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ABSTRACT

To train machine learning models that are robust to distribution shifts in the data,
distributionally robust optimization (DRO) has been proven very effective. How-
ever, the existing approaches to learning a distributionally robust model either
require solving complex optimization problems such as semidefinite programming
or a first-order method whose convergence scales linearly with the number of data
samples— which hinders their scalability to large datasets. In this paper, we show
how different variants of DRO are simply instances of a finite-sum composite
optimization for which we provide scalable methods. We also provide empirical
results that demonstrate the effectiveness of our proposed algorithm with respect to
the prior art in order to learn robust models from very large datasets.

1 INTRODUCTION

Conventional machine learning problem aims at learning a model based on the assumption that
training data and test data come from same data distribution. However, this assumption may not hold
in various practical learning problems where there is label shift (Zhang et al., 2020a), distribution shift
(Sagawa et al., 2019), fairness constraints (Hashimoto et al., 2018), and adversarial examples (Sinha
et al., 2017), to name a few. Distributionally robust optimization (DRO), which has recently attracted
remarkable attention from the machine learning community, is a common approach to deal with the
aforementioned uncertainties (Chen et al., 2017; Duchi & Namkoong, 2016; Rahimian & Mehrotra,

m

2019). Defining the empirical distribution of the training data of size m by P, £ L ™" | d¢, where
0 is the Dirac delta function, the goal of DRO is to solve the following optimization problem

inf [¥(x) = supecq Eq [((x:€)] ], (1)

where ¢ is a data sample randomly drawn from distribution @, ¢(x;¢) is the corresponding loss
function and E¢ [¢(z, £)] is the expected loss over distribution ¢ which belongs to uncertainty set U,
The uncertainty set Uy, is defined as U,, = {Q : d(Q,P,,) < ¢} indicates the ball of a distribution
with center I@’m and also d(P, Q) is a distance measure between probability distribution P and Q).
‘We note this uncertainty set captures the distribution shift hence Eq. (1) minimizes the worse data
distribution. Prior studies (Ben-Tal et al., 2013; Bertsimas et al., 2018; Blanchet et al., 2019; Esfahani
& Kuhn, 2018; Pourbabaee, 2020) considered different uncertainty sets (see Definition 3.1 in Esfahani
& Kuhn (2018)) for which they proposed equivalent reformulations of Eq. (1) based on the specific
choice of U,,,.

To solve the above min-max optimization problems, majority of prior studies heavily rely on either
semidefinite programming (Esfahani & Kuhn, 2018) or stochastic primal-dual methods both for
convex (Deng et al., 2021; Nemirovski et al., 2009; Juditsky et al., 2011; Yan et al., 2019; 2020;
Namkoong & Duchi, 2016) and non-convex (deep learning) objectives (Yan et al., 2020). While
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primal-dual methods can be used as an approach to solve min-max optimization problems, it suffers
from a few downsides. First and foremost, they need to store a probability distribution of constrained
violation of dimension m corresponding to dual variables. Additionally, available primal-dual
methods often demand data sampling that corresponds to the probability distribution over m data
samples which introduces additional cost over uniform sampling. Finally, while majority of prior
studies are limited to DRO problems with convex objectives, establishing tight convergence rate for
DRO problems with penalty with non-convex objectives is still lacking.

To overcome these issues, we consider three different reformulations of Eq. (1), corresponding to three
different choices of uncertainty sets U,, namely, (1) DRO with Wasserstein metrics, (2) DRO with
x? divergence metrics, and (3) DRO with regularized entropy metrics (also known as KL) and show
in Section 2 that all aforementioned DRO notions are indeed different instances of a deterministic
composite optimization and can be solved by reducing to an instances of the following problem:

. A 1 m 1 m
min | () £ () + — > hi(x) + f (m > gz(m)ﬂ : )
where we suppose r(x) is convex and a relatively simple function, f(x) : R — R and h;(x) :
R? — R for 1 < i < m are scalar-valued functions, and g;(z) : R? — RP for 1 < i < m are
vector-valued functions. On the road to solve problem (2) at scale, we also develop a novel algorithm
for heavily constrained optimization problems (Narasimhan et al., 2020b; Wang & Bertsekas, 2015;
2016) that rather surprisingly invokes a single projection through the course of optimization. This
algorithm is of independent interest and addresses the scalability issues raised in applications such as
fairness (Donini et al., 2018; Zafar et al., 2019).

We summarize the main contributions of our paper below:

* We provide a large-scale analysis of DRO with Wasserstein distance and heavily constrained
reformulation when the objective function is strongly-convex. Our result relies on a novel
mini-batch constraint sampling for handling heavily-constrained optimization problems. As
summarized in Table 1, our convergence analysis improves the state-of-the-art both in terms
of the dependence on the convergence error € as well as the number of constraints m.

 We represent a large-scale analysis of DRO with non-convex objectives and x? or KL diver-
gences and propose a distributed varaint to further improve scalability of DRO problems.

* We verify our theoretical results through various extensive experiments on different datasets.
In particular, we show that our proposed method outperforms recent methods in DRO for
heavily constrained problems with a great reduction in time complexity over them.

The proofs of all the theorems are provided in the appendix.

1.1 RELATED WORK

DRO and connections to heavily constrained optimization. As mentioned earlier, DRO has many
different formulations, depending on the divergence metrics used (e.g., Wasserstein , x? or KL).
While Duchi & Namkoong (2021); Namkoong & Duchi (2016); Shapiro (2017) consider constrained
or penalized DRO formulation, Levy et al. (2020); Sinha et al. (2017) formulate the underlying
optimization problem as unconstrained. One of the contributions of our paper is to provide a unifying
framework through the language of composite optimization and treat all these variants similarly.

In particular, when the objective function is convex, Levy et al. (2020) recently proposed scalable
algorithms for different variants of the DRO problems with , e.g., x? or KL divergence metrics. Our
unifying approach readily extends those results to the more challenging non-convex setting for which
we are unaware of any prior work with convergence guarantees (for instance, Hashimoto et al. (2018)
studied DRO with y2-divergence but did not provide any convergence guarantee). Similarly, Esfahani
& Kuhn (2018); Kuhn et al. (2019) formulated DRO with Wasserstein distance as an instance of
constrained optimization. Notably, they require ti impose one constraint per training data point
and to solve such a constrained problem they proposed a semi-definite program. Even though the
formulation is very novel, it cannot scale. We, in contrast, consider such a heavily constrained
optimization as an instance of a composite optimization for which we provide a scalable solution.
What is rather surprising about our method is that it only checks a batch of constraints per iteration,
inspired by Cotter et al. (2016), and performs a single projection at the final stage of the algorithm
in order to provide an e-optimal solution in the case of strongly convex objectives. Moreover, in
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contrast to Cotter et al. (2016), we do not keep a probability distribution over the set of constraints.
We should also remark that our convergence guarantees achieve the known lower bounds in terms
of accuracy € and the number of constraints m. Finally, we should highlight the difference of our
algorithm and Frank-Wolfe (FW) (Frank et al., 1956; Jaggi, 2013; Zhang et al., 2020b). While FW
does not require a projection oracle, it performs a linear program over the set of constraints at each
iteration. In contrast, our heavily- constrained optimization solution performs a single projection
without the overhead of running a linear program at each iteration.

