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Abstract

Automatic Speech Recognition models require large amount of
speech data for training, and the collection of such data often
leads to privacy concerns. Federated learning has been widely
used and is considered to be an effective decentralized tech-
nique by collaboratively learning a shared prediction model
while keeping the data local on different clients devices. How-
ever, the limited computation and communication resources on
clients devices present practical difficulties for large models. To
overcome such challenges, we propose Federated Pruning to
train a reduced model under the federated setting, while main-
taining similar performance compared to the full model. More-
over, the vast amount of clients data can also be leveraged to im-
prove the pruning results compared to centralized training. We
explore different pruning schemes and provide empirical evi-
dence of the effectiveness of our methods.

Index Terms: federated learning, federated pruning, speech
recognition, neural network, deep learning

1. Introduction

Neural network models have wide application in a variety of
tasks, such as speech recognition, machine translation, and im-
age recognition [1, 2, 3]. The performance of trained mod-
els largely depends on the quality and the amount of train-
ing data. Federated learning (FL) [4] provides a framework
for leveraging the abundant data on edge devices with privacy
preserved. However, FL faces several limitations in practice.
One limitation is that the available memory on edge devices
is highly limited. However, recent models are typically large,
which makes on-device training challenging. For example, the
successful model architecture for Automatic Speech Recogni-
tion (ASR), Conformer [5], has 130M parameters and requires
520MB memory solely for storing the parameters during train-
ing. Another limitation is that FL typically only updates the
model parameters and leaves the model architecture unchanged.
As a result, only model accuracy is improved but not model ef-
ficiency.

In this paper, we propose Federated Pruning (FP) to ad-
dress the limitations mentioned above. Because models are
usually over-parameterized to facilitate training, there are many
redundancies. Several methods have been explored to exploit
such redundancies to improve model efficiency. Among them,
pruning is one of the most successful methods and has been
widely studied under centralized training settings. At a high
level, it identifies and removes redundant parameters from an
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Figure 1: A federated round of the proposed Federated Pruning.
The white circles denote removed parameters.

over-parameterized model. The proposed FP applies the same
idea to improve efficiency of federated learning and also al-
lows leveraging on-device data to potentially achieve better ef-
ficiency than centralized pruning.

The pruning method has been extensively studied in cen-
tralized fashion [6, 7]. [8] shows that a well-initialized sub-
network can match the accuracy of the full network and such
sub-network was studed in centralized training [6, 7]. The main
issue of this approach is that the parameters deemed unimpor-
tant and pruned at an early iteration may turn out to be important
at a later iteration. To address this problem, [9, 10] use differ-
ent pruning method time-wise and model-wise. Unlike these
works focusing on centralized training, our work targets at fed-
erated learning and analyzes the impact of different pruning de-
sign decisions under this setting. A related work of model com-
pression under the FL setting is Federated dropout [11]. Unlike
our proposed method, federated dropout randomly generates re-
duced model and performs training on full model. Another pre-
liminary work, PruneFL [12], also applies pruning to federated
learning. It adopts sparse pruning instead of structural pruning
as used in this work, so the resultant model will be less efficient
when running on devices in practice. Moreover, we evaluate the
proposed FP with production-grade models and datasets, which
better reflects the real condition of deployment.

In summary, this work has the following contributions:

* Improving the efficiency of federated learning: We
propose Federated Pruning (FP) to leverage on-device
data to effectively prune redundant parameters from
models. The resultant smaller models require less on-
device memory to train and lower bandwidth for trans-
porting models.

* Exploring different pruning design decisions: We ex-
plore and perform extensive ablation studies on two de-
sign decisions of pruning under federated learning: prun-
ing patterns and pruning methods.
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Algorithm 1 Federated pruning. Initialize the server model with w°
and the binary pruning mask M with ones like (w®). The K clients are
selected and indexed by k, federated pruning rounds are indexed by r,
and n is the number of examples. Shrink(w, M) reduces the model size
according to pruning mask M. Expand(w, M) maps the reduced model
to original size. Related pruning methods include following functions:
GetlmportanceScore (w”), GenerateMask (w",r, S).

