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1. Introduction

This is our first paper in a series studying gravitational instantons. In 1977, the con-

cept of “gravitational instanton” was first introduced by Hawking as a building block of

the Euclidean quantum gravity theory [21]. The literature has provided many di↵erent

definitions. For clarity, we define a gravitational instanton as a complete, hyperkähler

4-manifold satisfying a decay condition

|Rm|(x)6 r(x)�2�✏, (1.1)

where r(x) denotes the metric distance to a base point o in the complex surface and ✏>0

is any small positive number, say < 1
100 . Under those conditions, we want to study two

fundamental questions:

(1) What are the di↵erential and metric structures of the infinity of these gravita-

tional instantons? Note that this is di↵erent from the tangent cone at infinity, especially

if the volume growth is sub-Euclidean.

(2) Given these end structures, to what extent do we know these instantons globally

and holomorphically? In other words, is a gravitational instanton uniquely determined

by its end structure?

Both problems seem to be well known to the research community. Since 1977, many

examples of gravitational instantons have been constructed [21], [2], [29], [12]. The end

structures of these examples are completely known now. According to the volume growth

rate, they can be divided into four categories: ALE, ALF, ALG, and ALH, where the

volume growth is of order 4, 3, 2, and 1, respectively. For readers’ convenience, we will

give a precise definition of these ends in 2. There is a folklore conjecture that when the

curvature decay is quick enough, any gravitational instanton must be asymptotic to one

of the standard models of ends.

In the ALE case, we understand these instantons completely through the works of

Kronheimer in [29], [30]. In the remaining cases, the asymptotical volume growth rate is

usually di�cult to control, may oscillate, and may even not be an integer. In an important

paper, with additional assumption that the volume growth rate is sub-Euclidean but at

least cubic and a slightly weaker curvature decay condition depending on the volume

growth rate, Minerbe [33], [34] proved that it must be ALF. In our paper, we first prove

the folklore conjecture.

Theorem 1.1. (Main Theorem 1) Any connected complete hyperkähler manifold

(M4, g) with curvature decaying as (1.1) must be asymptotic to the standard metric of

order ✏. Consequently, it must be one of the four families : ALE, ALF, ALG, and ALH.

For more detail about this theorem, see Theorems 3.7, 3.11, and 3.19. We would

like to remark that the curvature condition cannot be weakened to |Rm|=O(r�2). In
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2012, besides the study of ALG and ALH instantons on rational elliptic surfaces, Hein

[22] also constructed two new classes of hyperkähler metrics on rational elliptic surfaces

with volume growth, injective radius decay, and curvature decay rates r4/3, r�1/3, r�2,

and r2, (log r)�1/2, r�2(log r)�1, respectively. Note that curvature does not satisfy (1.1)

and that they do not belong to any of the four families!

Our new contribution lies in the ALG and ALH cases; in the ALF case, our con-

tribution is to remove the volume growth constraint from Minerbe’s work [33]. In fact,

Minerbe’s volume growth constraint becomes a corollary instead of a condition of our

first main theorem. In particular, we can now apply his work and improve the curvature

decay rate of an ALF instanton to O(r�3). Therefore, the asymptotic rate can be im-

proved to any �<1. For ALH non-splitting instantons, we can also improve the curvature

decay rate. It turns out that the metric must converge to the flat model exponentially.

For more details, see Theorem 4.18. We believe there is a similar self improvement for

ALG instantons, but we will leave it for future study.

For the second question, the crucial point is to understand “the end” holomorphi-

cally. In the International Congress of Mathematicians 1978, Yau conjectured that every

complete Calabi–Yau manifold can be compactified in the complex analytic sense [39].

There are counterexamples if we only assume the completeness without a fast curvature

decaying condition [1]. However, when we assume the faster than quadratic curvature

decay condition, in both the ALG and ALH non-splitting cases, we can prove Yau’s con-

jecture. In the higher dimension n>3, assuming the curvature exponentially decays and

the metric is asymptotically cylindrical, Haskins, Hein, and Nordström [19] constructed

a compactification and therefore verified Yau’s conjecture in their settings.

Theorem 1.2. (Main Theorem 2) For any ALG or ALH non-splitting gravitational

instanton M , there exists a compact elliptic surface M with a meromorphic function

u:M CP1 whose generic fiber is torus. The fiber D={u=1} is regular if M is ALH,

whereas it is either regular or of type I⇤0, II, II
⇤, III, III⇤, IV, IV⇤ if M is ALG. There ex-

ists an (a1, a2, a3) in S2 such that when we use a1I+a2J+a3K as the complex structure,

M is biholomorphic to M \D.

The converse problem is actually very well known and has been studied actively:

Given a compact complex manifold M and D an anti-canonical divisor, do we have a

complete Ricci-flat Kähler metric on M \D? Tian–Yau [38] proved that, for a quasi-

projective surface M=M \D with M smooth and D a smooth anticanonical divisor

in M , as long as D2>0, M has a complete Ricci-flat Kähler metric, which has the

volume growth of linear order (i.e. ALH). In [22], Hein generalized Tian–Yau’s work

and constructed ALG gravitational instantons on the complement of the anticanonical
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divisor to the rational elliptic surface M \D. We do not know whether one can repeat the

Hein–Tian–Yau construction for a general elliptic surface, which is not algebraic. The

complete understanding of ALG and ALH non-splitting gravitational instantons is even

more di�cult.

In addition, using gauge theory, Biquard–Boalch [4] also constructed a complete

hyperkähler 4-manifold. It is also closely related to the complement of the anticanonical

divisor to the rational elliptic surface through the Painlevé equations [6], [37], but it is

still unclear whether the Biquard–Boalch metric is ALG or not.

In the ALF case, more discussions are needed:

(1) In the ALF-Ak case, Minerbe [35] proved that any ALF-Ak instanton must be

the trivial product or the multi-Taub-NUT metric. In particular, there is no ALF-Ak

instantons for k<�1.

(2) In the ALF-Dk case, Biquard and Minerbe [5] proved that there is no ALF-Dk

instantons for k<0. For k>0, the first example was constructed by Atiyah and Hitchin

[2], where k=0. Ivanov and Roček [25] conjectured a formula for larger k using the

generalized Legendre transform developed by Lindström and Roček. This conjecture

was proved by Cherkis and Kapustin [12], and computed more explicitly by Cherkis

and Hitchin [11]. It is conjectured that any ALF-Dk instanton must be exactly the

metric constructed by them. This conjecture has not been solved yet. However, we are

able to prove the existence of the O(4) multiplet, which plays an important role in the

Cherkis–Hitchin–Kapustin–Ivanov–Lindström–Roček construction.

Theorem 1.3. (Main Theorem 3) In the ALF-Dk case, there exists a holomorphic

map from the twistor space of M to the total space of the O(4) bundle over CP1, which

commutes with both the projection to CP1 and the real structure.