Stochastic composite optimization. The general stochastic composite optimization ming [\Il(:c) =

r(z) + f (E¢ [g¢(2))] | has recently received a lot of attentions (Qi et al., 2020b;a; Wang et al., 2017;
Kalogerias & Powell, 2019). Our reformulation of DRO variants is a finite-sum instance of this general
problem. More concretely, Huo et al. (2018); Lian et al. (2017); Zhang & Xiao (2019a) aimed to

solve the following finite-sum problem min,, {\Il(a:) Sr(x)+ 2 Z;;l fi(E3r gi(a:))} , using
SVRG or SAGA (Defazio et al., 2014). In contrast, our proposed algorithm is inspired by Zhang
& Xiao (2019a) and generalizes their method to the case where the extra terms h; () in Eq. (2) are
non-zero. We should also note that Qi et al. (2020a) proposed a similar idea in the context of online
learning for DRO problems with KL divergence. Our work in contrast provides guarantees for DRO

with both constraints or penalty terms.

2 DRO VvIA FINITE-SUM COMPOSITE OPTIMIZATION

In this section, we discuss in detail how a finite-sum composite optimization (2) can unify various
notions of distributionally robust learning, where some of which rely on heavily constrained optimiza-
tion subroutines. While much research effort has been devoted to develop a specialized algorithm for
each notion, our reduction paves the way to developing a scalable algorithm, discussed in Section 3.

DRO with Wasserstein distance.  An equivalent and tractable reformulation of Eq. (1) is provided
in Esfahani & Kuhn (2018); Kuhn et al. (2019), which can be regarded as a heavily constrained
optimization problem as follows:

minr(x) £ %Z fi(x) subjectto  g;(x) <0, Vi € [m]. (3)

x

where §; () are functions related to loss function as well as slack variables (please see Appendix A for
more details). Naively solving optimization problem (3) suffers from the computational complexity
due to the large number of constraints m. To efficiently solve the optimization problem (3), inspired by
Mahdavi et al. (2012) and Cotter et al. (2016), we pursue the smoothed constrained reduction approach
and introduce the augmented optimization problem (see Appendix B) of the form min ¥(x) £

[r(x) +vIn (g(x))] where g;(x) = exp (%(M) and g(x) = A5 [14+ 212, gi(x)]. We can
see that this optimization problem is a special case of the optimization problem Eq. (2) where
r(z) = f(x), f(E X", gi(x)) = yIng(x), and h(z) = 0. In contrast to Cotter et al. (2016)
that requires an extra storage cost of probability distribution of dimension m, and relatively poor
convergence rate in terms of m and accuracy €, we propose an algorithm that simply checks a batch
of constraints and achieves the optimum dependency in terms of m and e.

DRO with y2-divergence. The second type of DRO problem we consider utilizes the x?2-
divergence metric as follows:

m

min max Z pifi(xi) — ’YDX2 (P) “4)

x OSpi§172211 pi=1 i—

where the x? divergence is defined as the distance between the uniform distribution and an arbitrary
probability distribution p, i.e., Dy2(p) = 23" (p; — %)2 Levy et al. (2020) studied this
problem only for the case of convex objectives. In this paper, we allow objective functions f; for
1 <7 < m to be both non-convex or strongly-convex. The following claim derives the equivalent
finite-sum composite optimization.
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Reference DRO type # Constraint/Sample Checks to achieve € error objective
Midtouch Cotter et al. (2016)  Wasserstein O 1“% + m! 5(1’;"")1 ° 4 mln ’,':,1)2” + ""21}’57”) Strongly convex
et 3
SEVR Yu et al. (2021) General Linearized Wasserstein O (m In (é) + % + %) Strongly convex-concave min-max
. 1 .
Theorem 4.1 Wasserstein O ((m+rym)In %) Optimally strongly convex
Theorem 4.3 x? or KL o (min{ ‘/H, 1 ) Non-convex
e e

2 1 .

Theorem D.1 x? or KL O ((m+ry/m)Inl) Optimally strongly convex

Table 1: Comparison of our results with prior approached. All three approaches are using variance
reduction techniques. D,, and Dy, respectively denotes the upper bound on the distance of initial
model from optimal model and initial optimality gap. Please see Yu et al. (2021) for more details.
Finally, we note that while Midtouch approach in Cotter et al. (2016) requires additional storage of
probability distribution of dimension m, our approach does not.

Claim 2.1. The optimization problem (4) is equivalent to the following composite problem:

m 2
;zfxx)] 5
i=1

m

1

; A~ ) 2 i
min V@) 21505 @) + o

We note that the optimization problem (5) fits into the formulation of finite-sum composite optimiza-
. . x m 2
tion (2) by choosing r(x) = 1, hw) = 7 L1, —E0 and f(g(w)) = 5 [ ity fi(@)]
. 2(p 22
with hs(@) = ~ 552 gi(2) = fi(x) and f(z) = &

DRO with KL divergence. Finally, for DRO with KL-divergence, usually considered in online
settings (Qi et al., 2020a), we consider solving the following optimization problem:

i 1J i\t H sy m ) 6
mmm 0<p; Slr,n%}i% L pi=1 ;p fi@) +2H(pr b )] ©
where H(p1,....pm) = — > iy pilogp; is the entropy function. To solve problem (6), it is

straightforward to convert it to the following equivalent stochastic composite optimization problem:

U(x) 2 In (;iexp (“ﬁ))] %

As it can be seen, the optimization problem (7) fits into the composite optimization (2) by choosing

(@) = h(z) = 0 and f(g(x)) = In (% S exp (#))

min
p

3 OUR PROPOSED ALGORITHM

Having reduced the different notions of DRO to an instance of the composite optimization, in this
section we describe our scalable approach for minimizing the objective ¥(x) = r(x) + ®(x) where
(x) =L 3" hi(z) + f(E 3", gi(x)). We note that the compositional structure in ®(-) leads
to more challenges in optimization compared with the non-compositional finite-sum problem, since
the stochastic gradient of the loss function is not an unbiased estimation of the full gradient. To
overcome this issue, and by building on incremental variance reduction (Zhang & Xiao, 2019b), we
propose a more general algorithm with a new ingredient in which we also employ variance reduction
on the extra term h(z) = (1/m) Y .~ h;(x). To handle (-), similar to Zhang & Xiao (2019b), we
assume 7 is convex and a relatively simple function. We follow the proximal gradient iterates (Beck,
2017; Nesterov, 2013) as follows:

~

2+ = 11 (sc(t) - nV@(m(t))) (8

where we apply the proximal operator of r(x) with the learning rate n as II7(x)
arg miny, [r(y) + % ly — x| |. By defining the proximal gradient mapping of ¥ as G, (x)

A
L

4
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Algorithm 1: Generalized Composite Incremental Variance Reduction (GCIVR ()

Inputs: Number of iterations ¢ = 1,...,7, learning rate 7, initial global model 20 the size of
epoch length 7¢, and mini-batch sizes of B; and S; at time ¢.

fort=1,...,Tdo
Sample a mini—batch B®) with size B; uniformly over [m] and compute

(1) _ (t) () _ (t) i ®
Yo ~ B desm £): 2o - B, deg(t) Vg(x::§), w B, Z&Bm Vh(x;,

- T
Compute V(I)(asot ) = (z(()t)> (f (y (t))> + w(t)
Update the model as follows: mgt) =117 (w(() - Vcb(xét)))>

for j =1,...,7 — 1doin parallel
Sample a mini-batch S J(-t with size S; uniformly over [m], and form the estimates
Y=yl + = Z&S(t) [g(wg-t); ) — gz 5)} ©)
(t) _ (t) (t) (t)
7 = desm [Vo(@”5¢) - V(! :€)] (10)
t t t t
wf = wl+ £ Yo [V - Ve 59 (an
Compute @tb(m;t)) = (zj(-t)) (f (y (t))) + w(t)
Update the model as follows: asgll =117 (a:j - @@(xg-t))))

end
end

Output: Return a randomly selected solution from {w?}tzl’“"T

7=0,..., Tt

o [z — 117 (a: —nV®(x))], the updating rule in Eq. (8) can be equivalently written as z(*+1) =

x®) — NGy ( ) Given any y as an output of randomized algorlthm we say y achieves the stationary
point of problem in Eq. (2) in expectation if E[[|G,(y)]|*] < € holds. Our goal is to achieve an ¢
stationary point with the least number of calls to a (mini-batch) stochastic oracle.