Input: Pre-trained dense ASR model: w°
Binary pruning mask: M of ones like (w©)
Target sparsity level: S
FL rounds: AR, Rfine—tune pend

Output: Sparse ASR model: Wk
function FederatedPruning
initial sparsity level s <— 0
for eachroundr = 0,1,2, ...,
9: if r mod AR == 0 then

1:
2:
3
4-
5:
6:
7
8 Rfine—tune —1do

> Every AR rounds

10: GetlmportanceScore (w™)

11: M = GenerateMask (w",r, s)

12: if s < S then > Reaches refining phase if s == S
13: increase s

14: end if

15: end if

16: w1 = FPTrain(w”, M)

17: end for

18: for each round r = Rfine—tune  pendgq Fine-turning
19: Reduce the server model with mask M

20: Training the reduced model with standard FL.

21: end for 4

22 return wi*"

23: end function

24: function FPTrain(w”, M)

25: WT < Shrink(w”, M) > Generate reduced model
26: Randomly select K clients

27: Server sends the reduced model W to K clients

28: for each client & in parallel do

29: W[ « ClientLocalUpdate(k, W)

30: AW =W — W[

31: Clients send AW/ to server

32: end for

33: Awj, < Expand(AW], M) > Map reduced updates
34: =K, ok Awy, > Federated Averaging [13]
35: wtl = w” — po”

36: return w" 1

37: end function

* Proposing a novel approach for adaptive sparsity: We
propose a novel adaptive per-layer sparsity approach that
dynamically allocates the target global sparsity level to
each layer. Therefore, there is no need to manually select
the per-layer sparsity levels.

¢ Experimenting with production-grade environments:
We evaluate the proposed Federated Pruning with
production-grade models and datasets, which better re-
flects the real condition of deployment.

2. Federated Pruning

Figure 1 describes a federated round with the proposed Feder-
ated Pruning. The round starts from the generation of a set of
variable masks on the server. The masks contain binary values
signifying whether the parameters at the corresponding loca-
tions should be pruned (value 0) or not (value 1). The num-
ber of pruned values is determined by a given sparsity level,
which is the ratio of pruned parameters. The server model is
pruned based on the masks and sent to clients. Each client then
trains this reduced model on its local data and returns the trained
model. The server model finally aggregates the trained models
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from all the clients and moves on to the next federated round.
Compared with standard federated learning, federated pruning
prunes the model at the beginning of each round, and the pruned
models are the ones trained on clients and transported.

Across federated rounds, we define three phases, (1) prun-
ing, (2) refining and (3) fine-tuning, as shown in Figure 2. In
the first phase (pruning), the sparsity level ramps up from 0 to
the target sparsity level S. In the second phase (refining), the
sparsity level is fixed at .S, and the focus is refining the masks.
Please note that there is a chance that a value in a mask flips
from the O to 1, which means a pruned parameter revives. We
show in Section 3.4 that this phase is important for improving
model quality. In the last phase (fine-tuning), the sparsity and
the masks are fixed, and the focus is fine-tuning the remaining
parameters. This phase ends when the pruned model converges.

We summarize the details of our method in Algorithm 1.
We consider one cloud server and K edge devices (referred to
as clients) with their local speech data. Let w be the parameters
of the full ASR model on the server side and {w1, w2, ..., wk }
be the K reduced models to be trained on clients. FP starts
with pre-trained ASR model w° on the server side and the tar-
get sparsity level S. At the beginning of each AR rounds, the
server computes the importance scores of all variables using
GetlmportanceScore(). Then, a set of masks are generated by
GenerateMask() based on the importance scores and the current
sparsity level s. In the generated masks, all variables with small
importance scores will be removed by Shrink(w", M). The re-
duced model will be sent to clients for training, and mapped
back to the full model when the server receives clients’ updates
by Expand(w, M ). When mapping the reduced model back, the
masked regions (which are not sent to clients) will have 0 aggre-
gated updates. Then the standard federated averaging process
will be used to aggregate all clients updates. When the sparsity
level s reaches the target level S, it enters the second phase of
mask refinement. When the round r is equal to Rfine—tune gp
moves on to the last phase. We reduce the server model with the
mask M, so that the server model is the same as client models.
Finally, the reduced model will be trained until convergence.

2.1. Pruning patterns

We discuss the structure of the pruned variables, i.e. removed
variables, as pruning patterns. Pruning patterns can be broadly
categorized as: unstructured pruning [14] that prunes the less
salient connections over any nodes, and structured pruning [15]
that prunes on larger structures such as channel or layer. Since
our objective is to reduce the actual model size, the training
memory on clients’ devices and the communication between
server and clients, we use structured pruning to remove the
slices of the variables, and thus physically reduce the model
size. We implemented following pruning patterns:

* Whole row / column: prune the entire row or column of
the two-dimensional weight matrices .

