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Abstract

Despite the established convergence theory of Optimistic Gradient Descent As-
cent (OGDA) and Extragradient (EG) methods for the convex-concave minimax
problems, little is known about the theoretical guarantees of these methods in
nonconvex settings. To bridge this gap, for the first time, this paper establishes the
convergence of OGDA and EG methods under the nonconvex-strongly-concave
(NC-SC) and nonconvex-concave (NC-C) settings by providing a unified analysis
through the lens of single-call extra-gradient methods. We further establish lower
bounds on the convergence of GDA/OGDA/EG, shedding light on the tightness of
our analysis. We also conduct experiments supporting our theoretical results. We
believe our results will advance the theoretical understanding of OGDA and EG
methods for solving complicated nonconvex minimax real-world problems, e.g.,
Generative Adversarial Networks (GANs) or robust neural networks training.

1 Introduction

In this paper, we consider the following minimax problem:

min
x∈Rd

max
y∈Y

f(x,y) (1)

where Y could be a bounded convex or unbounded set, and the function f : Rd × Y → R is smooth
and strongly-concave/concave with respect to y, but possibly nonconvex in x. Minimax optimization
(Problem 1) has been explored in a variety of fields, including classical game theory, online learning,
and control theory [2, 50, 21]. Minimax has emerged as a key optimization framework for machine
learning applications such as generative adversarial networks (GANs) [14], robust and adversarial
machine learning [46, 37, 15], and reinforcement learning [54, 43].

Gradient descent ascent (GDA) is a well-known algorithm for solving minimax problems, and it
is widely used to optimize generative adversarial networks. GDA performs a gradient descent step
on the primal variable x and a gradient ascent step on the dual variable y simultaneously in each
iteration. GDA with equal step sizes for both variables converges linearly to Nash equilibrium under
the strongly-convex strongly-concave (SC-SC) assumption [28, 12], but diverges even under the
convex-concave (C-C) setting for functions such as bilinear [22, 38].

Given the high nonconvexity of practical applications such as GANs, exploring convergence guar-
antees of minimax optimization algorithms beyond the convex-concave (C-C) setting is one of the
canonical research directions in minimax optimization. Several algorithms with convergence guaran-
tees beyond the C-C domain have been explored in the literature. Alternating Gradient Descent Ascent
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Algorithm NC-C NC-SC
Deterministic Stochastic Deterministic Stochastic

PG-SVRG [44] - Õ(ϵ−6) - -
HiBSA [36] O(ϵ−8) - - -

Prox-DIAG [48] Õ(ϵ−3) - - -
Minimax-PPA [31] O(ϵ−4) - O(

√
κ

ϵ2
) -

ALSET [4] - - O(κ
3

ϵ2
) O(κ

3

ϵ4
)

Smoothed-AGDA [52] - - O( κ
ϵ2
) O(κ

2

ϵ4
)

GDA [30] O(ϵ−6) O(ϵ−8) O(κ
2

ϵ2
) O(κ

3

ϵ4
)

OGDA/EG (Theorems 4.2, 4.4, 4.8, 4.9) O(ϵ−6) O(ϵ−8) O(κ
2

ϵ2
) O(κ

3

ϵ4
)

Table 1: A summary of prior and our convergence rates in nonconvex-concave (NC-C) and nonconvex-
strongly-concave (NC-SC) minimax optimization. For NC-C, we assume f(x,y) is ℓ-smooth, G-
Lipschitz in x, and concave in y, and for NC-SC we assume ℓ-smoothness, and µ-strong concavity
in y, where κ = ℓ/µ denote the condition number.

(AGDA) is one of these methods demonstrated to have excellent convergence properties beyond the
C-C setting [51, 52, 6]. Additionally, two alternative powerful algorithms are Extragradient (EG) and
Optimistic GDA (OGDA), which have recently acquired prominence due to their superior empirical
performance in optimizing GANs compared to other minimax optimization algorithms [28, 8, 38].
Spurred by the empirical success of EG and OGDA methods, there has been a tremendous amount
of work in theoretical understanding of their convergence rate under different sets of assumptions.
Specifically, recently the convergence properties of EG and OGDA were investigated for SC-SC and
C-C settings, where it has been shown that they tend to converge significantly faster than GDA in both
deterministic and stochastic settings [39, 12, 40]. Despite these remarkable advances, there is a dearth
of theoretical understanding of the convergence of OGDA and EG methods in the nonconvex setting.
This naturally motivates us to rigorously examine the convergence of these methods in nonconvex
minimax optimization that we aim to investigate. Thus, we emphasize that our focus is on vanilla
variants of OGDA/EG, and improved rates in NC-C and NC-SC problems have already been obtained
with novel algorithms as mentioned in Section 2.

Contributions. We propose a unified framework for analyzing and establishing the convergence
of OGDA and EG methods for solving NC-SC and NC-C minimax problems. To the best of our
knowledge, our analysis provides the first theoretical guarantees for such problems. Our contribution
can be summarized as follows:

• For NC-SC objectives, we demonstrate that OGDA and EG iterates converge to the
ϵ−stationary point, with a gradient complexity of O(κ

2

ϵ2 ) for deterministic case, and O(κ
3

ϵ4 )
for the stochastic setting, matching the gradient complexity of GDA in [30].

• For NC-C objectives, we establish the gradient complexity of O(ϵ−6) for the deterministic
and O(ϵ−8) for stochastic oracles, respectively. Compared to the most analogous work on
GDA [30], our rate matches the gradient complexity of GDA our results show that OGDA
and EG have the advantage of shaving off a significant term related to primal function gap
(∆̂0 = Φ(x0)−minx Φ(x)).

• We establish impossibility results on the achievable rates by providing an Ω(κ
2

ϵ2 ), and
Ω(ϵ−6) lower bounds based on the common choice of parameters for both OGDA and EG
in deterministic NC-SC and NC-C settings, respectively, thus demonstrating the tightness of
our analysis of upper bounds.

• By carefully designing hard instances, we establish a general lower bound of O( κ
ϵ2 ), inde-

pendent of the learning rate, for GDA/OGDA/EG methods in deterministic NC-SC setting–
demonstrating the optimality of obtained upper bound up to a factor of κ.

2 Related Work

Extra-gradient (EG), and OGDA methods. Under smooth SC-SC assumption, deterministic OGDA
and EG have been shown to converge to an O(ϵ) neighborhood of the optimal solution with rate of
O(κ log( 1ϵ )) [39, 49]. Fallah et al. [12] improved upon the previous rates by proposing multistage
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OGDA, which achieved the best-known rate of O(max(κ log( 1ϵ ),
σ2

µ2ϵ2 )) for the stochastic OGDA in
SC-SC setting. Under monotone and gradient Lipschitzness assumption (a slightly weaker notion
of smooth convex-concave problems), Cai et al. [3] established the tight last iterate convergence of
O( 1√

T
) for OGDA and EG, and similar results for EG has been achieved in [17, 16]. Furthermore, To

the best of our knowledge, OGDA and EG methods have not been extensively explored in nonconvex-
nonconcave settings except in a few recent works on structured nonconvex-nonconcave problems in
which the analysis is done through the lens of a variational inequality. This line of work is discussed in
the Nonconvex-nonconcave section. Moreover, recently, Guo et al. [18] established the convergence
rate of OGDA in NC-SC, however, they have µ-PL assumption on Φ(x), which is a strong assumption
and further allows them to show the convergence rate in terms of the objective gap. However, we
did not make such an assumption on the primal function, and hence unlike [18], we measure the
convergence by the gradient norm of the primal function.

Nonconvex-strongly-concave (NC-SC) problems. In deterministic setting, Lin et al. [30] demon-
strated the first non-asymptotic convergence of GDA to ϵ-stationary point of Φ(x), with the gradient
complexity of O(κ

2

ϵ2 ). Lin et al. [31] and Zhang et al. [55] proposed triple loop algorithms achieving
gradient complexity of O(

√
κ

ϵ2 ) by leveraging ideas from catalyst methods (adding α∥x− x0∥2 to
the objective function), and inexact proximal point methods, which nearly match the existing lower
bound [27, 55, 20]. Approximating the inner loop optimization of catalyst idea by one step of GDA,
Yang et al [52] developed a single loop algorithm called smoothed AGDA, which provably con-
verges to ϵ-stationary point, with gradient complexity of O( κ

ϵ2 ). For stochastic setting, Lin et al [30]
showed that Stochastic GDA, with choosing dual and primal learning rate ratio of O( 1

κ2 ), converges
to ϵ-stationary point with gradient complexity of O(κ

3

ϵ4 ). Chen et al. [4] proposed a double loop
algorithm whose outer loop performs one step of gradient descent on the primal variable, and inner
loop performs multiple steps of gradient ascent. Using this idea, they achieved gradient complexity of
O(κ

3

ϵ4 ) with fixed batch size. However, their algorithm is double loop, and the iteration complexity of
the inner loop is O(κ). Yang et al [52] also introduced the stochastic version of smoothed AGDA we
mentioned earlier. They showed gradient complexity of O(κ

2

ϵ4 ), using fixed batch size. They achieved
the best-known rate for NC-PL problems, which is an even weaker assumption than NC-SC.

Nonconvex-concave. Recently, due to the surge of GANs [14] and adversarially robust neural network
training, a line of researches are focusing on nonconvex-concave or even nonconvex-nonconcave
minimax optimization problems [36, 29, 41, 44, 48, 13, 32, 33, 24]. For nonconvex-concave
setting, to our best knowledge, Rafique et al [44] is the pioneer to propose provable nonconvex-
concave minimax algorithm, where they proposed Proximally Guided Stochastic Mirror Descent
Method, which achieves O(ϵ−6) gradient complexity to find stationary point. Nouiehed et al [41]
presented a double-loop algorithm to solve nonconvex-concave with constraint on both x and y, and
achieved O(ϵ−7) rate. Lin et al [30] provided the first analysis of the classic algorithm (S)GDA on
nonconvex-strongly-concave and nonconvex-concave functions, and in nonconvex-concave setting
they achieve O(ϵ−6) for GDA and O(ϵ−8) for SGDA. Zhang et al [53] proposed smoothed-GDA and
also achieve O(ϵ−8) rate. Thekumparampil et al. [48] proposed Proximal Dual Implicit Accelerated
Gradient method and achieved the best known rate O(ϵ−3) for nonconvex-concave problem. Kong
and Monteiro [26] proposed an accelerated inexact proximal point method and also achieve O(ϵ−3)
rate. Lin et al [31] designed near-optimal algorithm using an acceleration method with O(ϵ−3) rate.
However, their algorithms require double or triple loops and are not as easy to implement as GDA,
OGDA, or EG methods.

Nonconvex-nonconcave. Minimax optimization problems can be cast as one of the special cases
of variational inequality problems (VIPs) [1, 34]. Thus, one way of studying the convergence in
Nonconvex-nonconcave problems is to leverage some variants of Variational Inequality properties
such as Monotone variational inequality, Minty variational inequality (MVI), weak MVI, and negative
comonotone, which are weaker assumptions compared to convex-concave problems. For instance,
Loizou et al. [35] showed the linear convergence of SGDA under expected co-coercivity, a condition
that potentially holds for the non-monotone problem. Moreover, it has been shown that deterministic
EG obtains gradient complexity of O( 1

ϵ2 ) for the aforementioned settings [7, 10, 47, 42]. Alternatively,
another line of works established the convergence under the weaker notions of strong convexity such
as the Polyak-Łojasiewicz (PL) condition, or ρ-weakly convex. Yang et al [51] established the linear
convergence of the AGDA algorithm assuming the two-sided PL condition. Hajizadeh et al [19]
achieved the same results for EG under the weakly-convex, weakly-concave assumption.
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3 Problem setup and preliminaries

We use lower-case boldface letters such as x to denote vectors and let ∥ · ∥ denote the ℓ2-norm of
vectors. In Problem 1, we refer to x as the primal variable and to y as the dual variable. For a function
f : Rm×Rn → R, we use∇xf(x,y) to denote the gradient of f(x,y) with respect to primal variable
x, and ∇yf(x,y) to denote the gradient of f(x,y) with respect to dual variable y. In stochastic
setting, we let gx,t to be the unbiased estimator of∇xf(xt,yt), computed by a minibatch of size Mx

and gy,t to be the unbiased estimator of ∇yf(xt,yt), computed by a minibatch of size My, where
xt and yt are the tth iterates of the algorithms. Particularly, gx,t = 1

Mx

∑Mx

i=1∇xf(xt,yt, ξ
x
t,i),

and gy,t =
1

My

∑My

i=1∇yf(xt,yt, ξ
y
t,i), where {ξxt,i}

Mx
i=1, and {ξyt,i}

My

i=1 are i.i.d minibatch samples
utilized to compute stochastic gradients at each iteration t ∈ {1, . . . , T}.
Definition 3.1 (Primal Function). We introduce Φ(x) = maxy f(x,y) as the primal function, and
define y∗(x) = argmaxy∈Y f(x,y) as the optimal dual variable at a point x.

Definition 3.2 (Smoothness). A function f(x,y) is ℓ-smooth in both x, and y, if it is differentiable,
and the following inequalities hold: ∥∇f(x1,y1)−∇f(x2,y2)∥2 ≤ ℓ2∥x1−x2∥2+ℓ2∥y1−y2∥2.

Definition 3.3. A function g is µ-strongly-convex, if for any x1,x2 ∈ Rd the following holds:
g(x2) ≥ g(x1) + ⟨∇g(x1),x2 − x1⟩+ µ

2 ∥x1 − x2∥2.

Definition 3.4. We say x is is an ϵ-stationary point for a differentiable function Φ if ∥∇Φ(x)∥ ≤ ϵ.

We note that ϵ-stationary point is a common optimality criterion used in the NC-SC setting. As
pointed out in [30], considering Φ(x) as convergence measure is natural since in many application
scenarios, we mainly care about the value of the objective f(x,y) under the maximized y, e.g.,
adversarial training or distributionally robust learning.

When f(x,y) is merely concave in y, Φ(x) could be non-differentiable. Hence, following the routine
of nonsmooth nonconvex minimization [9], we consider the following Moreau envelope function:

Definition 3.5 (Moreau envelope). A function Φp(x) is the p-Moreau envelope of a function Φ if
Φp(x) := minx′∈Rd{Φ(x′) + 1

2p∥x
′ − x∥2}.

We will utilize the following property of the Moreau envelope of a nonsmooth function:

Lemma 3.6 (Davis and Drusvyatskiy [9]). Let x̂ = argminx′∈Rd Φ(x′) + 1
2p∥x

′ − x∥2, then the
following inequalities hold: ∥x̂− x∥ ≤ p∥∇Φp(x)∥, minv∈∂Φ(x̂) ∥v∥ ≤ ∥∇Φp(x)∥.

Lemma 3.6 suggests that, if we can find a x with a small ∥∇Φp(x)∥, then x is near some point
x̂ which is a near-stationary point of Φ. We will use 1/2ℓ-Moreau envelope of Φ, following the
setting in [30, 45], and establish the convergence rates in terms of ∥∇Φ1/2ℓ(x)∥. We also define two
quantities ∆̂Φ = Φ1/2ℓ(x0)−minx∈Rd Φ1/2ℓ(x) and ∆̂0 = Φ(x0)−minx∈Rd Φ(x) that appear in
our convergence bounds. Before presenting our results on EG and OGDA, we briefly revisit the most
related algorithm, Gradient Descent Ascent (GDA).

3.1 Gradient Descent Ascent (GDA) algorithm
Algorithm 1 GDA

Input: (x0,y0), stepsizes (ηx, ηy)
for t = 1, 2, . . . , T do
xt ← xt−1 − ηx∇xf(xt−1,yt−1) ;
yt ← PY(yt−1 + ηy∇yf(xt−1,yt−1)) ;

end for
Randomly choose x̄ from x1, . . . ,xT

Output:x̄

The GDA method, as detailed in Algorithm 1, per-
forms simultaneous gradient descent and ascent
updates on primal and dual variables, respectively.
This simple algorithm has been deployed exten-
sively for minimax optimization applications such
as Generative Adversarial Networks (GANs). Un-
der Assumptions 4.1, and 4.3, Lin et al. [30] es-
tablished the convergence of GDA by choosing
ηx = Θ( 1

κ2ℓ ), and ηy = Θ( 1ℓ ). In particular, they showed that deterministic GDA requires O(κ
2

ϵ2 )

calls to a gradient oracle, and stochastic GDA requires O(κ
3

ϵ4 ) calls using the minibatch size of O( κ
ϵ2 )

to find an ϵ-stationary point of the primal function.
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3.2 Optimistic Gradient Descent Ascent (OGDA) and Extra-gradient (EG) Method

We now turn to reviewing the algorithms we study in this paper: Optimistic GDA (OGDA) and
Extra-gradient (EG) methods. To optimize Problem (1), at each iteration t = 1, 2, . . . , T , OGDA
performs the following updates on the primal and dual variables:

xt+1 = xt − ηx∇xf(xt,yt)− ηx(∇xf(xt,yt)−∇xf(xt−1,yt−1))

yt+1 = PY
(
yt + ηy∇yf(xt,yt) + ηy(∇yf(xt,yt)−∇yf(xt−1,yt−1))

) (OGDA)

where correction terms (e.g. ∇xf(xt,yt)−∇xf(xt−1,yt−1)) are added to the updates of the GDA.
EG method performs the following updates:

xt+1/2 = xt − ηx∇xf(xt,yt)

xt+1 = xt − ηx∇xf(xt+1/2,yt+1/2)
;
yt+1/2 = PY (yt + ηy∇yf(xt,yt))

yt+1 = PY

(
yt + ηy∇yf(xt+1/2,yt+1/2)

) (EG)

where the gradient at the current point is used to find a mid-point, and then the gradient at the
mid-point is used to find the next iterate. We also consider stochastic variants of the two algorithms
where we replace full gradients with unbiased stochastic estimations. The detailed versions of these
algorithms are provided in Algorithm 2 , and Algorithm 3 in Appendix A.

4 Main Results

We provide upper bounds on the gradient complexity and iteration complexity of OGDA and EG
methods for NC-C and NC-SC objectives in both deterministic and stochastic settings. We also
show the tightness of obtained bounds for the choice of learning rates made. We will derive general
stepsize-independent lower bounds in Section 5.

4.1 Nonconvex-strongly-concave minimax problems

We start by establishing the convergence of deterministic OGDA/EG in the NC-SC setting by making
the following standard assumption on the loss function.

Assumption 4.1. We assume f : Rm × Rn → R is ℓ-smooth, and f(x, .) is µ-strongly-concave.

Moreover, we assume the initial primal optimality gap is bounded. i.e., ∆Φ = max(Φ(x1),Φ(x0))−
minx Φ(x).

Theorem 4.2. Let x̄ be output of OGDA/EG algorithms and choose ηx ≤ c1
κ2ℓ , ηy = c2

ℓ . For OGDA,
let c1 = 1

50 , c2 = 1
6 , and for EG, let c1 = 1

75 , c2 = 1
4 . Then under Assumption 4.1, OGDA/EG

converges to an ϵ-stationary point, i.e., ∥∇Φ(x̄)∥2 ≤ ϵ2, with iteration number T bounded by:

O

(
κ2ℓ∆Φ + κℓ2D0

ϵ2

)
,

where D0 = max
(
∥x1 − x0∥2, ∥y1 − y0∥2, ∥y1 − y∗

1∥2, ∥y0 − y∗
0∥2
)
.

To establish the convergence rate in stochastic setting, we will make the following assumption on the
stochastic gradient oracle.

Assumption 4.3. Let ∇xf(x,y, ξ
x) and ∇yf(x,y, ξ

y) to be the unbiased estimator of the
∇xf(x,y) and∇yf(x,y), respectively. Then, the stochastic gradient oracle satisfies the following:

• Unbiasedness: Eξx [∇xf(x,y, ξ
x)] = ∇xf(x,y) and Eξy [∇yf(x,y, ξ

y)] = ∇yf(x,y).
• Bounded variance: We assume the variance of stochastic gradients

are bounded, i.e., Eξx
[
∥∇xf(x,y, ξ

x)−∇xf(x,y)∥2
]

≤ σ2 and
Eξy

[
∥∇yf(x,y, ξ

y)−∇yf(x,y)∥2
]
≤ σ2.

We now turn to establishing the convergence rate in stochastic setting.

Theorem 4.4. Let x̄ be output of stochastic OGDA/EG algorithms and let ηx and ηy to be chosen

as in Theorem 4.2. For EG, choose minibatch size M = max
{
1, κσ2

ϵ2

}
, and for OGDA choose
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primal minibatch size Mx = max{1, σ2

ϵ2 }, and dual minibatch size My = max{1, κσ2

ϵ2 }. Then under
Assumptions 4.1, and 4.3, OGDA/EG converges to an ϵ-stationary point, i.e., E∥∇Φ(x̄)∥2 ≤ ϵ2, with
the iteration number T bounded by:

O

(
κ2ℓ∆Φ + κℓ2D0

ϵ2

)
,

where D0 = max
(
∥x1 − x0∥2, ∥y1 − y0∥2, ∥y1 − y∗

1∥2, ∥y0 − y∗
0∥2
)
.

The proofs of Theorems 4.2 and 4.4 are deferred to Appendix A. Our iteration complexity matches
with the complexity of two-scale GDA obtained in [30]. However, we improve primal gradient
oracle complexity for OGDA by a factor of κ as our analysis works for smaller primal batch size Mx

compared to GDA [30]. This paper establishes primal gradient oracle complexity of O(κ
2

ϵ4 ), while
the analysis for GDA in [30], requires gradient oracle complexity of O(κ

3

ϵ4 ) for primal variable.

In previous theorems, we established upper bounds on the convergence of OGDA and EG algorithms.
In the following results, we turn to examining the tightness of obtained rates. To this end, we first
consider a simple GDA algorithm and will extend the analysis to OGDA/EG. Note that in this section,
we only consider the stepsize choice in our upper bound results.
Theorem 4.5 (Tightness of GDA). Consider GDA method (Algorithm 1) with step sizes chosen as
in Theorem 4.4 in [30], and let x̄ be the returned solution after T iterations. Then, there exists a
function f(·, ·) that is ℓ-gradient Lipschitz and µ-strongly concave in y, and an initialization (x0,y0),

such that Algorithm 1 requires at least T = Ω
(

κ2∆Φ

ϵ2

)
iterations to guarantee ∥∇Φ(x̄)∥ ≤ ϵ.

Theorem 4.6 (Tightness of EG/OGDA). Consider deterministic EG and OGDA methods with step
sizes chosen as in Theorem 4.2 and let x̄ be the returned solution after T iterations. Then, there exists a
function f(·, ·) that is ℓ-gradient Lipschitz and µ-strongly concave in y, and an initialization (x0,y0),

such that both methods require at least T = Ω
(

κ2∆Φ

ϵ2

)
iterations to guarantee ∥∇Φ(x̄)∥ ≤ ϵ.

The proofs of Theorems 4.5 and 4.6 are deferred to Appendix A.3.1 and A.3.2, respectively. Theo-
rems 4.6 show that to achieve ϵ stationary point of Φ, EG and OGDA need at least O(κ

2

ϵ2 ) gradient
evaluations, which match with our upper bound results (Theorems 4.2). These impossibility results
demonstrate the tightness of our analysis. It would also be interesting to see such analysis for
stochastic setting, which we leave as a valuable future work.

4.2 Nonconvex-concave minimax problems

We now turn to establishing the convergence rate of (stochastic) OGDA/EG in the NC-C setting. We
make the following assumption throughout this subsection:
Assumption 4.7. We assume f : Rm × Y → R is ℓ-smooth in x,y, G-Lipschitz in x and Y is
bounded convex set with diameter D, and also f(x, .) is concave.

From the above assumption, we note when f is merely concave in y, we have to assume the dual
variable domain is bounded since otherwise, the Moreau envelope function will not be well-defined
(This is shown in Lemma 3.6 in [30]). Therefore, the update rule for y requires projection as follows:

yt = PY
(
yt−1 + ηy∇yf(xt−1,yt−1) + ηy(∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2))

)
(OGDA)

yt+1/2 = PY (yt + ηy∇yf(xt,yt)) , yt+1 = PY

(
yt + ηy∇yf(xt+1/2,yt+1/2)

)
(EG)

The following theorem establishes the convergence of OGDA/EG for NC-C objectives.