Focusing on ®(-), as detailed in Algorithm 1, we apply three time-scale variance-reduced estimators
for g;(x) and its gradient Vg; (), as well as h; (x). For DRO with Wasserstein divergence metric with

optimally strongly objective, at the beginning of each epoch t we compute a full-batch gradient over

the entire data samples Bi=m,ie, gyl = L™, gi(:c(Ti)) 2 =1 ) D] Vgi(zl), wl) =

m

LN Vh; (acT, ). In contrast, for the case of DRO with x? or KL divergence metrics and non-
convex objectives we incrementally increase the size of the mini-batch B; < m at the beginning of
each epoch until it reaches the point where we need to compute the full-batch of samples. We should
also highlight that a mini-batch in case of Wasserstein DRO indicates a batch of constraints and in
DRO with x? or KL divergence metrics represents the number of data sample accessed. We denote the
length of each epoch and the mini-batch size within each epoch with 7, and Sy, respectively. In each
epoch ¢ and iteration j, we estimate mini-batch gradients from Eqgs. (9), (10), and (11) in Algorithm 1,
with some corrections term applied from the previous iteration. We note that the variance-reduced
term corresponding to the correction is inspired by SARAH (Nguyen et al., 2017) and SPIDER (Fang
et al., 2018). Finally, the algorithm returns a randomly selected solution from the iterates.

Distributed variant of Algorithm 1. As mentioned before, efficient training of the stochastic
composite optimization problem has attracted increasing attention in recent years. Despite much
progress, all of existing methods including Algorithm | only focus on the single-machine setting. To
employ Algorithm 1 in a distributed setting with p machines, in Appendix E we propose a distributed
variant of proposed algorithm and establish its convergence rate for convex and non-convex objectives
which enjoys a speedup in terms of number of machines.

;€)
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4 CONVERGENCE ANALYSIS

In this section we establish the convergence of proposed algorithm for different DRO notions
discussed in Section 2. We start by stating the general assumptions and then discuss the obtained
rates. Due to lack of space we only include the rates on the convergence of DRO with Wasserstein
metric for strongly convex, and x? and KL divergence metrics for non-convex objectives. We defer
the analysis of x? and KL divergence metrics with strongly objectives to Appendix D. To establish
the convergence rates, we first introduce some standard assumptions.

Assumption 1. We make the following assumptions on the components of objective ¥ (x) = r(x) +
o iy hi(x) + (5 0 gi()):
1) |Vh(z1) — Vh(x2)|| < Lpl|lzy — x| where x1,22 € R We also assume that
[[7(21) = h(x2)|| < Cn (@1 — 2.

2) If' (1) = f'(22)]| < Ly lz1 — @2|| where x1,22 € R.  We also assume that
[ f(x1) — fz2)]| < 4y ||21 — 22|

forVxy,xs € R<.
4) We suppose that V() in Eq. (2) is bounded from below that U* = inf, ¥U(x) > —oc.
5) We assume r(x) € RU {oo} is a convex and lower-semicontinues function.

An immediate implication of above assumption is that f(g(x)) = f(L 3™, gi(x)) is smooth with
module ((2Ly + (L), hence ¥(x) is smooth with module Lo = [((ZLs + {4Ly) + Lp,| (Wang
et al., 2016; Zhang & Xiao, 2019b).

Assumption 2 (Unbiased estimation). We assume that the mini-batch of samples & over functions g;

fori=1,2,...,mis unbiased, that is E [g(x; €)] = g(x) and E [Vg(x; )] = Vg(x).

4.1 OPTIMALLY STRONGLY CONVEX OBJECTIVES

We here establish the convergence for optimally strongly convex objectives under Wasserstein metric.
Definition 1 (Optimally strongly convex). We say that the objective function ¥ (x) is optimally
strongly convex objective with module 11 if ¥(z) — U(Pg- (z)) > p ||z — Po- (2)]*.

According to Definition 4 of Necoara et al. (2019) optimally strong objectives or quadratic functional
growth property is the generalization of strongly convex condition. According to Karimi et al. (2016)
below, the PL condition implies an optimally strongly convex condition but not vice versa. Therefore,
optimally strongly convex generalizes PL condition as well.

Following Cotter et al. (2016) and Mahdavi et al. (2012), we make the following assumption.

Assumption 3. There exists a constant p such that if we define g(x) = maxi<;<m §;(x) we have

min ||Vg(x > p.
min [Vo(e)l, > o

Assumption 4. Function r(x) is smooth with module G.
Theorem 4.1. Assume W is ji-optimally strongly convex and set 7, = Sy = \/B; = /m, T = —=

Vmpun’
n < wﬁ where Gy £ 3(€3L? + E%Lg +02), a> %, and v = T;‘g(n;}f)) Let us denote
xz(*+1) = GCIVR (m(k)) fork =0,..., K — 1 (using Algorithm 1). Under Assumptions -4 and
by letting K = In (1/¢), the solution of DRO with Wasserstein divergence is obtained by projecting
x ) onto the constraint set K = {x|g;i(x) < 0,i =1,2,...,m}, i.e., ) = T (xF)). In order
to achieve r(& %)) —r(x*)) < ¢, we require an O ((m + r/m) In 1) calls to the stochastic oracle.

Comparison with previous results. Compared to the MidTouch approach by Cotter et al. (2016),
our obtained rate improves both on the dependency on the number of constraints m, as well as
convergence error €. To better understand the intuition behind achieving such a double folded
improvement in terms of m and €, we note that unlike Cotter et al. (2016) which utilizes a primal-dual
approach in order to obtain an approximate to the optimal distribution over the constraints, we directly
find the optimal distribution exactly. Second, while Cotter et al. (2016) does not apply any variance
reduction technique to primal variable x, our algorithm benefits from variance reduction over  too.
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Furthermore, Theorem 4.1 entails tighter rate in terms of final accuracy compared to Yu et al. (2021).
These results are summarized in Table. 1.