For the definitions of the twistor space and the real structure, see Theorems 4.24

and 4.25.

One of our main tools comes from the equivalence between the hyperkähler condi-

tion and the Calabi–Yau condition. Actually, for hyperkähler manifolds, we have three

complex structures: I, J , and K. They induce three symplectic forms by

!1(X,Y )= g(IX, Y ), !2(X,Y )= g(JX, Y ), and !3(X,Y )= g(KX,Y ).

The form !+=!2+i!3 is a I-holomorphic symplectic form. This induces the equivalence

of Sp(1) and SU(2). Notice that, for any (a1, a2, a3)2S2, a1I+a2J+a3K is a Kähler

structure. There is a special property of Sp(1): Given any vectors v, w2Tp, which are

orthogonal to each other and have the same length, there exists an (a1, a2, a3) in S2 such

that (a1I+a2J+a3K)v=w. We will use this property to find the best complex structure.
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We obviously benefited from studying a series of papers by Minerbe [33], [34], and

[35]. Although his work seems only valid in the ALF-Ak case, we manage to make some

modest progress in all cases in the present work.
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2. Notation and definitions

First, let us understand the standard models near infinity. The explicit expression of

those models is defined in Theorem 3.19. To avoid singularity, a ball BR is always

removed.

Example. Let (X,h1) be any manifold of dimension 3�k with constant sectional

curvature 1 and let C(X) be its metric cone with the standard flat metric dr2+r2h1.

Let Tk be a k-dimensional flat torus. Then, the Tk fibration E over C(X)\BR with a

Tk invariant metric h provides the standard model near infinity.

(1) C(X)=R4/�, where � is a discrete subgroup in SU(2) acting freely on S3. In

this case, (E, h)=C(X)\BR with the flat metric. It is called ALE.

(2) C(X)=R3, and (E, h) is either the trivial product (R3
\BR)⇥S1 or the quotient

of the Taub-NUT metric with mass m outside a ball by Z|e|, where me<0. It is called

ALF-Ak, with k=�1 in the first case and k=�e�1 in the second case.

(3) C(X)=R3/Z2, and (E, h) is either the Z2 quotient of the trivial product of

R3
\BR and S1 or the quotient of the Taub-NUT metric with mass m outside a ball by

the binary dihedral group D4|e| of order 4|e|, where me<0. It is called ALF-Dk with

k=2 for the first case, and k=�e+2 for the second case.

(4) C(X) is the flat cone C� with a cone angle 2⇡�, and (E, h) is a torus bundle

over C�\BR with a flat metric, where (�, E, h) is in the list of some special values. It is

called ALG.

(5) C(X)=R, and (E, h) is the product of R\BR and a flat 3-torus. It is called

ALH splitting.
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(6) C(X)=R+, and (E, h) is the product of [R,+1) and a flat 3-torus. It is called

ALH non-splitting.

We may call such fiberation a standard model near infinity. It serves as an asymptotic

model in the following sense.

Definition 2.1. A complete Riemannian manifold (M, g) is called asymptotic to the

standard model (E, h) of order � if there exist a bounded domain K⇢M , and a di↵eo-

morphism �:E M \K such that

�⇤g=h+O0(r��)

for some �>0.

Any manifold asymptotic to the standard ALE model is called ALE. It stands for

asymptotically locally Euclidean. Similarly, any manifold asymptotic to the standard

ALF model is called ALF. It means asymptotically locally flat. The ALG and ALH

manifold are defined similarly. The letters “G” and “H” do not have any meanings.

They are just the letters after “E” and “F”.

Notice that our definition of ALH manifold is di↵erent from Hein’s definition in

[22]. However, Theorem 4.18 implies that there is no essential di↵erence for gravitational

instantons.

Notation. We have that o is a fixed point in M . In 3, r(p)=dist(o, p) is the geodesic

distance between o and p. In 4, E is a fiberation over

C(X)\BR = {(r, ✓) : r>R, ✓2X}.

So, the pull-back of r by the projection is a function on E. On M , we pull back that

function, cut it o↵ by some smooth function, and add 1 to get the smooth function r>1.

The reader should be careful about the changing meanings of r in various sections of our

paper.

O0(r↵) means that, for any m>0, the mth derivative of the tensor is O(r↵�m).

Then, � will be a smooth cut-o↵ function from (�1,+1) to [0, 1] such that �⌘1 on

(�1, 1] and �⌘0 on [2,1). We will always use �=�r
⇤
r as the Laplacian operator.

3. Asymptotic fibration

In this section, we prove Main Theorem 1. It is essentially a theorem in Riemannian

geometry. The basic tool is to view a ball in the manifold M as a quotient of the ball

inside the tangent space, equipped with the metric pulled back from exponential map, by
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the group of local covering transforms corresponding to the short geodesic loops in M .

In the first subsection, we discuss this picture. In the second subsection, we provide a

rough estimate of the holonomy of short geodesic loops. In the third subsection, we use

that rough estimate to classify the tangent cone at infinity. In the fourth subsection, we

use this information to get a better control of the geodesic loops. Finally, we use this

better control to prove our Main Theorem 1.

3.1. Short geodesic loops and the local covering space

In 1978, Gromov [18] started the research of almost flat manifolds (i.e., manifolds with

very small curvature). In 1981, Buser and Karcher wrote a book [7] to explain Gromov’s

ideas in detail. In 1982, Ruh [36] provided a new way to understand it. Let p be a point

in M . The exponential map exp:Tp M is a local covering map inside the conjugate

radius. We can pull back the metric from M using the exponential map inside the

conjugate radius. There is a lemma about the local geometry on the tangent space.

Lemma 3.1. Let gij be a metric on B1(0)⇢Rn satisfying the following conditions :

(1) The curvature is bounded by ⇤2;

(2) gij(0)=�ij ;

(3) The line �(t)=tu is always a geodesic for any unit vector u.

Then, there exist constants ⇤(n) and C(m,n) such that, as long as ⇤6⇤(n)< 1
2⇡,

(1) Any two points x and y in B1(0) can be connected by a unique minimal geodesic

inside B1(0);

(2) If the Ricci curvature is identically zero, then

|Dm(gij(x)��ij)|<C(m,n)⇤2

for all m>0 and x2B1/2.

Proof. (1) It was proved by Buser and Karcher as [7, Proposition 6.4.6].

(2) Therefore, all the works in [26] apply. We can find functions li satisfying

|rli(x)�ei(x)|6C(n)⇤2 and |r
2li(x)|6C(n)⇤2

for all x2B1/2(0) as long as ⇤(n) is small enough, where ei(x) is a vector field that is

parallel along radical geodesics and equals to @/@xi at origin. For even smaller ⇤(n), we

can use li as coordinate functions in

L0.9(0)=

⇢X

i

l2
i
< (0.9)2

�
⇢B1(0)=

⇢X

i

x2
i
< 1

�
.
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In this coordinate,

��gijwiwj
�|w|2

��6C(n)⇤2
|w|2 6 .01|w|2,

|@kgij |<C(n)⇤2 < 1,

�u=
1

p
G
@j

✓
p

Ggij
@u

@li

◆
.