Theorem 4.8. Let ηx = O
(
min

{
ϵ
ℓG , ϵ2

ℓG2 ,
ϵ4

D2G2ℓ3

})
, and ηy = 1

2ℓ . By convention, we set
x−1/2 = x0, y−1/2 = y0. Under Assumption 4.7, OGDA/EG converges to an ϵ-stationary point, i.e.,

1
T+1

∑T
t=0 ∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2 for OGDA and 1

T+1

∑T
t=0 ∥∇Φ1/2ℓ(xt−1/2)∥2 ≤ ϵ2 for EG, with

the gradient complexity bounded by:

O

(
ℓG2∆̂Φ

ϵ4
max

{
1,

D2ℓ2

ϵ2

})
.
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Theorem 4.9. Let ηx = O(min{ ϵ2

ℓ(G2+σ2) ,
ϵ4

D2ℓ3G
√
G2+σ2

, ϵ6

D2ℓ3σ2G
√
G2+σ2

}), and ηy =

O(min{ 1
4ℓ ,

ϵ2

ℓσ2 }). By convention, we set x−1/2 = x0, y−1/2 = y0. Under Assump-
tions 4.3 and 4.7, stochastic OGDA/EG algorithms converge to an ϵ-stationary point, i.e.,

1
T+1

∑T
t=0 E∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2 for OGDA and 1

T+1

∑T
t=0 E∥∇Φ1/2ℓ(xt−1/2)∥2 ≤ ϵ2 for EG,

with the gradient complexity bounded by:

O

(
D2ℓ3G

√
G2 + σ2∆̂Φ

ϵ6
max

{
1,

σ2

ϵ2

})
.

The proofs of Theorems 4.8 and 4.9 are deferred to Appendix B. Here we show that OGDA/EG need
at most O

(
D2ℓ3G2∆̂Φ

ϵ6

)
gradient evaluations in deterministic setting and O

(
D2ℓ3σ2G

√
G2+σ2∆̂Φ

ϵ8

)
gradient evaluations in stochastic setting to visit an ϵ-stationary point.

Our stepsize choices for dual variable match the optimal analysis in convex-concave setting, Θ( 1ℓ ) in
deterministic setting [40] and Θ( 1

ϵ2 ) in stochastic setting [23], so we suppose our dual stepsize choice
is optimal. The stepsize ratio is ηx

ηy
= O(ϵ4) in both settings, same as Lin et al. [30]’s results on apply-

ing GDA to a nonconvex-concave objective, which reveals some connection and similarity between
OGDA and GDA. However, compared to GDA [30], where they get an O

(
D2ℓ3G2∆̂Φ

ϵ6 + ℓ3D2∆̂0

ϵ4

)
rate in deterministic setting, and O

(
D2ℓ3σ2G

√
G2+σ2∆̂Φ

ϵ8 + ℓ3D2∆̂0

ϵ6

)
in stochastic setting, we shave

off the significant terms with dependency on ∆̂0. As we will show in the proof, this acceleration is
mainly due to the fact that OGDA/EG enjoys an inherent nice descent property on concave function,
which is more elaborated in Section 4.3. In the stochastic setting, we observe similar superiority.

Now, we switch to examining the tightness of obtained rates. Similar to the NC-SC setting, we first
consider a simple GDA algorithm and will extend the analysis to OGDA/EG.
Theorem 4.10 (Tightness of GDA ). Consider GDA that runs T iterations on solving (1), and let
xT be the returned solution. Then, there exists a function f that is G-Lipschitz in x, ℓ-gradient
Lipschitz and concave in y, and an initialization point (x0,y0) such that GDA requires at least

T = Ω
(

ℓ3G2D2∆̂Φ

ϵ6

)
iterations to guarantee ∥Φ1/2ℓ(xT )∥ ≤ ϵ.

Theorem 4.11 (Tightness of OGDA/EG). Consider OGDA/EG that runs T iterations on solving
(1), and let xT be the returned solution. Then, there exists a function f that is G-Lipschitz in x,
ℓ-gradient Lipschitz and concave in y, and an initialization point (x0,y0) such that to achieve

∥Φ1/2ℓ(xT )∥ ≤ ϵ, OGDA/EG requires at least T = Ω
(

ℓ3G2D2∆̂Φ

ϵ6

)
.

The proof of Theorems 4.10 and 4.11 are deferred to Appendix B.3.1 and B.3.2, respectively.
Theorems 4.11 demonstrates that to find an ϵ stationary point of Φ1/2ℓ, OGDA and EG with our
stepsize choices need at least O( 1

ϵ6 ) gradient evaluations, which verifies the tightness of upper bound.

4.3 Discussion

Key technical challenges. Here, we present the key technical challenges that arise in the nonconvex
setting, which makes the analysis much more involved compared to the previous analysis of these
algorithms in convex settings. Our proofs are mainly based on NC-C and NC-SC GDA analysis
in [30], and SC-SC OGDA/EG analysis in [39]. In the nonconvex-strongly-concave setting, finding
an upper bound for

∑T
i=1 ∥yi − y∗(xi)∥2 is one of the key steps to establish the convergence rate,

however bounding this term is much more complicated for OGDA and EG than GDA due to difference
in updating rules. Note that in GDA analysis [30],

∑T
i=1 ∥yi−y∗(xi)∥2 can be bounded by deriving

simple recursive equation for ∥yt − y∗(xt)∥2, while extending it to OGDA is quite complicated.
Hence, we propose to bound rt = ∥zt+1 − y∗(xt)∥2 + 1

4∥yt − yt−1∥2, and establish the upper
bound on

∑t
i=1 ∥yi − y∗(xi)∥2 in terms of

∑t
i=1 ri. In nonconvex-concave setting, we have to

bound ∥yt − yt−1∥2, so we reduce it to the primal function gap: Φ(xt)− f(xt,yt). To bound this
gap, we utilize the benign descent property of OGDA and EG on concave function and shave off a
significant term ∆̂0, which yields a better upper complexity bound than GDA.
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On descent property of concave function for OGDA/EG Take OGDA, for example. The key
step in NC-C analysis is to bound Φ(xt)− f(xt,yt). In OGDA proof, we split this into bounding
the following:

Φ(xt)− f(xt,yt) ≤ f(xt,y
∗(xt))− f(xs,y

∗(xt)) + f(xs,y
∗(xs))

− f(xt,y
∗(xs)) + f(xt,y

∗(xs))− f(xt,yt).
(2)

For the last term f(xt,y
∗(xs))− f(xt,yt), OGDA can guarantee its convergence without bounded

gradient assumption on y. However, for GDA, it requires bounded gradient assumption on y to show
the convergence of this term, and without such assumption, we can only show the convergence of
f(xt,y

∗(xs))− f(xt,yt+1), so Lin et al. [30] split the Φ(xt)− f(xt,yt) as follow:

Φ(xt)− f(xt,yt) ≤ f(xt,y
∗(xt))− f(xt,y

∗(xs)) + f(xt+1,yt+1)− f(xt,yt) + f(xt,yt+1)

− f(xt+1,yt+1) + f(xt,y
∗(xs))− f(xt,yt+1)

(3)

Hence they reduce the problem to bounding f(xt,y
∗(xs))− f(xt,yt+1). Therefore, they have to

pay the price for the extra term f(xt+1,yt+1)− f(xt,yt).

Generalized OGDA. Generalized OGDA algorithm is a variant of OGDA in which different learning
rates are used for current gradient∇f(xt,yt), and the correction term∇f(xt,yt)−∇f(xt−1,yt−1).
The update rule for this algorithm is as follows:

xt+1 = xt − ηx,1∇xf(xt,yt)− ηx,2(∇xf(xt,yt)−∇xf(xt−1,yt−1))

yt+1 = PY
(
yt + ηy,1∇yf(xt,yt) + ηy,2(∇yf(xt,yt)−∇yf(xt−1,yt−1))

)(OGDA+)

Mokhtari et al. [39] introduced this algorithm and established the convergence bound for the bilinear
setting while analysis beyond this setting remained as an open problem. In Appendix D, we show
that our analysis can be adapted to establish the convergence of the generalized OGDA algorithm. In
Section 6, the empirical advantage of generalized OGDA over the state of art optimization algorithms
is shown, and it seems this algorithm is a better alternative to OGDA in practice. We also define the
correction term ratios β1 =

ηx,2

ηx,1
, β2 =

ηy,2

ηy,1
, and empirically study the effect of these parameters

on convergence. Note that if β1 = β2 = 1, generalized OGDA would be same as OGDA. It would
also be an interesting future direction to analyze this algorithm for C-C and SC-SC problems to
understand its superior performance better.

Projected OGDA/EG for NC-SC. Here, we highlight that while our analysis for NC-SC assumes
that Y = Rn, it can be easily extended to a constrained setting, where the dual update is performed
under projection onto a convex bounded set Y . In the following, we provide a proof sketch for
extending our analysis of OGDA to its projected variant, in which we do the same primal update as
unconstrained OGDA and a projected (Optimistic gradient) OG update, as defined in [23], on the
dual variable. The main idea behind our dual descent lemma, Lemma A.6, is interpreting OGDA
as an extension of the PEG/OG method and then using Theorem 5 of [23] for PEG/OG analysis,
which already considers the projected gradient updates. Thus, our Lemma A.6 could be immediately
adapted to the projected update. Lemma A.5 can also be extended to projected setting by leveraging
Lemma A.1 in [23]. Combining the projected variant of the mentioned lemmas, the convergence
could be easily established for projected OGDA/EG.

5 Stepsize-Independent Lower Bounds

So far, we have established upper bounds and tightness results given specific stepsize choices. In
this section, we turn to establishing general stepsize-independent lower bound results in the NC-SC
setting.
Theorem 5.1 (Lower complexity bound for GDA). Consider deterministic GDA method (Algorithm 1)
with any arbitrary choice of learning rates, and let x̄ be the returned solution. Then, there exists a
function f satisfying Assumption 4.1, and an initialization (x0,y0), such that Algorithm 1 requires
at least T = Ω

(
κ
ϵ2

)
iterations to guarantee ∥∇Φ(x̄)∥ ≤ ϵ.

Theorem 5.1 implies that GDA algorithm can not find ϵ stationary point of NC-SC problem with less
than with Ω( κ

ϵ2 ) many gradient evaluations. This result provides the first known lower bound for the
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GDA algorithm in NC-SC, showing that the rate obtained in [30] for the convergence of GDA is tight
up to a factor of κ. The general proof idea is to consider the following quadratic NC-SC function
f : R× R 7→ R, which is strongly-concave in both x and y:

f(x, y) := − 1
2ℓx

2 + bxy − 1
2µy

2.

By construction, f is nonconvex in x (it is actually concave in x) and µ-strongly-concave in y.
Assume κ := ℓ/µ ≥ 4 and choose b =

√
µ(ℓ+ µx) for some 0 < µx ≤ ℓ/2 to be chosen later.

Then we know b ≤ ℓ/2, and it is easy to verify that f is ℓ smooth. Note that the primal function

Φ(x) = max
y

f(x, y) = 1
2µxx

2

is actually strongly convex. This also justifies the symbol for µx. We use GDA to find the solution
for minx maxy f(x, y). Indeed for this problem, the optimal solution is achieved at the origin. The
stepsizes ratio is chosen as r =

ηy

ηx
and ηy = 1

ℓ for some numerical constants c. Then the GDA
update rule can be written as(

xk+1

yk+1

)
= (I+ ηxM) ·

(
xk

yk

)
, M :=

(
ℓ −b
rb −µr

)
. (4)

Note that (4) is a linear time-invariant system, and due to the simplicity of quadratic form, we are
able to track the dynamic of primal and dual variables. By iterating this linear system and analyzing
the eigenvalues of the transition matrix, we are able to lower bound the gradient at final iterations.

Now we turn to the extension of the lower bound analysis of GDA to OGDA/EG as stated below.
Theorem 5.2 (Lower complexity bound for OGDA/EG). Consider the deterministic OGDA/EG
method with any arbitrary choice of learning rates and let x̄ be the returned solution. Then, there
exists a function f satisfying Assumption 4.1, and an initialization (x0,y0), such that OGDA/EG
method requires at least T = Ω

(
κ∆Φ

ϵ2

)
iterations to guarantee ∥∇Φ(x̄)∥ ≤ ϵ.

Theorem 5.2 shows that OGDA/EG methods can not find ϵ-stationary point for any choice of learning
rates with less than Ω( κ

ϵ2 ) gradient evaluations. Given the upper bounds we derived for deterministic
OGDA/EG in section 4.1, our result indicates that our upper bounds is tight up to a factor of κ,
however, we highlight that according to Theorem 4.6, given our choice of the learning rate, our upper
bound is exactly tight. The complete proof of Theorems 5.1 and 5.2 are deferred to Appendix C.

6 Experiments

In this section, we empirically evaluate the performance of the OGDA algorithm. In particular,
we follow [52] and optimize Wasserstein GAN (WGAN) on a synthetic dataset generated from a
Gaussian distribution. We mainly follow the setting of [52, 34] to conduct our experiment. We
consider optimizing the following WGAN loss, where the generator approximates a one-dimensional
Gaussian distribution:

min
wG

max
wD

Ex∼N (µ,σ2)[DwD
(x)]− Ez∼N (0,1)[DwD

(GwG
(z))]− λ∥wD∥2 (5)

Where wG and wD correspond to generator and discriminator parameters, respectively. We define
discriminator to be D(x) = ϕ1x+ ϕ2x

2, and generator to be a neural network with one hidden layer
with 5 neurons with ReLU activation function, same as the setup considered in [52]. We assume
that real data comes from a Gaussian N (µ, σ2) distribution, and the generator tries to approximate µ
and σ2 using a neural network. We set µ = 0, and σ = 0.1. λ is the regularization parameter which
we set to 0.001. Note that λ makes the function strongly-concave/concave in terms of discriminator
parameters, so the problem becomes NC-SC/NC-C.

Performance of fine-tuned stochastic OGDA is depicted in Figure 1a, in comparison to ADAM [25],
RMSprop, SGDA [30], SAGDA [52], and Smooth-SAGDA [52], which are well-known minimax
optimization methods. Our evaluation shows that OGDA outperforms all of these methods, supporting
the empirical advantage of OGDA as seen in relevant studies [28, 8]. While our theoretical results
show that OGDA/EG might not outperform GDA in terms of convergence rate, comparing the
empirical result suggests that OGDA might converge faster. In Figure 1c, the evolution of the
Wasserstein distance metric during the training has been shown. While GDA and OGDA are
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Figure 1: Figure 1a demonstrates the best performance of different algorithms on optimizing NC-SC
objective in WGAN, where ∥∇f(x,y)∥2 = ∥∇xf(x,y)∥2+ ∥∇yf(x,y)∥2. For GDA, and OGDA,
ηx, and ηy chosen from the set {5e− 5, 1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2} using grid
search. For OGDA, we choose correction term ratios from the set {0, 0.01, 0.1, 0.5, 1}. The optimal
learning rates are as follows. For both OGDA, and GDA, we set ηx = ηy = 0.05, and for OGDA
β1 = β2 = 0.01. For other algorithms, we used the same hyperparameters as reported in [52], using
the same random seed. Figure 1b indicates effect of tuning correction term ratio β on the performance
of generalized OGDA algorithm. Figure 1c indicates the evaluation of the Wasserstein distance metric
during the training for the best hyperparameter configuration.

stabilized faster than other algorithms, it seems that they converge to a suboptimal solution, which
incurs a higher Wasserstein distance. Thus, our study suggests that comparing different minimax
algorithms only based on the convergence of gradient norm may not be that insightful in practice, as
they might converge to a suboptimal equilibrium. This observation naturally leads to an interesting
future direction to theoretically understand how different notions of equilibrium in first-order minimax
optimization algorithms are related to the realistic performance of practical methods such as GANs
or WGANs.

The common version of OGDA, as depicted in Algorithm 2 in Appendix A, uses the same learning
rate for the current gradient and correction term (difference between gradient). Empirically, we
observed that using different learning rates for those terms (which we call generalized OGDA)
makes the convergence faster and more stable. Hence in the following, we investigate the effect of
using different correction term ratios in OGDA, which we refer them as β1 and β2 as defined in
Subsection 4.3. The results in Figure 1b demonstrate that small values of these parameters benefit
the convergence rate, and larger values degrade the performance. We further observe that using
correction term ratios larger than 0.5 makes the algorithm diverge and become unstable. Hence, this
corroborates the practical importance of the generalized OGDA algorithm compared to OGDA, as
we are restricted to choosing the same learning rate in OGDA (i.e., β1 = β2 = 1).

7 Conclusion

In this paper, we established the convergence of Optimistic Gradient Descent Ascent (OGDA) and
Extra-gradient (EG) methods in solving nonconvex minimax optimization problems. We demonstrated
that both methods exhibit the same convergence rate that is achievable by GDA in both stochastic
and deterministic settings. We also derived matching lower bounds for the choice of parameters that
indicate the tightness of obtained rates. Further, we established general lower bounds (i.e, learning
rate-independent) for GDA/EG/OGDA in the NC-SC setting, indicating the optimality of obtained
upper bounds up to the factor of κ. It remains an interesting future work to extend the lower bound
results to the stochastic setting and also derive the general lower bound for GDA/EG/OGDA in the
NC-C setting. Moreover, there is a gap by a factor of κ between our lower and upper bounds for
NC-SC problems, which would also be an interesting future work to close this gap.
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Appendix
In the appendix, we provide the missing proofs and derivations from the main manuscript, as well as
proposing a general variant of the OGDA algorithm where different learning rates can be employed
in primal and dual updates.
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A Proof of Convergence in Nonconvex-Strongly-Concave Setting

A.1 Proof of Convergence of OGDA

Here we present the convergence proof for the OGDA algorithm in the NC-SC setting as detailed in
Algorithm 2. Note that it is clear from context we abuse the notation and use y∗

t instead of y∗(xt).
In the following, we provide a proof sketch, making our analysis easier to follow.

Algorithm 2 shows the deterministic and stochastic variants of the OGDA algorithm in detail.

Algorithm 2 (Stochastic) OGDA
Input :Initialization (x−1 = x0,y−1 = y0), learning rates ηx, ηy
for t = 1, 2, . . . , T do

xt = xt−1 − ηx∇xf(xt−1,yt−1) + ηx(∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)) ,
yt = yt−1 + ηy(∇yf(xt−1,yt−1)− ηy(∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)) . # OGDA

xt = xt−1 − ηygx,t−1 + ηy(gx,t−1 − gx,t−2),
yt = yt−1 + ηygy,t−1 − ηy(gy,t−1 − gy,t−2). # Stochastic OGDA

end

Proof sketch. We provide a sketch of key technical ideas. Specifically, we develop three key
lemmas to prove the convergence. First lemma is primal descent, in which we use the κℓ-smoothness
property of Φ(x) at point xt and xt−1 to find an upper bound for E[Φ(xt)− Φ(xt−1)], and then by
taking summation on this upper bound for all t ∈ {1, . . . , T} we are able to show the following:

E[Φ(xT )]− Φ(x1) ≤ −
ηx
2

T−1∑
i=1

E[∥∇Φ(xi)∥2] +O(ηxℓ
2)

+O(ηxℓ
2)

(
T−1∑
i=1

∥E[yi − y∗
i ∥2] +

T−1∑
i=1

E[∥yi − yi−1∥2]

)

− ηx
2
(1−O(ηx))

T−2∑
i=1

E[∥gi∥2] +O

(
ηx

Tσ2

Mx

)
(6)

where gi = 2∇xf(xi,yi)−∇xf(xi−1,yi−1).

The second key lemma is dual descent. To derive this lemma, first note that OGDA alternatively can
be written in view of Past Extra-gradient algorithm (PEG) as defined in [23]:

yt = zt + ηygy,t−1 , zt+1 = zt + ηygy,t (Dual update)

where zt = yt−1 + ηy(gy,t−1 − gy,t−2). Also, we have the following primal update:

xt = wt − ηxgx,t−1 , wt+1 = wt − ηxgx,t (Primal update)

where wt = xt−1−ηx(gx,t−1−gx,t−2). This view of OGDA is presented in [23, 13, 39]. Motivated
by this interpretation of the OGDA algorithm, we define the following potential function to derive the
dual descent. Let rt = ∥zt+1 − y∗

t ∥2 + 1
4∥yt − yt−1∥2, and ηy = 1

6ℓ , then we show that:

E[rt] ≤ (1− 1

12κ
)E[rt−1] +O(η2x)E[∥gt−2∥2] +O(η2xκ

3)E[∥gt−1∥2] +O

(
σ2

ℓ2My

)
.

We built on the top of OGDA analysis in [39, 23] in strongly-concave-strongly-concave setting to
prove the above lemma, which helps us directly find an upper bound for

∑T−1
i=1 ∥yi − yi−1∥2 in

Equation 6.

Our third key lemma aims to upper bound
∑T−1

i=1 E[∥yi−y∗
i ∥2] in terms of

∑T−1
i=1 E[ri]. Particularly

we show that:
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T−1∑
i=1

E[∥yi − y∗
i ∥2] ≤

(
∥y0 − y∗

0∥2 +
T−1∑
i=2

E[ri] + η2xκ
2
T−2∑
i=1

E[∥gi∥2] +
Tσ2

ℓ2My

)
.

Now note that using second, and third lemma both
∑T−1

i=1 E[∥yi−yi−1∥2], and
∑T−1

i=1 E[∥yi−y∗
i ∥2]

terms can be upper bounded in terms of
∑T−2

i=1 E[∥gi∥2], and by properly choosing ηx we show that∑T−2
i=1 E[∥gi∥2] term can be ignored, which entails the desired convergence rate.

A.1.1 Useful lemmas

Lemma A.1 (Lemma 4.3 in [30]). Let Φ(x) = maxy f(x,y), and y∗(x) = argmaxy f(x,y).
Then, under Assumption 4.1, Φ(x) is κℓ+ ℓ-smooth, and y∗(x) is κ Lipschitz.

Lemma A.2. Let {at}∞t=0, {bt}∞t=0 be the sequence of positive real valued number, and γ ∈ (2,∞)
such that ∀t ≥ 1:

at ≤ (1− 1

γ
)at−1 + bt (7)

then the following inequality holds for any t1 > t2 ≥ 0:

t2∑
i=t1

ai ≤ γat1 + γ

t2∑
i=t1+1

bi (8)

Proof of Lemma A.2. Unfolding the recursion in Equation 7 for t− t1 steps we have:

at ≤ (1− 1

γ
)t−t1at1 +

t∑
i=t1+1

(1− 1

γ
)t−ibi (9)

Now taking summation of above equation we have:

t2∑
t=t1

at ≤

(
t2∑

t=t1

(1− 1

γ
)t−t1

)
at1 +

t2∑
t=t1+1

t∑
i=t1+1

(1− 1

γ
)t−ibi (10)

However note that, we can write:

t2∑
t=t1+1

t∑
i=t1+1

(1− 1

γ
)t−ibi =

t2∑
i=t1+1

bi

t2−i∑
j=0

(1− 1

γ
)j

 =

t2∑
i=t1+1

bi
1− (1− 1

γ )
t2−i+1

1− (1− 1
γ )

≤ γ

t2∑
i=t1+1

bi

(11)

Plugging this back to Equation 10, and noting that
∑t2

t=t1
(1− 1

γ )
t−t1 =

1−(1− 1
γ )t2−t1+1

1−(1− 1
γ )

≤ γ, we

have:
t2∑

t=t1

at ≤ γat1 + γ

t2∑
i=t1+1

bi (12)

Lemma A.3. Let yt+1 = yt + ηygy,t, where gy,t is the unbiased estimator of ∇yf(xt,yt). If
ηy ≤ 1

2ℓ , we have:

∥yt+1 − y∗
t ∥2 ≤ (1− ηyµ)∥yt − y∗

t ∥2 + 2η2y∥δ
y
t ∥2 + 2ηy⟨δyt ,yt − y∗

t ⟩ (13)

where δyt = gy,t −∇yf(xt,yt).
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Proof of Lemma A.3. Using the update rule for yt+1, we can write:

∥yt+1 − y∗
t ∥2 = ∥yt − y∗

t + ηygy,t∥2 = ∥yt − y∗
t ∥2 + η2y∥gy,t∥2 + 2ηy⟨yt − y∗

t , gy,t⟩ (14)

Now replacing gy,t = δyt +∇yf(xt,yt), and using Young’s inequality we have:

∥yt+1 − y∗
t ∥2 ≤ ∥yt − y∗

t ∥2 + 2η2y∥∇yf(xt,yt)∥2 + 2ηy⟨∇yf(xt,yt),yt − y∗
t ⟩

+ 2η2y∥δ
y
t ∥2 + 2ηy⟨δyt ,yt − y∗

t ⟩
(15)

However, note that since f(x, .) is µ-strongly-concave, and ℓ-smooth, we have:

⟨∇yf(xt,yt),yt − y∗
t ⟩ ≤ −

1

ℓ+ µ
∥∇yf(xt,yt)∥2 −

ℓµ

ℓ+ µ
∥yt − y∗

t ∥2

≤ − 1

2ℓ
∥∇yf(xt,yt)∥2 −

µ

2
∥yt − y∗

t ∥2,
(16)

where in the last inequality, we used the fact that κ ≥ 1, which means that ℓ ≥ µ. Plugging
Equation 16 back to Equation 15, we have:

∥yt+1 − y∗
t ∥2 ≤ (1− µηy)∥yt − y∗

t ∥2 − ηy(
1

ℓ
− 2ηy)∥∇yf(xt,yt)∥2

+ 2η2y∥δ
y
t ∥2 + 2ηy⟨δyt ,yt − y∗

t ⟩
(17)

Since ηy ≤ 1
2ℓ , we have:

∥yt+1 − y∗
t ∥2 ≤ (1− µηy)∥yt − y∗

t ∥2 + 2η2y∥δ
y
t ∥2 + 2ηy⟨δyt ,yt − y∗

t ⟩ (18)

A.1.2 Key lemmas, and proof of Theorem 4.2, and 4.4 for OGDA

For the sake of brevity, we only present the convergence proof for the stochastic version of OGDA
(Theorem 4.4), since by letting σ = 0, we can recover the proof for the deterministic algorithm
(Theorem 4.2). Our proof is built on three key lemmas. First, we prove the following lemma, which
we call primal descent:

Lemma A.4. Let Φ(x) = maxy f(x,y), and y∗(x) = argmaxy f(x,y). Also, let gi = 2gx,i −
gx,i−1. Then for Algorithm 2, we have:

E[Φ(xt)] ≤ E[Φ(xt−1)]−
ηx
2
E[∥∇Φ(xt−1)∥2]−

ηx
2
(1− 2κℓηx)E[∥gt−1∥2] +

3

2
η3xℓ

2E[∥gt−2∥2]

+
3

2
ηxℓ

2E[∥y∗
t−1 − yt−1∥2] +

3

2
ηxℓ

2E[∥yt−1 − yt−2∥2] + 15ηx
σ2

Mx
(19)

Proof of Lemma A.4. First, let δxi = gx,i −∇xf(xi,yi). By definition of gx,i, we have E[δxi ] = 0,
for all i ∈ [T ].