In Algorithm 1 for optimally strongly convex objectives, we need to do a single projection at the end.
The following corollary bounds the error between the solution before and after the projection.
Corollary 4.2. Under the assumptions made in Theorem 4.1, the error between the solution with
and without projection is bounded by

vIn(m + 1) 1

() _ () <
r(@'") —r@\")) <G op—C op—C

O (exp(=K))| +~vIn(m +1). (12)

Therefore, with a proper choice of v we can establish convergence rate obtained in Theorem 4.1.
Remark 1. It is worthy to highlight that through reduction of heavily-constrained optimization to
composite optimization, GCIVR algorithm can be considered as an alternative method to solving
constrained optimization problems via mini-batch sampling of constraints. In particular, Theorem 4.1
shows that under certain conditions, we can solve any heavily-constrained optimization problem with
sampling a mini-batch of constraints and achieve similar guarantees compared to projection-based
counterparts while avoiding the heavy dependency on the number of constraints. Another implication
of Theorem 4.1 is that we can solve heavily constrained optimization with the sample complexity
similar to that of an unconstrained optimization problem.

Remark 2. 7o understand the tightness of our obtained rate,  consider
ming, {\I/(a:) Sr(@)+ L30T gb(w)] which is an instance of our general optimization
problem (2). Clearly, any lower bound to solve this instance also holds for the original optimization
problem (2). Xie et al. (2019) provides a lower-bound of O ((m + /km)1In (1/€)) for above
instance, matching our upper bound in terms of the dependency on the number of data samples, while
the dependency on k can still be improved. Furthermore, for the DRO problem with Wasserstein
divergence metric, rather than solving constrained optimization problem we solve unconstrained
compositional optimization problem. Thus, since solving constrained optimization is more complex
than unconstrained optimization problem, we do not expect to obtain any better bound regarding m
even for DRO with Wasserstein metric.

Remark 3. In a distributed setting, we are able to improve the sample complexity to
1 . . . .
0] ((m + % + m/m) In ;) with p devices. The proof can be found in Appendix F.3.

4.2 NON-CONVEX OBJECTIVES

We now turn to establishing the convergence of DRO problems with x? and KL divergence metrics for
non-convex objectives by making an additional assumption on the variance of stochastic mini-batches.

Assumption 5 (Bounded variance). The mini-batch sampling has bounded variance that is
E[[|Vg(;€) - Vg(a:)||2] < %s, where B indicates the batch size.

Theorem 4.3. Under Assumptions 1,2, and 5 using Algorithm 1 for some positive constants 3 and
0 < ¢ < \/m, denote Ty = @ = O (y/m). Fort < Ty, letus set 7, = S; = /By = Bt +  and
fort > Ty set 7y = Sy = /m. Then, ifn < Wﬁ’ after T = O (min(1/+/e,1/y/me))
iterations, with O (min{y/m/e, 1/ 61'5}) number of calls to the stochastic oracle it holds that
E[||Gy (m(T))H2 | < € where we used O(.) notation to hide terms with logarithmic dependency.

We also remark that Assumption 5 is only needed for convergence until 7, = @_C and after ¢t > T

we will not need this assumption. We also note that this assumption is not required in optimally
strongly convex setting as we utilize a full batch at the beginning of each epoch.

Discussion on lower bound. As we discussed in Remark 2, any impossibility result for optimizing
ming {\I/(w) Srx)+ =30, gl(a:)} also holds for general compositional optimization problem

in Eq. (2). For former problem, Fang et al. (2018) shows that to achieve the stationary point with
Jm

error € we require at least 0 (min{ , 6%5}) (almost optimal) gradient oracle calls for strongly

optimal objectives. As a consequence, for the DRO with x? or KL divergence metrics we do not
expect less number of constraint checks or sample complexity, respectively.
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Remark 4. In distributed setting with p devices, we can improve the convergence rate of DRO with
x2 and KL metrics to O (min{% +¥mo 1 6%}) For details, please refer to Appendix F.3.

€ p61'5

5 EXPERIMENTS

In this section, we empirically examine the efficacy of the proposed algorithm in different use cases.
The main algorithm that we compare against is Heavily-Constrained algorithm that uses a parametric
multiplier model proposed in Narasimhan et al. (2020b). We call this algorithm Heavily-constrained,
where they learn the Lagrange multiplier values using a parametric model such as a neural network.
The tasks we apply the algorithms are mainly focused on fairness constraints since they fit greatly
to the problem definition in this paper due to the large number of constraints they add to the main
learning problem. In addition, similar to distribution robust optimization approaches, the main goal
of fairness constraint is to find a solution that is agnostic to the distribution of protected groups. The
code for the experiments is available at this repository.

Distributionally robust optimization for fairness constraints. The first experiment is based
on Narasimhan et al. (2020b); Wang et al. (2020), where we want to enforce equality of opportu-
nity (Hardt et al., 2016) constraints for different groups while the group membership is noisy and
changing during the training. Hence, the problem is to make the solution distributionally robust
among different protected groups in the problem. Based on the setup in Narasimhan et al. (2020b),
we assume we have access to the marginal probability of the true groups (P (¢g; = j|g; = k), where
g; is the true group membership and g; is the noisy group membership). Hence, to enforce fairness
constraints, we consider all possible proxy groups using this marginal probability, which can increase
the number of constraints greatly. The goal in this case for equal opportunity is to have the true
positive rate of each group in the vicinity of the true positive rate (tpr) of the overall data, that is:
tpr(g = 7) > tpr(ALL) — € for every proxy group we define.

In this experiment, we use the Adult dataset (Dua & Graff, 2017), and consider race groups of
“white”, “black”, and “other” as protected groups. We train a linear classifier with logistic regression,
and report the overall error rate of the classifier, as well as the maximum violation of the fairness
constraints (equal opportunity) over true group memberships. We set e = 0.05 and the noise level to
0.3. Again, we compare with unconstrained optimization and heavily-constrained algorithm with
a linear model as its multiplier model. First row of Figure 1 shows the results for this experiment,
where the proposed GCIVR algorithm can achieve the same level of constraint violation on true group
memberships as the heavily constraint while outperforms it in terms of overall error rate. Hence, the
solution found by the GCIVR dominates heavily-constrained solution. In terms of runtime speed, the
first row of Figure 1(c) clearly shows the advantage of GCIVR over heavily-constrained with much
lower overhead to the unconstrained optimization.

Fairness Constraints on intersectional groups. In this task we ought to learn a linear classifier
with logistic regression to predict the crime rate for a community on Communities and Crime
dataset (Dua & Graff, 2017). This dataset contains 1994 instances of communities each with 128
features to predict the per capita crime rate for each community in the US. The labels are high
and low crime rates to represent if a community is above the 70th percentile of the data or not.
To add fairness constraints, we first determine different communities based on the percentages of
the Black, Hispanic and Asian population in each community, as discussed in Cotter et al. (2019);
Narasimhan et al. (2020b). Similar to Narasimhan et al. (2020b), we generate 1000 thresholds of the
form (71,72, 73) € [0, 1] to define each group. Consider the population of each race as (py, p2, p3),
then a community belongs to group g, .-, - if p; > 7; Vi € [3]. Then the fairness constraints enforce
that the error rate of each group should be in the neighborhood of the overall error by margin of e.
That is err (gr, r,,r) < err (ALL) + e. Similar to Narasimhan et al. (2020b), we set € = 0.01 and
not consider groups with less than 1% of data.

