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Abstract: Reactivity controlled compression ignition (RCCI) mode offers high thermal effi-
ciency and low nitrogen oxides (NOx) and soot emissions. However, high cyclic variability at
low engine load and high pressure rise rates at high loads limit RCCI operation. Therefore, it
is important to control the combustion event in an RCCI engines to prevent abnormal engine
combustion. To this end, combustion in RCCI mode was studied by analyzing the heat release
rates calculated from the in-cylinder pressure data at 798 different operating conditions. Five
distinct heat release shapes are identified. These different heat release traces were characterized
based on start of combustion, burn duration, combustion phasing, maximum pressure rise rate,
maximum amount of heat release, maximum in-cylinder gas temperature and pressure. Both
supervised and unsupervised machine learning approaches are used to classify different types
of heat release rates. K-means clustering, an unsupervised algorithm, could not cluster the
heat release traces distinctly. Convolution neural network (CNN) and decision trees, supervised
classification algorithms, were designed to classify the heat release rates. The CNN algorithm
showed 70% accuracy in predicting the shapes of heat release rates while decision tree resulted
in 74.5% accuracy in predicting different heat release rate traces.

Keywords: Low Temperature Combustion (LTC); Reactivity Controlled Compression Ignition
(RCCI); Machine Learning; Multi-class Classification

1. INTRODUCTION

Increased air pollution and stringent emission regulations
have shifted the focus of automotive manufacturers and
researchers towards advanced combustion technologies for
better fuel economy and lower emissions. Low temperature
combustion (LTC) is one of the advanced combustion
technologies evolved over the last two decades. As the
name suggests, combustion temperatures in LTC engine
are usually low enough to prevent NOx formation (Batool
et al., 2022). Furthermore, lean air-fuel mixture and early
injection of fuel result in more premixed air-fuel mixture
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that reduces fuel rich zones inside the combustion chamber
which prevents soot formation (Agarwal et al., 2017).

Several strategies have been proposed to achieve LTC
modes including intake air heating (Haraldsson et al.,
2004), variable compression ratio (Hyvönen et al., 2003),
variable valve actuation (Shaver et al., 2004), exhaust gas
recirculation (EGR) (Martinez-Frias et al., 2000), dual
fuels (Yin et al., 2020), split fuel injections (Ravi et al.,
2012), and direct dual fuel stratification (Wissink and
Reitz, 2015). Homogeneous charge compression ignition
(HCCI), premixed charge compression ignition (PCCI),
partially premixed charge compression ignition (PPCI),
and reactivity controlled compression ignition (RCCI) are
the common LTC modes. In HCCI mode, early injection
gives the fuel enough time to mix with air homogeneously
that leads to auto-ignition. However, combustion in HCCI



mode often results in a very rapid rate of heat release rate
leading to very high maximum pressure rise rates (MPRR)
(Dempsey et al., 2014). In PCCI mode, fuel is injected
during the compression stroke which helps in reducing
MPRR (Kokjohn et al., 2009). Combustion in RCCI mode
is achieved by using two fuels of different reactivity. The
premixed ratio of two fuels and the injection timing of high
reactivity fuel provide better control means to adjust the
combustion process in RCCI (Dempsey, 2013).

Besides their advantages, RCCI operation is limited due
to high MPRR which causes engine knocking at high load
and high cyclic variability at low load (M. et al., 2021).
Therefore, it is important to understand the combustion
in an RCCI engine by analyzing the in-cylinder pressure
data. Heat release rate traces provide most of the informa-
tion about the combustion performance parameters. These
combustion performance parameters include start of com-
bustion (SOC), crank angle for 50% heat release (CA50),
burn duration (BD), indicated thermal efficiency (ηind,th).
In addition, controlling heat release helps in reducing
MPRR and RCCI cyclic variability. Heat release rate is
predominantly affected by the variations in the operating
conditions. Injection timing of fuel affects the rate of heat
release and the HC and CO emissions (Kanda et al., 2005).
Effects of injection timing in a dual fuel LTC operation
on heat release rate were investigated by Kokjohn et al.
(2012). The study suggested that injection timings around
-145 CAD aTDC led to rapid combustion. Retarding the
injection timing to -50 CAD aTDC resulted in reduced
heat release rate. However, reducing the injection timing
further (around -15 CAD aTDC) resulted in an abrupt
early stage heat release with a tail towards the end of
heat release (Kokjohn et al., 2012). Premixed ratio of dual
fuels also affects the combustion. A study investigated the
effects of variation in the premixed ratio of gasoline and
diesel fuels (Lee et al., 2019). They found that prolonged
ignition delay was observed for the dual fuel with the
highest quantity of gasoline. This resulted in increased
indicated efficiency when compared with diesel combustion
while reduction in NOx emissions was observed (Lee et al.,
2019).

