client reliability.
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Algorithm 1: RobustFed

1 Provided parameters by local clients 𝜹𝑘 =
⋃𝐾
𝑖=1

𝛿𝑐𝑖 ,𝑤
𝑡
𝐺

2 R=

⋃𝐾
𝑖=1

𝑟𝑐𝑖
3 Initialize clients’ reliability (𝑟𝑐𝑖 = 1 𝑓 𝑜𝑟 𝑖 ∈ 𝐾 )
4 Initialize inferred truth of each update parameter (Δ̂𝐺 ) as

the median of local updates of 𝜹𝑘
5 while True do
6 // Step 1: Inferring the Truth

7 for each weight parameter 𝑗 ∈ 𝑁 do
8 Inferring the Δ̂𝐺 based on 𝜹𝑘 and R using Eq 11

9 end
10 // Step 2: Estimating client reliability

11 for each client do
12 estimate R based on 𝜹𝑘 and Δ̂𝐺 using Eq 4

13 end
14 if converge then
15 break

16 end
17 end

4.2 RobustFed Details (Aggregation Method)
In this section, details of our proposed aggregation method are

provided. To begin each round, we compute the reliability level of

each client by applying the truth inference method.

The idea is that benign clients provide trustworthy local updates,

so the aggregated updates should be close to benign clients’ up-

dates. Thus, we should minimize the weighted deviation from the

true aggregated parameters where the weight reflects the reliability

degree of clients. Based on this principle, we utilize the PM method,

which is a truth inference method applicable in numerical tasks [22].

First, by minimizing the objective function, the values for two sets

of unknown variables Δ and 𝑹, which correspond to the collection

of truths and clients’ reliabilities are calculated. The loss function

measures the distance between the aggregated parameters (esti-

mated truth) and the parameters provided by client (observation).

When the observation deviates from the estimated truth, the loss

function return a high value. To constrain the clients’ reliabilities

into a certain range, the regularization function is defined and it

reflects the distributions of clients’ reliabilities.

Intuitively, a reliable client is penalized more if its observation is

quite different from the estimated truth. In contrast, the observation

made by an unreliable client with low reliability is allowed to be

further from the truth. To minimize the objective function, the

estimated truth relies more on the clients with high reliability. The

estimated truth and clients’ reliabilities are learned together by

optimizing the objective function through a joint procedure. We

formulate this problem as an optimization problem as follows:

min

𝑹, ˆ𝚫

𝐾∑︁
𝑖=1

𝑟𝑐𝑖 · 𝑑𝑖𝑠𝑡 (Δ̂𝐺 , 𝜹𝑡𝑐𝑖 ),

s.t. 𝜁 (𝑅) = 1,

(2)

where 𝑟𝑐𝑖 , 𝜹
𝑡
𝑐𝑖

and Δ̂𝐺 represent client 𝑐𝑖 ’s reliability, provided

update by client 𝑐𝑖 at time 𝑡 , and aggregated updates at time 𝑡 on the

global server, respectively. Also 𝑑𝑖𝑠𝑡 (Δ̂𝐺 , 𝜹𝑡𝑐𝑖 ) is a distance function
from the aggregated updates of all clients to the clients’ provided

update. The goal is to minimize the overall weighted distance to the

aggregation parameters in the global server in a way that reliable

clients have higher weights (importance).

In our problem, the type of parameters provided by clients are

continuous, therefore Euclidean distance is used as a distance func-

tion,

√︂∑𝑁
𝑗=1

(
𝚫̂

𝒋
𝑮 − 𝜹

𝒋
𝒄𝒊

)
2

, where 𝑁 is the number of local parame-

ters and 𝛿
𝑗
𝑐𝑖 indicates the j-th local parameter shared by client 𝑐𝑖 .

The client 𝑐𝑖 ’s reliability is modeled using a single value 𝑟𝑐𝑖 .

Each client reliability 𝑟𝑐𝑖 is required to be constrained into a cer-

tain range, therefore 𝜁 (𝑅) that reflects the distributions of client’s
reliability is specified as a regularization function:

𝜁 (𝑅) =
𝐾∑︁
𝑖=1

exp(−𝑟𝑐𝑖 ) . (3)

Intuitively, workers with answers deviating from the inferred

truth tend to be more malicious. The algorithm iteratively conducts

the following two steps, 1) updating the client’s reliability and 2)

updating the estimated truth for parameters.