What is more, |�li|<C(n)⇤2. By [16, Theorem 9.15], for all 1<p<1, there is a unique

solution ui2W 2,p(L0.9)\W
1,p
0 (L0.9) such that �ui=�li. By [16, Lemma 9.17], we actu-

ally have

kuikW 2,p(L0.9(0)) <C(n, p)k�likLp(L0.9(0)) <C(n, p)⇤2.

By the Sobelev embedding theorem (cf. [16, Theorem 7.26]),

kuikC1(L0.9(0))
<C(n)kuikW 2,2n(L0.9(0)) <C(n)⇤2.

In particular, when ⇤(n) is small enough, hi=li�ui gives a harmonic coordinate in

H0.8(0) :=

⇢X

i

h2
i
< (0.8)2

�
⇢L0.9(0).

In this harmonic coordinate,

1

1.02
|w|2 <gijw

iwj < 1.02|w|2.

By elliptic regularity, all of the above functions are actually smooth. So, we can di↵er-

entiate them to get equations. Since �k

ij
gij=0, we know that

2Ricmk = gimRijklg
jl+gikRijmlg

jl

satisfies

grs
@2(gij��ij)

@hr@hs

=�2Ricij+Qij(g, @g)+Qji(g, @g),

where

Qmk(g, @g)= gjl@lgim�i

kj
�gjlgim�h

kj
�i

lh
�gim@kg

jl�i

jl
.

We already know that

kgij��ijkW 1,p(H0.8(0)) <C(n)⇤2

from the W 2,p bound of ui. So,

kQij(g, @g)kLp/2(H0.8(0)) <C(n)⇤4.
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When the Ricci curvature is identically zero, by [16, Theorem 9.11], we have

kgij��ijkW 2,p/2(H0.7) <C(n)(kgij��ijkLp/2(H0.8)+kQijkLp/2(H0.8))<C(n)⇤2.

After taking more derivatives, we can get the required bound in the harmonic coordinate.

This in turn bounds the Christo↵el symbol and gives a bound of the geodesic equation.

So, when we solve this geodesic equation, we can get the required bound in the geodesic

ball.

The above estimate is an interior estimate. The number 1
2 can be replaced by any

number smaller than 1.

To find out the local covering transform, we look at the preimage p1 of p under

the exponential map inside B1(0). There is a local covering transform F that maps

zero to p1. The image of the radical geodesic from zero to p1 is a geodesic loop based

at p. This gives a one-to-one correspondence between short geodesic loops and covering

transforms.

Now suppose that we have two short-enough geodesic loops �1 and �2 with the same

base point p. Then, they correspond to two local covering transforms F1 and F2. The

composition F1 F2 is also a local covering transform. It corresponds to another geodesic

loop based at p. It is exactly the product of �1 and �2 defined by Gromov.

For any q close enough to p, choose a preimage q0 of q close enough to zero. Then,

q1=F (q0) is another preimage of q, which is very close to p1. The image of the shortest

geodesic connecting q1 and q2 under the exponential map is a geodesic loop based at q.

It is called the sliding of �. When q moves along a curve ↵, the sliding of � becomes a

1-parameter family of curves. It is called the sliding of � along the curve ↵.

When we parallel transport any vector v along the geodesic loop, we will get an-

other vector hol(v). The function hol:Tp Tp is called the holonomy of the loop. For

hyperkähler manifolds, hol2Sp(1)=SU(2). Under a suitable orthonormal basis, any ele-

ment in SU(2) can be written as

A=

✓
ei✓ 0

0 e�i✓

◆
.

So,

A�Id=

✓
ei✓�1 0

0 e�i✓
�1

◆
and (A�Id)

✓
v1
v2

◆
=

✓
(ei✓�1)v1
(e�i✓

�1)v2

◆
.

So, |(A�Id)v|=|A�Id| |v| if we define the norm by

|A�Id|= |ei✓�1|= |e�i✓
�1|.
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This property is also a special property of SU(2). For instance, SO(4) does not have this

property.

In the flat case, local covering transforms are all linear maps. Let T1(x)=ax+b

and T2(x)=Ax+B be two local covering transforms, where a,A2SO(n) and b,B2Rn.

They correspond to two geodesic loops �1 and �2 with the same base point p. Note that

A and a are exactly the holonomy of �1 and �2, whereas |B| and |b| are the same as the

length of loops �1 and �2, respectively. We have that

T1 T2(x)=a(Ax+B)+b= aAx+aB+b

will correspond to the Gromov product of �1 and �2. So,

T�1
1 T�1

2 T1T2(x)=a�1A�1aAx+a�1A�1((a�Id)B+(Id�A)b).

The Lie algebra also consists of linear maps. Taking the derivative in the above expression

of the commutator at the origin

T1(x)=T2(x)= Id(x)= Id(x)+0,

the Lie bracket is

[ax+b,Ax+B] = [a,A]x+(aB�Ab).

In a general case, we can understand the covering transform in the following way:

We start from q0 in B1(0)⇢Tp(M). Then, the exponential map at p maps the point

p12B1(0) to p2M . The derivative maps the tangent vector at p1 to the tangent vector

at p. Let Ã be the inverse of the map. Then, F (q0)=exp
p1
(Ãq0). In the Ricci flat case,

by Lemma 3.1, gij and its mth derivatives are bounded by C(m,n)⇤2. So, the Christo↵el

symbols and their higher derivatives are also bounded. By the property of ODE, all of

the parallel transports, the geodesic equations, and their higher derivatives have the same

kind of bound. In particular, the di↵erence between Ã and the holonomy A of the geodesic

loop is bounded by C(n)⇤2. The di↵erence between F (q0) and p1+Ãq0 is bounded by

C(n)⇤2. In conclusion, the di↵erence between F (q0) and p1+Aq0 is bounded by C(n)⇤2,

whereas the di↵erence between their higher derivatives is bounded by C(m,n)⇤2.

From now on, we are back to the gravitational instanton M with the point o. We

will rescale the ball Bdist(o,p)/2(p) to a ball with a radius of 1 and apply the theory in

this section. In particular, the metric on the local covering space is �ij+O0(r�✏). The

di↵erence between the local covering transform with the linear map given by the length,

direction, and the holonomy of the geodesic loop is O0(r1�✏).