In order to optimize the combustion in the RCCI engine
for maximum indicated thermal efficiency, lower engine-
out emissions, reduced MPRR and cyclic variability, it is
important to control rate of heat release. This can be done
by identifying the shapes of heat release rate as a function
of engine operating conditions. The focus of this work is to
employ machine learning (ML) algorithms for the identifi-
cation of the type of heat release rate. Various combustion
metrics listed in Fig. 1 can be analyzed with ML tech-
niques. ML techniques have been utilized for engine model-
ing and control. Feedforward neural network (FFNN) and
radial basis function neural network (RBFNN) were used
for the dual-fuel HCCI engine modeling to predict the indi-
cated mean effective pressure (IMEP), thermal efficiency,
in-cylinder pressure, net total heat released and engine-out
emissions (Rezaei et al., 2015). Artificial neural network
(ANN) together with physics-based engine model was de-
veloped for the prediction of CA50, IMEP and exhaust gas
temperature, Texh, (Bidarvatan and Shahbakhti, 2014).
Developed model predicted CA50, IMEP and exhaust gas
temperature (Tex)h with errors of less than 1 CAD, 0.2 bar

and 6○C, respectively (Bidarvatan and Shahbakhti, 2014).
A data-driven linear parameter varying model based on
support vector machine was developed to control the RCCI
engine operation (Irdmousa et al., 2019). In (Batool et al.,
2021), classification algorithms were developed to model
coefficient of variation of indicated mean effective pressure
(COVIMEP) for HCCI and RCCI modes. Nonlinear model
predictive controllers were developed to control CA50 and
IMEP while limiting COVIMEP below 3% (Batool et al.,
2021). Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing
vitae, felis. Curabitur dictum gravida mauris. Nam arcu
libero, nonummy eget, consectetuer id, vulputate a, ma-
gna. Donec vehicula augue eu neque. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac
turpis egestas. Mauris ut leo. Cras viverra metus rhoncus
sem. Nulla et lectus vestibulum urna fringilla ultrices.
Phasellus eu tellus sit amet tortor gravida placerat. Integer
sapien est, iaculis in, pretium quis, viverra ac, nunc. Prae-
sent eget sem vel leo ultrices bibendum. Aenean faucibus.
Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac,
nulla. Curabitur auctor semper nulla. Donec varius orci
eget risus. Duis nibh mi, congue eu, accumsan eleifend,
sagittis quis, diam. Duis eget orci sit amet orci dignissim
rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin
vel, wisi. Morbi auctor lorem non justo. Nam lacus libero,
pretium at, lobortis vitae, ultricies et, tellus. Donec ali-
quet, tortor sed accumsan bibendum, erat ligula aliquet
magna, vitae ornare odio metus a mi. Morbi ac orci et nisl
hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pel-
lentesque a nulla. Cum sociis natoque penatibus et magnis
dis parturient montes, nascetur ridiculus mus. Aliquam
tincidunt urna. Nulla ullamcorper vestibulum turpis. Pel-
lentesque cursus luctus mauris. Nulla malesuada porttitor
diam. Donec felis erat, congue non, volutpat at, tincidunt
tristique, libero. Vivamus viverra fermentum felis. Donec
nonummy pellentesque ante. Phasellus adipiscing semper
elit. Proin fermentum massa ac quam. Sed diam turpis,
molestie vitae, placerat a, molestie nec, leo. Maecenas
lacinia. Nam ipsum ligula, eleifend at, accumsan nec, su-
scipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc
eleifend consequat lorem. Sed lacinia nulla vitae enim.
Pellentesque tincidunt purus vel magna. Integer non enim.
Praesent euismod nunc eu purus. Donec bibendum quam
in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam
vulputate metus eu enim. Vestibulum pellentesque felis eu
massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel
justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit
amet, consectetuer adipiscing elit. In hac habitasse platea
dictumst. Integer tempus convallis augue. Etiam facilisis.
Nunc elementum fermentum wisi. Aenean placerat. Ut
imperdiet, enim sed gravida sollicitudin, felis odio placerat
quam, ac pulvinar elit purus eget enim. Nunc vitae tortor.
Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae
risus porta vehicula.