We compare with the unconstrained optimization and Heavily-constrained algorithm with a 2-layer
neural network, each with 100 nodes as their Lagrange model, as described in their paper. We
compare the trade-off between the error rate and maximum violation of fairness constraints among
groups. The second row of Figure 1 portrays this comparison for the test dataset. As it can be
inferred, the proposed GCIVR algorithm achieves the same error rate as Heavily-constrained, but
both higher than the unconstrained optimization. However, comparing the maximum violation of
constraints, it is clear that GCIVR outperforms both optimization methods. Also, the third figure
shows the runtime of different algorithms. It is clear that GCIVR adding a minimal overhead to the
unconstrained optimization, while heavily-constrained increases the runtime more than 100 times.
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Figure 1: Comparison of the proposed GCIVR algorithm with unconstrained optimization and heavily-
constrained algorithm Narasimhan et al. (2020b) in three different tasks of fairness and DRO. Each
row shows the result for one task based on the error rate, max constraint violations and the runtime of
the codes. In all the cases solutions learned by GCIVR dominates the heavily-constrained solution
and it converges way faster.

Per-query fairness constraints in ranking. In the third problem we evaluate our algorithm on the
fairness in the ranking problem, where we intend to impose per-query constraints on the learning to
rank problem as defined in Narasimhan et al. (2020a;b). We divide document-query pairs into two
groups based on the 40th percentile of the their QualityScore features. Hence, in this problem, we
want to learn a ranking function f : D x Q — R, which maps a pair of document-query features to a
real number as the score. Consider the groups of gg and g; as mentioned before, we want the error
rate for these groups to be close to each other. In other terms, if the pairwise error rate is defined as:
err; j(¢) = E[1{f(d,q) < f(d,q)} |y>y',de€g;d € g;], where y and y/’ are the respective
binary labels. Then, the fairness constraints can be satisfied as |errg 1(¢) — err1,0(¢)| < e Vg € Q.

For this experiment, we use Microsoft Learning to Rank Dataset (MSLR-WEB10K) (Qin & Liu,
2013), which contains 10K queries and 136 features. For this experiment we use a non-convex
objective, where the model is a two-layer neural network each with 128 nodes and cross-entropy as
the loss function. We compare against the unconstrained optimization and the heavily-constrained
algorithm with an one-layer neural network with 64 nodes as its multiplier model. We use 1000 queries
in the training and 100 queries in the test datasets. The third row in Figure 1 shows the error rate and
maximum violation of groups constraints. As it is clear GCIVR outperforms heavily-constrained in
both error rate and maximum violations of groups by a large margin. In terms of runtime, GCIVR is
very close to the unconstrained optimization, and about 2x faster than heavily-constrained.

6 CONCLUSION

In this paper, we showed that many DRO problems or heavily constrained optimization problems can
be cast into a general framework based on finite-sum composite optimization. To solve this composite
finite-sum optimization, we introduced centralized and distributed algorithms. We theoretically
illustrated that our algorithm converges with an almost optimal number of constraint checks (for
Wasserstein distance) or gradient calls (for x? or KL divergence metrics). Finally, we validated our
theory with a number of experiments.
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Appendix

In the appendix, we provide the missing proofs and derivations from the main manuscript, as well as
proposing the distributed version of Algorithm | to further improve the convergence speed.
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A EXAMPLE OF EQUIVALENT WESSTERSTEIN REFORMULATION

A tractable reformulation of distributionally robust logistic regression problem by reduction to a
constrained optimization problem is provided in Shafieezadeh-Abadeh et al. (2015) as follows:

1 m

. A

S Xe+ — E i
min r(x) € miils

xT

subjectto  g;(x) = (g(z,y) — s;) <0, Vie[l:m)
gj(x) = (lp(z, —y) — Ax —s;) <0, Vj € [1:m]

gel@) = (11812 = »?) <0 (13)

where {g(z,y) = log (1 +exp (—y (B, z))) is the associate loss with parameter 3 and the data
sample (z,y) and we define © = (z, 81, ..., Sm, A, B).

B OBTAINING AUGMENTED OPTIMIZATION PROBLEM

To derive the smoothed constrained variant of original optimization problem we follow the reduction
method originally introduced in Mahdavi et al. (2012) to get:

m
= . . p1 D2 Pm Pm+1 1
min ¥(z) = m m > pidi gPr P2 Pm _
oo Vw) =g T(w)Jrogpiga,zaf’{:lpL a[ O P |

= min r(x) +~vIn <1 + Zexp ]

i=1

m

1+Zexp (O‘g )

=min |r(x) +vIn <

> +yIn(m+1)

=min |V(x) +yIn(m+1)|, (14)
—_————

L Constant

where in Eq. (14) we used the definitions ¥(x) = r(z) + vIn (g(x)), g;(x) = exp (%@)) and
g(x) = ﬁ [1+ >, gi()]. Since y1n (m + 1) is a constant, the minimizer of both ¥(z) and

U(x) is the same, and consequently we can solve the optimization problem for ¥ via finite-sum
composite optimization.

C PROOF OF CLAIM 2.1

We use Lagrangian multiplier for the purpose of the proof. The Lagrangian of the optimization
problem in Eq. (4) is

Lz, y;A) = max [Zpifi(wi) - Vﬁ > (mp; — 1) = A (Zpi - 1)] (15)
i=1 i=1

0<pi<L, S, ps g

By setting V,,, L = 0 we obtain

pi:nll<fi(w’z/_>\+1). (16)

Then from the condition ) ;, pi = 1, it follows that:

= % > file) (17)
=1
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Plugging the obtained values for A and p; into Eq. (4) yields

2
1 & 1 &
:1_2wxm§<fi(m)_m§fl(m)>
2
1 & s 111 &
R v 2 [fi()] o m;ﬁ(m)] (18)

which completes the proof.

D STRONGLY-CONVEX CONVERGENCE FOR DRO WITH KL AND Y? METRICS

Theorem D.1. Suppose Assumptions 1 and 2 hold, and also assume V is p-optimally strongly

convex. If we set 7, = =B, = vmand T = —=2—, letting 1 — 2 byletrin
f =5 t Vmpn’ 8N < 1% L2 136G, 2 €8

xz(*+1) = GCIVR (a}(k)) fork =0,..., K — 1 using Algorithm 1 after K = In (1/¢) repetition
solves the optimization problem in Eq. (2) with convergence error W(&(T)) — U (x(*)) < ¢ with
O ((m + Kky/m) In %) number of gradient calls. Therefore, depending on the objective function U,
this sample complexity corresponds to both DRO problem with x? and regularized KL metrics.

)‘"/ 1=

Based on Theorem D.1, for DRO problem with x2 divergence metric, we can achieve W (z (&
1) number of

U(z™)|y=1 < veand U(25F)) |51 — U(x™)]451 < € with O ((m + Kky/m)In
gradient oracle calls.

E DISTRIBUTED STOCHASTIC COMPOSITE ALGORITHM

In the main body, we mainly focused on studying the sample complexity of solving DRO problems
in a centralized setting. The question we are interested is that “Can we further improve the sample
complexity?" In this section, we give an affirmative answer to this question via studying distributed
version of DRO problem. We suppose data samples are distributed among p clients '. For distribution-
ally robust optimization problem via Wasserstein , x? and KL divergence metrics in the distributed
fashion like federated learning setups McMabhan et al. (2016); Mohri et al. (2019); Haddadpour et al.
(2019b); Haddadpour & Mahdavi (2019); Haddadpour et al. (2019a); Deng et al. (2020); Haddadpour
et al. (2020).

"We suppose that each device has access to at least 1m,/p number of data points.
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We first introduce our distributed finite-sum compositional algorithm as detailed in Algorithm 2.