» Half row / column: evenly partition the two-dimensional
variables W into [W1, W5] and prune each half of the
row or column.

For higher (larger than 2) dimensional matrices, we first reshape
them to two dimensional space, apply the above patterns, and
transform back to the original dimensional space.

2.2. Pruning methods

We discuss how to decide the salience, i.e. the importance score,
of variables. We use three methods including weight magnitude
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Figure 2: Three phases of Federated Pruning across FL rounds.

of variables, momentum of gradient magnitude of the variables
and the multiplication of weight and gradient magnitude to mea-
sure the salience. At every AR round, we compute the /1 and
12 norm of the three methods as importance scores. Then given
the sparsity level s, a threshold of the importance score can be
derived by sorting the scores. The regions with less importance
scores (i.e. smaller than the threshold) will be removed from the
clients’ model to form the reduced model. On server side, the
regions with less importance scores are still kept in the pruning
and refining phases, and will be removed in the final fine-tuning
phase.

To achieve the target sparsity level S, we use pruning sched-
ule to denote such process in the pruning phase. In this work,
we explore the following two schedules:

* Constant sparsity level: instantly prune to the target spar-
sity level S at the beginning;

» Step-based sparsity level: gradually increase the sparsity
level w.r.t current round 7.

2.3. Mask refinement

In the refining phase, the masks are still re-generated. Because
the masked regions in the model get O updates, their importance
scores remain the same. For unmasked regions, their variables
as well as the importance scores are updated. If the importance
scores of some unmasked regions get smaller, then they might
be replaced by the masked variables according to the rank of
importance scores. Therefore, the masks are refined and re-
trained in this phase. In section 4, we also explore the variants
of with and without mask refinement to show its utility. Note
that the gradient based importance scores will yield relatively
stale pruning mask, the masked regions will not have gradients
and lose the ability of regrowth.

2.4. Adaptive per-layer sparsity

The layers of a deep neural network have different impacts on
model accuracy. Based on the observations in [16], layers can
be categorized as either “ambient” or “critical”. Take the Con-
former model [5] as example, “ambient” layers have little im-
pact whereas pruning the “critical” layers will lead to severe
quality degradation. Hence the sparsity level should get cus-
tomized based on the importance of each layer. The sparsity
level in the above federated pruning is unified among layers.
Adaptive per-layer sparsity is proposed to allow dynamic spar-
sity level reallocation among layers.

We utilize a heuristic agent to determine the layer-wise
sparsity level in two steps. First, we use predefined rules to
measure the importance of each layer, such as the mean mo-
mentum of model deltas per layer or averaged weight magni-
tude per layer. Second, we assign the weighted sparsity level to
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each layer using estimated importance score. The less impor-
tant layers get larger sparsity level. We use the averaged weight
magnitude ||w;|| per layer as the importance score in this pa-
per. As shown in Figure 3, the layers with larger magnitude
are more important than those with smaller magnitude, thus the
layer-wise density levels (1 - sparsity level) are assigned using
the following equation for the L layers in the model.

(1 — TargetSparsity) * ||w;||

L
D i will

Layer Density =

ey

3. Experiment Results
3.1. Experiment settings

Model architecture. We implemented the Federated Pruning
in a distributed learning simulator. We use the state-of-the-
art ASR model Conformer-transducer [17] as our base model.
The model consists of 17 512-dimensional conformer encoder
layers, a 640-dimensional embedding prediction network and
a 2048-dimensional fully-connected joint network. In order to
fit in our federated setting [18, 19], as suggested in [11], we
change the original batch normalization to group normalization
[20]. All the experiments share a same baseline model as ini-
tialization w®. We follow the same settings of server/clients
optimizer, SpecAugment [21] and number of clients as in pre-
vious work [22]. The baseline model is trained from scratch for
30k federated rounds. Our metric Word Error Rate (WER) on
the baseline model is shown in Table 3.

Dataset. We train and evaluate the proposed model on the pub-
lic LibriSpeech [23] corpus, which consists of 970 hours of la-
beled speech. We also explore the performance on industry-
scale data collected from different domains as described in [24].
These multi-domain utterances contain 400k hours of speech
and span domains of search, farfield, telephony and YouTube.
Our work abides by Google Al Principles [25], all datasets are
anonymized and hand-transcribed.