To the best of the authors’ knowledge, this is the first
study undertaken to develop a learning based classification
method to identify different types of heat release in RCCI
engine operation. This classification is based on an exten-







in type-2 and type-5 are well premixed which resulted in
advanced combustion. Even with advanced combustion,
type-2 showed lower mean MPRR as compared to type-1.
This can be explained by the fact that type-2 and type-5
showed staged combustion. That is why the magnitude of
peak heat release is lower in type-2 and type-5 as compared
to type-1. Types 3 and 4 HRR are characterized as main
stage heat release followed by a diffusion type heat release
rate. Type-3 showed relatively low Pmax, Tmax, HRmax

and MPRR followed by type-4. A shorter burn duration in
type-4 as compared to type-3 can be the reason of slightly
higher magnitudes of Pmax, Tmax, HRmax and MPRR in
type-4 HRR. The main purpose of this classification and
characterization is to achieve optimal engine operation.
The optimal engine operation may target for the maximum
thermal efficiency and low engine-out emissions while
preventing high MPRR. Among different types of HRR,
type-2 showed the maximum indicated thermal efficiency
with the maximum ignition delay. Ignition delay is defined
as the time between start of injection and the onset of
combustion. Higher ignition delay means more premixed
air-fuel mixture which helps in preventing NOx formation
Lee et al. (2019). However, due to more premixing, some of
the operating conditions resulted in higher MPRR which is
not a favorable condition. Therefore, for the required load
and speed, selection of an optimal HRR type is important
to provide a safe engine operation.

Table 3. Characteristics of HRR types based
on average combustion parameters

Parameters HRR Types

1 2 3 4 5

CA10 (CAD
aTDC)

4.4 -2.7 3.8 4.8 0.7

CA50 (CAD
aTDC)

7.6 4.6 7.4 8.0 5.4

BD (CAD) 12.2 16.7 21.2 18.0 17.4

MPRR
(bar/CAD)

5.7 5.2 4.0 4.4 4.2

Tmax (K) 1780 1509 1542 1592 1446

Pmax
(kPa)

4204 3998 3561 3697 3723

HRmax

(J/CAD)
115.6 106.7 79.2 87.8 84.2

4. CLASSIFICATION METHODS FOR
IDENTIFICATION OF HRR SHAPES

4.1 Unsupervised Learning using K-means Clustering

K-means clustering is a popular technique for clustering
problem, where each centroid represents a data point in
a 2-dimensional data frame. In this study, the centroid
corresponds to a complete HRR trace. K-means clustering
starts with random initialization of centroids, c1, c2,...,ck,
of heat release rate data. K is initialized to 5 based on
the aim of clustering the HRR traces into five bins. To
achieve the centroid convergence, the following two steps
are iterated:

(1) In the first step, each data point is designated based
on the minimum Euclidean distance to the closest
centroid, i.e.,

argmin
ciϵC
(x − ci)

2

(4)

where C is the collection of centroids, ci is the ith

centroid and x is the data point to be assigned to a
cluster.

(2) In the second step of the sequence, centroids are
recalculated as the mean of data points assigned to
its cluster until the convergence is achieved. Si is the
set of data points assigned to ith cluster.

ci =
1

∣Si∣
∗ΣxiϵSi

xi (5)

Algorithm stops iteration when no more data points switch
between the clusters and the sum of Euclidean distance
becomes minimum. Based on the operating conditions,
each HRR trace resulted in different peak heat release
which affect the clustering. Therefore, HRR traces were
normalized to cluster them based on shape rather than
magnitude. Normalized heat release traces are input to the
algorithm. The algorithm identifies the centroids for the
cluster through the complete length of the heat release rate
vector. Centroids are chosen randomly at the beginning
of the classification and the Euclidean distance of each
trace from the centroid is calculated. Traces with the least
distance from the centroid are clustered in a bin. From
the clustered traces, centroid is recalculated. The process
is repeated until the centroid and clustered traces remain
the same after consecutive iterations. K-means clustering
approach was used to classify data into five bins.

4.2 Supervised Learning using CNN

In supervised learning approach, convolutional neural net-
work is a subset of artificial neural networks. Convolutional
neural network (CNN) has proven to be effective for image
recognition. 1D CNN is used for identifying heat release
rate traces. It is built as a combination of series of layers
to extract the prominent features of the inputs and assign
them to corresponding output labels. The CNN takes the
1D vector of HRR trace and passes it across multiple lay-
ers, i.e., convolutional, pooling and a fully connected layer,
to obtain output. The output of CNN is the probability of
five different classification bins which best represent the
HRR traces. First layer of 1D CNN is a convolutional
layer with an activation function, in which elements from
the data, as per kernel dimension are taken and multiplied
with the filter weights. It is summed up as a single element
in the feature vector. The kernel slides all through the
input data and elements of the feature vector are obtained.
The number of filters depicts multiple combinations of
weights of the filter to extract features from input data.
Each of these combinations results in a feature vector. All
the feature vectors together constitute the convolutional
layer.