Updating Reliability. To update the client’s reliability, we fix

the values for the truths and compute the clients’ reliability that

minimizes the objective function subject to the regularization con-

straints. Initially, each client is assigned with the same reliability,

∀𝑖∈ K 𝑟𝑐𝑖=1. The reliability score of each client after each iteration

is updated as:

𝑟𝑐𝑖 = − log
©­«

∑𝑁
𝑗=1

𝑑𝑖𝑠𝑡 (Δ̂ 𝑗
𝐺
, 𝛿

𝑗
𝑐𝑖 )∑𝑐𝐾

𝑘′=𝑐1

∑𝑁
𝑗=1

𝑑𝑖𝑠𝑡 (Δ̂ 𝑗
𝐺
, 𝛿𝑘′

𝑗 )
ª®¬ . (4)

Equation 4 indicates that a client’s reliability is inversely propor-

tional to the difference between its observations and the truths at

the log scale.

Theorem 4.1. Suppose that the truths are fixed, the optimiza-
tion problem Eq 2 with constraint is convex. Furthermore, the global
optimal solution is calculated based on Eq 4.

Proof. Given that the truths are fixed, there is only one set of

variable R for the optimization problem Eq 2. Let’s define another

variable 𝑡𝑐𝑖 = exp (−𝑟𝑐𝑖 ) and express the optimization problem based

on this new variable as follows to prove the convexity of Eq 2:

min

𝑹, ˆ𝚫

𝐾∑︁
𝑖=1

− log 𝑡𝑐𝑖 · 𝑑𝑖𝑠𝑡 (Δ̂𝐺 , 𝜹𝑡𝑐𝑖 ),

s.t.

𝐾∑︁
𝑖=1

𝑡𝑐𝑖 = 1.

(5)

This optimization function is linear combination of negative

logarithm functions and thus it is convex. To solve this optimization

problem, the method of Lagrange multipliers could be used. The

Lagrangian of Eq 5 is given as:

𝐾∑︁
𝑖=1

− log 𝑡𝑐𝑖 · 𝑑𝑖𝑠𝑡 (Δ̂𝐺 , 𝜹𝑡𝑐𝑖 ) + 𝜆(
𝐾∑︁
𝑖=1

𝑡𝑐𝑖 − 1), (6)
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where 𝜆 is a Lagrange multiplier. The 𝜆 can be derived by setting

the partial derivative of Lagrangian with respect to 𝑡𝑐𝑖 to be 0,

𝜆𝑡𝑐𝑖 = 𝑑𝑖𝑠𝑡 (Δ̂𝐺 , 𝜹𝑡𝑐𝑖 ), (7)

and given the constraint that

∑𝐾
𝑖=1

𝑡𝑐𝑖 = 1 we can derive 𝜆 as:

𝜆 =

𝑐𝐾∑︁
𝑘′=𝑐1

𝑁∑︁
𝑗=1

𝑑𝑖𝑠𝑡 (Δ̂ 𝑗
𝐺
, 𝛿𝑘′

𝑗 ) . (8)

Given that 𝑟𝑐𝑖 = −𝑙𝑜𝑔(𝑡𝑐𝑖 ), we can derive Eq 4. □

Updating Model Aggregation. By fixing the reliability of clients,

the truths of parameters are updated in a way that minimizes the

difference between the truths and the client’s observations where

clients are weighted by their reliabilities and calculated as:

Δ̂𝐺 =

∑𝐾
𝑖=1

𝑟𝑐𝑖 · 𝛿𝑐𝑖∑𝐾
𝑖=1

𝑟𝑐𝑖

. (9)

Since the truth (model parameters) are continuous data, the loss

function should characterize the distance from the input to the truth

with respect to the variance of entries across clients. One common

loss function is the normalized squared loss, which is defined as:

𝑑𝑖𝑠𝑡 (Δ̂ 𝑗
𝐺
, 𝛿𝑘′

𝑗 ) =
(Δ̂ 𝑗
𝐺
− 𝛿𝑘′

𝑗 )2

𝑠𝑡𝑑 (𝛿 𝑗𝑐1
, ..., 𝛿

𝑗
𝑐𝑘
)
. (10)

Theorem 4.2. Suppose that the clients’ reliabilities are fixed, the
optimization problem Eq 2 with Eq 10 is convex. The truth that mini-
mizes the overall weighted distance should be the weighted average
of the observations as stated in Eq 9.