3.2. Federated pruning results

We prune all variables in each layer except the 1-D vector vari-
able and the convolution layer which has specific utility and
few parameters. The target sparsity level is the unified pruning
percentage assigned for each variable. If we adopt the whole
block pruning that prunes the entire column on W, it will fur-
ther zero-out the corresponding row in next variable W’ within
the feed forward module in the Conformer blocks. The ac-
tual zero-parameter ratios of to-be-pruned variables are slightly
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Figure 4: Experiment results of different settings of Federated
Pruning on the Librispeech datasets.

higher than the target sparsity level. The detailed numbers are
listed in Table 1.

Figure 4 shows a rise in WERSs on 4 Librispeech data sub-
sets with the increase of sparsity levels. We also observed ob-
vious quality degradation when the sparsity level > 30% in all
pruning schemes. Concretely, 0.2% absolute increase on WER
was observed on both Dev and Test evaluation set in our default
setting Weight-based column pruning when the sparsity level
reached 0.3. As we mentioned in Section 2.2, different pruning
methods can be used to estimate the importance of variables.
‘We conduct ablation experiments of different measurements on
the Librispeech dataset. Our empirical finding in Table 2 sug-
gests the weight-based score achieves similar WER as other
metrics, while it is also the most communication efficient and
stable metric. Thus, we rely on the weight-based score as the
importance metric. In terms of the pruning patterns, we com-
pare the WERSs of several FP variants at sparsity level 50% as il-
lustrated in Figure 4. One can observe that column pruning and
especially the half-column pruning consistently outperforms the
row-based pruning. Thus, all experiments below adopt weight
magnitude as pruning method and whole column as pruning pat-
tern. With the subsequent fine-tuning phase, the pruning sched-
ule has very limited effect on the WER, so we further fix the
constant sparsity level as the default setting.

Table 1: Zero-Parameter Ratio w.r.t Target Sparsity Level

Sparsity Level ‘ 0.10 020 030 040 050

Zero-Param Ratio \ 0.136 0.264 0.384 0.496 0.60

Table 2: WERs of different pruning methods

WER on Test with sparsity level

Pruning Methods |, ,»" )5 030 040 0.50
weight based 2.1 2.2 2.3 2.4 2.5
gradient based 2.2 2.3 2.3 23 24

weightx gradient based | 2.1 22 2.2 23 24
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3.3. Adaptive per-layer sparsity results

We propose the adaptive per-layer sparsity to make our method
more flexible and dynamic, which allows reallocation of target
pruning budgets among layers. Table 3 demonstrates that, com-
pared to federated pruning with unified sparsity, the adaptive
sparsity achieves lower WERs on all evaluation sets with 50%
sparsity level.

Table 3: WERSs of unified / adaptive sparsity at Sparsity 50%.

Ex WER
p- Test  TestOther Dev  DevOther
Baseline 2.1 49 2.3 4.9
Unified Sparsity 25 5.9 2.8 5.9
Adaptive Sparsity | 2.4 5.6 2.6 5.7

3.4. With and without mask refinement

To actually reduce the model size, the masked regions on server
model are eventually zero-out by FP. On the other hand, the
Mask Refinement phase introduced in Section 2.3 maintains the
original values for masked regions. The pruned variables are al-
lowed to grow back, leading to higher flexibility and thus, lower
WERSs as shown in Table 4.

Table 4: WERs of w/o and w/ Mask Refinement at Sparsity 40%.

Ex WER
p- Test  TestOther Dev  DevOther
w/o Mask Refine | 2.3 5.5 2.6 5.7
w/ Mask Refine 2.3 5.3 2.5 5.3

3.5. Results on short-form multi-domain dataset

Finally, we show the results on the large-scale short-form multi-
domain dataset. The reduced model is trained on our multi-
domain utterances and evaluated on the short-form dataset. Ta-
ble 5 demonstrates the WERSs on different sparsity levels. We
conclude that our model can still achieve comparable perfor-
mance to the baseline model (with sparsity level 0.0) on chal-
lenging dataset in the low sparsity level setting.

Table 5: WERs of federated pruning on the voice search dataset.

Sparsity Level ‘ 0.0 0.10 020 030 040 0.50
WER ‘ 64 67 70 74 79 8.9

4. Conclusion

‘We proposed the Federated Pruning method to find the efficient
reduced model in FL settings. There are two advantages of
FP. First, the training cost of clients, including the on-device
training memory and communication, are alleviated due to the
pruned and reduced model. Second, the model pruning quality
can also be improved with the vast amount of clients data. We
also proposed a new pruning method of the layer-wise sparsity
level reallocation to improve the pruning quality. We showed in
experiments that the FP trained model can achieve comparable
quality of the full model.
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