For short loops, there is a better control given by Buser and Karcher as [7, Propo-

sition 2.3.1]. They proved that the rotation (i.e. holonomy) part of Gromov’s prod-

uct of �1 and �2 is given by the calculation in the flat case with an error bounded by

Cr�2�✏L(�1)L(�2), whereas the error of the translation (i.e. length) part is bounded by

Cr�2�✏L(�1)L(�2)(L(�1)+L(�2)).
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3.2. Control of holonomy of geodesic loops

In this section, we will use the ODE comparison to study the sliding of geodesic loops and

the variation of the induced holonomy. First, let us recall a well-known Jacobi equation,

J 00(t)=

✓
t

2

◆�2�✏

J(t),

which satisfies the following property.

Proposition 3.2. (Cf. [17, Theorem C]) Let J be the solution of the Jacobi equation

with

J(2)= 0 and J 0(2)= 1.

Then,

16 J 0(t) J 0(1)
�
:= lim

t 1
J 0(t)

�
6 exp

Z 1

2
(t�2)

✓
t

2

◆�2�✏

dt<1

and

t�26 J(t)6 J 0(1)(t�2).

Let � be a geodesic loop based at p2M and ↵ be an arc-length parameterized curve

passing through p. Suppose r=dist(0, p)=r(p)>3. As discussed before, we slide � along

↵ and get a 1-parameter family of geodesic loops �t based at ↵(t). Then, their length

and induced holonomy satisfy the following.

Proposition 3.3. Suppose the length and the holonomy of the geodesic loop �t are

L(t) and hol(t), respectively. Then,

|L0(t)|6 |hol(t)�Id|

and

|hol(t)�Id|0 6L(t)·max
x2�t

|Rm|(x).

Proof. Let �(s, t)=�t(s), then �(0, t)=�(1, t)=↵(t), and for any fixed t, �(s, t) is a

geodesic. So,

@s := �⇤

✓
@

@s

◆
and @t := �⇤

✓
@

@t

◆

satisfy

r@s@s =0, [@s, @t] =r@s@t�r@t@s =0, L(t)=

Z 1

0
|@s|ds.
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Then,

dL(t)

dt
|t=t0 =

Z 1

0

hr@t@s, @si

h@s, @si1/2
ds=

1

L(t0)

Z 1

0
hr@s@t, @si ds

=
1

L(t0)

Z 1

0
r@sh@t, @si ds=

h@t, @si|s=1
s=0

L(t0)
=

⌧
↵0(t0),

(hol� Id)[@s(0, t0)]

L(t0)

�
.

So,

|L0
|6 |hol� Id|.

Moreover, given any unit length vector V at �(0, t0), we can parallel transport it

along ↵(t)=�(0, t), and then parallel transport it along �t. Then, hol(V (0, t))=V (1, t).

So,

��|hol� Id|0
��6 |r@tV (1, t)|6

Z 1

0
|r@sr@tV |=

Z 1

0
|R(@s, @t)V (s, t)|6max

x2�t

|Rm|L.

Theorem 3.4. For any geodesic loop based at p with r=r(p)=d(p, o)>3 and length

L6C1r, the holonomy along the loop satisfies

|hol� Id|6 J 0(r)

J(r)
L6C2

L

r
,

where the constants are

C1 =
1

2
inf
t>2

t

J(t)
inf
t>3

J(t)

t
and C2 =sup

t>3
J 0(t) sup

t>3

t

J(t)
.

Proof. If we choose ↵(t) so that

@t =
hol� Id

|hol� Id|

@s
L(t0)

,

we can get L0(t)=|hol� Id|. It is some kind of gradient flow. The other fundamental

equation is that |hol� Id|0 is bounded by the product of L and the maximal Riemannian

curvature along the geodesic loop.

Given p whose distance to origin r=r(p)=d(p, o)>3 and any geodesic loop based at

p with a length smaller than C1r<
1
2r, if

|hol� Id|>
J 0(r)

J(r)
L,

we can slide the curve back along the gradient flow. In other words, we start from ↵(r)=p

and get the curve ↵: [t1, r] M , as well as the corresponding �t. Let t1 be the biggest t1
such that one of the following happens:

(1) L(t1)=
1
2 t1;

(2) L0(t1)=|hol� Id|=0 or L(t1)=0;

(3) t1=2.
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Then, when t2(t1, r), we have 0<L(t)< 1
2 t and t>t1>2. So, the distance to the

origin is at least t�L(t)> 1
2 t, the curvature is bounded by

�
1
2 t
��2�✏

, and the conjugate

radius is at least ⇡
�
1
2 t
�1+✏/2

> 1
2 t>L(t). So, the geodesic loop can exist without going out

of the conjugate radius. Combining two fundamental equations together, we have

L00(t)6L(t)max |Rm|6L(t)(t�L(t))�2�✏ <L(t)
�
1
2 t
��2�✏

, for all t2 (t1, r).

Therefore, (L0J�J 0L)0=L00J�J 00L<0. By our hypothesis,

L0(r)>
J 0(r)

J(r)
L(r).

So,

L0(t)J(t)�J 0(t)L(t)> 0 =)

✓
L(t)

J(t)

◆0
> 0 =)

L(t)

J(t)
<

L(r)

J(r)
, for all t2 [t1, r).

Thus,

L(t1)<
L(r)

J(r)
J(t1)6C1

r

J(r)

J(t1)

t1
t1 6

t1
2

and L0(t1)J(t1)>J 0(t1)L(t1)>0. In other words, t1=2. But then

L(2)<
L(r)

J(r)
J(2)= 0.

It is a contradiction.

For any fixed geodesic ray ↵ starting from o, any number r>3, and any geodesic loop

� based at p=↵(r) with length L6C1r, when we slide it along the ray toward infinity, it

will always exist (i.e., stay within the conjugate radius). This follows from the following

rough estimate.

Corollary 3.5. The length L(t) of the geodesic loop based at ↵(t) is smaller than
1
2 t for all t>r.

Proof. By Proposition 3.3 and Theorem 3.4, we know that

L0(t)6 J 0(t)

J(t)
L(t).

So,

(lnL)0 6 (ln J)0 =) L(t)6 L(r)

J(r)
J(t)6 t

2
, for all t> r > 3.

We will derive a better estimate and use it to prove the first main theorem.
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3.3. Classification of tangent cone at infinity

To understand how the length of geodesic loops varies, we first need to understand the

structure at infinity. Our assumption of the decay of the curvature means that we are

at a manifold with asymptotically non-negative curvature. The end of such a manifold

is well studied and goes back to Kasue [27]. Here, a complete connected non-compact

Riemannian manifold M with a base point o is called asymptotically non-negative curved

if there exists a monotone non-increasing function k: [0,1) [0,1) such that the integralR1
0 tk(t) dt is finite and the sectional curvature of M at any point p is bounded from

below by �k(dist(o, p)). Of course, the gravitational instanton M satisfies this condition.

Theorem 3.6. ([27], [14], [32]) Let M be a manifold with asymptotically non-

negative curvature. Two rays � and � starting from o are called equivalent if

lim
t 1

dist(�(t), �(t))

t
=0.