Using the fact that Φ(x) is 2κℓ smooth, we have:

Φ(xt) ≤ Φ(xt−1) + ⟨∇Φ(xt−1),xt − xt−1⟩+ κℓ∥xt − xt−1∥2

= Φ(xt−1)− ηx⟨∇Φ(xt−1), gt−1⟩+ κℓη2x∥gt−1∥2

= Φ(xt−1)−
ηx
2
∥∇Φ(xt−1)∥2 −

ηx
2
∥gt−1∥2 +

ηx
2
∥∇Φ(xt−1)− gt−1∥2 + κℓη2x∥gt−1∥2

= Φ(xt−1)−
ηx
2
∥∇Φ(xt−1)∥2 −

ηx
2
(1− 2κℓηx)∥gt−1∥2 +

ηx
2
∥∇Φ(xt−1)− gt−1∥2

(20)
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Now using ℓ-smoothness of f , and κ-Lipschitzness of y∗(x) (Lemma A.1) we have:

∥∇Φ(xt−1)− gt−1∥2 = ∥∇Φ(xt−1)−∇xf(xt−1,yt−1)

−
(
∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)

)
− (2δxt−1 − δxt−2)∥2

≤ 3∥∇Φ(xt−1)−∇xf(xt−1,yt−1)∥2 + 3∥∇xf(xt−1,yt−1)

−∇xf(xt−2,yt−2)∥2 + 3∥2δxt−1 − δxt−2∥2

≤ 3ℓ2∥y∗(xt−1)− yt−1∥2 + 3ℓ2∥xt−1 − xt−2∥2 + 3ℓ2∥yt−1 − yt−2∥2

+ 24∥δxt−1∥2 + 6∥δxt−2∥2
(21)

where in the first and second inequalities, we used Young’s inequality.

By combining Equations 20 and 21 we have:

Φ(xt) ≤ Φ(xt−1)−
ηx
2
∥∇Φ(xt−1)∥2 −

ηx
2
(1− 2κℓηx)∥gt−1∥2

+
3

2
ηxℓ

2∥y∗
t−1 − yt−1∥2 +

3

2
ηxℓ

2∥xt−1 − xt−2∥2 +
3

2
ηxℓ

2∥yt−1 − yt−2∥2

+ 12ηx∥δxt−1∥2 + 3ηx∥δxt−2∥2

≤ Φ(xt−1)−
ηx
2
∥∇Φ(xt−1)∥2 −

ηx
2
(1− 2κℓηx)∥gt−1∥2 +

3

2
η3xℓ

2∥gt−2∥2

+
3

2
ηxℓ

2∥y∗
t−1 − yt−1∥2 +

3

2
ηxℓ

2∥yt−1 − yt−2∥2 + 12ηx∥δxt−1∥2 + 3ηx∥δxt−2∥2

(22)

We proceed by taking expectations on both sides of Equation 22 to get:

E[Φ(xt)] ≤ E[Φ(xt−1)]−
ηx
2
E[∥∇Φ(xt−1)∥2]−

ηx
2
(1− 2κℓηx)E[∥gt−1∥2] +

3

2
η3xℓ

2E[∥gt−2∥2]

+
3

2
ηxℓ

2E[∥y∗
t−1 − yt−1∥2] +

3

2
ηxℓ

2E[∥yt−1 − yt−2∥2] + 15ηx
σ2

Mx
(23)

where we used the fact that E[∥δxi ∥2] ≤ σ2

Mx
for all i ∈ [T ].

Lemma A.5. Let ηy = 1
6ℓ , then the following inequality holds true for OGDA iterates:

t+1∑
i=1

E[∥yi − y∗
i ∥2] ≤

9

7
E[∥y1 − y∗

1∥2] +
36

7

t+1∑
i=2

E[∥zi − y∗
i ∥2] +

18

7
η2xκ

2
t∑

i=1

E[∥gi∥2] +
2Tσ2

7ℓ2My

(24)

Proof of Lemma A.5. Using Young’s inequality and κ-Lipschitzness of y∗(x), we have:

∥yt+1 − y∗
t+1∥2 ≤ 2∥yt+1 − y∗

t ∥2 + 2∥y∗
t+1 − y∗

t ∥2

≤ 2∥yt+1 − y∗
t ∥2 + 2κ2∥xt+1 − xt∥2

(25)

Now, we try to find an upper bound for ∥yt+1 − y∗
t ∥2. Let zt+1 = yt + ηy(gy,t − gy,t−1), and

δyi = gy,i −∇yf(xi,yi). Then we have:

∥yt+1 − y∗
t ∥2 = ∥zt+1 − y∗

t + ηygy,t∥2

≤ 2∥zt+1 − y∗
t ∥2 + 2η2y∥gy,t∥2

≤ 2∥zt+1 − y∗
t ∥2 + 4η2y∥∇yf(xt,yt)∥2 + 4η2y∥δ

y
t ∥2

≤ 2∥zt+1 − y∗
t ∥2 + 4η2yℓ

2∥yt − y∗
t ∥2 + 4η2y∥δ

y
t ∥2

(26)
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where in the first and second inequality, we used Young’s inequality, and for the last inequality, we
used smoothness of f . Now, replacing replacing the choice ηy = 1

6ℓ in Equation 26 yields:

∥yt+1 − y∗
t ∥2 ≤

1

9
∥yt − y∗

t ∥2 + 2∥zt+1 − y∗
t ∥2 +

1

9ℓ2
∥δyt ∥2 (27)

Now plugging Equation 27 in Equation 25 we have:

∥yt+1 − y∗
t+1∥2 ≤

2

9
∥yt − y∗

t ∥2 + 4∥zt+1 − y∗
t ∥2 + 2κ2∥xt+1 − xt∥2 +

2

9ℓ2
∥δyt ∥2 (28)

Now taking expectations from both sides of Equation 28, we have:

E[∥yt+1−y∗
t+1∥2] ≤

2

9
E[∥yt−y∗

t ∥2]+4E[∥zt+1−y∗
t ∥2]+2κ2E[∥xt+1−xt∥2]+

2σ2

9ℓ2My
(29)

Using Lemma A.2, it can be easily shown that:
t+1∑
i=1

E[∥yi − y∗
i ∥2] ≤

9

7
E[∥y1 − y∗

1∥2] +
36

7

t+1∑
i=2

E[∥zi − y∗
i ∥2] +

18

7
η2xκ

2
t∑

i=1

E[∥gi∥2] +
2Tσ2

7ℓ2My

(30)

By extending the analysis in [39] for OGDA from SC-SC to NC-SC, we derive the following lemma:
Lemma A.6. Let zt+1 = yt+ηy(gy,t−gy,t−1), rt = ∥zt+1−y∗

t ∥2+ 1
4∥yt−yt−1∥2 and ηy = 1

6ℓ .
Then OGDA iterates satisfy the following inequalities:

E[rt] ≤
(
1− 1

12κ

)
E[rt−1] + 12η2xκ

3E[∥gt−1∥2] +
η2x
18

E[∥gt−2∥2] +
σ2

3ℓ2My
(31)

and
t∑

i=1

E[ri] ≤ 12κE[r1] +
2

3
κE[∥x1 − x0∥2] + 145η2xκ

4
t−1∑
i=1

E[∥gi∥2] +
4κσ2(t− 1)

ℓ2My
. (32)

Proof of Lemma A.6. Let δyi = gy,i −∇yf(xi,yi), and note that we have zt+1 − zt = ηygy,t. We
have:
∥zt+1 − y∗

t ∥2 = ∥zt − y∗
t + ηygy,t∥2

= ∥zt − y∗
t ∥2 + 2ηy⟨gy,t, zt − y∗

t ⟩+ η2y∥gy,t∥2

= ∥zt − y∗
t ∥2 − 2η2y⟨gy,t, gy,t−1⟩+ 2ηy⟨gy,t,yt − y∗

t ⟩+ η2y∥gy,t∥2

= ∥zt − y∗
t ∥2 + η2y∥gy,t − gy,t−1∥2 + 2ηy⟨gy,t,yt − y∗

t ⟩ − η2y∥gy,t−1∥2

≤ ∥zt − y∗
t ∥2 + 3η2y∥∇yf(xt,yt)−∇yf(xt−1,yt−1)∥2

+ 2ηy⟨∇yf(xt,yt),yt − y∗
t ⟩ − η2y∥gy,t−1∥2

+ 3η2y∥δ
y
t ∥2 + 3η2y∥δ

y
t−1∥2 + 2ηy⟨δyt ,yt − y∗

t ⟩
≤ ∥zt − y∗

t ∥2 + 3η2yℓ
2∥xt − xt−1∥2 + 3η2yℓ

2∥yt − yt−1∥2 − 2ηyµ∥yt − y∗
t ∥2

− η2y∥gy,t−1∥2 + 3η2y∥δ
y
t ∥2 + 3η2y∥δ

y
t−1∥2 + 2ηy⟨δyt ,yt − y∗

t ⟩
(33)

where the last inequality follows from the smoothness of f and strong concavity of f(xt, .). Now
note that using Young’s inequality, we can write:

∥yt − y∗
t ∥2 ≥

1

2
∥zt − y∗

t ∥2 − η2y∥gy,t−1∥2 (34)

Now plugging Equation 34 back to Equation 33, we have:

∥zt+1 − y∗
t ∥2 ≤ (1− ηyµ)∥zt − y∗

t ∥2 + 3η2yℓ
2∥xt − xt−1∥2 + 3η2yℓ

2∥yt − yt−1∥2

− η2y(1− 2ηyµ)∥gy,t−1∥2 + 3η2y∥δ
y
t ∥2 + 3η2y∥δ

y
t−1∥2 + 2ηy⟨δyt ,yt − y∗

t ⟩
(35)
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Now note that we have the following:

∥yt − yt−1∥2 = η2y∥gy,t−1 + gy,t−1 − gy,t−2∥2

≤ 2η2y∥gy,t−1∥2 + 2η2y∥gy,t−1 − gy,t−2∥2

≤ 2η2y∥gy,t−1∥2 + 6η2y∥∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)∥2

+ 6η2y∥δ
y
t−1∥2 + 6η2y∥δ

y
t−2∥2

≤ 2η2y∥gy,t−1∥2 + 6η2yℓ
2∥xt−1 − xt−2∥2 + 6η2yℓ

2∥yt−1 − yt−2∥2

+ 6η2y∥δ
y
t−1∥2 + 6η2y∥δ

y
t−2∥2

(36)

Now adding 9η2yℓ
2∥yt − yt−1∥2 to both side of Equation 35, and using Equation 36 we have:

∥zt+1 − y∗
t ∥2 + 9η2yℓ

2∥yt − yt−1∥2 ≤ (1− ηyµ)∥zt − y∗
t ∥2 + 3η2yℓ

2∥xt − xt−1∥2

− η2y(1− 2ηyµ− 24η2yℓ
2)∥gy,t−1∥2

+ 72η4yℓ
4∥xt−1 − xt−2∥2 + 72η4yℓ

4∥yt−1 − yt−2∥2

+ 3η2y(1 + 24η2yℓ
2)∥δyt ∥2 + 3η2y(1 + 24η2yℓ

2)∥δyt−1∥2

+ 2ηy⟨δyt ,yt − y∗
t ⟩

(37)

We proceed by plugging ηy = 1
6ℓ into Equation 37:

∥zt+1 − y∗
t ∥2 +

1

4
∥yt − yt−1∥2 ≤

(
1− 1

6κ

)(
∥zt − y∗

t ∥2
)
+

1

18
∥yt−1 − yt−2∥2

+
1

12
∥xt − xt−1∥2 +

1

18
∥xt−1 − xt−2∥2

+
1

6ℓ2
∥δyt ∥2 +

1

6ℓ2
∥δyt−1∥2 +

2

6ℓ
⟨δyt ,yt − y∗

t ⟩

(38)

Taking expectations from both sides of Equation 38, we have:

E
[
∥zt+1 − y∗

t ∥2 +
1

4
∥yt − yt−1∥2

]
≤
(
1− 1

6κ

)
E
[
∥zt − y∗

t ∥2
]
+

1

18
E[∥yt−1 − yt−2∥2]

+
1

12
E[∥xt − xt−1∥2] +

1

18
E[∥xt−1 − xt−2∥2]

+
σ2

3ℓ2My

(39)

Also, using Young’s inequality, we have:

∥zt − y∗
t ∥2 ≤ (1 +

1

12κ
)∥zt − y∗

t−1∥2 + (1 + 12κ)κ2∥xt − xt−1∥2, (40)

where we used the fact that for any α > 0, ∥x + y∥2 ≤ (1 + α)∥x∥2 + (1 + 1
α )∥y∥

2, and
κ-lipschitzness of y∗(x). Plugging Equation 40 back to Equation 39, we have:

E
[
∥zt+1 − y∗

t ∥2 +
1

4
∥yt − yt−1∥2

]
≤
(
1− 1

12κ

)
E
[
∥zt − y∗

t−1∥2 +
1

4
E[∥yt−1 − yt−2∥2]

]
+ 12κ3E[∥xt − xt−1∥2] +

1

18
E[∥xt−1 − xt−2∥2]

+
σ2

3ℓ2My

(41)

Therefore, if we let rt = ∥zt+1 − y∗
t ∥2 + 1

4∥yt − yt−1∥2, then we have:

E[rt] ≤
(
1− 1

12κ

)
E[rt−1] + 12η2xκ

3E[∥gt−1∥2] +
η2x
18

E[∥gt−2∥2] +
σ2

3ℓ2My
(42)

21



We can derive the following equation by applying Lemma A.2.
t∑

i=1

E[ri] ≤ 12κE[r1] + 144η2xκ
4
t−1∑
i=1

E[∥gi∥2] +
2

3
η2xκ

t−2∑
i=1

E[∥gi∥2] +
2

3
κE[∥x1 − x0]∥2

+
4κσ2(t− 1)

ℓ2My

(43)

Or equivalently, we have:
t∑

i=1

E[ri] ≤ 12κE[r1] +
2

3
κE[∥x1 − x0∥2] + 145η2xκ

4
t−1∑
i=1

E[∥gi∥2] +
4κσ2(t− 1)

ℓ2My
(44)

Proof of Theorem 4.2, and Theorem 4.4 for OGDA. We begin by taking summation of Equation 19
(Lemma A.4) from t = 2 to t = T which yields:

ηx
2

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤ Φ(x1)− E[Φ(xT )] +
3

2
ηxℓ

2∥x1 − x0∥2

− ηx
2
(1− 2κℓηx)

T−1∑
i=1

E[∥gi∥2] +
3

2
η3xℓ

2
T−2∑
i=1

E[∥gi∥2]

+
3

2
ηxℓ

2
T−1∑
i=1

∥yi − y∗
i ∥2 +

3

2
ηxℓ

2
T−1∑
i=1

E[∥yi − yi−1∥2]

+ 15ηx
(T − 1)σ2

Mx

(45)

We proceed by noting that if ηx ≤ 1
2κℓ , then we can drop ∥gT−1∥2 term in above equation. By

considering this, and multiplying both sides by 2
ηx

we get (also let ∆Φ = max(Φ(x0),Φ(x1)) −
minx Φ(x)) :

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤
2∆Φ

ηx
+ 3ℓ2∥x1 − x0∥2

− (1− 2κℓηx − 3η2xℓ
2)

T−2∑
i=1

E[∥gi∥2]

+ 3ℓ2
T−1∑
i=1

E[∥y∗
i − yi∥2] + 3ℓ2

T−1∑
i=1

E[∥yi − yi−1∥2] + 30
(T − 1)σ2

Mx

(46)

We can replace
∑T−1

i=1 ∥y∗
i − yi∥2 with its upper bound obtained in Lemma A.5 to get:

T−1∑
i=1

∥∇Φ(xi)∥2 ≤
2∆Φ

ηx
+ 3ℓ2∥x1 − x0∥2 +

27

7
ℓ2∥y1 − y∗

1∥2

− (1− 2κℓηx − 3η2xℓ
2 − 54

7
η2xκ

2ℓ2)

T−2∑
i=1

E[∥gi∥2]

+
108

7
ℓ2

T−1∑
i=2

E[∥zi − y∗
i−1∥2] + 3ℓ2

T−1∑
i=1

E[∥yi − yi−1∥2] + 30
(T − 1)σ2

Mx

+
6

7

(T − 2)σ2

My

(47)
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Now note that 108
7 E[∥zi+1 − y∗

i ∥2] + 3
∑T−1

i=2 E[∥yi − yi−1∥2] ≤ 15.5E[ri]. Therefore we have:

T−1∑
i=1

∥∇Φ(xi)∥2 ≤
2∆Φ

ηx
+ 3ℓ2∥x1 − x0∥2 +

27

7
ℓ2∥y1 − y∗

1∥2

− (1− 2κℓηx − 3η2xℓ
2 − 54

7
η2xκ

2ℓ2)

T−2∑
i=1

E[∥gi∥2]

+ 15.5ℓ2
T−1∑
i=1

E[ri] + 30
(T − 1)σ2

Mx
+

6

7

(T − 2)σ2

My

(48)

Furthermore, using Lemma A.6, we can find an upper bound on
∑T−1

i=1 E[ri], and replacing it in
above equation yields:

T−1∑
i=1

∥∇Φ(xi)∥2 ≤
2∆Φ

ηx
+ 186κℓ2E[r1] + 11κℓ2∥x1 − x0∥2 + 3ℓ2∥x1 − x0∥2 +

27

7
ℓ2∥y1 − y∗

1∥2

− (1− 2κℓηx − 3η2xℓ
2 − 54

7
η2xκ

2ℓ2 − 2248η2xκ
4ℓ2)

T−2∑
i=1

E[∥gi∥2]

+
62κσ2(T − 2)

My
+ 30

(T − 1)σ2

Mx
+

6

7

(T − 2)σ2

My

(49)

By letting ηx = 1
50κ2ℓ , it holds that −(1 − 2κℓηx − 3η2xℓ

2 − 54
7 η2xκ

2ℓ2 −
2248η2xκ

4ℓ2)
∑T−2

i=1 E[∥gi∥2] ≤ 0. Therefore, with the choice of letting rate ηx = 1
50κ2ℓ

and simplifying the terms, we have:

1

T − 1

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤ 100
κ2ℓ∆Φ

T − 1
+ 186

κℓ2

T − 1
∥y1 − y∗

1 + ηy(gy,1 − gy,0)∥2

+ 47
κℓ2

T − 1
∥y1 − y0∥2 + 14

κℓ2

T − 1
∥x1 − x0∥2

+
27

7

ℓ2

T − 1
∥y1 − y∗

1∥2 +
63κσ2

My
+ 30

σ2

Mx

(50)

Using Young’s inequality and ℓ-smoothness of f , we have:

∥y1 − y∗
1 + ηy(gy,1 − gy,0)∥2 ≤ 2∥y1 − y∗

1∥2 +
1

18
∥y1 − y0∥2 +

1

18
∥x1 − x0∥2 (51)

Plugging this into Equation 50, we have:

1

T − 1

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤ 100
κ2ℓ∆Φ

T − 1
+ 376

κℓ2

T − 1
∥y1 − y∗

1∥2

+ 58
κℓ2

T − 1
∥y1 − y0∥2 + 25

κℓ2

T − 1
∥x1 − x0∥2

+
63κσ2

My
+ 30

σ2

Mx

(52)

Now by letting Mx = σ2

ϵ2 , My = κσ2

ϵ2 and D0 = max(∥y1 − y∗
1∥2, ∥x1 − x0∥2, ∥y1 − y0∥2), we

have:
1

T − 1

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤ O(
κ2ℓ∆Φ + κℓ2D0

T − 1
) +O(ϵ2) (53)

which completes the proof as stated.
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A.2 Proof of Convergence of EG

In this section, we present the convergence proof of the EG algorithm as detailed in Algorithm 3. We
start by providing the proof sketch.

Algorithm 3 (Stochastic) EG
Input :Initialization (x−1 = x0,y−1 = y0), learning rates ηx, ηy
for t = 1, 2, . . . , T do

xt+1/2 = xt − ηx∇xf(xt,yt) ; yt+1/2 = yt + ηy∇yf(xt,yt)

xt+1 = xt − ηx∇xf(xt+1/2,yt+1/2) ; yt+1 = yt + ηy∇yf(xt+1/2,yt+1/2) ; #EG

xt+1/2 = xt − ηxgx,t ; yt+1/2 = yt + ηygy,t ;
xt+1 = xt − ηxgx,t+1/2 ; yt+1 = yt + ηygy,t+1/2 ; # Stochastic EG

end

Proof sketch. We highlight the key ideas here. The first step is to derive to find an upper bound
on Φ(xt+1)− Φ(xt). Using κℓ-smoothness property of Φ(x) at point xt+1, and xt we bound the
Φ(xt+1)− Φ(xt) term, and then taking summation over all iterates, we derive the following primal
descent lemma:

E[Φ(xT )]− Φ(x0) ≤ −
ηx
2

T−1∑
t=0

E[∥∇Φ(xt)∥2]−
ηx
4
(1−O(ηx))

T−1∑
t=0

E[∥gx,t∥2]

+O(ηxℓ
2)

T−1∑
t=0

E[∥yt − y∗
t ∥2]O(ηx)

σ2T

M
.

(54)

We also show the following dual descent lemma to directly bound
∑T−1

t=0 ∥yt − y∗
t ∥2 term in above

inequality:

E[∥yt+1 − y∗
t+1∥2] ≤ (1− 1

12κ
)E[∥yt − y∗

t ∥2] +O(κ3η2x)E[∥gx,t∥2] +
2σ2

Mℓ2

where we assumed ηy = 1
4ℓ . Combining the primal and dual descent lemmas yields the desired result

on the convergence of EG to an ϵ-stationary point.

In what follows, we provide the formal key lemmas, and the complete proof of Theorem 4.2, and
Theorem 4.4 for EG algorithm. Similar to OGDA, for the sake of brevity, we only present the
convergence proof for stochastic version of EG (Theorem 4.4), since by letting σ = 0, we can recover
the proof for deterministic algorithm (Theorem 4.2).
Lemma A.7. Let ηy = 1

4ℓ , and M = max(Mx,My). Also assume ηx ≤ 1
64κ2ℓ , then the iterates of

Algorithm 3 satisfy the following inequalities:

E[∥yt+1 − y∗
t+1∥2] ≤ (1− 1

12κ
)E[∥yt − y∗

t ∥2] + 18η2xκ
3E[∥gx,t∥2] + 2

σ2

Mℓ2
(55)

T−1∑
i=0

E[∥yi − y∗
i ∥2] ≤ 12κ∥y0 − y∗

0∥2 + 216η2xκ
4
T−2∑
i=0

E[∥gx,i∥2] +
24κσ2(T − 1)

Mℓ2
(56)

Proof of Lemma A.7. Now we turn to convergence analysis for EG. The deterministic and stochastic
variants of the EG algorithm are detailed in Algorithm 3.