Proof. For proving the convexity, we plug Eq 10 into the objec-

tive function Eq 2 and then let the partial derivative with respect to

Δ̂
𝑗

𝐺
be 0. Therefore, we can get the optimal truth shown in Eq 9. □

At the aggregation step, the global server incorporates the pro-

vided parameters of each clients based on their reliability. Hence,

the global parameters are updated as follows:

𝑤𝑡+1𝐺 = 𝑤𝑡𝐺 +
∑︁
𝑖∈𝐾

𝑟𝑡𝑐𝑖 · 𝛼𝑖 · 𝛿
𝑡+1
𝑐𝑖

.
(11)

4.3 Reduce Effect of Malicious Clients:
RobustFed+

RobustFed incorporates the reliability of every client in the ag-

gregation but does not include explicit mechanisms to detect and

exclude malicious clients. To reduce the effect of malicious clients,

we further propose RobustFed+ to detect non-reliable clients at

each round and discard their participation during the aggregation

phase.

Algorithm 2 summarizes RobustFed+ method. After obtaining

the reliability of each clients, the median (𝜇) and standard deviation

(𝜎) of the reliabilities are computed for all the clients who partic-

ipated in round 𝑡 . The clients whose reliability fit in the range of

[𝜇 −𝜎, 𝜇 +𝜎] are selected as a candidate, and the global parameters

are updated as follows:𝑤𝑡+1
𝐺

=𝑤𝑡
𝐺
+

∑
𝑖∈[Cand] 𝑟

𝑡
𝑐𝑖
· 𝛼𝑖 · 𝛿𝑡+1𝑐𝑖

.

We note that a straightforward method is to remove the clients

with lowest reliability scores. Intuitively, we expect the server to

Algorithm 2: Robust Aggregation (RobustFed+)

1 selected clients 𝐾𝑡 , R𝑡 (reliability of all clients),𝑤𝑡
𝐺
, 𝑤𝑡+1

𝐺

2 Cand (set of clients’ candidate) initialized to ∅
3 R𝑡 ← 𝑔𝑒𝑡𝐶𝑙𝑖𝑒𝑛𝑡𝑠𝑅𝑒𝑙𝑖𝑎𝑏𝑙𝑖𝑡𝑦 ()
4 𝜇, 𝜎 ←𝑚𝑒𝑑𝑖𝑎𝑛(R𝑡 ), 𝑠𝑡𝑑 (R𝑡 )
5 for 𝑖 ∈ 𝐾 do
6 if 𝜇 − 𝜎 <= 𝑟𝑡𝑐𝑖 <= 𝜇 + 𝜎 then
7 Add 𝑐𝑖 to Cand
8 end
9 end

10 𝑤𝑡+1
𝐺
← 𝑤𝑡

𝐺
+∑𝑖∈[Cand] 𝑟𝑡𝑐𝑖 · 𝛼𝑖 · 𝛿𝑡+1𝑐𝑖

assign a higher reliability to honest clients and a lower score to

the malicious ones. In our experimental studies, we indeed observe

this when no attack happens or under specific types of attacks such

as Byzantine or data noise attacks. However, under label-flipping

attack, we observe that the RobustFed method assigns higher re-

liability to the malicious clients. This is because the gradients of

the malicious clients can be outliers under such attacks and signifi-

cantly dominates (biases) the aggregated model parameters, and

hence has a high reliability because of its similarity to the aggre-

gated values. Therefore, in our approach, we disregard the clients

with reliability deviating significantly from the others.

4.4 Incorporate the Multi-round
Communication: RobustFed𝑡

Given the multi-round communication between the clients and

the server in FL, RobustFed and RobustFed+ only consider one

round and ignore the temporal relationship among model parame-

ters in multiple rounds. Ignoring this temporal relationship might

miss important information of the parameters shared by clients

at each round. Intuitively, under data poisoning or label flipping

attacks, considering the parameters over multiple rounds will more

effectively reveal malicious clients. To take advantage of temporal

information, we propose RobustFed𝑡 to incorporate the statistical

information of the previous rounds during the reliability estimation.