Denote the set of equivalent classes of geodesic rays starting from o by S(1). Then,

there exists a metric �1 on S(1) such that (S(1), �1) forms a compact inner metric

space, in other words, a length space. Consider the cone C(S(1)) over S(1) with the

natural distance

�1((t, p), (t0, p0))=
p
t2+t02�2tt0 cos(min{⇡, �1(p, p0)}).

Fix the representative � from each equivalent class [�]. Define the map

�t: {r2 [a, b]}\C(S(1))� {r2 [at, bt]}\M

by �t(r, [�])=�(rt) for any fixed 0<a<b<1 and any t>0. Then, the Gromov–Hausdor↵

distance between ({r2[a, b]}\C(S(1)),�1) and ({r2[at, bt]}\M, dist /t) using the map

�t converges to zero when t goes to infinity. In other words, the tangent cone at infinity

is unique and must be a metric cone C(S(1)).

Remark. Drees [14] pointed out a gap in [27]. It was corrected by Mashiko, Nagano,

and Otsuka [32].

The following additional thing is true for gravitational instantons.

Theorem 3.7. (ALH splitting) If the S(1) of a gravitational instanton M has

more than one connected component, M must be isometric to the product of R and a flat

3-torus.
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Proof. If S(1) has more than one connected component, we can find a large-enough

ball BR and two sequences pi and qi such that dist(o, pi) 1, dist(o, qi) 1, and any

minimal geodesics connecting pi and qi must pass through BR for any i large enough. By

compactness of BR, the minimal geodesics converge to a line. Notice that M is Ricci-flat,

so the splitting theorem [10] implies that M must be isometric to the product of R and

a 3-manifold. The 3-manifold is also Ricci-flat and therefore flat. Now, any geodesic

loop in this 3-manifold must have the trivial holonomy by Theorem 3.4. So, it must be

a 3-torus.

From now on, we assume that S(1) has only one component.

As a corollary, the following is true.

Corollary 3.8. Fix a ray � starting from o. There is a constant C3 such that,

for any point p in the large-enough sphere Sr(p), there is a curve within B1.1r(p)\B0.9r(p)

connecting p and �(r(p)) with a length bounded by C3r(p).

There is more information about the tangent cone at infinity of the gravitational

instanton M .

Theorem 3.9. The tangent cone at infinity C(S(1)) of the gravitational instanton

M must be a flat manifold with only possible singularity at the origin.

Proof. Pick p2C(S(1))\{o}. We may find pi2M such that pi p in the Gromov–

Hausdor↵ sense. Pick some small-enough number . For i large enough, the ball

(Bri(pi), r
�2
i

g) is B/Gi, where B is the ball in the Euclidean space with the met-

ric pulled back by the exponential map, and Gi is the group of local covering transforms.

By Fukaya’s result in [15], Gi converge to some Lie group G, and B/Gi converge to

B/G. So, G is a subgroup of R4oSU(2)6Iso(R4). The action of G on B corresponds

to the action of Gi on Bri(pi). So, if an element g2G\{Id} has a fixed point in B, the

geodesic loops in Bri(pi) corresponding to the sequence gi2Gi converging to g would

have large |hol� Id| compared with their lengths by the relationship between the geo-

desic loops and covering transforms. This contradicts Theorem 3.4. So, the action of G

is free. Therefore, it is enough to look at the Lie algebra g (i.e., the infinitesimal part

of G) to determine the local geometry. We have the following cases:

(0) dimG=0. We get R4 locally.

(1) dimG=1. Then, g is generated by x 7 ax+b, where a2su(2). Notice that SU(2)

can be identified naturally with the unit sphere of quaternions. Then, su(2) would be

the space of pure imaginary quaternions. So, the Lie bracket is exactly twice the cross

product in R3.

Note that a must be O or must be invertible by the property of quaternions. When

a=O, the group G consists of pure translations, and we get R3.
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Otherwise, ax+b=a(x+a�1b). The fixed point �a�1b must be outside of B. The

group G is generated by

x 7�

✓
ei✓ 0

0 e�i✓

◆
(x+a�1b)�a�1b.

If we take the one-to-one correspondence

x 7� x+a�1b=(x+iy, z+iw) 7� (x+iy, z�iw),

then G becomes ✓
ei✓ 0

0 ei✓

◆
.

So, it is a cone over S3/S1, where S3/S1 is the Hopf fiberation. So, B is a local piece of

the cone over S2, in other words, R3, too.

(2) dimG=2. Any 2-dimensional Lie algebra has a basis e1, e2 satisfying [e1, e2]=ce1.

For g, e1(x)=ax+b and e2(x)=Ax+B must satisfy

[a,A]x+(aB�Ab)= [ax+b,Ax+B] = ce1 = c(ax+b).

Here, A, a2su(2). If a=O, then Ab=�cb. So, A=O, G consists of pure translations,

and we get R2. If a 6=O, then because [a,A]=ca, we must have a=A and c=0. Therefore,

we have aB=Ab=ab, and so B=b, which is a contradiction.

(3) dimG=3. We get R1.

Theorem 3.10. The tangent cone at infinity C(S(1)) must be one of the following :

(ALE) R4/�, where � is a discrete subgroup of O(4) acting freely on S3;
(ALF-Ak) R3;

(ALF-Dk) R3/Z2, that is a cone over RP2;

(ALG) flat cone with angle 2(0, 2⇡];

(ALH non-splitting) R+.

Proof. By Theorem 3.6, the tangent cone at infinity is unique and must be a metric

cone C(S(1)). By Theorems 3.7 and 3.9, S(1) is a connected manifold because we have

assumed that M is not ALH splitting.

(ALH non-splitting) If S(1) is zero-dimensional, C(S(1)) must be R+.

(ALG) If S(1) is 1-dimensional, C(S(1)) is a flat cone. If the cone angle is bigger

than 2⇡, it contains a line, so there is a contradiction from the almost splitting theorem

(cf. [8, Theorem 6.64]).

(ALF) If S(1) is 2-dimensional, S(1) must be a 2-manifold with constant positive

curvature 1. So, its universal cover is the space form S2. Thus, S(1)=S2/�, where the
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group of covering transforms � is a subgroup of Iso(S2)=O(3) acting freely. Now, pick

any element A in �, A2
2SO(3). However, any element in SO(3) has a fixed point, so

A2=Id. Thus, A=± Id. Therefore, S(1)=S2 (the Ak case) or RP2 (the Dk case).

(ALE) If S(1) is 3-dimensional, S(1) must have constant sectional curvature, too.

Its universal cover is the space form, too. So, C(S(1))=R4/�, where � is a discrete

subgroup of O(4) acting freely on S3.

From now on, we use the terminology of ALE, ALF, ALG, and ALH to distinguish

the di↵erent type of the (unique) tangent cone at infinity. Those terminologies make

sense after we prove more properties.

Theorem 3.11. In the ALE case, M has the maximal volume growth rate, and it is

in Kronheimer’s list.