To prove this lemma, we built on top of analysis in [39]. We start by noting that:
∥yt+1 − y∗

t+ 1
2
∥2 = ∥yt − y∗

t+ 1
2
∥2

− ∥yt+1 − yt+ 1
2
∥2

− ∥yt+ 1
2
− yt∥2

+ 2ηy⟨gy,t,yt+ 1
2
− yt+1⟩

+ 2ηy⟨gy,t+ 1
2
,yt+1 − y∗

t+ 1
2
⟩

(57)

24



Let δyi = gy,i −∇yf(xi,yi). We have:

2ηy⟨gy,t,yt+1/2 − yt+1⟩+ 2ηy⟨gy,t+ 1
2
,yt+1 − y∗

t+ 1
2
⟩

= 2ηy⟨gy,t − gy,t+ 1
2
,yt+1/2 − yt+1⟩+ 2ηy⟨∇yf(xt+1/2,yt+1/2),yt+1/2 − y∗

t+1/2⟩
+ ⟨δy

t+ 1
2

,yt+1/2 − y∗
t+1/2⟩

≤ ∥yt+1/2 − yt+1∥2 + η2y∥gy,t − gy,t+ 1
2
∥2 − 2ηyµ∥yt+1/2 − y∗

t+1/2∥
2

+ ⟨δy
t+ 1

2

,yt+1/2 − y∗
t+1/2⟩

≤ ∥yt+1/2 − yt+1∥2 + 2η2y∥∇yf(xt,yt)−∇yf(xt+ 1
2
,yt+ 1

2
)∥2 − 2ηyµ∥yt+1/2 − y∗

t+1/2∥
2

+ ⟨δy
t+ 1

2

,yt+1/2 − y∗
t+1/2⟩+ 4η2y∥δ

y
t ∥2 + 4η2y∥δ

y

t+ 1
2

∥2

≤ ∥yt+1/2 − yt+1∥2 + 2η2yℓ
2∥xt+ 1

2
− xt∥2 + 2η2yℓ

2∥yt+ 1
2
− yt∥2 − 2ηyµ∥yt+1/2 − y∗

t+1/2∥
2

+ ⟨δy
t+ 1

2

,yt+1/2 − y∗
t+1/2⟩+ 4η2y∥δ

y
t ∥2 + 4η2y∥δ

y

t+ 1
2

∥2

(58)

where in the first inequality, we used µ-strong-concavity of f(x, .), and in the second inequality,
we used Young’s inequality, and in the last one, we used the smoothness property. Now plugging
Equation 58 back to Equation 57, we have:

∥yt+1 − y∗
t+1/2∥

2 ≤ ∥yt − y∗
t+1/2∥

2 − (1− 2η2yℓ
2)∥yt+1/2 − yt∥2

+ 2η2yℓ
2∥xt+1/2 − xt∥2 − 2ηyµ∥yt+1/2 − y∗

t+1/2∥
2

+ ⟨δy
t+ 1

2

,yt+1/2 − y∗
t+1/2⟩+ 4η2y∥δ

y
t ∥2 + 4η2y∥δ

y

t+ 1
2

∥2
(59)

Using Young’s inequality, we can rewrite Equation 59 as follows:

∥yt+1 − y∗
t+1/2∥

2 ≤ (1− ηyµ)∥yt − y∗
t+1/2∥

2 − (1− 2ηyµ− 2η2yℓ
2)∥yt+1/2 − yt∥2

+ 2η2yℓ
2∥xt+1/2 − xt∥2 + ⟨δyt+ 1

2

,yt+1/2 − y∗
t+1/2⟩+ 4η2y∥δ

y
t ∥2

+ 4η2y∥δ
y

t+ 1
2

∥2
(60)

Assuming ηy = 1
4ℓ , using Young’s inequality, we have the following equation:

∥yt − y∗
t+1/2∥

2 ≤ (1 +
1

16κ
)∥yt − y∗

t ∥2 + (1 + 16κ)∥y∗
t+1/2 − y∗

t ∥2 (61)

∥yt+1 − y∗
t+1∥2 ≤ (1 +

1

16κ
)∥yt+1 − y∗

t+1/2∥
2 + (1 + 16κ)∥y∗

t+1 − y∗
t+1/2∥

2 (62)

Combining Equations 60, 61, 62 and using the κ Lipschitzness of y∗(.), and noting that 1− 2ηyµ−
2η2yℓ

2 > 0, we get:

∥yt+1 − y∗
t+1∥2 ≤ (1− 1

8κ
)∥yt − y∗

t ∥2 + 17κ3∥xt+1/2 − xt∥2 + 17κ3∥xt+1 − xt+1/2∥2

+ 2⟨δy
t+ 1

2

,yt+1/2 − y∗
t+1/2⟩+

1

2ℓ2
∥δyt ∥2 +

1

2ℓ2
∥δy

t+ 1
2

∥2
(63)

Using Young’s inequality, we have:

∥xt+1 − xt+ 1
2
∥2 = η2x∥gx,t+ 1

2
− gx,t∥2

≤ 2η2x∥∇xf(xt+ 1
2
,yt+ 1

2
)−∇xf(xt,yt)∥2 + 4η2x∥δ

x
t+ 1

2
∥2 + 4η2x∥δ

x
t ∥2

≤ 2η2xℓ
2∥xt+ 1

2
− xt∥2 + 2η2xℓ

2∥yt+ 1
2
− yt∥2 + 4η2x∥δ

x
t+ 1

2
∥2 + 4η2x∥δ

x
t ∥2

≤ 2η2xℓ
2∥xt+ 1

2
− xt∥2 + 4η2xℓ

2∥yt+ 1
2
− y∗

t ∥2 + 4η2xℓ
2∥yt − y∗

t ∥2

+ 4η2x∥δ
x
t+ 1

2
∥2 + 4η2x∥δ

x
t ∥2

≤ 2η2xℓ
2∥xt+ 1

2
− xt∥2 + 8η2xℓ

2∥yt − y∗
t ∥2 +

η2x
2
∥δyt ∥2 + 4η2x∥δ

x
t+ 1

2
∥2

+ 4η2x∥δ
x
t ∥2 + 2η2xℓ⟨δ

y
t ,yt − y∗

t ⟩
(64)
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where in the last inequality, we used Lemma A.3. Plugging Equation 64, in Equation 63, and
assuming ηx ≤ 1

64κ2ℓ gives:

∥yt+1 − y∗
t+1∥2 ≤ (1− 1

12κ
)∥yt − y∗

t ∥2 + 18κ3∥xt+1/2 − xt∥2

+ 2⟨δy
t+ 1

2

,yt+1/2 − y∗
t+ 1

2
⟩+ 1

64κℓ
⟨δyt ,yt − y∗

t ⟩

+
1

ℓ2
∥δyt ∥2 +

1

2ℓ2
∥δy

t+ 1
2

∥2 + 1

4ℓ2
∥δxt+ 1

2
∥2 + 1

4ℓ2
∥δxt ∥2

(65)

or equivalently:

∥yt+1 − y∗
t+1∥2 ≤ (1− 1

12κ
)∥yt − y∗

t ∥2 + 18η2xκ
3∥gx,t∥2

+ 2⟨δy
t+ 1

2

,yt+ 1
2
− y∗

t+ 1
2
⟩+ 1

64κℓ
⟨δyt ,yt − y∗

t ⟩

+
1

ℓ2
∥δyt ∥2 +

1

2ℓ2
∥δy

t+ 1
2

∥2 + 1

4ℓ2
∥δxt+ 1

2
∥2 + 1

4ℓ2
∥δxt ∥2

(66)

Taking expectation from both sides of Equation 66 yields:

E[∥yt+1 − y∗
t+1∥2] ≤

(
1− 1

12κ

)
E[∥yt − y∗

t ∥2] + 18η2xκ
3E[∥gx,t∥2] + 2

σ2

Mℓ2
(67)

Now using Lemma A.2 we get

T−1∑
i=0

E[∥yi − y∗
i ∥2] ≤ 12κ∥y0 − y∗

0∥2 + 216η2xκ
4
T−2∑
i=0

E[∥gx,i∥2] +
24κσ2(T − 1)

Mℓ2
(68)

as stated in the lemma.

Lemma A.8. Let Φ(x) = maxy f(x,y), and ηy = 1
4ℓ . Then the iterates of Algorithm 3 satisfy the

following inequality:

E[Φ(xt+1)] ≤ E[Φ(xt)]−
ηx
2
E[∥∇Φ(xt)∥2]−

ηx
4
(1− 2ηxκℓ− 8η2xℓ

2)E[∥gx,t∥2]

+ 5ηxℓ
2E[∥yt − y∗

t ∥2] + 7ηx
σ2

M

(69)

Proof of Lemma A.8. Let δxi = gx,i −∇xf(xi,yi).Using smoothness property at xt+1 and xt, we
have:

Φ(xt+1) ≤ Φ(xt)− ηx⟨∇Φ(xt), gx,t+ 1
2
⟩+ η2xκℓ∥gx,t+ 1

2
∥2

= Φ(xt)−
ηx
2
∥∇Φ(xt)∥2 −

ηx
2
(1− 2ηxκℓ)∥gx,t+ 1

2
∥2 + ηx

2
∥∇Φ(xt)− gx,t+ 1

2
∥2

≤ Φ(xt)−
ηx
2
∥∇Φ(xt)∥2 −

ηx
2
(1− 2ηxκℓ)∥gx,t+ 1

2
∥2

+ ηx∥∇Φ(xt)−∇xf(xt+ 1
2
,yt+ 1

2
)∥2 + ηx∥δxt+ 1

2
∥2

≤ Φ(xt)−
ηx
2
∥∇Φ(xt)∥2 −

ηx
2
(1− 2ηxκℓ)∥gx,t+ 1

2
∥2 + ηxℓ

2∥xt+ 1
2
− xt∥2

+ ηxℓ
2∥yt+ 1

2
− y∗

t ∥2 + ηx∥δxt+ 1
2
∥2

(70)

Using Young’s inequality, we have:

∥gx,t+ 1
2
∥2 ≥ 1

2
∥gx,t∥2 − ∥gx,t+ 1

2
− gx,t∥2 (71)
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Plugging Equation 71 back to Equation 70, and assuming ηx ≤ 1
2κℓ results in:

Φ(xt+1) ≤ Φ(xt)−
ηx
2
∥∇Φ(xt)∥2 −

ηx
4
(1− 2ηxκℓ)∥gx,t∥2 + ηxℓ

2∥xt+ 1
2
− xt∥2

+ ηxℓ
2∥yt+ 1

2
− y∗

t ∥2 +
ηx
2
∥gx,t+ 1

2
− gx,t∥2 + ηx∥δxt+ 1

2
∥2

≤ Φ(xt)−
ηx
2
∥∇Φ(xt)∥2 −

ηx
4
(1− 2ηxκℓ)∥gx,t∥2 + ηxℓ

2∥xt+ 1
2
− xt∥2

+ ηxℓ
2∥yt+ 1

2
− y∗

t ∥2 + ηx∥∇xf(xt+ 1
2
,yt+ 1

2
)−∇xf(xt,yt)∥2

+ 2ηx∥δxt+ 1
2
∥2 + 2ηx∥δxt ∥2 + ηx∥δxt+ 1

2
∥2

≤ Φ(xt)−
ηx
2
∥∇Φ(xt)∥2 −

ηx
4
(1− 2ηxκℓ)∥gx,t∥2 + ηxℓ

2∥xt+ 1
2
− xt∥2

+ ηxℓ
2∥yt+ 1

2
− y∗

t ∥2 + ηxℓ
2∥xt+ 1

2
− xt∥2 + ηxℓ

2∥yt+ 1
2
− yt∥2

+ 2ηx∥δxt+ 1
2
∥2 + 2ηx∥δxt ∥2 + ηx∥δxt+ 1

2
∥2

(72)

Using Lemma A.3 and Young’s inequality, we have:

∥yt+ 1
2
− y∗

t ∥2 + ∥yt+ 1
2
− yt∥2 ≤ 3∥yt+ 1

2
− y∗

t ∥2 + 2∥yt − y∗
t ∥2

≤ 5∥yt − y∗
t ∥2 +

3

8ℓ2
∥δyt ∥2 +

3

2ℓ
⟨δyt ,yt − y∗

t ⟩
(73)

Plugging Equation 73 in Equation 72, we get:

Φ(xt+1) ≤ Φ(xt)−
ηx
2
∥∇Φ(xt)∥2 −

ηx
4
(1− 2ηxκℓ− 8η2xℓ

2)∥gx,t∥2 + 5ηxℓ
2∥yt − y∗

t ∥2

+
3

8
ηx∥δyt ∥2 +

3

2
ηxℓ⟨δyt ,yt − y∗

t ⟩+ 2ηx∥δxt+ 1
2
∥2 + 2ηx∥δxt ∥2 + ηx∥δxt+ 1

2
∥2

(74)

Taking expectations from both sides of Equation 74, we have:

E[Φ(xt+1)] ≤ E[Φ(xt)]−
ηx
2
E[∥∇Φ(xt)∥2]−

ηx
4
(1− 2ηxκℓ− 8η2xℓ

2)E[∥gx,t∥2]

+ 5ηxℓ
2E[∥yt − y∗

t ∥2] + 7ηx
σ2

M

(75)

Proof of Theorem 4.2, and Theorem 4.4 for EG. Equipped with the above lemmas, we can prove the
theorem as follows. We start by taking summation from t = 0 to t = T − 1 of Equation 69 in
Lemma A.8, to get:

E[Φ(xT )] ≤ Φ(x0)−
ηx
2

T−1∑
t=0

E[∥∇Φ(xt)∥2]−
ηx
4
(1− 2ηxκℓ− 8η2xℓ

2)

T−1∑
t=0

E[∥gx,t∥2]

+ 5ηxℓ
2
T−1∑
t=0

E[∥yt − y∗
t ∥2] + 7ηx

σ2T

M

(76)

Replacing
∑T−1

t=0 E[∥yt − y∗
t ∥2] with the upper bound in Lemma A.7, we have:

E[Φ(xT )] ≤ 60ηxκℓ
2∥y0 − y∗

0∥2 +Φ(x0)−
ηx
2

T−1∑
t=0

E[∥∇Φ(xt)∥2]

− ηx
4
(1− 2ηxκℓ− 8η2xℓ

2 − 4320η2xκ
4ℓ2)

T−1∑
t=0

E[∥gx,t∥2]

+
120ηxκσ

2(T − 1)

M
+ 7ηx

σ2T

M

(77)
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Let ηx = 1
75κ2ℓ . Then 1− 2ηxκℓ− 8η2xℓ

2 − 4320η2xκ
4ℓ2 > 0. After rearranging and simplifying the

terms of Equation 77, we have:
T−1∑
t=0

E[∥∇Φ(xt)∥2] ≤
2∆Φ

ηx
+ 120κℓ2∥y0 − y∗

0∥2 +
240κσ2T

M
+

14σ2T

M
(78)

Replacing ηx = 1
75κ2ℓ in Equation 78, we have:

1

T

T−1∑
t=0

E[∥∇Φ(xt)∥2] ≤
150κ2ℓ∆Φ + 120κℓ2∥y0 − y∗

0∥2

T
+

240κσ2

M
+

14σ2

M
. (79)

Now by letting, M = κσ2

ϵ2 , and D0 = ∥y0 − y∗
0∥2, we have:

1

T

T−1∑
t=0

E[∥∇Φ(xt)∥2] ≤ O(
κ2ℓ∆Φ + κℓ2D0

T
) +O(ϵ2) (80)

A.3 Tightness Analysis

In this section we provide the complete proofs for Theorem 4.5 (Subsection A.3.1), and Theorem 4.6
(Subsection A.3.2), showing the tightness of the obtained upper bounds given our choice of learning
rates.

A.3.1 GDA

Proof of Theorem 4.5. Recall that we consider the following quadratic NC-SC function f : R×R→
R

f(x, y) := − 1
4ℓx

2 + bxy − 1
2µy

2.

We know f is nonconvex in x (it is actually concave in x) and µ strongly concave in y. Assume
κ := ℓ/µ ≥ 4 and choose b =

√
µ(ℓ+ 2µx)/2 for some 0 < µx ≤ ℓ/2 to be chosen later. Then we

know b ≤ ℓ/2 and it is easy to verify f is ℓ smooth. Note that the primal function

Φ(x) = max
y

f(x, y) = 1
2µxx

2

is actually strongly convex. This also justifies the symbol for µx. We use GDA to find the solution
for minx maxy f(x, y). Actually for this problem the optimal solution is achieved at the origin. The
stepsizes are chosen as ηx = c1

κ2ℓ and ηy = c2
ℓ for some small enough numerical constants c1 and c2

such that c = c2/c1 ≥ 1. Also denote r = ηy/ηx = cκ2 as the stepsize ratio. Then the GDA update
rule can be written as (

xk+1

yk+1

)
= (I + ηxM) ·

(
xk

yk

)
, (81)

where

M :=

(
ℓ/2 −b
rb −µr

)
.

We note that the above update is a linear time invariant system. We need to analyze its eigenvalues.
Let λ1 and λ2 be the two eigenvalues of M, we have

λ1,2 = −1

2

(
µr − 1

2
ℓ

)
± 1

2

√(
µr − 1

2
ℓ

)2

− 4rµµx.

Note that if we choose µx < ℓ/8, plugging into r = cκ2, we can bound

0 ≥ λ1 = − (2cκ− 1)ℓ

4

(
1−

√
1− 4cκµx

(cκ− 1/2)2ℓ

)

≥ − 2cκµx

cκ− 1/2
≥ −4µx.
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Let s1 be the corresponding eigenvalue of I + ηxM , for small enough c1 ≤ 1, it satisfies

0 ≤ 1− 4c1µx

κ2
≤ s1 = 1 + ηxλ1 ≤ 1.

We adversarially choose the initial point (x0, y0) such that it is parallel to the eigenvector of I+ ηxM
corresponding to s1. We can always choose x0 ≥ 0 for simplicity. Then we have(

xk+1

yk+1

)
= (I + ηxM)T

(
x0

y0

)
= sT1

(
x0

y0

)
,

so we can compute the magnitude of xT as xT = sT1 x0. Also note that ∆Φ = Φ(x0) = 1
2µxx

2
0.

Note that if ∆Φ = 0, this lemma is trivially true. Therefore we can assume ∆Φ > 0. Choosing
µx = ϵ2/∆Φ, we have

|∇Φ(x̄)| = µxx̄ ≥µxxT ≥ µxx0

(
1− 4c1µx

κ2

)T

=
√
2ϵ

(
1− 4c1ϵ

2

κ2∆Φ

)T

,

where x̄ ≥ xT because x0 ≥ x1 ≥ · · · ≥ xT and x̄ is sampled from this sequence. Then we know
that to achieve |∇Φ(x̄)| ≤ ϵ, we must have T = Ω

(
κ2∆Φ

ϵ2

)
as stated.

A.3.2 EG/OGDA

Proof of Theorem 4.6 for EG. We consider the same quadratic hard example f and notation used in
the proof of Theorem 4.5. For simplicity, denote w = (x, y). Then EG satisfies

wk+1/2 =(I + ηxM)wk,

wk+1 =wk + ηxMwk+1/2

=(I + ηxM+ η2xM
2)wk.

Therefore, similar to GDA, EG is also a linear time invariant system. The transition matrix for EG is
(I + ηxM+ η2xM

2). Its eigenvalues are

si = 1 + ηxλi + η2xλ
2
i ≥ 1 + ηxλi, i = 1, 2.

The rest of analysis is the same as that of GDA.

Proof of Theorem 4.6 for OGDA. We consider the same quadratic hard example f and the notation
used in the proofs of Theorems 5.1 and 5.2. The dynamics of OGDA is

wk+1 = wk + 2ηxMwk − ηxMwk−1.

If we initialize w0 parallel to the eigenvector of M corresponding to λ1 and let w1 = w0, we know
every wk is parallel to it, i.e., wk = zkw0 for some scalar zk which satisfies

zk+1 = zk + 2ηxλ1zk − ηxλ1zk−1.

The general solution of the above recurrence relation is

zk = aαk + bβk

for some constant a, b and

α =
1

2

(
1 + 2ηxλ1 +

√
1 + 4η2xλ

2
1

)
,

β =
1

2

(
1 + 2ηxλ1 −

√
1 + 4η2xλ

2
1

)
.
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We have

1 + ηxλ1 ≤ α ≤ 1, ηxλ1 ≤ β ≤ 0.

Using the initial condition z−1 = z0 = 1, we can get the constants

a =
α(1− β)

α− β
=

1

2
+

1

2
√

1 + 4η2xλ
2
1

≥ 1/2,

b =− β(1− α)

α− β
=

√
1 + 4η2xλ

2
1 − 1

2
√

1 + 4η2xλ
2
1

≤ η2xλ
2
1.

We can bound

|zT | ≥
1

2
(1 + ηxλ2)

T − |ηxλ1|k+2

≥ 1

2

(
1− 4c1µx

κ2

)T

− 1

4
,

where we use the fact |ηxλ1| ≤ 1/2. Similar to the analysis for GDA, choosing µx = 50ϵ2/∆Φ, we
have

|∇Φ(x̄)| = µxx̄ ≥µxxT ≥ µxx0

[
1

2

(
1− 4c1µx

κ2

)T

− 1

4

]

=10ϵ

[
1

2

(
1− 4c1µx

κ2

)T

− 1

4

]
.

Therefore, if |∇Φ(x̄)| ≤ ϵ, we must have

T = Ω

(
κ2

µx

)
= Ω

(
κ2∆Φ

ϵ2

)
.

B Proof of Convergence in Nonconvex-Concave Setting

B.1 Proof of convergence of OGDA

In this section, the convergence of OGDA in NC-C setting has been established. Before presenting
the complete proofs, here we briefly discuss the proof sketch.

Proof sketch We start from the standard descent analysis on Moreau envelope function [9]. Let
δt = Φ(xt)− f(xt,yt), then we can show:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xT+1)

T + 1
+O

(
1

T + 1

T∑
t=0

ℓδt

)
+O(ℓη2xG

2)

+
1

T + 1

T∑
t=0

O(∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2).

It turns out that the gradient norm depends on two terms, difference between gradient at time t and
t− 1 and δt: primal function gap at iteration t. To bound the first term, we can utilize smoothness of
∇f and reduce the problem to bounding ∥yt − yt−1∥2:

T∑
t=0

∥yt − yt−1∥2 ≤
T∑

t=0

O

η2yℓ

T∑
j=0

(2η2yℓ
2)j

 δt +

T∑
t=0

O

η2xη
2
yℓ

2G2
T∑

j=0

(2η2yℓ
2)j

 .
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Here we reduce difference between dual iterates to primal function gap δt. Now, it remains to bound
δt. We have the following recursion relation holding for any t and any s ≤ t:

Φ(xt)− f(xt,yt) ≤ O(ηx(t− s)G2) +
1

2ηy
(∥yt−1 − y∗(xs)∥2 − ∥yt − y∗(xs)∥2 + η2xηyℓG

2

+
1

2
∥yt−1 − yt−2∥2 −

1

2
∥yt − yt−1∥2) + ⟨∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2),yt−1 − y∗(xs)⟩

− ⟨∇yf(xt,yt)−∇yf(xt−1,yt−1),yt − y∗(xs)⟩. (82)

If we let s stay the same for some iterations, (1/T + 1)
∑T

t=0 δt vanishes in a telescoping fashion.

In the following, we present the key lemmas, and complete convergence proof of OGDA. First let us
introduce some useful lemmas for deterministic setting.

B.1.1 Useful Lemmas

Lemma B.1. For OGDA (Algorithm 2), under Theorem 4.9’s assumptions, the following statement
holds for the generated sequence {yt} during algorithm proceeding and any y ∈ Y:

∥yt − y∥2 ≤ ∥yt−1 − y∥2 − 1

2
∥yt − yt−1∥2 +

1

2
∥yt−1 − yt−2∥2 + 2ηy⟨yt − y,∇yf(xt,yt)⟩

+ ηyη
2
xℓG

2 − 2ηy⟨∇yf(xt,yt)−∇yf(xt−1,yt−1),yt − y⟩
+ 2ηy⟨∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2),yt−1 − y⟩.