Pooling is used to reduce the spatial dimension of the
feature vector to reduce the computational time. Since,
pooling operates individually on each of the feature vec-
tors, the dimensions of maps reduce but the number of
maps remains the same. In the final layer, global average
pooling is used, where it reduces the complete dimension



of the feature vector in to a single value. A dense layer is a
fully connected neural network layer where each node on
the input is connected to a node on the output. A dropout
layer is very similar to dense layer except that when the
layer is used, the activation is set to zero for some of the
nodes randomly to avoid over fitting.

Training of neural network is achieved by adjusting the
filter values through back propagation process. During
the training process, initially the weights of the filter are
randomly assigned and the output probabilities also end
up as random values in the forward pass. The error of the
output layer is calculated based on Eq. (6), referred to as
loss (L) or total error. In order to have the predicted and
actual label to be the same, the following loss function has
to be minimized

L = ∑
1

2
(T −O)2, (6)

where T refers to target probability and O refers to
output probability. By using back propagation method,
the gradients of the error to weights in the network are
adjusted to minimize error. By using gradient descent, the
filter weights are minimized. Weight update is carried out
by

W =W i − η
dL

dW
, (7)

where W is the weight, Wi is the initial weight and η
is the learning rate of the network. If the learning rate
is set too high, it results in large jumps and makes it
difficult to reach the optimized point. The process of
forward pass is followed by loss calculation and backward
pass, respectively. This is carried out for predefined 500
iterations to get a trained model.

When the same HR shape is input to the trained model,
the probability results of the predicted label are more
aligned with the actual label. Thus, the model has learnt
to process the particular heat release trace to the corre-
sponding label. Through the process of training, only the
weights of the filter and connection weights are updated.
However, the structure of the network such as number of
filters and filter size, remains the same. For supervised
learning approach, 65% of the data is used for training the
model and the rest 35% is used to evaluate the trained
model.

1D CNN model was built and tested using keras in python.
In CNN approach, a filter of length 9 with 32 features is
used. Exponential linear unit (ELU) is used as activation
function. Maximum pooling is used in the CNN structure
built for heat release trace identification. It helps to reduce
dimension of feature map in patches. The layer at end is
connected completely to its earlier activation layers.

4.3 Supervised Learning using Decision Trees

Decision tree is one of the powerful supervised learning
algorithms. High accuracy and interpretability are the
important characteristics of the decision tree algorithm.
Decision tree involves sequential hierarchical decisions
which lead to final classification. The modelling process
involves two main steps: (i) induction and (ii) pruning.
Induction is a process in which a decision tree is built,
but the nature of training process results in overfitting.

Table 4. Data dimensions through layers of
CNN

Layer (type) Output Shape Param #

Conv1D 1 (None, 292, 32) 320
Max pooling 1 (None, 97, 32) 0
Conv1D 2 (None, 91, 64) 14400
Max pooling 2 (None, 30, 64) 0
Conv1D 3 (None, 26, 128) 41068
Global average pooling (None, 128) 0
Dropout 1 (None, 128) 0
Dense 1 (None, 5) 645
Lambda 1 (None, 5) 0

Total trainable parameters: 56,453

Through the process of pruning, unnecessary structures
from the decision tree are removed to prevent overfitting.

Decision tree consists of nodes, edges/branches and leaf
nodes. Each node assesses an evaluation condition of a
certain feature. Edges/Branch refers to the outcome of a
node which connects with another node. Finally, leaf nodes
refer to the final outcome resulting in the class labels.
For classification of heat release rate traces, recursive
binary splitting is used at every node. To calculate the
accuracy of split at each node, cost of split is evaluated.
For classification, a perspective of the goodness of the split
is determined by evaluating the cost function (Gini Index
Function) given by

G = 1 −Σk(pk
2), (8)

Where, pk is the magnitude of the class inputs correspond-
ing to a particular group. High level of purity (pk) is
achieved when the value of G is small. Information gain
measures the concept of a single class segregation. Decision
tree algorithm evaluates all the features for the highest
value of information gain at every node which becomes
the evaluation condition for each node. Equation (9) is
used to calculate gain:

Gain(S,A) = Entropy(S) −ΣveV alues(A)
∣Sv ∣

∣S∣
.Entropy(Sv),

(9)

where S refers to set of occurrences, A represents the
features. When A becomes equal to a particular classifi-
cation value, then Sv denotes the subset of S. Values(A)
represents the possible values of A in the training data
set. Entropy is a measure of uncertainty in the random
variable. It also depicts the impurity of the collection. At
each node, the same step is evaluated till all the classes
are achieved as leaf node.