Proof. By Colding’s volume convergence theorem [13], M4 has the maximal volume

growth rate. Moreover, the faster than quadratic curvature decay condition ensures thatR
M

|Rm|
2<1. So, by Bando–Kasue–Nakajima’s work [3], M is ALE of order 4. Thus,

Kronheimer’s works in [29] and [30] apply.

3.4. Decomposing geodesic loops into basis

Before proceeding, we need a theorem about Lie groups. For any Lie group H, the

exponential map exp from a small ball B=B(o) in its Lie algebra h to H is a bijection.

We call the inverse of exp to be log. If there is no ambiguity, the length of g2H will

mean |log g|.

Theorem 3.12. ([7, Theorem 4.5]) Suppose that H is a Lie group, Gi are discrete

subgroups of H converging to a k-dimensional Lie subgroup G of H. Then, for i large

enough and  small enough, there exist k elements gi,j (j=1, 2, ..., k) such that |log gi,j |

converge to zero as i goes to infinity, and all elements in B(Id)\Gi are generated by gi,j.

What is more, for any fixed large-enough i, the angles between log gi,j are bounded from

below by a small positive number independent of i. In addition, the commutator of gi,a
and gi,b is generated by gi,c for c=1, 2, ...,min{a, b}�1. In particular, gi,1 commutes

with others.

Remark. According to [7, Theorem 4.5], it is enough to assume that Gi have a local

group structure near the identity rather than being a group. Actually, the theorem is

true even if the product of a, b2Gi contains an error controlled by Ci|a| |b|, where Ci

converge to zero as i goes to infinity. In particular, the local groups Gi in Theorem 3.9

satisfy the theorem. For those local groups, since the rotation (i.e., holonomy) part is
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bounded by the translation (i.e., length) part by Theorem 3.4, the length of the geodesic

loop is equivalent to the length in the above theorem.

Now, we are ready to go back to study the length of short geodesic loops. In the rest

of this section, we fix a geodesic ray ↵ from o to infinity and begin doing the analysis of

geodesic loops based on the ray. This ray corresponds to the point (1, [↵]) in the tangent

cone at infinity C(S(1)).

Theorem 3.13. In the ALF-Ak or ALF-Dk cases, there is a geodesic loop �1 such

that when we slide it along the fixed ray to get �r,1 based at ↵(r), its length

L(r) :=L(�r,1)=L1+O(r�✏)

and its holonomy satisfies |hol� Id|=O(r�1�✏). What is more, any loop based at ↵(r)

with a length smaller than r is generated by �r,1 in the sense of Gromov.

Proof. In this case, (Br(↵(r)), r�2g) converge to B((1, [↵]))⇢C(S(1)) by Theo-

rem 3.9. We may make  even smaller to apply Theorem 3.12. We get �r,1 corresponding

to gr,1 in Theorem 3.12. Then, any loop based at ↵(r) with a length smaller than r is

generated by �r,1 in the sense of Gromov. There is ambiguity in choosing �r,1. The same

loop with the reverse direction would play the same role. However, we can choose them

consistently so that they are the sliding of each other along the ray. By Theorem 3.12,

lim
r 1

L(r)

r
=0.

So, the holonomy along the loop converges to the identity by Theorem 3.4. It follows

that

|hol� Id|(r)= |hol� Id|(1)�

Z 1

r

|hol� Id|0 dt6 0+

Z 1

r

CLt�2�✏ dt6O(r�✏)

by the equation that
��|hol� Id|0

��<CLr�2�✏. Plug this back into the equation

|L0
|6 |hol� Id|.

We obtain

L(r)=L(r0)+

Z
r

r0

L0(t) dt6L(r0)+

Z
r

r0

|hol� Id| dt

6L(r0)+

Z
r

r0

Ct�✏d t=L(r0)+C(r1�✏
�r1�✏

0 ).

In turn, |hol� Id|6O(r�2✏), L6O(r1�2✏). Through finite steps of iterations, we have

L=L1+O(r�✏) and |hol� Id|6O(r�1�✏).
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Claim. The limit length

L1 = lim
t 1

Lt > 0.

Otherwise, because L=O(r�✏), after the integration from infinity to r, we can easily

obtain

|hol� Id|6O(r�1�2✏)

After a finite number of iterations, we have

L=O(r�1�✏) and |hol� Id|6O(r�2�2✏).

Now, let

f(r)=
1X

k=0

2(2+✏)kr�k✏

✏(✏+1)2✏(2✏+1) ... k✏(k✏+1)
.

Then,

f 00(r)=
�
1
2r
��2�✏

f(r), f(r)= 1+O(r�✏), f 0(r)=O(r�1�✏).

So, for any R large enough, we have

L(R)<R�1f(R)

and

|L0(R)|<R�1
|f 0(R)|.

By the ODE comparison, we have L(r)<R�1f(r). Let R goes to infinity. We see that

L(r)=0. This is a contradiction. So, L1>0.

Theorem 3.14. In the ALG case, there are commutative geodesic loops �1 and �2
such that when we slide them along the fixed ray ↵ to get �r,1 and �r,2 based at ↵(r), their

length Lj(r):=L(�r,j)=L1,j+O(r�✏) and their holonomy satisfy |hol� Id|=O(r�1�✏).

What is more, any loop based at ↵(r) with a length smaller than r is generated by �r,1
and �r,2 in the sense of Gromov.

Proof. We proceed as in the proof of Theorem 3.13. We get two loops, �r,1 and

�r,2, based at ↵(r). In this case, the ambiguity is as large as GL(2,Z). In other words,

�r,1 and �r,2 may jump to �100
r,1 �99

r,2 and �101
r,1 �100

r,2 , respectively, after the sliding. Actually,

GL(2,Z) is a noncompact group, so we cannot estimate the length of the geodesic loops

obtained by sliding directly. However, we can still get the same conclusion from the fact

that �r,1 and �r,2 commute and that they form a detectable angle.

Suppose that the manifold is flat. Then, the covering transforms corresponding to

�r,1 and �r,2 are linear maps

T1(x)=ax+b and T2(x)=Ax+B,
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where a,A2SU(2),b,B2C2. So,

x=T�1
1 T�1

2 T1T2(x)=a�1A�1aAx+a�1A�1((a�Id)B+(Id�A)b).

Note that by the construction, |b|<C|B|. On the manifold, we need to count the error

caused by the curvature. So, actually

|(a�Id)B�(A�Id)b|6Cr�2�✏
|b| |B|

2 and |a�1A�1aA�Id|<Cr�2�✏
|b| |B|.

Now, if |a�Id|>r�1�✏/3
|b|, then

|A�Id| |b|> |a�Id| |B|�Cr�2�✏
|b| |B|

2.