(83)

Proof. According to updating rule of y:
yt = PY

(
yt−1 + 2ηy∇yf(xt−1,yt−1)− ηy∇yf(xt−2,yt−2)

)
.

Following the analysis in [40], we let εt−1 = ηy(∇yf(xt,yt) − ∇yf(xt−1,yt−1)) −
ηy(∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)) and re-write the updating rule as:

yt = PY
(
yt−1 + ηy∇yf(xt,yt)− εt−1

)
Then, due to the property of projection onto convex set we have the following inequality that holds
for any y ∈ Y:

(y − yt)
⊤(yt − yt−1 − ηy∇yf(xt,yt) + εt−1) ≥ 0.

Using the identity that ⟨a, b⟩ = 1
2 (∥a+ b∥2 − ∥a∥2 − ∥b∥2) we have:

0 ≤ ∥y − yt−1 − ηy∇yf(xt,yt) + εt−1∥2 − ∥y − yt∥2 − ∥yt − yt−1 − ηy∇yf(xt,yt) + εt−1∥2

≤ ∥y − yt−1∥2 − ∥y − yt∥2 − ∥yt − yt−1∥2 + 2⟨yt − y, ηy∇yf(xt,yt)⟩ − 2⟨yt − y, εt−1⟩
Now we plug the definition of εt−1 into above inequality to get:

∥y − yt∥2 ≤ ∥y − yt−1∥2 − ∥yt − yt−1∥2 + 2ηy⟨yt − y,∇yf(xt,yt)⟩
− 2ηy⟨yt − y, (∇yf(xt,yt)−∇yf(xt−1,yt−1))⟩
+ 2ηy⟨yt − y,∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)⟩
≤ ∥y − yt−1∥2 − ∥yt − yt−1∥2 + 2ηy⟨yt − y,∇yf(xt,yt)⟩
− 2ηy⟨yt − y, (∇yf(xt,yt)−∇yf(xt−1,yt−1))⟩
+ 2ηy⟨yt−1 − y,∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)⟩
+ ηyℓ(∥yt − yt−1∥2 + ∥xt−1 − xt−2∥2 + ∥yt−1 − yt−2∥2)

≤ ∥y − yt−1∥2 −
1

2
∥yt − yt−1∥2 +

1

2
∥yt−1 − yt−2∥2 + 2ηy⟨yt − y,∇yf(xt,yt)⟩

− 2ηy⟨yt − y, (∇yf(xt,yt)−∇yf(xt−1,yt−1))⟩
+ 2ηy⟨yt−1 − y,∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)⟩+ ηyη

2
xℓG

2,
(84)

which concludes the proof.
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Lemma B.2. For OGDA (Algorithm 2), under the same assumptions made as in Theorem 4.8, the
following statement holds for the generated sequence {xt}, {yt} during algorithm proceeding:

Φ1/2ℓ(xt) ≤ Φ1/2ℓ(xt−1) + 2ηxℓ
(
Φ(xt−1)− f(xt−1,yt−1)

)
− ηx

8
∥∇Φ1/2ℓ(xt−1)∥2 + 3ℓη2xG

2

+
ηx
2
∥∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)∥2.

Proof. Let x̂t−1 = argminx∈Rd Φ(x) + ℓ∥x− xt−1∥2. Notice that:

Φ1/2ℓ(xt) ≤ Φ1/2ℓ(x̂t−1) + ℓ∥x̂t−1 − xt∥2

≤ Φ1/2ℓ(x̂t−1) + ℓ(∥x̂t−1 − xt−1∥2

+ 2ηx⟨2∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2), x̂t−1 − xt−1⟩+ 3η2xG
2)

According to smoothness of f(·,y), we have:

⟨x̂t−1 − xt−1,∇xf(xt−1,yt−1)⟩ ≤ f(x̂t−1,yt−1)− f(xt−1,yt−1) +
ℓ

2
∥x̂t−1 − xt−1∥2

≤ Φ(xt−1)− f(xt−1,yt−1)−
ℓ

2
∥x̂t−1 − xt−1∥2.

So we have

Φ1/2ℓ(xt) ≤ Φ1/2ℓ(x̂t−1) + ℓ∥x̂t−1 − xt∥2

≤ Φ1/2ℓ(x̂t−1) + ℓ∥xt−1 − x̂t−1∥2

+ 2ηxℓ

(
Φ(xt−1)− f(xt−1,yt−1)−

ℓ

2
∥x̂t−1 − xt−1∥2

)
+ 3ℓη2xG

2

+ ηxℓ

(
1

2ℓ
∥∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)∥2 +

ℓ

2
∥xt−1 − x̂t−1∥2

)
≤ Φ1/2ℓ(xt−1) + 2ηxℓ

(
Φ(xt−1)− f(xt−1,yt−1)

)
− ηxℓ

2

2
∥x̂t−1 − xt−1∥2 + 3ℓη2xG

2

+
ηx
2
∥∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)∥2.

Using the fact that ∥x̂t−1 − xt−1∥ = 1
2ℓ∥∇Φ1/2ℓ(xt−1)∥ will conclude the proof.

Lemma B.3 (Iterates gap). For OGDA (Algorithm 2), under Theorem 4.8’s assumptions, the following
statement holds for the generated sequence {yt} during algorithm proceeding:

T∑
t=0

∥yt − yt−1∥2 ≤
T∑

t=0

 T∑
j=0

(2η2yℓ
2)j

 4η2yℓ (Φ(xt)− f(xt,yt))

+

T∑
t=0

 T∑
j=0

(2η2yℓ
2)j

 2η2xη
2
yℓ

2G2.

Proof. Observe that

∥yt − yt−1∥2 = η2y
∥∥2∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)

∥∥2
≤ 2η2y

∥∥∇yf(xt−1,yt−1)
∥∥2 + 2η2y

∥∥∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)
∥∥2

≤ 4η2yℓ
(
Φ(xt−1)− f(xt−1,yt−1)

)
+ 2η2yℓ

2
(
∥xt−1 − xt−2∥2 +

∥∥yt−1 − yt−2

∥∥2)
≤ 2η2yℓ

2
∥∥yt−1 − yt−2

∥∥2 + 4η2yℓ
(
Φ(xt−1)− f(xt−1,yt−1)

)
+ 2η2xη

2
yℓ

2G2.

32



Unrolling the recursion yields:

∥yt − yt−1∥2 ≤ (2η2yℓ
2)t−1

∥∥y0 − y−1

∥∥2 + t∑
j=1

(2η2yℓ
2)t−j4η2yℓ

(
Φ(xj−1)− f(xj−1,yj−1)

)
+

t∑
j=1

(2η2yℓ
2)t−j2η2xη

2
yℓ

2G2.

Since y0 = y−1, we have:

∥yt − yt−1∥2 ≤
t∑

j=1

(2η2yℓ
2)t−j4η2yℓ

(
Φ(xj−1)− f(xj−1,yj−1)

)
+

t∑
j=1

(2η2yℓ
2)t−j2η2xη

2
yℓ

2G2.

Finally, summing the above inequality over t = 0 to T yields:

T∑
t=0

∥yt − yt−1∥2 ≤
T∑

t=0

 T∑
j=0

(2η2yℓ
2)j

 4η2yℓ (Φ(xt)− f(xt,yt))

+

T∑
t=0

 T∑
j=0

(2η2yℓ
2)j

 2η2xη
2
yℓ

2G2.

Lemma B.4. For OGDA (Algorithm 2), under Theorem 4.8’s assumptions, the following statement
holds for the generated sequence {yt} during algorithm proceeding and ∀s ≤ t:

Φ(xt)− f(xt,yt) ≤ 2ηx(t− s)G2 +
1

2ηy

(
∥yt−1 − y∗(xs)∥2 − ∥yt − y∗(xs)∥2 −

1

2
∥yt − yt−1∥2

)
+

1

2ηy

(
1

2
∥yt−1 − yt−2∥2 + ηyη

2
xℓG

2

)
− ⟨∇yf(xt,yt)−∇yf(xt−1,yt−1),

yt − y∗(xs)⟩+ ⟨∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2),yt−1 − y∗(xs)⟩.

Proof. Observe that:

Φ(xt)− f(xt,yt) ≤ f(xt,y
∗(xt))− f(xs,y

∗(xt)) + f(xs,y
∗(xs))− f(xt,y

∗(xs))

+ f(xt,y
∗(xs))− f(xt,yt)

≤ 2(t− s)ηxG
2 − ⟨yt − y,∇yf(xt,yt)⟩,

where in the last step we use the concavity of f(xt, ·).
Plugging in Lemma B.1 will conclude the proof as follows:

Φ(xt)− f(xt,yt) ≤ 2(t− s)ηxG
2

+
1

2ηy

(
∥yt−1 − y∥2 − ∥yt − y∥2 − 1

2
∥yt − yt−1∥2 +

1

2
∥yt−1 − yt−2∥2

)
+

1

2ηy
ηyη

2
xℓG

2 − ⟨∇yf(xt,yt)−∇yf(xt−1,yt−1),yt − y⟩

+ ⟨∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2),yt−1 − y⟩.

Lemma B.5. For OGDA (Algorithm 2), under the same assumptions made in Theorem 4.8, the
following statement holds for the generated sequence {xt}, {yt} during algorithm proceeding:

1

T + 1

T∑
t=0

Φ(xt)− f(xt,yt) ≤
1

B

(
2ηxB

2G2 +
1

2ηy

(
D2 + ηyℓD

2
)
+ 2(3ηxG

2 +D)D

)
.
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Proof. Let S = (T + 1)/B, and we choose s = jB, j = 0, ..., S. Then by summing over t on the
both side of Lemma B.4 we have:

1

T + 1

T∑
t=0

Φ(xt)− f(xt,yt) =
1

T + 1

S∑
j=0

(j+1)B−1∑
t=jB

Φ(xt)− f(xt,yt)

≤ 1

T + 1

S∑
j=0

[
2ηxB

2G2 +
1

2ηy

(
∥yjB−1 − y∗(xjB)∥2 +

1

2
∥yjB−1 − yjB−2∥2

)]

+
1

T + 1

S∑
j=0

(
−⟨∇yf(x(j+1)B−1, y(j+1)B−1)−∇yf(x(j+1)B−2, y(j+1)B−2),

y(j+1)B−1 − y∗(xjB)⟩+ ⟨∇yf(xjB−1,yjB−1)−∇yf(xjB−2,yjB−2),yjB−1 − y∗(xjB⟩

≤ 1

T + 1

S∑
j=0

(
2ηxB

2G2 +
1

2ηy

(
D2 +

1

2
D2

)
+ 2(3ηxG

2 +D)D

)

≤ 1

B

(
2ηxB

2G2 +
1

2ηy

(
D2 + ηyℓD

2
)
+ 2(3ηxG

2 +D)D

)
.

B.1.2 Proof of Theorem 4.8 for OGDA

In this section we are going to provide the proof of Theorem 4.8 on the convergence rate of OGDA in
both deterministic and stochastic settings.

We start by establishing the convergence rate in deterministic setting. Before, we first state the formal
version of Theorem 4.8 here:

Theorem B.6 (OGDA Deterministic (Theorem 4.8 restated)). Under Assumption 4.7, if we choose
ηx = Θ

(
min

{
ϵ
ℓG , ϵ2

ℓG2 ,
ϵ4

D2G2ℓ3

})
, ηy = 1

2ℓ , then OGDA (Algorithm 2) guarantees to find ϵ-

stationary point, i.e., 1
T+1

∑T
t=0 ∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2, with the gradient complexity bounded by:

O

(
ℓG2∆̂Φ

ϵ4
max

{
1,

D2ℓ2

ϵ2

})
.

Proof. From Lemma B.2 we have:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xt)

ηxT
+ 16ℓ

1

T

T−1∑
t=0

(Φ(xt)− f(xt,yt)) + 24ηxℓG
2

+ 4
1

T + 1

T∑
t=0

∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2,

≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xt)

ηxT
+ 16ℓ

1

T

T−1∑
t=0

(Φ(xt)− f(xt,yt)) + 24ηxℓG
2

+ 4
1

T + 1

T∑
t=0

ℓ2(3η2xG
2 + ∥yt − yt−1∥2).
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Plugging in Lemma B.3 yields:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xt)

ηxT

+ 16ℓ
1

T

T−1∑
t=0

(Φ(xt)− f(xt,yt)) + 24ηxℓG
2 + 12η2xℓ

2G2

+ 4
1

T + 1
ℓ2

 T∑
t=0

 T∑
j=0

(2η2yℓ
2)j

 4η2yℓ (Φ(xt)− f(xt,yt)) +

T∑
t=0

 T∑
j=0

(2η2yℓ
2)j

 2η2xη
2
yℓ

2G2

 ,

since we choose ηyℓ ≤ 1
2 , we know that:

T∑
j=0

(
2η2yℓ

2
)j ≤ 2.

Hence we have:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xt)

ηxT
+ (16ℓ+ 32η2yℓ

3)
1

T + 1

T∑
t=0

(Φ(xt)− f(xt,yt))

+ 24ηxℓG
2 + 12η2xℓ

2G2 + 16η2xη
2
yℓ

4G2.

Now we plug in Lemma B.5 to replace Φ(xt)− f(xt,yt):

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xt)

ηxT

+ (16ℓ+ 32η2yℓ
3)

1

B

(
2ηxB

2G2 +
1

2ηy

(
D2 + ηyℓD

2
)
+ 2(3ηxG

2 +D)D

)
+ 24ηxℓG

2 + 12η2xℓ
2G2 + 16η2xη

2
yℓ

4G2.

Choose B = O
(

D
G
√
ηxηy

)
, ηx = O

(
min

{
ϵ
ℓG , ϵ2

ℓG2 ,
ϵ4

D2G2ℓ3

})
, ηy = 1

2ℓ , and then we guarantee

that 1
T+1

∑T
t=0 ∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2 with the gradient complexity is bounded by:

O

(
ℓG2∆̂Φ

ϵ4
max

{
1,

D2ℓ2

ϵ2

})
.

Stochastic setting.

We now turn to presenting the proof of OGDA in stochastic setting. First let us introduce some useful
lemmas.

B.1.3 Useful Lemmas

Lemma B.7. For Stochastic OGDA (Algorithm 2), under the same assumptions made in Theorem 4.9,
if we choose η ≤ 1/4ℓ the following statement holds for the generated sequence {yt} during
algorithm proceeding and for any y ∈ Y:

E∥y − yt∥2≤E∥y − yt−1∥2 −
1

4
E∥yt − yt−1∥2 +

1

4
E∥yt−1 − yt−2∥2 + 2ηy⟨yt − y,∇yf(xt,yt)⟩

+ ηyη
2
xℓ(G

2 + σ2) + 6η2yσ
2 − 2ηy⟨yt − y,∇yf(xt,yt)−∇yf(xt−1,yt−1)⟩

+ 2ηy⟨yt−1 − y,∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)⟩.
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Proof. The proof is similar to deterministic setting. Here we use ξt−1 to denote the random sample
at iteration t. According to updating rule of y:

yt = PY
(
yt−1 + 2ηy∇yf(xt−1,yt−1; ξt−1)− ηy∇yf(xt−2,yt−2; ξt−1)

)
Similarly to deterministic setting, we let
ε̃t−1 = ηy(∇yf(xt,yt)−∇yf(xt−1,yt−1; ξt−1))− ηy(∇yf(xt−1,yt−1; ξt−1)−∇yf(xt−2,yt−2; ξt−1))

εt−1 = ηy(∇yf(xt,yt)−∇yf(xt−1,yt−1))− ηy(∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2))

and re-write the updating rule as:
yt = PY

(
yt−1 + ηy∇yf(xt,yt)− ε̃t−1

)
Due to the property of projection we have:

(y − yt)
⊤(yt − yt−1 − ηy∇yf(xt,yt) + ε̃t−1) ≥ 0

Using the identity that ⟨a, b⟩ = 1
2 (∥a+ b∥2 − ∥a∥2 − ∥b∥2) we have:

0 ≤ ∥y − yt−1 − ηy∇yf(xt,yt) + ε̃t−1∥2 − ∥y − yt∥2 − ∥yt − yt−1 − ηy∇yf(xt,yt) + ε̃t−1∥2

= ∥y − yt−1∥2 − ∥y − yt∥2 − ∥yt − yt−1∥2 + 2⟨yt − y, ηy∇yf(xt,yt)⟩
+ 2⟨y − yt−1, ε̃t−1⟩ − 2⟨yt − yt−1, ε̃t−1⟩.

Notice that
−2⟨yt − yt−1, ε̃t−1⟩ = −2⟨yt − yt−1, εt−1⟩ − 2⟨yt − yt−1, ε̃t−1 − εt−1⟩

≤ −2⟨yt − yt−1, εt−1⟩+
1

2
∥yt − yt−1∥2 + 2∥ε̃t−1 − εt−1∥2

So we have:
0 ≤ ∥y − yt−1 − ηy∇yf(xt,yt) + ε̃t−1∥2 − ∥y − yt∥2 − ∥yt − yt−1 − ηy∇yf(xt,yt) + ε̃t−1∥2

= ∥y − yt−1∥2 − ∥y − yt∥2 − ∥yt − yt−1∥2 + 2⟨yt − y, ηy∇yf(xt,yt)⟩

+ 2⟨y − yt−1, ε̃t−1⟩ − 2⟨yt − yt−1, εt−1⟩+
1

2
∥yt − yt−1∥2 + 2∥ε̃t−1 − εt−1∥2.

Taking expectation over ξt−1 yields:

0 ≤ E∥y − yt−1∥2 − E∥y − yt∥2 −
1

2
E∥yt − yt−1∥2 + 2⟨yt − y, ηy∇yf(xt,yt)⟩

− 2⟨yt − y, εt−1⟩+ 6η2yσ
2.

Now we plug the definition of εt−1 into above inequality:

E∥y − yt∥2 ≤ E∥y − yt−1∥2 − E∥yt − yt−1∥2 + 2ηy⟨yt − y,∇yf(xt,yt)⟩
− 2ηy⟨yt − y,∇yf(xt,yt)−∇yf(xt−1,yt−1)⟩+ 6η2yσ

2

+ 2ηy⟨yt − y,∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)⟩
≤ E∥y − yt−1∥2 − E∥yt − yt−1∥2 + 2ηy⟨yt − y,∇yf(xt,yt)⟩
− 2ηy⟨yt − y,∇yf(xt,yt)−∇yf(xt−1,yt−1)⟩+ 6η2yσ

2

+ 2ηy⟨yt−1 − y,∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)⟩
+ ηyℓ(E∥yt − yt−1∥2 + E∥xt−1 − xt−2∥2 + E∥yt−1 − yt−2∥2)

➀
≤ E∥y − yt−1∥2 −

1

4
E∥yt − yt−1∥2 +

1

4
E∥yt−1 − yt−2∥2

+ 2ηy⟨yt − y,∇yf(xt,yt)⟩+ ηyη
2
xℓ(G

2 + σ2) + 6η2yσ
2

− 2ηy⟨yt − y,∇yf(xt,yt)−∇yf(xt−1,yt−1)⟩
+ 2ηy⟨yt−1 − y,∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)⟩,

where in ➀ we use the fact that ηyℓ ≤ 1
4 and hence can conclude the proof.
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Lemma B.8. For Stochastic OGDA (Algorithm 2), under same assumptions as in Theorem 4.9, the
following statement holds for the genserated sequence {xt}, {yt} during algorithm proceeding:

E[Φ1/2ℓ(xt)] ≤ E[Φ1/2ℓ(xt−1)] + 2ηxℓE
(
Φ(xt−1)− f(xt−1,yt−1)

)
− ηx

8
E∥∇Φ1/2ℓ(xt−1)∥2

+ 3ℓη2x(G
2 + σ2) +

ηx
2
E∥∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)∥2.

Proof. Let x̂t−1 = argminx∈Rd Φ(x) + ℓ∥x− xt−1∥2. Notice that:

E[Φ1/2ℓ(xt)] ≤ E[Φ1/2ℓ(x̂t−1)] + ℓE∥x̂t−1 − xt∥2

≤ E[Φ1/2ℓ(x̂t−1)]

+ ℓ(E∥xt−1 − x̂t−1∥2 + 2ηx⟨2∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2),xt−1 − x̂t−1⟩
+ 3η2x(G

2 + σ2))

According to smoothness of f(·,y), we have:

⟨x̂t−1 − xt−1,∇xf(xt−1,yt−1)⟩ ≤ f(x̂t−1,yt−1)− f(xt−1,yt−1) +
ℓ

2
∥x̂t−1 − xt−1∥2

≤ Φ(xt−1)− f(xt−1,yt−1)−
ℓ

2
∥x̂t−1 − xt−1∥2.

So we have

E[Φ1/2ℓ(xt)] ≤ E[Φ1/2ℓ(x̂t−1)] + ℓE∥x̂t−1 − xt∥2

≤ E[Φ1/2ℓ(x̂t−1)] + ℓE∥xt−1 − x̂t−1∥2

+ 2ηxℓE
(
Φ(xt−1)− f(xt−1,yt−1)−

ℓ

2
E∥x̂t−1 − xt−1∥2

)
+ 3ℓη2x(G

2 + σ2)

+ ηxℓ

(
1

2ℓ
E∥∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)∥2 +

ℓ

2
E∥xt−1 − x̂t−1∥2

)
≤ E[Φ1/2ℓ(xt−1)] + 2ηxℓE

(
Φ(xt−1)− f(xt−1,yt−1)

)
− ηxℓ

2

2
E∥x̂t−1 − xt−1∥2

+ 3ℓη2x(G
2 + σ2) +

ηx
2
E∥∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)∥2.

Lemma B.9. For Stochastic OGDA (Algorithm 2), under Theorem 4.9’s assumptions, the following
statement holds for the generated sequence {yt} during algorithm proceeding:

T∑
t=0

E∥yt − yt−1∥2 ≤ 4η2yℓ

T∑
t=0

 T∑
j=0

(
2η2yℓ

2
)jE[Φ(xt)− f(xt,yt)]

+

T∑
t=0

 T∑
j=0

(
2η2yℓ

2
)j(6η2xη2yℓ2(G2 + σ2) + 6η2yσ

2
)

Proof. According to updating rule of stochastic OGDA:

E∥yt − yt−1∥2

≤ η2yE∥2∇yf(xt−1,yt−1; ξt−1)− f(xt−2,yt−2; ξt−1)∥2

≤ 2η2yE∥∇yf(xt−1,yt−1)∥2 + 2η2yσ
2 + 2η2yE∥∇yf(xt−1,yt−1)− f(xt−2,yt−2)∥2 + 4η2yσ

2

≤ 4η2yℓE[Φ(xt−1)− f(xt−1,yt−1)] + 2η2yℓ
2(E∥xt−1 − xt−2∥2 + E∥yt−1 − yt−2∥2) + 6η2yσ

2

≤ 4η2yℓE[Φ(xt−1)− f(xt−1,yt−1)] + 2η2yℓ
2(3η2x(G

2 + σ2) + E∥yt−1 − yt−2∥2) + 6η2yσ
2.
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Unrolling the recursion yields:

E∥yt − yt−1∥2 ≤ 4η2yℓ

t−1∑
j=0

(
2η2yℓ

2
)t−1−j E[Φ(xj)− f(xj , yj)]

+

t−1∑
j=0

(
2η2yℓ

2
)t−1−j (

6η2xη
2
yℓ

2(G2 + σ2) + 6η2yσ
2
)
+ (2η2yℓ

2)E∥y0 − y−1∥2.

Since y0 = y−1, we can conclude the proof via summing t from 0 to T − 1:

T∑
t=0

E∥yt − yt−1∥2 ≤ 4η2yℓ

T∑
t=0

 T∑
j=0

(
2η2yℓ

2
)jE[Φ(xt)− f(xt, yt)]

+

T∑
t=0

 T∑
j=0

(
2η2yℓ

2
)j(6η2xη2yℓ2(G2 + σ2) + 6η2yσ

2
)
.

Lemma B.10. For Stochastic OGDA (Algorithm 2), under assumptions made in Theorem 4.9, the
following statement holds for the generated sequence {yt} during algorithm proceeding and ∀s ≤ t:

E[Φ(xt)− f(xt,yt)] ≤ 2ηx(t− s)G
√

G2 + σ2 +
ηyη

2
xℓ

2
(G2 + σ2) + 3ηyσ

2

+
1

2ηy

(
E∥yt−1 − y∗(xs)∥2 − E∥yt − y∗(xs)∥2 −

1

4
E∥yt − yt−1∥2 +

1

4
E∥yt−1 − yt−2∥2

)
+ ⟨∇yf(xt,yt)−∇yf(xt−1,yt−1),yt − y∗(xs)⟩
− ⟨∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2),yt−1 − y∗(xs)⟩.