Algorithm 2: Distributed Generalized Composite Incremental Variance Reduction
(DistGCIVR(z(")))

Inputs: Number of iterations ¢ = 1, ..., T, learning rate 7, initial global model 2 and a set of
triples {¢, By, S; } where 7; indicating the size of epoch length and mini-batch sizes of B; and
S; at time .

fort=1,...,Tdo
fori; =1,...,pdo in parallel

Sample minibatches B(:%) with size B, uniformly over [m] and compute
(t,3) 1 . St (t,3)
Yt = B Z gi(x®;e), 2 B > Va6, wi = Z Vhi(z®;¢
568(“) E€eB(tD) geB(f )
Server computes yO =1 Zp 1 y(()t ) ( ) = % le Z(()t’i) and w(()t) = % Ef:l wt()t’l)

T

Server computes V@(a:é’)) = (zét)) (f/(yét))) +

Update the model as follows and broadcasts it to devices
2 =117 () - Va(a()))

forj=1,. 1 do in parallel
Sample a set S ") with size S; over [m], and form the estimates

i 1

! gesih?
ti tyi 1 ¢ ¢
# = o 3 [Vaeo) - Vol o) (19)
gesih?
) _ ) 4 S [Ghy(as6) - Vhs 20
w; =w;_g + i z(w] 5) ( 1a£) (20)
t £es§t’i)
and send y(“*) and z(t%) back to server
() _ P () (1) _ 15w L0
Server computes y; p =Y Z = 5 2im1 % and

t _ 1 p (t.3)
w;t =5 =1W;

. T
Compute V@(wgt)) = (z§t)> (f’(yét))> + w§t)
Update the model as follows: (?_1 =117 (:B;t) — @@(wgt))))

end

end
end

Output: Return a randomly selected solution from {w?}tzl’“"T

7=0,..., Tt

We emphasize that our algorithm is developed based on Algorithm 1, so we only describe the main
differences. In the the distributed setting, in epoch ¢, i-th device has local version of global model,
ie. y(t %) j(t l), w'"" and at the beginning and during the epochs all devices send back their local
modefs back to the server to be averaged and global model x to be updated. Then, server broadcast

global model to the devices.

F PROOF OF THEOREMS 4.1 AND F.2

Before proceeding to the proof of this theorem, we need to mention that for Wasserstein DRO problem
the main objective () is an affine function of input data. This property naturally satisfies condition
(5) in Assumption 1 and will be useful in distributed setting. For an illustrative example please see
Appendix A.
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Proof of Theorem 4.1:  Suppose that (*) is the solution for the following optimization problem:

xT

minimize 7r(x) £ %Zﬂ(mz) Q1)
i=1

subjectto  g;(x) <0, Vi € {1,--- ,m}.

Defining ¥(z) £ r(z) + vIn (ﬁ {1 + 3" exp (%)D, we have

U(z) £ V(z) +yIn(m + 1).
Noting that (%) and 2(5) are the output of algorithm with and without projection to the constraints
set
K={z:g(x)<0,Vie[l:m|} (22)
respectively. Our proof is based on following two steps:

(1) We first show that E [W(z8))] < ¥(2™)) + O (exp(—aK)), which indicates the conver-
gence rate of stochastic compositional optimization problem depends on used algorithm
without any projection.

(2) Second step involves showing that E [r(25))] < r(z*))+O (exp(—akK)); in other words

the final projected solution converges to optimal solution of augmented objective function
and a is some positive constant depends on condition number k.

We note step (1) follows directly from Theorem 8 in Zhang & Xiao (2019b). In the following, we
prove step (2). First note that as g;(x*) < 0 for all 1 <14 < m, we have:

1§ (2222)]
50))

1
V(™) = r(@™) +yIn <m+1

gt(m(*))éo 1
< ) In|——
- r(ac ) +tin (m +1

= r(z™) (23)
This leads to
(z™) < r(@™) + yIn(m + 1) (24)
Therefore, using item (1) we have:
E {\Tl(w(K))} < r(x™) + O (exp(—aK)) (25)
On the other hand, due to the definition of ¥(x) and smoothed max or log-sum property, we have:
U (2B > r(2)) + max (O, Ozg}i(w(K))) : (26)

For the purpose of lower bounding the second term in Eq. (26) we need the following Lemma:
Lemma F.1. If &7 # x7, by defining g(z*)) £ max Gi(x) for all i € [1 : m] we have:

g > p H””(K) _ 3E(K>H2 @7

The proof of this lemma can be found in Mahdavi et al. (2012) but for the sake of completeness we
also include the proof.

Proof. As ZE) is the projection of ) into K; i.e., K = arg min H:c — ) HQ, then due to

g9(z*)<0
first order optimality condition, there exists a positive constant £ > 0 such that
g@ ")y =0 st, &5 -z = Evg(@H) (28)
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As a result we have:
(@) = g(a®) - g(a 1) > (249~ a9) vy(al) = | (21 — 209 | [ 79210

2 a0

where () follows from Assumption 3. O

Hence, we have:

T (25 >r(x5)) —l—apH(a:(K) —E(K))H (30)

Moreover, note that we have:

r@®)) < (@) + v (m + 1) + O (exp(—ak)) — max (0, ag;(@")))

<r(@™) +yIn(m+1) + O (exp(—aK))

Next, we can write:
r(z™) — r(@%)

IN

r(x™) — r(@5) + r(@B)) — r(@5)
r(

w(K)) _ r(i(K))
(a0 -29)]
Egs. (24), (30) and (31) lead to the bound:

ap H (w(K) - :E(K)) H <r(@™) —r@®) + yIn(m + 1) + O (exp(—akK))

IN

<G (25 = 25 [ + 410 (m+ 1) + O (exp(—aK)) ()
which allows us to the following:

Inm 1
(K) _ —<K>H <
Hw * _ap—G—i_apr

O (exp(—aK)) (33)

Finally, we have:
r(@5)) = r(@5)) — (2B 4 r(xF))
<G me) _ z(K) H + (e

yIn(m + 1)
ap—G ap—G

<G [ O (exp(—aK))] +yIn(m + 1) +r(z™) + O (exp(—aK))

Cost of violating constraints
(34)

exp(—aK)

(mr1) We achieve the desired result.

Therefore, by setting v =

Proof of Corollary 4.2: The proof follows directly from Eq. (34).
Proof of Theorem D.1: The proof follows directly from Theorem 8 in Zhang & Xiao (2019b).

F.1 COMPUTATIONAL COMPLEXITY OF THEOREM 4.1 AND THEOREM D. 1

Given the GCIVR algorithm, the sample complexity for Theorem 4.1 (where S;, B, and 7; are fixed)
is

O (max{TB,2TTS}) x K) =0 (max{m, Lm} + max{2%ﬁﬂ, Vvmy/m} ln(l/e)>

Vmpn Vvm
=0 <<max{m, ﬁm} + max{g\/ﬁ, m}> ln(l/e)>
= O ([m+ rv/m]In(1/e)) (35)
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Proof of Theorem 4.3: The proof follows directly from Theorem 4 in Zhang & Xiao (2019b).