It follows that |A�Id|>c·r�1�✏/3
|B| for some constant c. Thus, if r is large enough, the

two vectors (A�Id)b and (a�Id)B have almost the same angle because their di↵erence

has a much smaller length. Note that both A and a are very close to the identity,

so A�Id and a�Id are almost log(A) and log(a), respectively. So, Theorem 3.12 is

reduced to that (a�Id,b) form a detectable angle with (A�Id,B). Therefore, A�Id

and a�Id also form a detectable angle because (A�Id)b has almost the same angle

with (a�Id)B.

Because the Lie algebra in su(2) is simply the cross product and all of the matrices

are very close to the identity,

|a�Id| |A�Id|<C|a�1A�1aA�Id|<Cr�2�✏
|b| |B|.

This is a contradiction. So, |a�Id|6r�1�✏/3
|b|. Similarly, |A�Id|6r�1�✏/3

|B|.

We have proved that for �r,1 and �r,2, |hol� Id|6r�1�✏/3L. For any loop with a

length smaller than r, we have |hol� Id|6Cr�✏/3. When we slide �r,j along the fixed

ray toward infinity, the holonomy of the limiting loops must be trivial. The proof in

Theorem 3.13 then implies our conclusion. Note that the ambiguity of choosing �r,j can

now be removed by requiring that they are the sliding of loops along ↵.

Theorem 3.15. In the ALH non-splitting case, there are commutative geodesic loops

�1, �2, and �3 such that when we slide them along the fixed ray ↵ to get �r,1, �r,2, and

�r,3 based at ↵(r), their length Lj(r):=L(�r,j)=L1,j+O(r�✏) and their holonomy satisfy

|hol� Id|=O(r�1�✏). What is more, any loop based at ↵(r) with a length smaller than

r is generated by �r,1, �r,2, and �r,3 in the sense of Gromov.

Proof. We can proceed exactly in the same way as in Theorem 3.14. The only thing

we need to prove is that �r,2 commutes with �r,3. It follows from the fact that the

length of the commutator converges to zero, since the curvature and therefore the errors

converge to zero as r goes to zero.
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3.5. From geodesic loops to Riemannian fiberation

In [9], Cheeger, Fukaya, and Gromov first introduced the N-structure (i.e., nilpotent

group fiberations of di↵erent dimensions patched together consistently). Torus is the

simplest nilpotent group. In [34], Minerbe followed their method and improved the

result for circle fiberations under a strong volume growth condition in the ALF case. In

their papers, they all view R4�k
⇥Tk as the Gromov–Hausdor↵ approximation of R4�k.

In this subsection, we also include the Tk factor in the analysis. Therefore, we are able

to obtain a better estimate without any volume assumptions.

In the last subsection, we get geodesic loops �p,i along a ray. They can be represented

by s2[0, 1] 7 exp
p
(svi(p)) for some vectors vi(p) in the tangent space of the base point p.

When p goes to infinity, the vectors vi(p) converge to some limits vi2R4. Actually, the

di↵erence between vi(p) and vi is O(r�✏). Define the lattice ⇤=
L

k

i=1 Zvi and the torus

Tk=(
L

k

i=1 Rvi)/⇤ with the induced metric. From the estimates in the last subsection

and the estimates in the last paragraph of 3.1 (cf. [7, Proposition 2.3.1]), it is easy to

see that, for
P

k

i=1 aivi2⇤\Br(p), the translation part of the Gromov product
Q

k

i=1 �
ai
p,i

is
P

k

i=1 aivi with an error O(r1�✏), whereas the holonomy is O(r�✏). So, the lattice ⇤

almost represents the geodesic loops whose lengths are smaller than r(p).

By Proposition 3.3, Corollary 3.8, the estimates in Theorems 3.13–3.15, we can

slide the geodesic loops �p,i along a path within B1.1r(o)\B0.9r(o) to get geodesic loops

�p,i over the whole manifold M except a compact set K. It satisfies all of the above

properties. The choice of path is not unique, so after sliding along di↵erent paths, �p,i
may be di↵erent. However, all of the di↵erences come from a change of basis in ⇤.

Locally, we may assume that �p,i are well defined.

Theorem 3.16. We can find a di↵eomorphism from Br(p) to

Br(0)⇥Tk
⇢R4�k

⇥Tk

such that g is the pull-back of the flat metric plus O0(r�✏).

Proof. First of all, we look at the map exp:Tp M . Any q2Br(p) has lots of

preimages. Choose one preimage q0. Then, all of the other preimages are
Q

k

i=1 F
ai
i
(q0),

where Fi are the covering transforms corresponding to �i, and ai are integers. We know

that
Q

k

i=1 F
ai
i
(q0) is actually q0+

P
k

i=1 aivi with an error O0(r1�✏). Define

f(q)=⇡Tk

P
�

✓
10
��Qk

i=1 F
ai
i
(q0)

��
r(p)

◆�Q
k

i=1 F
ai
i
(q0)�

P
k

i=1 aivi
�

P
�

✓
10
��Qk

i=1 F
ai
i
(q0)

��
r(p)

◆ 2R4�k
⇥Tk,
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then it is independent of the choice of q0. Roughly speaking, f(q) is the weighted average

of the projections of all of the preimages of q0 to R4�k
⇥Tk. It is easy to prove that

using f , the metric g is the pull-back of the flat metric plus O0(r�✏).

Lemma 3.17. We can find good covers {Br(pi)/2(pi)}i2I such that I can be divided

into I=I1[...[IN , and if i, j2Il, l=1, 2, ..., N , then Br(pi)(pi)\Br(pj)(pj)=?.

Proof. This type of theorem was first proved in [9]. In our situation, we can choose

maximal 2l�1 nets in B(2l+1)\B(2l). Then, the volume comparison theorem implies

the property.

Theorem 3.18. Outside of a compact set K, there is a global fiberation and a Tk

invariant metric g̃=g+O0(r�✏) with the curvature O0(r�2�✏).

Proof. By Lemma 3.17, we can first modify i2I1 and j2I2 so that they are compat-

ible. Then, modify i2I1, j2I2, and l2I3 to make sure that they are compatible. After

N times, we are done. So, we start from a map

fij :Bri(pi)⇥Tk
� Brj (pj)⇥Tk.

defined by

fij(q, ✓)= (f1
ij
(q, ✓), f2

ij
(q, ✓))= fj f�1

i
(q, ✓).

Average it and get f̃1
ij
:Bri(pi) Brj (pj) by

f̃1
ij
(q)=

1

Vol(Tk)

Z

Tk

f1
ij
(q, ✓) d✓.

From the higher derivative control, we know that the distance from the origin to

f2
ij
(q, ✓)�f2

ij
(q, 0)�✓2Tk

is O(r�✏). (Here we view Tk as an Abelian group.) For any r large enough, we can lift

it to Rk while keeping it O(r�✏). Fix q, average it with respect to ✓, and then project it

back to Tk. We get a map f̃2
ij
:Bri(pi) Tk. Define

f̃ij :Bri(pi)⇥Tk
� Brj (pj)⇥Tk

by

f̃ij(q, ✓)= (f̃1
ij
(q), ✓+f2

ij
(q, 0)+f̃2

ij
(q)).