Proof. Observe that:

E[Φ(xt)− f(xt,yt)] ≤ E[f(xt,y
∗(xt))− f(xs,y

∗(xt))] + E[f(xs,y
∗(xs))− f(xt,y

∗(xs))]

+ E[f(xt,y
∗(xs))− f(xt,yt)]

≤ 2(t− s)ηxG
√

G2 + σ2 − E⟨yt − y,∇yf(xt,yt)⟩.

Plugging in Lemma B.7 will conclude the proof.

Lemma B.11. For Stochastic OGDA (Algorithm 2), under Theorem 4.9’s assumptions, the following
statement holds for the generated sequence {xt}, {yt} during algorithm proceeding:

1

T + 1

T∑
t=0

E[Φ(xt)− f(xt,yt)] ≤
1

B

(
2ηxB

2G
√
G2 + σ2 +

5D2

8ηy
+ 2(3ηxG

√
G2 + σ2 +D)D

)
+

ηyη
2
xℓ

2
(G2 + σ2) + 3ηyσ

2.
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Proof. Let S = (T + 1)/B, and we choose s = jB, j = 0, ..., S. Then by summing over t on the
both side of Lemma B.11 we have:

1

T + 1

T−1∑
t=0

E[Φ(xt)− f(xt,yt)] =
1

T

S∑
j=0

(j+1)B−1∑
t=jB

E[Φ(xt)− f(xt,yt)]

≤ 1

T

S∑
j=0

[
2ηxB

2G
√
G2 + σ2 +

1

2ηy

(
∥yjB − y∗(xjB)∥2 +

1

4
∥yjB − yjB−1∥2

)]

+
ηyη

2
xℓ

2
(G2 + σ2) + 3ηyσ

2

+
1

T

S∑
j=0

[
−⟨∇yf(x(j+1)B−1, y(j+1)B−1)−∇yf(x(j+1)B−2, y(j+1)B−2),y(j+1)B−1 − y∗(xjB)⟩

+⟨∇yf(xjB−1,yjB−1)−∇yf(xjB−2,yjB−2),yjB−1 − y∗(xjB⟩
]

≤ 1

T

S∑
j=0

[
2ηxB

2G
√
G2 + σ2 +

5D2

8ηy
+ 2(3ηxG

√
G2 + σ2 +D)D

]

+
ηyη

2
xℓ

2
(G2 + σ2) + 3ηyσ

2

≤ 1

B

[
2ηxB

2G
√
G2 + σ2 +

5D2

8ηy
+ 2(3ηxG

√
G2 + σ2 +D)D

]
+

ηyη
2
xℓ

2
(G2 + σ2) + 3ηyσ

2.

B.1.4 Proof of Theorem 4.9 for OGDA

In this section we are going to provide the proof for Theorem 4.9, the convergence rate of OGDA in
stochastic setting. We first introduce the formal version of Theorem 4.9 here:
Theorem B.12 (OGDA Stochastic (Theorem 4.9 restated)). Under Assumption 4.3 and
4.7, if we choose ηx = O(min{ ϵ2

ℓ(G2+σ2) ,
ϵ4

D2ℓ3G
√
G2+σ2

, ϵ6

D2ℓ3σ2G
√
G2+σ2

}), ηy =

O(min{ 1
4ℓ ,

ϵ2

ℓσ2 }), then Stochastic OGDA (Algorithm 2) guarantees to find ϵ-stationary point, i.e.,
1

T+1

∑T
t=0 E∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2, with the gradient complexity bounded by:

O

(
D2ℓ3G

√
G2 + σ2

ϵ6
max

{
1,

σ2

ϵ2

})
.

Proof. Similar to the proof in deterministic setting, first according to Lemma B.8 we have:

1

T + 1

T∑
t=0

E∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xT+1)

ηx(T + 1)

+ 16ℓ
1

T + 1

T∑
t=0

(Φ(xt)− f(xt,yt)) + 12η2xℓ
2(G2 + σ2) + 24ℓηx(G

2 + σ2)

+ 4ℓ2
1

T + 1

4η2yℓ

T+1∑
t=0

 T∑
j=0

(
2η2yℓ

2
)jE[Φ(xt)− f(xt,yt)]

+

T∑
t=0

 T∑
j=0

(
2η2yℓ

2
)j(6η2xη2yℓ2(G2 + σ2) + 6η2yσ

2
)
.
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Since we choose ηyℓ ≤ 1
4 , it follows that:

T∑
j=0

(
2η2yℓ

2
)j ≤ 2.

As a result, we can further simplify the bound as:

1

T + 1

T∑
t=0

E∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xT+1)

ηx(T + 1)

+ (16ℓ+ 32η2yℓ
3)

1

T + 1

T∑
t=0

(Φ(xt)− f(xt,yt))

+ 12η2xℓ
2(G2 + σ2) + 24ℓηx(G

2 + σ2) + 8ℓ2
(
6η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2
)
.

Plugging in Lemma B.11 yields:

1

T + 1

T∑
t=0

E∥∇Φ1/2ℓ(xt)∥2 ≤
Φ1/2ℓ(x0)− Φ1/2ℓ(xT+1)

ηx(T + 1)

+ (16ℓ+ 32η2yℓ
3)

1

B

(
2ηxB

2G
√

G2 + σ2 +
5D2

8ηy
+ 2(3ηxG

√
G2 + σ2 +D)D

)
+ (16ℓ+ 32η2yℓ

3)(
ηyη

2
xℓ

2
(G2 + σ2) + 3ηyσ

2)

+ 12η2xℓ
2(G2 + σ2) + 24ℓηx(G

2 + σ2) + 8ℓ2
(
6η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2
)
.

Choose B = O( D√
ηxηyG

√
G2+σ2

), ηx = O(min{ ϵ2

ℓ(G2+σ2) ,
ϵ4

D2ℓ3G
√
G2+σ2

, ϵ6

D2ℓ3σ2G
√
G2+σ2

}),

ηy = O(min{ 1
4ℓ ,

ϵ2

ℓσ2 }), and then it is guaranteed that 1
T+1

∑T
t=0 E∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2 with

the gradient complexity is bounded by

O

(
D2ℓ3G

√
G2 + σ2

ϵ6
max

{
1,

σ2

ϵ2

})
.

B.2 Proof of convergence of EG

In this section, the convergence of EG in NC-C setting has been established. Before presenting the
complete proofs, here we briefly discuss the proof sketch.

Proof sketch Similar to OGDA, we have the following lemma on Φ1/2ℓ:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt− 1
2
)∥2 ≤ Φ1/2ℓ(x− 1

2
)− Φ1/2ℓ(xT+ 1

2
)

+O(ℓ+ η2yℓ
3)

1

T + 1

T∑
t=0

δt− 1
2
+O(ℓη2xG

2).

Now we need to examine δt− 1
2

. To bound this term, we have the following recursion:

Φ(xt+ 1
2
)− f(xt+ 1

2
,yt+ 1

2
) ≤ O((t− s)ηxG

2)

+
1

2ηy

(
∥yt − y∗(xs)∥2 − ∥yt+1 − y∗(xs)∥2 +

η2xG
2

2

)
,

which is derived by the descent property of EG on concave function. Similar to OGDA, here we also
obtain neat recursion, which will yield our desired complexity bound.

In the following, we present the key lemmas, and complete convergence proof of EG. First let us
introduce some useful lemmas for the deterministic setting.

40



B.2.1 Useful Lemmas

Proposition B.13 ([5], Proposition 4.2). If p = PY(r − u), q = PY(r − v), and

∥u− v∥2 ≤ C2
1∥p− r∥2 + C2

2 ,

then for any z ∈ Rd we have:

⟨v,p− z⟩ ≤ ∥r − z∥2 − ∥q − z∥2 −
(
1

2
− C2

1

2

)
∥r − p∥2 + C2

2

2
.

Lemma B.14. For EG (Algorithm 3), under Theorem 4.9’s assumptions, the following statement
holds for the generated sequence {yt}, {yt+ 1

2
} during algorithm proceeding and any y ∈ Y:

∥yt+1 − y∥2 ≤ ∥yt − y∥2 + 2ηy⟨yt+ 1
2
− y,∇yf(xt+ 1

2
,yt+ 1

2
)⟩ −

(
1

2
−

η2yℓ
2

2

)
∥yt − yt+ 1

2
∥2

+
η2xη

2
yℓ

2G2

2
.

Proof. According to Proposition B.13, we set r = yt, q = yt+1, p = yt+ 1
2

and v =

−ηy∇yf(xt+ 1
2
,yt+ 1

2
), u = −ηy∇yf(xt,yt). We can verify that:

∥u− v∥2 = η2y∥∇yf(xt+ 1
2
,yt+ 1

2
)−∇yf(xt,yt)∥2

≤ η2y(ℓ
2∥yt+ 1

2
− yt∥2 + ℓ2∥xt+ 1

2
− xt∥2)

≤ η2y(ℓ
2∥p− r∥2 + ℓ2η2xG

2),

so if we set C2
1 = η2yℓ

2 and C2
2 = η2xη

2
yℓ

2G2, we have the following inequality holding for any
y ∈ Y:

⟨−ηy∇yf(xt+ 1
2
,yt+ 1

2
),yt+ 1

2
− y⟩ ≤ ∥yt − y∥2 − ∥yt+1 − y∥2 −

(
1

2
−

η2yℓ
2

2

)
∥yt − yt+ 1

2
∥2

+
η2xη

2
yℓ

2G2

2
.

Lemma B.15. For EG (Algorithm 3), under Theorem 4.9’s assumptions, the following statement
holds for the generated sequence {xt}, {yt}, {xt+ 1

2
}, {yt+ 1

2
} during algorithm proceeding:

Φ1/2ℓ(xt+ 1
2
) ≤ Φ1/2ℓ(xt− 1

2
) + 2ηxℓ

(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
)
− ηx

8
∥∇Φ1/2ℓ(xt− 1

2
)∥2 + 3ℓη2xG

2

+
ηx
2
∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2.

Proof. Let x̂t− 1
2
= argminx∈Rd Φ(x) + ℓ∥x− xt− 1

2
∥2. Notice that:

Φ1/2ℓ(xt+ 1
2
) ≤ Φ1/2ℓ(x̂t− 1

2
) + ℓ∥x̂t− 1

2
− xt+ 1

2
∥2

≤ Φ1/2ℓ(x̂t− 1
2
) + ℓ∥x̂t− 1

2
− xt+ 1

2
∥2

+ ℓ(2ηx⟨∇xf(xt− 1
2
,yt− 1

2
) + (∇xf(xt,yt −∇xf(xt−1,yt−1), x̂t− 1

2
− xt− 1

2
⟩+ η2xG

2)

= Φ1/2ℓ(x̂t− 1
2
) + ℓ(∥x̂t− 1

2
− xt+ 1

2
∥2 + 2ηx⟨∇xf(xt− 1

2
,yt− 1

2
), x̂t− 1

2
− xt− 1

2
⟩)

+ 2ℓηx⟨∇xf(xt,yt)−∇xf(xt−1,yt−1), x̂t− 1
2
− xt− 1

2
⟩+ η2xℓG

2

According to smoothness of f(·,y), we have:

⟨x̂t− 1
2
− xt− 1

2
,∇xf(xt− 1

2
,yt− 1

2
)⟩ ≤ f(x̂t− 1

2
,yt− 1

2
)− f(xt− 1

2
,yt− 1

2
) +

ℓ

2
∥x̂t− 1

2
− xt− 1

2
∥2

≤ Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)− ℓ

2
∥x̂t− 1

2
− xt− 1

2
∥2.
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So we have

Φ1/2ℓ(xt+ 1
2
) ≤ Φ1/2ℓ(xt− 1

2
) + ℓ∥xt− 1

2
− x̂t− 1

2
∥2

+ 2ηxℓ

(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)− ℓ

2
∥x̂t− 1

2
− xt− 1

2
∥2
)
+ 3ℓη2xG

2

+ ηxℓ

(
1

2ℓ
∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2 +

ℓ

2
∥xt− 1

2
− x̂t− 1

2
∥2
)

≤ Φ1/2ℓ(xt− 1
2
) + 2ηxℓ

(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
)
− ηxℓ

2

2
∥x̂t− 1

2
− xt− 1

2
∥2 + 3ℓη2xG

2

+
ηx
2
∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2.

Lemma B.16. For EG (Algorithm 3), under Theorem 4.9’s assumptions, the following statement
holds for the generated sequence {xt}, {yt}, {xt+ 1

2
}, {yt+ 1

2
} during algorithm proceeding and

∀s ≤ t:

Φ(xt+ 1
2
)− f(xt+ 1

2
,yt+ 1

2
) ≤ 2(t− s+ 1)ηxG

2

+
1

2ηy

(
∥yt − y∗(xs)∥2 − ∥yt+1 − y∗(xs)∥2 +

η2xG
2

2

)
.

Proof. Observe that:

Φ(xt+ 1
2
)− f(xt+ 1

2
,yt+ 1

2
) ≤ f(xt+ 1

2
,y∗(xt+ 1

2
))− f(xs,y

∗(xt+ 1
2
)) + f(xs,y

∗(xs))

− f(xt+ 1
2
,y∗(xs)) + f(xt+ 1

2
,y∗(xs))− f(xt+ 1

2
,yt+ 1

2
)

≤ 2(t− s+ 1)ηxG
2 − ⟨yt+ 1

2
− y,∇yf(xt+ 1

2
,yt+ 1

2
)⟩

Plugging in Lemma B.14 will conclude the proof:

Φ(xt+ 1
2
)− f(xt+ 1

2
,yt+ 1

2
) ≤ 2(t− s+ 1)ηxG

2

+
1

2ηy

(
∥yt − y∗(xs)∥2 − ∥yt+1 − y∗(xs)∥2 +

η2xG
2

2

)
.

Lemma B.17. For EG (Algorithm 3), under Theorem 4.9’s assumptions, the following statement
holds for the generated sequence {xt}, {yt}, {xt+ 1

2
}, {yt+ 1

2
} during algorithm proceeding:

1

T + 1

T∑
t=0

Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
) ≤ 1

B

(
2ηxB

2G2 +
D2

2ηy
+

Bη2xG
2

2

)

Proof. According to Lemma B.16:

1

T + 1

T∑
t=0

Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)

=
1

T + 1

S∑
j=0

(k+1)B−1∑
t=kB

Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)

≤ 1

T + 1

S∑
j=0

[
2B2ηxG

2 +
1

2ηy

(
∥ykB − y∗(xs)∥2 − ∥y(k+1)B−1 − y∗(xs)∥2 +

η2xG
2

2

)]

≤ 1

B

[
2ηxB

2G2 +
D2

2ηy
+

Bη2xG
2

2

]
.
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B.2.2 Proof of Theorem 4.8 for EG

In this section we are going to provide the proof for Theorem 4.8, EG part, the convergence rate of
EG in deterministic setting. We first introduce the formal version of Theorem 4.8, EG part here:

Theorem B.18 (EG Deterministic, formal). Under Assumption 4.7, if we choose ηx =

O
(
min

{
ϵ
ℓG , ϵ2

ℓG2 ,
ϵ4

D2G2ℓ3

})
, ηy = 1

2ℓ , then EG (Algorithm 3) guarantees to find ϵ-stationary

point, i.e., 1
T+1

∑T
t=0 ∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2, with the gradient complexity bounded by:

O

(
ℓG2∆̂Φ

ϵ4
max

{
1,

D2ℓ2

ϵ2

})
.

Proof. According to Lemma B.15:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt− 1
2
)∥2 ≤

Φ1/2ℓ(x− 1
2
)

ηx(T + 1)
+

1

T + 1

T∑
t=0

8ℓ
(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
)
+ 12ηxℓG

2

+ 8
1

T + 1

T∑
t=0

∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2.

For ∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2, notice that:

∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2 ≤ ℓ2∥xt − xt−1∥2 + ℓ2∥yt − yt−1∥2

≤ η2xℓ
2G2 + η2yℓ

2∥∇yf(xt− 1
2
,yt− 1

2
)∥2

≤ η2xℓ
2G2 + 2η2yℓ

3
(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
)

So we have:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt− 1
2
)∥2 ≤

Φ1/2ℓ(x− 1
2
)

ηx(T + 1)

+
1

T + 1

T∑
t=0

(8ℓ+ 2η2yℓ
3)
(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
)
+ 12ηxG

2 + 8η2xℓ
2G2

Now we plug in Lemma B.17:

1

T + 1

T∑
t=0

∥∇Φ1/2ℓ(xt− 1
2
)∥2 ≤

Φ1/2ℓ(x− 1
2
)− Φ1/2ℓ(xT− 1

2
)

ηx(T + 1)

+ (8ℓ+ 2η2yℓ
3)

(
2ηxBG2 +

D2

2ηyB
+

η2xG
2

2

)
+ 12ℓηxG

2 + 8η2xℓ
2G2

Choose B = O
(

D
G
√
ηxηy

)
, ηx = O

(
min

{
ϵ
ℓG , ϵ2

ℓG2 ,
ϵ4

D2G2ℓ3

})
, ηy = 1

2ℓ , and then we guarantee

that 1
T+1

∑T
t=0 ∥∇Φ1/2ℓ(xt− 1

2
)∥2 ≤ ϵ2 with the gradient complexity is bounded by:

O

(
ℓG2∆̂Φ

ϵ4
max

{
1,

D2ℓ2

ϵ2

})
.

Stochastic setting.

In this part, we are going to present proof of EG in stochastic setting. First let us introduce some
useful lemmas.
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B.2.3 Useful Lemmas

Lemma B.19. For Stochastic EG (Algorithm 3), under Theorem 4.9’s assumptions, the following
statement holds for the generated sequence {yt}, {yt+ 1

2
} during algorithm proceeding and any

y ∈ Y:

∥yt+1 − y∥2 ≤ ∥yt − y∥2 + 2ηy⟨yt+ 1
2
− y,∇yf(xt+ 1

2
,yt+ 1

2
)⟩ −

(
1

2
− 3η2xL

2

2

)
∥yt − yt+ 1

2
∥2

+
1

2
(3η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2).

Proof. According to Proposition B.13, we set r = yt, q = yt+1, p = yt+ 1
2

and v =

−ηy∇yf(xt+ 1
2
,yt+ 1

2
; ξ), u = −ηy∇yf(xt,yt; ξ). We can verify that:

∥u− v∥2 = η2y∥∇yf(xt+ 1
2
,yt+ 1

2
; ξ)−∇yf(xt,yt; ξ)∥2

≤ 3η2y∥∇yf(xt+ 1
2
,yt+ 1

2
)−∇yf(xt,yt)∥2 + 3η2y∥∇yf(xt+ 1

2
,yt+ 1

2
; ξ)−∇yf(xt+ 1

2
,yt+ 1

2
)∥2

+ 3η2y∥∇yf(xt,yt; ξ)−∇yf(xt,yt)∥2

≤ 3(ℓ2∥yt+ 1
2
− yt∥2 + ℓ2∥xt+ 1

2
− xt∥2) + 3η2yV ar(∇yf(xt,yt; ξ))

+ 3η2yV ar(∇yf(xt+ 1
2
,yt+ 1

2
; ξ))

≤ 3η2y(ℓ
2∥yt+ 1

2
− yt∥2 + η2xℓ

2(G2 + σ2)) + 3η2yV ar(∇yf(xt,yt; ξ))

+ 3η2yV ar(∇yf(xt+ 1
2
,yt+ 1

2
; ξ))

so if we set C2
1 = 3η2yℓ

2 and C2
2 = 3η2xη

2
yℓ

2(G2 + σ2) + 3η2yV ar(∇yf(xt,yt; ξ)) +

3η2yV ar(∇yf(xt+ 1
2
,yt+ 1

2
; ξ)), we have the following inequality holding for any y ∈ Y:

⟨−ηy∇yf(xt+ 1
2
,yt+ 1

2
; ξ),yt+ 1

2
− y⟩ ≤ ∥yt − y∥2 − ∥yt+1 − y∥2

−
(
1

2
− C2

1

2

)
∥yt − yt+ 1

2
∥2 + C2

2

2
.

Taking expectation on both sides yields:

⟨−ηy∇yf(xt+ 1
2
,yt+ 1

2
),yt+ 1

2
− y⟩ ≤ E∥yt − y∥2 − E∥yt+1 − y∥2

−

(
1

2
−

3η2yℓ
2

2

)
E∥yt − yt+ 1

2
∥2 + 1

2
(3η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2).

Lemma B.20. For Stochastic EG (Algorithm 3), under Theorem 4.9’s assumptions, the following
statement holds for the generated sequence {xt}, {yt}, {xt+ 1

2
}, {yt+ 1

2
} during algorithm proceed-

ing:

E[Φ1/2ℓ(xt+ 1
2
)] ≤ E[Φ1/2ℓ(xt− 1

2
)] + 2ηℓE[Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)]− ηx

8
E∥∇Φ1/2ℓ(xt− 1

2
)∥2

+ 3η2xℓ(G
2 + σ2) + 2ηxE∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2.

Proof. Let x̂t− 1
2
= argminx∈Rd Φ(x) + ℓ∥x− xt− 1

2
∥2. Notice that:

E[Φ1/2ℓ(xt+ 1
2
)] ≤ E[Φ(x̂t− 1

2
)] + ℓE∥x̂t− 1

2
− xt+ 1

2
∥2

≤ Φ1/2ℓ(x̂t− 1
2
) + 3η2xℓ(σ

2 +G2) + ℓE∥x̂t− 1
2
− xt+ 1

2
∥2

+ 2ηxℓE⟨∇xf(xt− 1
2
,yt− 1

2
) +∇xf(xt,yt)−∇xf(xt−1,yt−1), x̂t− 1

2
− xt− 1

2
⟩)

= E[Φ(x̂t− 1
2
)] + ℓ(E∥x̂t− 1

2
− xt+ 1

2
∥2 + 2ηxE⟨∇xf(xt− 1

2
,yt− 1

2
), x̂t− 1

2
− xt− 1

2
⟩)

+ 2ℓηxE⟨∇xf(xt,yt)−∇xf(xt−1,yt−1), x̂t− 1
2
− xt− 1

2
⟩+ 3η2xℓ(σ

2 +G2)
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According to smoothness of f(·,y), we have:

⟨x̂t− 1
2
− xt− 1

2
,∇xf(xt− 1

2
,yt− 1

2
)⟩ ≤ f(x̂t− 1

2
,yt− 1

2
)− f(xt− 1

2
,yt− 1

2
) +

ℓ

2
∥x̂t− 1

2
− xt− 1

2
∥2

≤ Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)− ℓ

2
∥x̂t− 1

2
− xt− 1

2
∥2.

So we have:

E[Φ1/2ℓ(xt+ 1
2
)] ≤ E[Φ(x̂t− 1

2
)] + ℓE∥xt− 1

2
− x̂t− 1

2
∥2

+ 2ηxℓE
(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)− ℓ

2
∥x̂t− 1

2
− xt− 1

2
∥2
)
+ 3η2xℓ(G

2 + σ2)

+ ηxℓ

(
1

2ℓ
E∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2 +

ℓ

2
E∥xt− 1

2
− x̂t− 1

2
∥2
)

≤ E[Φ1/2ℓ(xt− 1
2
)] + 2ηxℓ

(
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
)
− ηxℓ

2

2
E∥x̂t− 1

2
− xt− 1

2
∥2

+ 3η2xℓ(G
2 + σ2) +

ηx
2
E∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2.

Using the fact that ∥xt− 1
2
− x̂t− 1

2
∥ = 1

2ℓ∥∇Φ1/2ℓ(xt− 1
2
)∥ will conclude the proof.

Lemma B.21. For Stochastic EG (Algorithm 3), under Theorem 4.9’s assumptions, the following
statement holds for the generated sequence {xt}, {yt}, {xt+ 1

2
}, {yt+ 1

2
} during algorithm proceed-

ing and ∀s ≤ t:

Φ(xt+ 1
2
)− f(xt+ 1

2
,yt+ 1

2
) ≤ 2(t− s+ 1)ηxG

2

+
1

2ηy

(
∥yt − y∗(xs)∥2 − ∥yt+1 − y∗(xs)∥2 +

1

2
(3η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2)

)
.