F.2 COMPUTATIONAL COMPLEXITY OF STRONGLY-CONVEX OBJECTIVES CORRESPONDING
TO THEOREMS 4.3

From Theorem 4 in Zhang & Xiao (2019b) for non-convex objectives we have:

, 0 (1) if T<Tp
(1) < r .
E {Hgn(m )H } > { 9] (%) else T > Ty, 0

Considering the GCIVR algorithm and the bound in Eq. (36), the sample complexity for Theorem 4.3
(where S; and 7y are fixed) can be expressed as follows:

T x (B + ST) T =0 (1) me) > Ty = O (vm) ,

= 23:02(%4—5)2 T =0 (¢ V2) < Ty = O (vim) |
T X (m+ ymym) T =0(1/\/me) > Ty = O (ym),

(v?T3) T =0 (e'?) < Ty =0 (ym),
{ (
37

() T=00/vme) >Ty=0(ym),
e 32) W T=0(e?) <Ty=0(ym),

Therefore, depending on how large v/m is and also desired accuracy level €, we can decide to choose

an adaptive or a non-adaptive approach.

0
0
0
@)

() T=00/vme) >To=0(/m),

F.3 CONVERGENCE ANALYSIS

In this section, we extend assumptions used for centralized setting to distributed counterpart as
follows:

Assumption 6. We have the following assumptions:

D' (x1) = f'(x2)|| < Lpllxr — x2|| where 1,22 € R. We also assume that
[f (1) = fla2)l| < L |21 — 2]
2) |Vhj(z1) — Vhj(z2)|| < Ly ||x1 — 22| where 1,22 € R We also assume that
1P (1) = hj(@2)|| < Ln |21 — 22|
3) IVgj(®1;€) = Vgj(x2; )l < Lygllwr — @2l and |lgj(@1;€) — gj(x2;8)| <
Uy le1 — 2| for Vo1, 22 € RO and 1 < j < p.
4) We suppose that V(x) in Eq. (2) is bounded from below that ¥* = inf, ¥(x) > —oc.
5) We assume r(xz) € RU {oo} is a convex and lower-semicontinues function.
Assumption 7 (Unbiased estimation). The mini-batch sampling is unbiased that is E [g;(x; £)] =
gj(x) and B [Vg;(w;§)] = Vg;(x) for 1 < j < p.

Convergence Analysis for Strongly Convex Objectives:

Assumption 8. We additionally for the DRO problem with Wessterstein metric suppose that the
Sunction () is smooth with module G.

Theorem F.2. Under Assumptions 3 and 6 to S, when V is p-optimally strongly convex, if we

— — — _ _5 — (=K) ; 2
set s = Sy = /By = ymand T = T and 7 = T;(?m_H) letting n < Ter 1273600

and a > %, if we let x*+t1) = DpistBCO (:c(k)) for k = 0,..., K — 1 using Algorithm 2
after K = 1n (1/¢) stages and returning the final solution after projecting onto the constraint set
K = {z|gi(x) < 0,i=1,2,...,m}, ie., ) = T (), solves the optimization problem in
Eq. (3) with convergence error r(1)) — r(z*)) < e with

O((m+2+n\/ﬁ> lni) (38)

20



Published as a conference paper at ICLR 2022

per device number of constraint checks.

Remark 5 (Computational Complexity). The sample complexity for Theorem F.2 (where Sy, By and
T; are fixed) is

O (max{TB,2T75}) x K) =0 (max{ ———m} + max{2———+v/my/m, vVmy/m} ln(l/e))

pfun \f

—0 <<max{m, ﬁm} 4 max{u—?]\/ﬁ, m}) In(1 /e)>

-0 <[m + % + n\/m] 1n(1/e)> (39)

Convergence Analysis for Non-Convex Objectives: For the non-convex case we also need the
following extra assumption.

Assumption 9 (Bounded variance). The mini-batch sampling has bounded variance that is

E |[Vg;(@; 2) - V()| < o

forl <j < m.
Theorem F.3. Under Assumptions 6 to 9 using Algorithm 2, for some positive constants [3 and
0 < ¢ < /m; denoting Ty = % = O(\/E), ift < Ty, parameters are chosen to be

= Sy = /By = Bt + (; and whent > Ty, set 7, = Sy = \/m. Then, if n < e it
+1 /L2 +12Go
holds that
2 o (&t if T < Ty,
E [Hgn(mm)u ] < { . (T)mp) T (40)
Vm(T=To+1) 0
This leads to the per device sample complexity ofO (mln{ Vm \C, pers T 61 5 }) where O( )

notation hides logarithmic factors. Therefore, depending on the objective function U this sample
complexity corresponds to both DRO problem with x? and regularized KL metrics.

We highlight that while in distributed setting we can not reduce computational complexity in terms

of order of magnitude, we can reduce computational complexity partially linearly with number of
devices.
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G PROOF OF THE DISTRIBUTED ALGORITHM

For the convince, we define the following notations

® = {Egt), e 7€§)t)}7

to denote the set of local solutions and sampled mini-batches at iteration ¢ at different machines,
respectively.

We use notation E[-] to denote the conditional expectation E¢ () [-].
G.1 GENERAL LEMMAS

Before proceeding to the proof of main theorems, we first review a few properties of our algorithm
that will be useful in our convergence proof:

E [y L] = o) + ai(@”) — ()
E [zj(-t’l)kcg-t } (t Z) + Vgl( ) ) — Vgi(:lt ,) D)
E[w"V]2l"] = wgf;’f + Vhi(a) = Vi (@) @1)
which due to linearity and taking average over the models of all devices, leads to
E[y"2"] = 42, + g(@”) - g(a!?)) “2)

E[2e"] = =", + Vg(al”) - Vg(a!?,)

E[wlzl] = w, + Vi) - Vh@{,) 3)
Additionally, we have equivalent update rule as follows:
t t t t
()fyf)ﬁs(t) > { 6) — gl 5)175)} (44)
gestt
® _ 1 ®.
2 =204 o Y [Valels0) - Vgl 50)]
gest
1
wl! =wl, + = 3 [Vh@:6) - Vh@!;:¢)] 45)
¢ins{H

Lemma G.1. Forany 1 < j < 13 we have:

5 oo (=) Q:SE:yé” (“’)!WZSé)EU
[~ ()] < =87 o (o4 )M+Zs 5 ¢
s ()] < 2 s (e “))!WZW =

We note that Lemma G.1 is the generalization of Lemma 1 in Zhang & Xiao (2019b), and we provide
the proof for the sake of completeness.

(t) fa:ff)lH } (46)

]

~al)

— 2

] (47)

Proof. Our proof can be considered as a generalization of the proof in Zhang & Xiao (2019b) to
distributed setting. For this end, we use the following equation for every fix vector u:

Var(z) = E |}z - ul]’] - |E[2] - ul® (48)
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Therefore, letting u = g(wg-t)) we obtain:

2
ot ] < ) -t v )

= ’E[ ® 1) ] g H +Var( ® gn) 49)
The final step of proof involves bounding the term Var (yj ) as follows:
Var <y§t)‘m§t)) = Var yj(t)1+m Z { (t) —g(x 5”1,5)} a:;-t)
gestt
= < Var (9(2"56) — gl )]
< %E [Hg(as;”;ﬁ) g0 \wY)]
. 50 [H | ’”’y)} 0)

where (2) and (&) follows from the definition of Var(.) and Assumption 6.
The proof for Eq. (47) follows similarly.