Incorporating the statistical information is dependent on the way

the clients are selected in each round described as follows.

Static Setting: The server selects the same set of clients at each

round to participate in training the global model. Therefore, we

add the statistics of the model parameters (weights) from previous

rounds as new tasks in addition to the vector of model parameters

of current round. These statistics are the number of large weights,

number of small weights, median of weights and average of weights.

The reliability is then evaluated based on all statistics and the pa-

rameters submitted in current round.

Dynamic Setting: The server dynamically selects a set of clients to

join FL and participate in training the global model in each round.

Since each client may participate with different frequency, we only

add median and average of weights from the previous rounds as

new tasks in addition to the vector of model parameters of current

round.
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(a) Flipping(𝑅𝑜𝑏𝑢𝑠𝑡𝐹𝑒𝑑) (b) Byzantine(𝑅𝑜𝑏𝑢𝑠𝑡𝐹𝑒𝑑) (c) Flipping(𝑅𝑜𝑏𝑢𝑠𝑡𝐹𝑒𝑑+) (d) Byzantine(𝑅𝑜𝑏𝑢𝑠𝑡𝐹𝑒𝑑+)

Figure 4: Range of Clients’ Reliability on FMNIST dataset (10 clients, 30% malicious clients)

5 EVALUATION
5.1 Experiment Settings

Datasets. We use the following three public datasets.

• MNIST: this dataset contains 70,000 real-world hand written

images with digits from 0 to 9 with 784 features. We split

this dataset into a training set and test set with 60,000 and

10,000 samples respectively.

• Fashion-MNIST (fMNIST): this dataset consists of 28×28 gray

scale images of clothing and footwear items with 10 types

of classes. The number of features for this dataset is 784. We

split this dataset into a training set and test set with 60,000

and 10,000 samples respectively.

• CIFAR-10: this dataset contains 60,000 natural color images

of 32x32 pixels in ten object classes with 3,072 features. We

split this dataset into a training set and a test set with 50,000

and 10,000 samples respectively.

For MNIST and fMNIST datasets, we use a 3-layer convolutional

neural network with dropout (0.5) as the model architecture. The

learning rate and momentum are set as 0.1 and 0.9, respectively. For

CIFAR-10, we use VGG-11 [15] as our model. The dropout, learning

rate and momentum are set as 0.5, 0.001, 0.9, respectively.

Baseline Aggregation Methods.We consider the following ag-

gregation methods.

• FedAvg [24]: FedAvg computes the average of the clients’

local model updates as the global model update, where each

client is weighted by its number of training examples.

• Median [34]: Median is a coordinate-wise aggregation rule

that considers each model parameter individually. For each

model parameter, the server collects its values in all local

model updates and sorts them. Median uses the median value

of each parameter as the corresponding parameter value in

the global model update.

• Trimmed Mean (Trim_mean) [34]: Trimmed mean is another

coordinate-wise aggregation rule. The server also sorts the

values of each individual parameter in all local model updates.

The server removes the largest 𝑘 and the smallest 𝑘 values,

and then computes the mean of the remaining 𝑛 − 2𝑘 values

as the value of the corresponding parameter in the global

model update. We set 𝑘 to be 2.

• Krum [5]: Krum selects one of the 𝑛 local model updates in

each iteration as the global model update based on a smallest

Euclidean distance to global model parameters.

Experiment Setup and Adversarial Attacks:. We split the train-

ing data equally across all clients. For selecting clients to participate

in each round, two selection methods are considered: 1) static mode

and 2) dynamic mode. In the static mode, the number of clients are

set to be 10 and at each iteration, the same set of clients are chosen.

In the dynamic mode, the server randomly selects 10 clients from

the pool of 100 clients in each round.

We assume that 30% of the clients are adversary by default unless

otherwise specified. We consider three attack scenarios.

• Label-Flipping Attacks: Adversaries flip the labels of all local

training data of one specific class to another class (e.g., class

#1 to #2) and train their models accordingly. All the adversary

clients flip labels in the exact same way.