Proof. According to Lemma B.21:

Φ(xt+ 1
2
)− f(xt+ 1

2
,yt+ 1

2
) ≤ f(xt+ 1

2
,y∗(xt+ 1

2
))− f(xs,y

∗(xt+ 1
2
)) + f(xs,y

∗(xs))

− f(xt+ 1
2
,y∗(xs)) + f(xt+ 1

2
,y∗(xs))− f(xt+ 1

2
,yt+ 1

2
)

≤ 2(t− s+ 1)ηxG
2 − ⟨yt+ 1

2
− y,∇yf(xt+ 1

2
,yt+ 1

2
)⟩

Plugging in Lemma B.19 will conclude the proof:

Φ(xt+ 1
2
)− f(xt+ 1

2
,yt+ 1

2
) ≤ 2(t− s+ 1)ηxG

2

+
1

2ηy

(
∥yt − y∗(xs)∥2 − ∥yt+1 − y∗(xs)∥2 +

1

2
(3η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2)

)
.

Lemma B.22. For Stochastic EG (Algorithm 3), under Theorem 4.9’s assumptions, the following
statement holds for the generated sequence {xt}, {yt}, {xt+ 1

2
}, {yt+ 1

2
} during algorithm proceed-

ing:

1

T + 1

T∑
t=0

Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
) ≤ 1

B

(
2ηxB

2G2 +
D2

2ηy
+

Bη2xG
2

2

)
.
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Proof. Summing over t = 0 to T on both side of Lemma B.21 yields:

1

T + 1

T∑
t=0

Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)

=
1

T + 1

S∑
j=0

(k+1)B−1∑
t=kB

Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)

≤ 1

T + 1

S∑
j=0

[
2B2ηxG

2 +
1

2ηy

(
∥ykB − y∗(xs)∥2 − ∥y(k+1)B−1 − y∗(xs)∥2

+
1

2
(3η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2)

)]
≤ 1

B

(
2ηxB

2G2 +
D2

2ηy
+

1

2
(3η2xη

2
yℓ

2(G2 + σ2) + 6η2yσ
2)

)
,

which concludes the proof.

B.2.4 Proof of Theorem 4.9 for EG

In this section we provide the proof for Theorem 4.9 on the convergence rate of EG in stochastic
setting. We first introduce the formal version of theorem here:

Theorem B.23 (EG Stochastic, formal). Under Assumption 4.3, and 4.7, if we choose ηx =

O(min{ ϵ2

ℓ(G2+σ2) ,
ϵ4

D2ℓ3G
√
G2+σ2

, ϵ6

D2ℓ3σ2G
√
G2+σ2

}), ηy = O(min{ 1
2ℓ ,

ϵ2

ℓσ2 }), then Stochastic EG

(Algorithm 3) guarantees to find ϵ-stationary point, i.e., 1
T+1

∑T
t=0 E∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2, with the

gradient complexity bounded by:

O

(
D2ℓ3G

√
G2 + σ2

ϵ6
max

{
1,

σ2

ϵ2

})
.

Proof. According to Lemma B.20:

1

T + 1

T∑
t=0

E∥∇Φ1/2ℓ(xt− 1
2
)∥2 ≤

E[Φ1/2ℓ(x− 1
2
)− Φ1/2ℓ(xT+ 1

2
)]

T

+ 16ℓ
1

T + 1

T∑
t=0

E[Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)] + 24ηxℓ(G

2 + σ2)

+ 16
1

T + 1

T∑
t=0

E∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2.

Observe that:

E∥∇xf(xt,yt)−∇xf(xt−1,yt−1)∥2 ≤ ℓ2E∥(xt,yt)− (xt−1,yt−1)∥2

= ℓ2E∥xt − xt−1∥2 + ℓ2E∥yt − yt−1∥2

≤ ℓ2η2x(G
2 + σ2) + ℓ2η2yE

∥∥∥∇yf(xt− 1
2
,yt− 1

2
)
∥∥∥2

≤ ℓ2η2x(G
2 + σ2) + ℓ2η2yE

[
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
]
.
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So we have:

1

T + 1

T∑
t=0

E∥∇Φ1/2ℓ(xt− 1
2
)∥2 ≤

E[Φ1/2ℓ(x− 1
2
)− Φ1/2ℓ(xT+ 1

2
)]

T + 1

+ 16ℓ
1

T + 1

T∑
t=0

E[Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)] + 24ηxℓ(G

2 + σ2)

+ 16ℓ2η2y
1

T + 1

T∑
t=0

E
[
Φ(xt− 1

2
)− f(xt− 1

2
,yt− 1

2
)
]
+ 16ℓ2η2x(G

2 + σ2)

≤
E[Φ1/2ℓ(x− 1

2
)− Φ1/2ℓ(xT+ 1

2
)]

T + 1
+ 16(ℓ+ ℓ2η2y)

1

T + 1

T∑
t=0

E[Φ(xt− 1
2
)− f(xt− 1

2
,yt− 1

2
)]

+ 16ℓ2η2x(G
2 + σ2) + 24ηxℓ(G

2 + σ2)

Plugging in Lemma B.22 yields:

1

T + 1

T∑
t=0

E∥∇Φ1/2ℓ(xt− 1
2
)∥2 ≤

E[Φ1/2ℓ(x− 1
2
)− Φ1/2ℓ(xT+ 1

2
)]

T + 1

+ 16(ℓ+ ℓ2η2y)
1

B

(
2ηxB

2G2 +
D2

2ηy
+

Bη2xG
2

2

)
+ 16ℓ2η2x(G

2 + σ2) + 24ηxℓ(G
2 + σ2).

Choosing B = O( D√
ηxηyG

√
G2+σ2

), ηx = O(min{ ϵ2

ℓ(G2+σ2) ,
ϵ4

D2ℓ3G
√
G2+σ2

, ϵ6

D2ℓ3σ2G
√
G2+σ2

}),

ηy = O(min{ 1ℓ ,
ϵ2

ℓσ2 }), guarantees that 1
T+1

∑T
t=0 E∥∇Φ1/2ℓ(xt)∥2 ≤ ϵ2 holds with the gradient

complexity is bounded by:

O

(
D2ℓ3G

√
G2 + σ2∆̂Φ

ϵ6
max

{
1,

σ2

ϵ2

})
.

which completes the proof.

B.3 Tightness Analysis

In this section, we provide our tightness analysis showing our obtained upper bound is tight given our
choice of learning rates. In subsection B.3.1, we introduce our hard example, and show the lower
bound on convergence of this example, and then in subsection B.3.2, we extend the tightness result to
EG/OGDA using the same hard example.

B.3.1 GDA

Proof of Theorem 4.10. Let L ≥ 0 be some constants to be chosen later. Inspired by [11], we
consider the following function f : R× [−D,D]→ R:

f(x, y) = h(x)y

where

h(x) =


L
2 x

2 |x| ≤ 1

L− L
2 (|x| − 2)2 1 ≤ |x| ≤ 2

L |x| ≥ 2.

It is easy to verify that f is nonconvex, 2LD smooth, and LD-Lipschitz. We choose L =
1
D min{ℓ/2, G} to guarantee that f is ℓ smooth and G-Lipschitz with respect to x. The primal
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function is Φ(x) = Dh(x) attained when y = D. After standard calculations, we know that when
|x| ≤ 1, the Moreau envelope Φ1/2ℓ(x) satisfies

Φ1/2ℓ(x) =
LDℓ

LD + 2ℓ
x2, |x| ≤ 1.

By definition, we also know Φ1/2ℓ(x) ≥ 0 for any x ∈ R.

We first claim that if we choose |x0| ≤ 1, y0 ≥ 0, we have for any t ≥ 0, |xt| ≤ 1 and yt ≥ 0. We
verify this claim by induction. First note that when t = 0, the claim holds for sure. Let us assume it
holds for t = k. Then for t = k + 1,

xk+1 = xk − ηxLxkyk = (1− ηxLyk)xk.

Since 0 ≤ yk ≤ D, we have 0 ≤ 1− ηxLyk ≤ 1. Therefore |xk+1| ≤ 1. For yk+1, we have

yk+1 = P[−D,D](yk + ηyh(xk)).

Since h(xk) ≥ 0, we know that yk+1 ≥ 0, which verifies the claim.

We can also bound

|xT | =

∣∣∣∣∣
T−1∏
t=0

(1− ηxLyt)x0

∣∣∣∣∣ ≥ (1− ηxLD)T |x0|.

Since ∇Φ1/2ℓ(x) = 2LDℓ
LD+2ℓx, choosing x0 = LD+2ℓ

LDℓ ϵ, we have ϵ ≥ |∇Φ1/2ℓ(xT )| ≥ 2ϵ(1 −
ηxLD)T . Also noting ∆̂Φ = LD+2ℓ

LDℓ ϵ2, we have

T = Ω

(
1

ηxLD

)
= Ω

(
∆̂Φ

ηxLDϵ2
· LDℓ

LD + 2ℓ

)

= Ω

(
ℓ3G2D2∆̂Φ

ϵ6

)
.

B.3.2 EG/OGDA

Proof of Theorem 4.11 for OGDA. We use the same hard example f(x, y) = h(x)y as in proof of
Theorem 4.10. Similarly, we first claim that if we choose 0 ≤ x0 ≤ 1 and y0 = D, the following
statements hold for any t ≥ 0:

(a) 0 ≤ xt ≤ 1, and xt ≥ xt−1/
√
2, (b) yt = D,

where we define x−1 = x0 and y−1 = y0.

Now we prove the above claim by induction. First, when t = 0, the claim holds for sure. Then, let us
assume it holds for t ≤ k. Then for t = k + 1, we have

xk+1 = xk − 2ηxLDxkyk + ηxLDxk−1yk−1

= (1− 2ηxLD)xk + ηxLDxk−1.

Since 0 ≤ xk, xk−1 ≤ 1 and 0 ≤ ηxLD ≤ 0.1, we have

(1− 2ηxLD)xk ≤ xk+1 ≤ (1− ηxLD)xk + ηxLDxk−1,

which implies 0 ≤ xk/
√
2 ≤ 0.8xk ≤ xk+1 ≤ 1. For yk+1, we know

yk+1 = P[−D,D](yk + 2ηyh(xk)− ηyh(xk−1)).

Since h(x) = L
2 x

2 when |x| ≤ 1, and xk ≥ 1√
2
xk−1, we know that 2ηyh(xk)− ηyh(xk−1) ≥ 0 so

yk+1 = 1. Till now, we have proved the claim.

Then, we are going to bound the magnitude of xT . According to the updating rule we have:

xt+1 = xt − 2ηxLDxt + ηxLDxt−1.
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Solving the above recursion we get the solution for xt as follows:

xt =

(
1

2
+

1

2
√
∆

)(
1− 2ηxLD +

√
∆

2

)t

x0

+

(
1

2
− 1

2
√
∆

)(
1− 2ηxLD −

√
∆

2

)t

x0,

where ∆ = (1− 2ηxLD)2 + 4ηxLD.

Let a1 =
(

1
2 + 1

2
√
∆

)
, a2 =

(
1
2 −

1
2
√
∆

)
, and λ1 =

(
1−2ηxLD+

√
∆

2

)
, λ2 =

(
1−2ηxLD−

√
∆

2

)
. We

observe the following facts:

a1 ≥
1

2
, a2 ≤ η2xL

2D2,

1− ηxLD ≤ λ1 ≤ 1,−ηxLD ≤ λ2 ≤ 0.

Now, we can bound the magnitude of xT

|xT | =
∣∣a1λT

1 + a2λ
T
2

∣∣x0 ≥
∣∣|a1λT

1 | − |a2λT
2 |
∣∣x0

≥
(
1

2
(1− 2ηxLD)T − (ηxLD)T+2

)
x0.

Since∇Φ1/2ℓ(x) =
2LDℓ
LD+2ℓx, by choosing x0 = LD+2ℓ

LDℓ · 4ϵ, we have

ϵ ≥ |∇Φ1/2ℓ(xT )| ≥ 8ϵ

(
1

2
(1− 2ηxLD)T − 1

4

)
,

which yields (1− 2ηxLD)T ≤ 3/4. The rest of proof is similar to that of Theorem 4.10.

Proof of Theorem 4.11 for EG. We use the same hard example f(x, y) = h(x)y as in proof of
Theorem 4.10. Similarly to our previous proofs for GDA and OGDA, we first claim that if we choose
0 ≤ x0 ≤ 1 and y0 = D, the following statements hold for any t ≥ 0:

(a) 0 ≤ xt ≤ 1; (b) yt = D, yt+1/2 = D.

We prove this claim by induction. First, when t = 0, the claim holds for sure. Then, let us assume it
holds for t ≤ k. Then for t = k + 1, we have

xk+1 = xk − ηxLyk+1/2xk+1/2

= xk − ηxLyk+1/2 (1− ηxLyk)xk

= (1− ηxLD + η2xL
2D2)xk.

Note that since 0 ≤ ηxLD ≤ 1/2, we know

0 ≤ 1− ηxLD + η2xL
2D2 ≤ 1,

which implies 0 ≤ xk+1 ≤ 1. Regarding y, note that

yk+1 = P[−D,D](yk + ηyh(xk+1/2))),

yk+3/2 = P[−D,D](yk+1 + ηyh(xk+1))).

As h(xk+1/2), h(xk+1) ≥ 0 and yk = D, we have yk+1 = yk+3/2 = D. Till now, we have verified
the claim.

Note that

xk+1 =(1− ηxLD + η2xL
2D2)xk ≥ (1− ηxLD)xk.

Hence we can unroll the recursion and lower bound the magnitude of∇Φ1/2ℓ(xT ), which is similar
to the proof of Theorem 4.10.
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C Proof of Stepsize-Independent Lower Bound Results in
Nonconvex-Strongly-Concave Setting

In this section, we prove general lower bounds on the convergence rate of GDA/EG/OGDA for the
NC-SC setting. In subsection C.1, proof of theorem 5.1 is established giving the lower bound for
GDA in NC-SC, and in subsection C.2, the proof of Theorem 5.2 is established, proving the lower
bound of EG/OGDA for NC-SC problems.

C.1 Lower Bound for GDA

Theorem C.1 (Theorem 5.1 restated). For GDA algorithm, given ηy = Θ(1/ℓ), for any ηx, there ex-
ists a ℓ-smooth function that is nonconvex in x and µ-strongly-concave in y, such that for ∥Φ(xT )∥ ≤ ϵ,
we must have:

T = Ω

(
κℓ∆ϕ

ϵ2

)
Proof. Combining Proposition C.2 and C.3 will conclude the proof. Proposition C.3 shows that when
ηx ∈ ( 1

κℓ .∞), GDA diverges, and Proposition C.2 shows the lower bound on the convergence rate
when ηx ∈ (0, 1

κℓ ].

Proposition C.2. For GDA algorithm, given ηy = Θ(1/ℓ), for any ηx ∈ (0, 1
κℓ ], there exists a

ℓ-smooth function that is nonconvex in x and µ-strongly-concave in y, such that for ∥Φ(xT )∥ ≤ ϵ, we
must have:

T = Ω

(
κℓ∆ϕ

ϵ2

)
Proof. Recall that we consider the following quadratic NC-SC function f : R× R→ R

f(x, y) := − 1
2ℓx

2 + bxy − 1
2µy

2.

Recall that f is nonconvex in x (it is actually concave in x) and µ strongly concave in y. Assume
κ := ℓ/µ ≥ 4 and choose b =

√
µ(ℓ+ µx) for some 0 < µx ≤ ℓ/2 to be chosen later. Then we

know b ≤ ℓ/2, and it is easy to verify f is ℓ smooth. Note that the primal function

Φ(x) = max
y

f(x, y) = 1
2µxx

2

is actually strongly convex. This also justifies the symbol for µx. We use GDA to find the solution
for minx maxy f(x, y). Actually, for this problem, the optimal solution is achieved at the origin.
The stepsizes ratio is chosen as r =

ηy

ηx
and ηy = 1

ℓ for some numerical constants c. Then the GDA
update rule can be written as (

xk+1

yk+1

)
= (I+ ηxM) ·

(
xk

yk

)
, (85)

where

M :=

(
ℓ −b
rb −µr

)
. (86)

Note that (85) is a linear time-invariant system. We need to analyze its eigenvalues. Let λ1 and λ2 be
the two eigenvalues of M, we have

λ1,2 = −1

2
(µr − ℓ)± 1

2

√
(µr − ℓ)

2 − 4rµµx.

Note that if we choose µx < ℓ/8, plugging into r = cκ, we can bound

0 ≥ λ1 = − (2κ− 1)ℓ

4

(
1−

√
1− 4cκµx

(µr − ℓ)2

)

≥ −2µrµx

µr − ℓ
≥ −4µx.
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Let s1 be the corresponding eigenvalue of I+ ηxM, for small enough c1 ≤ 1, it satisfies

0 ≤ 1− µx

rℓ
= 1− 1

rκx
≤ s1 = 1 + ηxλ1 ≤ 1.

We adversarially choose the initial point (x0, y0) such that it is parallel to the eigenvector of I+ ηxM
corresponding to s1. We can always choose x0 ≥ 0 for simplicity. Then we have(

xk+1

yk+1

)
= (I+ ηxM)T

(
x0

y0

)
= sT1

(
x0

y0

)
,

so we can compute the magnitude of xT as xT = sT1 x0. Choose µx = κℓ
2T , and thus we have:

∥∇Φ(xT )∥ = ∥µxx0∥ = µx

(
1− 1

rκx

)T

|x0| ≥ µx

(
1− 1

κκx

)T

|x0| ≥ µx exp

(
2T

κκx

)
|x0| ≥

1

2
µx|x0|

where we use the inequality that 1− z
2 ≥ exp(z ln 1

2 ) and exp(z ln 1
2 ) ≥

1
2 for z ∈ [0, 1]. Recall that

we choose x0 =
√

2∆Φ

µx
, we have:

∥∇Φ(xT )∥ ≥
1

2

√
2µx∆ = Ω

(√
κℓ∆

T

)
,

which means to guarantee that ∥∇Φ(xT )∥ ≤ ϵ, we must have T ≥ Ω
(
κℓ∆Φ

ϵ2

)
.

Proposition C.3. For GDA algorithm, given ηy = Θ(1/ℓ), for any ηx ∈ ( 1
κℓ ,∞), there exists a

ℓ-smooth function that is nonconvex in x and µ-strongly-concave in y, such that:

∥∇Φ(xT )∥ ≥ c

where c is some constant that does not vanish as T increases.

Proof. Recall the transition matrix in (86). We notice that

trace(M) = λ1 + λ2 = L− µr.

Since r ≤ κ, then λ1 + λ2 ≥ 0, which means that max{Re[λ1], Re[λ2]} ≥ 0, so:

∥(I+ ηxM)T ∥ ≥ max{|1 + ηxλ1|, |1 + ηxλ2|}T ≥ αT

where α is some constant larger than 1. If we choose the initialization to be [x0, 0], the gradient
∥∇Φ(xT )∥ = µx∥(I+ ηxM)T ∥x0 diverges.

C.2 Lower bound for EG/OGDA

Theorem C.4 (Theorem 5.2 restated). For deterministic EG/OGDA algorithm, given ηy = Θ(1/ℓ),
for any ηx, there exists a ℓ-smooth function that is nonconvex in x and µ-strongly-concave in y, such
that for ∥Φ(xT )∥ ≤ ϵ, we must have:

T = Ω

(
κℓ∆ϕ

ϵ2

)
Proof of Theorem C.4 for EG. We consider the same quadratic hard example f and notation used in
the proof of Theorem 5.1. For simplicity, denote w = (x, y). Then the updating rule for EG can be
written as:

wk+1/2 =(I+ ηxM)wk,

wk+1 =wk + ηxMwk+1/2

=(I+ ηxM+ η2xM
2)wk.
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Therefore, similar to GDA, EG is also a linear time-invariant system with the difference that the
transition matrix now becomes as M′ = (I+ ηxM+ η2xM

2).

The rest of the analysis is the same as that of GDA in Proposition C.2. Then, we are going to show
that when ηx ∈ ( 1

cxκℓ
,+∞) for some cx, the EG method diverges. Consider

f(x, y) := − 1
2ℓx

2 + bxy − 1
2µy

2.

Then according to Proposition C.2, we have:

trace(M′) = trace(I+ ηxM+ η2xM
2)

= 1 + ηx(ℓ− µr) + η2x(ℓ
2 + µ2r2 − 2rb2)

= 1 + ηx(ℓ− µr) + η2x
(
(ℓ− µr)2 − 2rµµx

) (87)

Now note that since r ≤ κ, to show trace(M′) ≥ 1, it is enough to have µx ≤ (ℓ−µr)2

2rµ . However,
by choosing µx = Θ(ϵ2), and by choosing the small enough ϵ, we can satisfy the condition that
µx ≤ (ℓ−µr)2

2rµ , thus we can conclude that under this situation trace(M′) ≥ 1, which means that
same step as the Proposition C.3 can be taken to prove the divergence of ∥∇Φ(xT )∥2.

Proof of Theorem C.4 for OGDA. Assuming the same setup as the proof of EG, the update rule can
be written as follows: The dynamics of OGDA is

wk+1 = wk + 2ηxMwk − ηxMwk−1.

If we initialize w0 parallel to the eigenvector of M corresponding to λ1 and let w1 = w0, we know
every wk is parallel to it, i.e., wk = zkw0 for some scalar zk which satisfies

zk+1 = zk + 2ηxλ1zk − ηxλ1zk−1.

The general solution of the above recurrence relation is

zk = aαk + bβk

for some constant a, b and

α =
1

2

(
1 + 2ηxλ1 +

√
1 + 4η2xλ

2
1

)
,

β =
1

2

(
1 + 2ηxλ1 −

√
1 + 4η2xλ

2
1

)
.

We have

1 + ηxλ1 ≤ α ≤ 1, ηxλ1 ≤ β ≤ 0.

Using the initial condition z−1 = z0 = 1, we can get the constants

a =
α(1− β)

α− β
=

1

2
+

1

2
√

1 + 4η2xλ
2
1

≥ 1/2,

b =− β(1− α)

α− β
=

√
1 + 4η2xλ

2
1 − 1

2
√

1 + 4η2xλ
2
1

≤ η2xλ
2
1.

We can bound

|zT | ≥
1

2
(1 + ηxλ1)

T − |ηxλ1|k+2

≥ 1

2

(
1− 4c1µx

κ

)T

− 1

4
,
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where we use the fact |ηxλ1| ≤ 1/2. Similar to the analysis for GDA, choosing µx = 50ϵ2/∆Φ, we
have

|∇Φ(x̄)| = µxx̄ ≥µxxT ≥ µxx0

[
1

2

(
1− 4c1µx

κ

)T

− 1

4

]

=10ϵ

[
1

2

(
1− 4c1µx

κ

)T

− 1

4

]
.

Therefore, if |∇Φ(x̄)| ≤ ϵ, we must have

T = Ω

(
κ

µx

)
= Ω

(
κ∆Φ

ϵ2

)
.

Now, we will show that Proposition C.3 also holds for OGDA. Consider the following 4× 4 matrix
M′:

M′ =

[
(I+ 2ηxM)2 −ηx(I+ 2ηxM)M
I+ 2ηxM −ηxM

]
(88)

It can be easily shown that, the OGDA dynamic can be written as follows:[
wk+1

wk

]
=

[
(I+ 2ηxM)2 −ηx(I+ 2ηxM)M
I+ 2ηxM −ηxM

] [
wk−1

wk−2

]
(89)

Now similar to proof of Proposition C.3 for GDA, it suffices to show that the trace(M′) ≥ 1 given
the conditions on the learning rate. To this end, note that we can write:

trace(M′) = trace(−ηxM) + trace(I+ 4ηxM+ 4η2xM
2)

= 1− ηx(ℓ− µr) + 4ηx(ℓ− µr) + 4η2x(ℓ
2 + µ2r2 − 2rb2)

= 1 + 3ηx(ℓ− µr) + 4η2x
(
(ℓ− µr)2 − 2rµµx

) (90)

Now note that since r ≤ κ, to show trace(M′) ≥ 1, it is enough to have µx ≤ (ℓ−µr)2

2rµ . However,

note that we let µx = 50ϵ2

∆Φ
, thus by choosing the small enough ϵ, we can satisfy the condition that

µx ≤ (ℓ−µr)2

2rµ , thus we can conclude that trace(M′) ≥ 1 holds. Consequently, similar argument as
the Proposition C.3 can be made to prove the divergence of ∥∇Φ(xT )∥2.
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D Extension to Generalized OGDA

In this section, we analyze the convergence of generalized OGDA (Algorithm 4) where we utilize
different learning rates for descent/ascent gradients and correction terms. Specifically, we propose to
use different learning rates for∇xf(xt,yt), and∇xf(xt,yt)−∇xf(xt−1,yt−1) terms, and also
∇yf(xt,yt), and∇yf(xt,yt)−∇yf(xt−1,yt−1), in order to make the algorithm more stable. We
believe this algorithm is more convenient in practice due to the more flexibility it provides in deciding
the learning rates. We demonstrated this stabilizing effect of generalized OGDA in our empirical
results in Section 6. Also, note that if we let ηx,1 = ηx,2, and ηy,1 = ηy,2 in Algorithm 4, it reduces
to stochastic OGDA. Theorem D.1 establishes the convergence rate of generalized OGDA in NC-SC.
However, it still remains open to analyze this algorithm in C-C/SC-SC and NC-C settings.