The rest of the proof is similar to Zhang & Xiao (2019b) but for the sake of completeness we
add the rest of the proof. For this purpose, we use the notation ®(x) £ h(z) + f(g(x)) and

. T
V@(wgt)) _ (zj(.t)) f'(y;t)) 4 wj(-t)
Lemma G.2. Under Assumption 6 we have:

® (t) t) ¢
[Hw )~ V(! M_S(t)ZE[Hm< —a®

] B(t) GD

with definitions Gy £ 3 (g + gfL2> and o2 £ 3 (gﬁL?Uﬁ + 900 + 0%)

Proof. Using Assumption 6, we obtain:

E [H@@(mf)) - V@(wy))HQ}

=& ||| (=) 5+ wl? — o @) (o)~ ) T

SE{|[(29) @) - @O W) + o @ W) — @) gll) + el — )

<38 (=) £ - @) |+ 5| |o@re?) - s@rae) |
+38 | ful? - @)

S sggm || - ot |+ saine ol - ] 2 [l - we) ]

(52)
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Next step of proof is to utilize Lemma G.1 in Eq. (52), which leads to

2 2
ZE[Hw(t)w(t)H]+3(£3L2 {Hym ((Jt)”]
(t) B (2® 2
-af H +38 | [t -1 (=)
(®) _ 2® H
ZE[H or } * 5w

r=1

3 (6313 + 212)
5@

2 ( (k) 3L
E|+4) - of M+Zs<tEU

G é}LQ +13)

E {H@CI)(:c;t)) — vq>(m§“)m <

(53)

where (a) comes from algorithm and computing initial full batch in the beginning of each epoch, and
using Assumption 9 as well as following bounds:

2 2
(t) o IR ON Ty (t) (k) ||? Ty
B[ - ol ] < gl B[ - sl < gt wna B[l - wel]] < 2
(54)
0

The rest of the proof is to show that E {||gn(m§) ||2] < e where gn(mj(t)) 2 % (a:(,t) NO) ) and

J Tjt1
2\, = i ( ) _ {V@(mé“)})

However, Algorithm 2 produces approximate proximal gradient mapping:

~ 1
Go(ay) 2 ()~ 2ll)) (55)
where :&;21 = H? ( &) —nVo(x (t))) So the following Lemmas connect two gradient approxima-
tions:

Lemma G.3. We have:

E[[|6,(22)]] < 2E [Hg}(m?)HQ} +2E M@@(mgﬂ) - v@(mgﬂ)HQ} (56)

Proof. Using triangle inequality H ®) JHH <2 H 3“” +2 H xiig— 3“” and the
definition of gn( z!! )) and G, (x ) we have

o A
E[[9,@2)]] < 28 ||Gy(@?) +?’w§t) ;21H

L ey e e

_om | G, (?)

+2H:V<D( ) _ Vo(a (t))w2 (57)
- 0

Based on the definition ¥(z) £ F(g(x)) + h(x) + r(x) we have the following lemma:
Lemma G.4. With definition L = Lr + Ly, we have:

E {\If( 5‘21)] <E [\p(my))} _ % (n— Lyn®) E [Hg}(m?)HQ} n g pr(a;gt)) _ @@(wg,t))HQ
(58)
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e oelt] <2 o] - ge e ] + o [votet?) - vocel)|

(5ol

Proof. Using Lg-Lipschitz continuity of U and the optimality of the %—strongly convex of subprob-
lem (r(x)), we obtain

\I/(a:ﬁﬁ = F(g(x ﬁ)l)) + h(wgﬂl) + r(mgl)

L L 2
< F(g(@)) + h(@) + ([T (g(@")) + Vh(a ) 4 ZETZ 0 — )

5 T + r(wg?_l)

]+1 Jj+1 J

2
2], — 2| + @)

Bl
= F(g(@")) + ha?) + <[@F(g( 1)) 4 i (t)} o)~ (t)>+21n‘
+Vh

j+1
+{[VFg@) + Va@)| - [VF(g(") + Va2, - 2()
1 LF+Lh 0 ® %
G s
1 1 Lp+ Ly 2
gF@(“»+M(%+m‘% 3 o -2 - (5 - 25 ) el -2t
n . ~ 2 1] 2
+§H[VF( () + Vi) - [VF(g(a) + Vac)] ]| +2n( 20, -
1 Ly + Ly, N |l= 2
~vo?) = g o~ = (55 = 255 =+ oty - voel )

(60)

Next, we complete the proof by taking expectation from both sides of Eq. (60) concludes the proof of
Eq. (58).

Next, using Lemma G.2, we have
2 2 n t = ONIE
—7E [Hgn )| } <—2E[|6,@)[’] + IE {HV@(:B; ) - Vo) ] 61)
We can prove Eq. (59), by simply adding Eq. (61) to both sides of Eq. (58). O

We note that Lemmas G.3 and G.4 are an extension of Lemma 3 and 4 in Appendix Section of Zhang
& Xiao (2019b) with difference that here the function ¥ () includes extra function h(x), which
leads to Ly = L + L, which is bigger than L in Zhang & Xiao (2019b).

The rest of the proof is same as the proof of Theorems 4 and 8 in Zhang & Xiao (2019b) which is
based on Lemmas G.3 and G.4, and for more details we refer the reader to the Appendix section of
the reference Zhang & Xiao (2019b).

O

H APPROXIMATE APPROACH FOR DRO WITH WESSERSTEIN METRIC WITH
NON-CONVEX OBJECTIVES

For the non-convex objectives, the optimization problem in Eq. (3) can be upper-bounded with the
optimization problem as follows:

mf sup Eg [h(z;€)] < minimize r(z) = e Zfz(wZ) (62)
QGDN * m

subjectto  g;(x) <0, Vi€ {1,--- ,m}
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We note that for the case of convex objective in optimum solution inequality holds with equality;
however, in case of non-convex cost functions we do not have equality necessarily. We note that
Eq. (62) with non-convex constraint can not be easily solved via augmented function approach in
previous section. In order to solve the upper bound optimization problem in Eq. (62) efficiently via
our suggested composite approach. For this end, we suggest to solve the following optimization
problem where in constrained are modified to be convex:

- R
minimize  f(x) miE:lf(w) (63)
subjectto  §; 2 gi(®) + i ||| <0, Vie {1,--- ,m} (64)

where we choose g; such that g; are strongly convex. Therefore, we have the following relationship
between optimization problem:

inf sup Eq [h(x;¢)] < miniwmize r(x) £ %Zfz(ﬂh) (65)
i=1

xeX QEﬁN
subjectto  g;(x) <0, Vi € {1,--- ,m}

xT

< minimize 7(x)2 %Zfz(wz) (66)
i=1

subject to  gi(x) + p; ||lz)|* <0, Vi e {1,--- ,m} (67)

26



	Introduction
	Related Work

	DRO via Finite-Sum Composite Optimization
	Our Proposed Algorithm
	Convergence Analysis
	Optimally Strongly Convex Objectives
	Non-Convex Objectives

	Experiments
	Conclusion
	Example of Equivalent Wessterstein Reformulation
	Obtaining Augmented Optimization Problem
	Proof of Claim 2.1
	Strongly-convex convergence for DRO with KL and 2 metrics
	Distributed Stochastic Composite Algorithm
	Proof of Theorems 4.1 and F.2
	Computational complexity of Theorem  4.1 and Theorem D.1 
	Computational Complexity of strongly-convex objectives Corresponding to Theorems 4.3
	Convergence analysis

	Proof of the Distributed Algorithm
	General Lemmas

	Approximate Approach For DRO with Wesserstein Metric with Non-convex Objectives