• Noisy Data: In MNIST and FMNIST, the inputs are normal-

ized to the interval [0,1]. For the selected malicious clients,

we added uniform noise to all the pixels, so that 𝑥 ← 𝑥 +𝑈 (-

1.4,1.4). Then we cropped the resulting values back to the

interval [0,1].

• Byzantine Attack: Adversaries perturb the model updates

and send the noisy parameters to the global server: 𝛿𝑡
𝑖
← 𝛿𝑡

𝑖
+

𝜖 , where 𝜖 is a random perturbation drawn from a Gaussian

distribution with 𝜇 = 0 and 𝜎 = 20.

5.2 Experiment Results
Effect of Attacks onReliability Score of Clients. Figure 4 shows
the reliability range of malicious and benign clients under label-

flipping and Byzantine attacks in static mode learned by RobustFed

and RobustFed𝑡 , correspondingly. We observe that RobustFed as-

signs higher reliability to benign workers and vice versa under

Byzantine attack and noisy data attack as expected. However, the

opposite behavior is observed under flipping attack. As we dis-

cussed, this is likely because the gradients of the malicious clients

are outliers under such attacks and significantly dominates (biases)

the aggregated model parameters, and hence has high reliability
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Figure 5: Effect of Number of Malicious Clients on CIFAR_10, FMNIST and MNIST Datasets (Left to Right)

Table 1: Aggregation Method Comparison in Static & Dynamic Mode
(30% malicious clients)

Static Mode

Dataset Attack FedAvg Median Trim_mean Krum RobustFed RobustFed+ RobustFed𝑡

CIFAR_10 Clean 70.25 70.75 70.78 57.75 68.05 69.74 69.75

Byzantine 10.0 55.01 10.29 57.24 44.64 59.66 54.67

Flip Label 51.37 41.34 46.74 10.0 10.0 52.34 51.10

Noisy 67.51 68.31 68.22 57.67 67.22 67.64 67.80

Average Performance 42.96 54.88 41.75 41.63 40.62 59.88 58.19
Robustness 0.14 0.58 0.15 0.17 0.15 0.75 0.73

FMNIST Clean 91.15 90.95 91.05 87.79 91.05 91.05 91.07

Byzantine 10.0 89.20 10.0 87.66 81.25 90.62 84.59

Flip Label 79.05 77.58 73.23 10.0 14.55 80.38 83.52
Noisy 89.25 89.20 89.32 84.78 84.09 87.74 89.0

Average Performance 59.433 85.32 57.51 60.81 59.96 85.9 85.7
Robustness 0.11 0.85 0.11 0.11 0.16 0.88 0.92

MNIST Clean 99.29 99.31 99.34 98.51 99.01 99.3 99.32

Byzantine 11.35 98.18 11.35 97.43 91.35 98.21 98.34
Flip Label 94.58 97.80 94.47 11.35 11.40 95.56 96.34

Noisy 92.08 93.01 88.26 83.16 80.04 96.74 96.82
Average Performance 66 96.33 64.69 63.98 60.93 96.8 97.2

Robustness 0.11 0.98 0.11 0.12 0.12 0.96 0.97
Dynamic Mode

Dataset Attack FedAvg Median Trim_mean Krum RobustFed RobustFed+ RobustFed𝑡

CIFAR_10 Clean 69.22 69.58 68.22 56.69 67.87 69.22 67.25

Byzantine 12.53 44.93 10.00 61.49 55.0 58.78 60.56
Flip Label 10.0 35.00 10.07 10.32 11.56 57.73 55.53

Noisy 63.27 63.35 61.18 61.36 61.67 63.43 63.78
Average Performance 28.6 47.76 27.08 44.39 42.74 59.98 56

Robustness 0.14 0.5 0.146 0.18 0.17 0.83 0.825
FMNIST Clean 91.68 92.00 88.26 89.79 91.79 91.98 91.87

Byzantine 10.0 88.90 25.0 90.36 81.35 89.85 83.00

Flip Label 10.0 68.23 10.25 11.04 11.35 70.93 78.24
Noisy 89.08 88.12 86.13 81.12 89.24 90.01 90.24

Average Performance 36.36 81.75 40.46 60.84 60.64 83.49 83.82
Robustness 0.11 0.74 0.12 0.12 0.12 0.77 0.85