To apply the decision tree method on HRR data, MAT-
LAB predefined function fitctree is employed which uses
binary recursive approach. In order to train the model,
two major inputs are provided. One of the inputs is the
features and other are the labels of the classification. In
HRR classification, engine control inputs including engine
speed, start of injection of DI fuel, total fuel quantity, pre-
mixed ratio and intake manifold temperature are selected
as features. The output is the true labels for traces iden-
tified initially for training the model. The decision tree
approach is prone to overfitting issue, hence the number
of leaf nodes was restricted to a maximum of 12, to avoid
overfitting.



5. RESULTS AND DISCUSSIONS

The models are trained using K-means clustering, CNN
and decision tree algorithms. The performance of the
trained models is evaluated by using the testing data.
Figure 6 shows the results of HRR clustering in 5 different
bins using K-means clustering algorithm. By comparing
Fig. 5 and 6, we can not see any clear distinction between
the shapes of heat release rates clustered by K-means
algorithm. K-means clustering is an unsupervised ML ap-
proach which cluster the data points together without any
prior knowledge of output labels. Furthermore, alignment
of traces and centroid of bins changed with multiple it-
erations. This made it hard to identify the differences in
the heat release patterns. Thus, it is difficult to justify the
unique characteristics of each bin.

Fig. 6. K-means classification of heat release rate traces

By evaluating with the testing data, the prediction accu-
racy of CNN mode is 70%. The prediction accuracy of the
model is documented by using a confusion matrix, which
provides a comparison between the actual and prediction
values as shown in Fig. 7. Diagonal elements of the matrix
depict the traces in which true label from the data and
predicted labels of the model are the same. The higher the
value of the diagonal elements, the better is the prediction
accuracy of the model.

Once the decision tree model is determined, the prediction
accuracy of the trained model is evaluated using testing
data. The summary of the true label and predicted value
is shown in Fig. (8). The prediction accuracy of the model
is 74.5%, with diagonal elements signifying the predictions
tallying with the true label. By comparing the performance
of CNN with K-means clustering it can be observed that
the CNN algorithm showed better prediction accuracy.
This can be explained by the fact that supervised learning
algorithms have prior knowledge about the class labels
incorporated which leads to a better prediction. By using
the CNN trained model, the type of heat release rate can
be determined by providing the normalized heat release
rate traces as inputs without calculating the fractions of

Fig. 7. Prediction summary of the HRR shapes by the
model trained using CNN algorithm

Fig. 8. Prediction summary of the HRR shapes by the
model trained using decision tree algorithm

early and late heat release rate. Furthermore, the decision
tree model can determine the type of combustion event
based on the control inputs to realize the different types
of heat release rate in the RCCI mode.

6. SUMMARY AND CONCLUSIONS

In this work, heat release rate traces of an RCCI engine
obtained at about 800 different operating conditions were
classified using classification techniques. To develop clas-
sification models, supervised and unsupervised ML algo-
rithms were adopted to identify different types of heat
release traces. The main findings are:

● Based on the experimental data, five different types
of heat release rate were identified using two pa-
rameters including fractions of early and late heat
release. Type-1 is a single stage heat release with
shorter burn duration. Type-2 HR shows predomi-
nant low temperature heat release followed by main
stage combustion. In type-3, main stage heat release
is followed by diffusion type combustion. Type-4 HR
shows transition between type 1 and 3 heat release.



Type-5 HR shows transition between type 1 and 2
heat release rates.
● K-means clustering algorithm could not identify dis-
tinct patterns of heat release rates. This can be
explained by the fact that this algorithm does not
have any information about the output labels. There-
fore, supervised learning algorithms were preferred for
HRR shape classification.
● Convolution neural networks (CNNs) were used to
classify five different types of heat release rate. Nor-
malized HRR traces were used as inputs to the model
to determine the type of heat release rate. By using
the trained model, the heat release patterns can be
identified with a prediction accuracy of 70%.
● Decision trees were used to identify the heat release
types on the basis of control inputs. The control
inputs include start of injection of directly injected
fuel, total fuel quantity, pre-mixed ratio and intake
manifold temperature and engine speed. The model
can predict five different HRR types with an overall
prediction accuracy of 74.5%.

In our future work, selected classification algorithms will
be used to develop the linear parameter varying (LPV)
control oriented models to control RCCI engine operation
based on early and late heat release.
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