We remark that the analysis of generalized OGDA was only known for the restricted bilinear functions,
which is established in [39], and convergence analysis beyond these simple functions previously was
unknown that we provide here.

Algorithm 4 Generalized Stochastic OGDA

Input: (x0,y0), stepsizes (ηx,1, ηx,2, ηy,1, ηy,2)
for t = 1, 2, . . . , T do
xt ← xt−1 − ηx,1gx,t−1 − ηx,2(gx,t−1 − gx,t−2)
yt ← yt−1 + ηy,1gy,t−1 + ηy,2(gy,t−1 − gy,t−2)

end for
Randomly choose x̄ from x1, . . . ,xT

Output:x̄

Theorem D.1. Let ηx,1 = 1
50κ2ℓ , ηy,2 = 1

6ℓ . Also, let α =
ηx,2

ηx,1
, and β =

ηy,1

ηy,2
. Then assuming

β ≤ 1, and α ≤ 2κ2
√
β, under Assumptions 4.1, and 4.3 for Algorithm 4 we have:

E[∥∇Φ(x̄)∥2] ≤ O
(κ2ℓ∆

T
+

(κ+ α2)ℓ2D

βT
+

κσ2

My
+

(1 + α2)σ2

Mx

)
, (91)

where D = max(∥y1 − y∗
1∥2, ∥y1 − y0∥2, ∥x1 − x0∥2), and ∆ = ϕ(x1)−minx Φ(x).

A few observations about the obtained rate are in place.
Corollary D.2. Let σ = 0, and pick an α ≤

√
κ. Then deterministic generalized OGDA converges

to ϵ-stationary point of Φ(x) with gradient complexity of O(κ
2

ϵ2 ).

Corollary D.3. For any α = O(
√
k), and any µ ≤ β ≤ 1, if we choose Mx = O(κσ2

ϵ2 ), and
My = O( κ

ϵ2 ), then stochastic generalized OGDA converges to ϵ-stationary point of Φ(x) with
gradient complexity of O(κ

3

ϵ4 ).
Remark D.4. Theorem D.1 establishes the convergence rate under broad range of primal learning
rates ratio (0 ≤ α ≤ O(κ2)), and it shows that as long as α ≤

√
κ, we can achieve the same

convergence rate as OGDA if we assume µ ≤ β ≤ 1.

D.1 Nonconvex-strongly-concave setting

We follow exact same steps as Lemma A.4, to derive the following lemmas.
Lemma D.5. Let Φ(x) = maxy f(x,y), and y∗(x) = argmaxy f(x,y). Also, let gi = gx,i +

α(gx,i − gx,i−1), where α =
ηx,2

ηx,1
. Therefore, we have xi = xi−1 − ηx,1gi. Then for Algorithm 4,

we have:

E[Φ(xt)] ≤ E[Φ(xt−1)]−
ηx,1
2

E[∥∇Φ(xt−1)∥2]−
ηx,1
2

(1− 2κℓηx,1)E[∥gt−1∥2]

+
3

2
η3x,1α

2ℓ2E[∥gt−2∥2] +
3

2
ηx,1ℓ

2E[∥y∗
t−1 − yt−1∥2] +

3

2
ηx,1α

2ℓ2E[∥yt−1 − yt−2∥2]

+ 3((1 + α)2 + 1)ηx,1
σ2

Mx
(92)
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Proof of Lemma D.5. Proof is pretty much similar to proof of Lemma A.4, and we only include this
proof for sake of completeness. First, let δxi = gx,i −∇xf(xi,yi). By definition of gx,i, we have
E[δxi ] = 0, for all i ∈ [T ].

Using the fact that Φ(x) is 2κℓ smooth, we have:

Φ(xt) ≤ Φ(xt−1) + ⟨∇Φ(xt−1),xt − xt−1⟩+ κℓ∥xt − xt−1∥2

= Φ(xt−1)− ηx,1⟨∇Φ(xt−1), gt−1⟩+ κℓη2x,1∥gt−1∥2

= Φ(xt−1)−
ηx,1
2
∥∇Φ(xt−1)∥2 −

ηx,1
2
∥gt−1∥2 +

ηx,1
2
∥∇Φ(xt−1)− gt−1∥2

+ κℓη2x,1∥gt−1∥2

= Φ(xt−1)−
ηx,1
2
∥∇Φ(xt−1)∥2 −

ηx,1
2

(1− 2κℓηx,1)∥gt−1∥2

+
ηx,1
2
∥∇Φ(xt−1)− gt−1∥2

(93)

Now using ℓ-smoothness of f , and κ-Lipschitzness of y∗(x) (Lemma A.1) we have:

∥∇Φ(xt−1)− gt−1∥2 = ∥∇Φ(xt−1)−∇xf(xt−1,yt−1)

− α
(
∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)

)
− ((α+ 1)δxt−1 − δxt−2)∥2

≤ 3∥∇Φ(xt−1)−∇xf(xt−1,yt−1)∥2 + 3α2∥∇xf(xt−1,yt−1)−∇xf(xt−2,yt−2)∥2

+ 3∥(α+ 1)δxt−1 − δxt−2∥2

≤ 3ℓ2∥y∗(xt−1)− yt−1∥2 + 3α2ℓ2∥xt−1 − xt−2∥2 + 3α2ℓ2∥yt−1 − yt−2∥2

+ 6(α+ 1)2∥δxt−1∥2 + 6∥δxt−2∥2

(94)

where in the first and second inequalities we used Young’s inequality.

By combining Equations 93 and 94 we have:

Φ(xt) ≤ Φ(xt−1)−
ηx,1
2
∥∇Φ(xt−1)∥2 −

ηx,1
2

(1− 2κℓηx,1)∥gt−1∥2

+
3

2
ηx,1ℓ

2∥y∗
t−1 − yt−1∥2 +

3

2
ηx,1α

2ℓ2∥xt−1 − xt−2∥2 +
3

2
ηx,1α

2ℓ2∥yt−1 − yt−2∥2

+ 3ηx,1(α+ 1)2∥δxt−1∥2 + 3ηx,1∥δxt−2∥2

≤ Φ(xt−1)−
ηx,1
2
∥∇Φ(xt−1)∥2 −

ηx,1
2

(1− 2κℓηx,1)∥gt−1∥2 +
3

2
η3x,1α

2ℓ2∥gt−2∥2

+
3

2
ηx,1ℓ

2∥y∗
t−1 − yt−1∥2 +

3

2
ηx,1ℓ

2α2∥yt−1 − yt−2∥2 + 3ηx,1(α+ 1)2∥δxt−1∥2

+ 3ηx,1∥δxt−2∥2
(95)

We proceed by taking expectation on both side of Equation 95, to get:

E[Φ(xt)] ≤ E[Φ(xt−1)]−
ηx,1
2

E[∥∇Φ(xt−1)∥2]−
ηx,1
2

(1− 2κℓηx,1)E[∥gt−1∥2]

+
3

2
η3x,1α

2ℓ2E[∥gt−2∥2] +
3

2
ηx,1ℓ

2E[∥y∗
t−1 − yt−1∥2]

+
3

2
ηx,1α

2ℓ2E[∥yt−1 − yt−2∥2] + 3((1 + α)2 + 1)ηx,1
σ2

Mx

(96)

where we used the fact that E[δxi ] ≤ σ2

Mx
for all i ∈ [T ].

Lemma D.6. Let ηy,2 = 1
6ℓ , then the following inequality holds true for generalized OGDA iterates:

t+1∑
i=1

E[∥yi − y∗
i ∥2] ≤

9

7
E[∥y1 − y∗

1∥2] +
36

7

t+1∑
i=2

E[∥zi − y∗
i ∥2] +

18

7
η2x,1κ

2
t∑

i=1

E[∥gi∥2]

+
2Tσ2

7ℓ2My

(97)
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Proof of Lemma D.6. Using Young’s inequality, and κ-Lipschitzness of y∗(x) we have:

∥yt+1 − y∗
t+1∥2 ≤ 2∥yt+1 − y∗

t ∥2 + 2∥y∗
t+1 − y∗

t ∥2

≤ 2∥yt+1 − y∗
t ∥2 + 2κ2∥xt+1 − xt∥2

(98)

Similar to Lemma A.5, we try to find an upper bound for ∥yt+1−y∗
t ∥2. Let zt+1 = yt + ηy,1gy,t−

ηy,2gy,t−1, and δyi = gy,i −∇yf(xi,yi). Then we have:

∥yt+1 − y∗
t ∥2 = ∥zt+1 − y∗

t + ηy,2gy,t∥2

≤ 2∥zt+1 − y∗
t ∥2 + 2η2y,2∥gy,t∥2

≤ 2∥zt+1 − y∗
t ∥2 + 4η2y,2∥∇yf(xt,yt)∥2 + 4η2y,2∥δ

y
t ∥2

≤ 2∥zt+1 − y∗
t ∥2 + 4η2y,2ℓ

2∥yt − y∗
t ∥2 + 4η2y,2∥δ

y
t ∥2

(99)

The rest of the proof is exactly same as proof of Lemma A.5.

Similar to Lemma A.6, we have:
Lemma D.7. Let zt+1 = yt + ηy,1gy,t − ηy,2gy,t−1, rt = ∥zt+1 − y∗

t ∥2 +
β
4 ∥yt − yt−1∥2 and

ηy,2 = 1
6ℓ . Also let ηy,1

ηy,2
= β, and assume β ≤ 1. Then OGDA iterates satisfy the following

inequalities:

E[rt] ≤ (1− β

12κ
)E[rt−1] + 12η2x,1κ

3E[∥gt−1∥2] +
βη2x,1
18

E[∥gt−2∥2] +
βσ2

3ℓ2My

(100)

t∑
i=1

E[ri] ≤
12κ

β
E[r1] +

2

3
κE[∥x1 − x0∥2] + 145

η2x,1κ
4

β

t−1∑
i=1

E[∥gi∥2] +
4κσ2(t− 1)

ℓ2My
(101)

Proof of Lemma D.7. Let δyi = gy,i − ∇yf(xi,yi), and note that we have zt+1 − zt = ηy,1gy,t.
We have:
∥zt+1 − y∗

t ∥2 = ∥zt − y∗
t + ηy,1gy,t∥2

= ∥zt − y∗
t ∥2 + 2ηy,1⟨gy,t, zt − y∗

t ⟩+ η2y,1∥gy,t∥2

= ∥zt − y∗
t ∥2 − 2ηy,1ηy,2⟨gy,t, gy,t−1⟩+ 2ηy,1⟨gy,t,yt − y∗

t ⟩+ η2y,1∥gy,t∥2

= ∥zt − y∗
t ∥2 + ηy,1ηy,2∥gy,t − gy,t−1∥2 + 2ηy,1⟨gy,t,yt − y∗

t ⟩
− ηy,1ηy,2∥gy,t−1∥2 − ηy,1(ηy,2 − ηy,1)∥gy,t∥2

≤ ∥zt − y∗
t ∥2 + 3ηy,1ηy,2∥∇yf(xt,yt)−∇yf(xt−1,yt−1)∥2

+ 2ηy,1⟨∇yf(xt,yt),yt − y∗
t ⟩ − ηy,1ηy,2∥gy,t−1∥2 − ηy,1(ηy,2 − ηy,1)∥gy,t∥2

+ 3ηy,1ηy,2∥δyt ∥2 + 3ηy,1ηy,2∥δyt−1∥2 + 2ηy,1⟨δyt ,yt − y∗
t ⟩

≤ ∥zt − y∗
t ∥2 + 3ηy,1ηy,2ℓ

2∥xt − xt−1∥2 + 3ηy,1ηy,2ℓ
2∥yt − yt−1∥2

− 2ηy,1µ∥yt − y∗
t ∥2 − ηy,1ηy,2∥gy,t−1∥2 − ηy,1(ηy,2 − ηy,1)∥gy,t∥2

+ 3ηy,1ηy,2∥δyt ∥2 + 3ηy,1ηy,2∥δyt−1∥2 + 2ηy,1⟨δyt ,yt − y∗
t ⟩

(102)

where the last inequality follows from smoothness of f , and strong concavity of f(xt, .). Now note
that using Young’s inequality we can write:

∥yt − y∗
t ∥2 ≥

1

2
∥zt − y∗

t ∥2 − η2y,2∥gy,t−1∥2 (103)

Now plugging Equation 103 back to Equation 102, and letting ηy,1 = βηy,2, we have:

∥zt+1 − y∗
t ∥2 ≤ (1− βηy,2µ)∥zt − y∗

t ∥2 + 3βη2y,2ℓ
2∥xt − xt−1∥2 + 3βη2y,2ℓ

2∥yt − yt−1∥2

− βη2y,2(1− 2ηy,2µ)∥gy,t−1∥2 − βη2y,2(1− β)∥gy,t∥2

+ 3βη2y,2∥δ
y
t ∥2 + 3βη2y,2∥δ

y
t−1∥2 + 2βηy,2⟨δyt ,yt − y∗

t ⟩
(104)
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We can also write:

∥yt − yt−1∥2 = ∥ηy,1gy,t−1 + ηy,2(gy,t−1 − gy,t−2)∥2

≤ 2η2y,1∥gy,t−1∥2 + 2η2y,2∥gy,t−1 − gy,t−2∥2

≤ 2η2y,1∥gy,t−1∥2 + 6η2y,2∥∇yf(xt−1,yt−1)−∇yf(xt−2,yt−2)∥2

+ 6η2y,2∥δ
y
t−1∥2 + 6η2y,2∥δ

y
t−2∥2

≤ 2η2y,1∥gy,t−1∥2 + 6η2y,2ℓ
2∥xt−1 − xt−2∥2 + 6η2y,2ℓ

2∥yt−1 − yt−2∥2

+ 6η2y,2∥δ
y
t−1∥2 + 6η2y,2∥δ

y
t−2∥2

= 2β2η2y,2∥gy,t−1∥2 + 6η2y,2ℓ
2∥xt−1 − xt−2∥2 + 6η2y,2ℓ

2∥yt−1 − yt−2∥2

+ 6η2y,2∥δ
y
t−1∥2 + 6η2y,2∥δ

y
t−2∥2

(105)

Now adding 9βη2y,2ℓ
2∥yt − yt−1∥2 to both side of Equation 104, and using Equation 105 we have:

∥zt+1 − y∗
t ∥2 + 9βη2yℓ

2∥yt − yt−1∥2 ≤ (1− βηy,2µ)∥zt − y∗
t ∥2 + 3βη2y,1ℓ

2∥xt − xt−1∥2

− βη2y,2(1− 2ηy,2µ− 24β2η2y,2ℓ
2)∥gy,t−1∥2 − βη2y,2(1− β)∥gy,t∥2

+ 72βη4y,2ℓ
4∥xt−1 − xt−2∥2 + 72βη4y,2ℓ

4∥yt−1 − yt−2∥2

+ 3βη2y,2(1 + 24η2y,2ℓ
2)∥δyt ∥2 + 3βη2y,2(1 + 24η2y,2ℓ

2)∥δyt−1∥2

+ 2βηy,2⟨δyt ,yt − y∗
t ⟩

(106)

Now plugging ηy,2 = 1
6ℓ into Equation 106, and assuming β ≤ 1 we have:

∥zt+1 − y∗
t ∥2 +

β

4
∥yt − yt−1∥2 ≤ (1− β

6κ
)
(
∥zt − y∗

t ∥2
)
+

β

18
∥yt−1 − yt−2∥2

+
β

12
∥xt − xt−1∥2 +

β

18
∥xt−1 − xt−2∥2

+
β

6ℓ2
∥δyt ∥2 +

β

6ℓ2
∥δyt−1∥2 +

2β

6ℓ
⟨δyt ,yt − y∗

t ⟩

(107)

Taking expectation from both side of Equation 107, we have:

E
[
∥zt+1 − y∗

t ∥2 +
β

4
∥yt − yt−1∥2

]
≤ (1− β

6κ
)E
[
∥zt − y∗

t ∥2
]
+

β

18
E[∥yt−1 − yt−2∥2]

+
β

12
E[∥xt − xt−1∥2] +

β

18
E[∥xt−1 − xt−2∥2]

+
βσ2

3ℓ2My

(108)

Also using Young’s inequality we have:

∥zt − y∗
t ∥2 ≤ (1 +

β

12κ
)∥zt − y∗

t−1∥2 + (1 + 12
κ

β
)κ2∥xt − xt−1∥2 (109)

where we used the fact that for any α > 0, ∥x + y∥2 ≤ (1 + α)∥x∥2 + (1 + 1
α )∥y∥

2, and
κ-lipschitzness of y∗(x). Plugging Equation 109 back to Equation 108, we have:

E
[
∥zt+1 − y∗

t ∥2 +
β

4
∥yt − yt−1∥2

]
≤ (1− β

12κ
)E
[
∥zt − y∗

t−1∥2 +
β

4
E[∥yt−1 − yt−2∥2]

]
+ 12κ3E[∥xt − xt−1∥2] +

β

18
E[∥xt−1 − xt−2∥2]

+
βσ2

3ℓ2My

(110)
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Therefore, if we let rt = ∥zt+1 − y∗
t ∥2 +

β
4 ∥yt − yt−1∥2, then we have:

E[rt] ≤ (1− β

12κ
)E[rt−1] + 12η2x,1κ

3E[∥gt−1∥2] +
βη2x,1
18

E[∥gt−2∥2] +
βσ2

3ℓ2My

(111)

We can derive the following equation, by applying Lemma A.2.

t∑
i=1

E[ri] ≤
12κ

β
E[r1] + 144

η2x,1κ
4

β

t−1∑
i=1

E[∥gi∥2] +
2

3
η2x,1κ

t−2∑
i=1

E[∥gi∥2] +
2

3
κE[∥x1 − x0]∥2

+
4κσ2(t− 1)

ℓ2My

(112)

Or equivalently we have:

t∑
i=1

E[ri] ≤
12κ

β
E[r1] +

2

3
κE[∥x1 − x0∥2] + 145

η2x,1κ
4

β

t−1∑
i=1

E[∥gi∥2] +
4κσ2(t− 1)

ℓ2My
(113)

Proof of Theorem D.1. We begin by taking summation of Equation 92 (Lemma D.5) from t = 2 to
t = T which yields:

ηx,1
2

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤ Φ(x1)− E[Φ(xT )] +
3

2
ηx,1α

2ℓ2∥x1 − x0∥2

− ηx,1
2

(1− 2κℓηx,1)

T−1∑
i=1

E[∥gi∥2] +
3

2
η3x,1α

2ℓ2
T−2∑
i=1

E[∥gi∥2]

+
3

2
ηx,1ℓ

2
T−1∑
i=1

∥yi − y∗
i ∥2 +

3

2
ηx,1α

2ℓ2
T−1∑
i=1

E[∥yi − yi−1∥2]

+ 3((1 + α)2 + 1)ηx,1
(T − 1)σ2

Mx

(114)

Now note that if ηx ≤ 1
2κℓ then we can drop ∥gT−1∥2 term in above equation. By considering this,

and multiplying both sides by 2
ηx,1

we get (also let ∆ = Φ(x1)−minx Φ(x)) :

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤
2∆

ηx,1
+ 3α2ℓ2∥x1 − x0∥2

− (1− 2κℓηx,1 − 3η2x,1α
2ℓ2)

T−2∑
i=1

E[∥gi∥2]

+ 3ℓ2
T−1∑
i=1

E[∥y∗
i − yi∥2] + 3α2ℓ2

T−1∑
i=1

E[∥yi − yi−1∥2]

+ 6((1 + α)2 + 1)
(T − 1)σ2

Mx

(115)
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We can replace
∑T−1

i=1 ∥y∗
i − yi∥2 with its upper bound obtained in Lemma D.6 to get:

T−1∑
i=1

∥∇Φ(xi)∥2 ≤
2∆

ηx,1
+ 3α2ℓ2∥x1 − x0∥2 +

27

7
ℓ2∥y1 − y∗

1∥2

− (1− 2κℓηx,1 − 3η2x,1α
2ℓ2 − 54

7
η2x,1κ

2ℓ2)

T−2∑
i=1

E[∥gi∥2]

+
108

7
ℓ2

T−1∑
i=2

E[∥zi − y∗
i−1∥2] + 3ℓ2

T−1∑
i=1

E[∥yi − yi−1∥2]

+ 6((1 + α)2 + 1)
(T − 1)σ2

Mx
+

6

7

(T − 2)σ2

My

(116)

Now note that 108
7 E[∥zi+1− y∗

i ∥2] + 3β
∑T−1

i=2 E[∥yi− yi−1∥2] ≤ 15.5E[ri]. Therefore we have:

T−1∑
i=1

∥∇Φ(xi)∥2 ≤
2∆

ηx,1
+ 3α2ℓ2∥x1 − x0∥2 +

27

7
ℓ2∥y1 − y∗

1∥2

− (1− 2κℓηx,1 − 3η2x,1α
2ℓ2 − 54

7
η2x,1κ

2ℓ2)

T−2∑
i=1

E[∥gi∥2]

+ 15.5ℓ2
T−1∑
i=1

E[ri] + 6((1 + α)2 + 1)
(T − 1)σ2

Mx
+

6

7

(T − 2)σ2

My

(117)

Furthermore, using Lemma D.7, we can find an upper bound on
∑T−1

i=1 E[ri], and replacing it in
above equation yields:

T−1∑
i=1

∥∇Φ(xi)∥2 ≤
2∆

ηx,1
+ 186

κℓ2

β
E[r1] + 11κℓ2∥x1 − x0∥2 + 3α2ℓ2∥x1 − x0∥2

+
27

7
ℓ2∥y1 − y∗

1∥2 − (1− 2κℓηx,1 − 3η2x,1α
2ℓ2 − 54

7
η2x,1κ

2ℓ2 − 2248η2x,1
κ4ℓ2

β
)

T−2∑
i=1

E[∥gi∥2]

+
62κσ2(T − 2)

My
+ 6((1 + α)2 + 1)

(T − 1)σ2

Mx
+

6

7

(T − 2)σ2

My

(118)

By letting ηx,1 =
√
β

50κ2ℓ , and ηx,2 ≤ 1
25ℓ , it holds that −(1− 2κℓηx,1 − 3η2x,1α

2ℓ2 − 54
7 η2x,1κ

2ℓ2 −
2248η2x,1

κ4ℓ2

β )
∑T−2

i=1 E[∥gi∥2] ≤ 0. Therefore, with the choice of letting rate ηx,1 =
√
β

50κ2ℓ and
simplifying the terms, we have:

1

T − 1

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤ 100
κ2ℓ∆√
β(T − 1)

+ 186
κℓ2

β(T − 1)
∥y1 − y∗

1 + ηy,1gy,1 − ηy,2gy,0∥2

+ 47β
κℓ2

T − 1
∥y1 − y0∥2 +

(11κ+ 3α2)ℓ2

T − 1
∥x1 − x0∥2

+
27

7

ℓ2

T − 1
∥y1 − y∗

1∥2 +
63κσ2

My
+ 6((1 + α)2 + 1)

σ2

Mx

(119)

Using Young’s inequality, and ℓ-smoothness of f , we have:

∥y1 − y∗
1 + ηy,1gy,1 − ηy,2gy,0∥2 ≤ 2∥y1 − y∗

1∥2 + 2∥ηy,2(gy,1 − gy,0) + ηy,2(β − 1)gy,1∥2

≤ 2∥y1 − y∗
1∥2 +

1

9
∥x1 − x0∥2 +

1

9
∥y1 − y0∥2 +

1− β

9
∥y1 − y∗

1∥2

(120)
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Plugging this into Equation 119, we have:

1

T − 1

T−1∑
i=1

E[∥∇Φ(xi)∥2] ≤ 100
κ2ℓ∆

T − 1
+ 376

κℓ2

β(T − 1)
∥y1 − y∗

1∥2

+ 68
κℓ2

β(T − 1)
∥y1 − y0∥2 +

(32κ+ 3α2)ℓ2

β(T − 1)
∥x1 − x0∥2

+
63κσ2

My
+ 6((1 + α)2 + 1)

σ2

Mx

(121)

which completes the proof as stated.
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