MNIST Clean 99.32 99.35 99.28 99.01 99.32 99.34 99.33

Byzantine 11.35 97.05 10.01 96.37 96.27 97.07 94.38

Flip Label 10.28 94.63 10.54 11.35 12.16 94.99 95.23

Noisy 80.12 96.67 95.34 94.23 87.37 96.10 96.07

Average Performance 33.91 95.95 38.63 67.31 65.26 96.05 95.22

Robustness 0.1 0.95 0.1 0.11 0.12 0.96 0.95
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due to the Euclidean distance based evaluation. Therefore, in our

RobustFed+ approach, we disregard the clients with both high and

low reliabilities, whichwill helpmitigate the impact of themalicious

clients.

For RobustFed𝑡 , by incorporating the statistical information of

previous rounds, it is able to correctly assign higher reliability to the

benign clients (even though with some fluctuations under flipping

attacks). It’s worth noting that it separates the two types of clients

extremely well under Byzantine attack and successfully recognizes

malicious clients in all attacks, i.e., assigning close to 0 reliability

for them.

Impact of Number of Malicious Clients.We study the impact

of the number of malicious clients on the proposed aggregation

method. As shown in Fig.5, by increasing the number of malicious

clients, the performance of the global model slightly drops. It can be

observed that RobustFed𝑡 improves upon RobustFed+ for FMNIST

and MNIST datasets that have a higher accuracy on their clean

data (i.e., no attack). However, in the CIFAR_10 dataset that has a

poor performance on clean data, RobustFed𝑡 could not improve the

performance.

Robustness Comparison. In this experiment we compare our

robust aggregation methods (RobustFed, RobustFed+, RobustFed𝑡 )
with the state-of-the-art baselines. The results of these methods

along with average performance are shown in Table 1. In addition to

reporting the accuracy (in percentage) of the different methods on

clean data and under different attacks, we also report a robustness

metric. The robustness metric is defined as the ratio between the

accuracy of the model against the strongest attack (i.e., lowest

accuracy) over the accuracy on clean data in the benign setting.

In the static mode experiment, clients that participate in each

round are fixed. The total number of clients are set to be 10, in

which 30% of them (i.e., 3 clients) are malicious. As shown in Ta-

ble 1, RobustFed+ and RobustFed𝑡 provide more consistent and

better robustness against all three types of attacks compared with

all state-of-the-art methods. As expected, FedAvg’s performance

is significantly affected under the presence of malicious clients,

especially in Byzantine and flipping attacks. It is also interesting

to observe that both Krum and Median are very sensitive to label

flipping attacks.

Furthermore, the performance of all RobustFed methods main-

tain accuracy in the benign setting and their performance are com-

parable to the best accuracy, while other methods like Krum sacri-

fices the accuracy on clean data.

It can be observed that both RobustFed+ and RobustFed𝑡 methods

achieve higher robustness in the CIFAR_10 dataset in comparison

with other methods. Given that the MNIST dataset has the highest

data quality and CIFAR_10 has the lowest one, the robustness of

both RobustFed methods has impacted less in comparison with

other methods.

In the dynamic mode experiment, at each round, 10 clients

are randomly selected from a pool of 100 clients consisting of 30

malicious clients and 70 normal clients.We observe that RobustFed+
has the overall strongest performance by incorporating historical

information.

Similar to the static mode, the performance of most of the meth-

ods are comparable on clean data except for Krum. We compare the

dynamic mode verses static mode, as shown in Table 1, the perfor-

mances in dynamic mode are slightly lower than static mode since

it is more challenging due to the dynamic and sparse participation

of the clients.

6 CONCLUSION & FUTUREWORK
In this paper, we studied the vulnerability of the conventional aggre-

gation methods in FL. We proposed a truth inference approach to

estimate and incorporate the reliability of each client in the aggre-

gation, which provides a more robust estimate of the global model.

In addition, the enhanced approach with historical statistics fur-

ther improves the robustness. Our experiments on three real-world

datasets show that RobustFed+ and RobustFed𝑡 are more robust

to malicious clients with label flipping, noisy data, and Byzantine

attacks compared to the conventional and state-of-the-art aggre-

gation methods. This study focuses on data with IID distribution

among clients; future research could consider non-IID distribution.
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