It is easy to see that |r
mf̃ij |=O(r1�m�✏). We may glue the common part using f̃ij .

Now, there are two metrics gFlat
i

and gFlat
j

. Choose a partition of unity �i+�j=1, with

|r
m�i|=O(r�m). Let

g̃=�ig
Flat
i

+�jg
Flat
j

.
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It is a Tk invariant metric with |r
mg̃|=O(r�m�✏). Note that there are still two maps

from M to the gluing

Bri(pi)⇥Tk
[
f̃ij

Brj (pj)⇥Tk

namely f̃ij fi and fj . However, their distance is O(r�✏). For any r large enough, we can

find out the unique g̃-minimal geodesic � satisfying �(0)=f̃ij fi and �(1)=fj . Then,

�(�j) gives a new map from M to

Bri(pi)⇥Tk
[
f̃ij

Brj (pj)⇥Tk.

Call that f̃i[f̃j .

In conclusion, we have a Tk-invariant metric h on

Bri(pi)⇥Tk
[
f̃ij

Brj (pj)⇥Tk

and

f̃i[f̃j :M � Bri(pi)⇥Tk
[
f̃ij

Brj (pj)⇥Tk,

with both |r
mh|=O(r�m�✏) and |r

m(f̃i[f̃j)|=O(r1�m�✏).

After repeating everything for

(Bri(pi)⇥Tk
[
f̃ij

Brj (pj)⇥Tk, g̃, f̃i[f̃j) and (Brl(pl)⇥Tk, gflat
l

, fl),

we can get a new big chart. After N times, we are done.

Theorem 3.19. Outside of K, there is a Tk-fiberation E over C(S(1))\BR and

a standard Tk invariant metric h such that, after the pull-back by some di↵eomorphism,

h=g+O0(r�✏).

Proof. The metric g̃ can be written as

4�kX

i,j=1

aij(x) dxi⌦ dxj+
kX

l=1

✓
d✓l+

4�kX

i=1

⌘li(x) dxi

◆2
.

The curvature of aij is O0(r�2�✏). By the result of Bando, Kasue, and Nakajima [3],

there is a coordinate at infinity such that the di↵erence between aij and the flat metric

on C(S(1))\BR is O0(r�✏). So, we may assume that aij=�ij without changing the

condition g=g̃+O0(r�✏). Similarly, we may also replace ⌘lj(x) with any standard con-

nection form. As long as ⌘lj is still O0(r�✏), we still have h=g+O0(r�✏). Therefore, we

only need to classify the torus fiberations over C(S(1))\BR topologically, and give it a

good-enough standard metric h.
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(ALF-Ak) When S(1)=S2, the circle fiberation must be orientable. It is determined

by the Euler class e.

When e=0, we have the trivial product (R3
\BR)⇥S1 as our standard model.

When e=±1, we have the Taub-NUT metric with mass m 6=0. Let

M+ =({(x1, x2, x3) :x
2
1+x2

2+x2
3 >R2

}\{(0, 0, x3) :x3 < 0})⇥S1,

M� =({(x1, x2, x3) :x
2
1+x2

2+x2
3 >R2

}\{(0, 0, x3) :x3 > 0})⇥S1.

Identify (x1, x2, x3, ✓+) in M+ with (x1, x2, x3, ✓�+sign(m) arg(x1+ix2)) in M�. We get

a manifold M .

Let r=
p

x2
1+x2

2+x2
3, V =1+2m/r, and

⌘=4|m| d✓++4m
(x3�r)(x1 dx2�x2 dx1)

2(x2
1+x2

2)r

=4|m| d✓�+4m
(x3+r)(x1 dx2�x2 dx1)

2(x2
1+x2

2)r
.

Then, the Taub-NUT metric with mass m outside of the ball BR (R�|m|) is

ds2 =V dx2+V �1⌘2,

with

dx1 = I⇤(V �1⌘)= J⇤ dx2 =K⇤ dx3.

There are lots of di↵erent conventions in the literature. We use the convention

from [31], but we compute the explicit form of ⌘ using the formulas in [23]. When

m>0, LeBrun [31] proved that M can be smoothly extended inside of BR and becomes

biholomorphic to C2. For m<0, the metric is defined only outside of BR, but it is enough

for our purpose.

There is a natural Z|e| action on the Taub-NUT metric by ✓± 7 ✓±+2⇡/|e| for e=

±1,±2, ... . The quotient of the Taub-NUT metric with positive mass m by Z|e| has Euler

class e<0, The quotient of the Taub-NUT metric with negative mass m by Z|e| has Euler

class e>0. Notice that the mass parameter m is essentially a scaling parameter. Only

the sign of m determines the topology.

Usually, people let k=�e�1 and call that a standard ALF-Ak metric.

(ALF-Dk) When

S(1)=RP2 = {(x1, x2, x3)2 S3 :x3 > 0}/((cos t, sin t, 0)⇠ (� cos t,� sin t, 0))

topologically, the fiberation is the trivial fiberation over the disc following the identifica-

tion of (cos t, sin t, 0, ✓) with (cos(t+⇡), sin(t+⇡), 0, f(t)�✓). So f(⇡)�f(0)=�2e⇡. The

integer e determines the topological type.
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When e=0, we have the trivial product (R3
\BR)⇥S1 after identifying (x, ✓) with

(�x,�✓) as our standard model.

When e is non-zero, it is the quotient of the Taub-NUT metric outside BR by the

binary dihedral group

D4|e| = h�, ⌧ :�2|e| =1,�|e| = ⌧2, ⌧�⌧�1 =��1
i,

which acts by �(x, ✓±)=�(x, ✓±+⇡/|e|) and ⌧(x, ✓+)=(�x, ✓�=�✓+) from M+ to M�

with ⌧(x, ✓�)=(�x, ✓+=⇡�✓�) fromM� toM+. When the mass is positive, e is negative.

When the mass is negative, e is positive.

Usually, people let k=�e+2 and call that a standard ALF-Dk metric.

(ALG) When S(1)=S1, the topological type is determined by the monodramy. In

other words, when we travel along S(1), there is some rotation, but the lattice

⇤=Z|v1|�Z⌧ |v1|

is still invariant. So, we have the equation

✓
a b

c d

◆✓
1

⌧

◆
=

✓
ei✓ 0

0 ei✓

◆✓
1

⌧

◆

for some ✓
a b

c d

◆
2GL(2,Z).

So,

0=det

✓
a�ei✓ b

c d�ei✓

◆
= ad�bc�(a+d)ei✓+(ei✓)2.

Except for the case where ei✓=±1, we have �=(a+d)2�4(ad�bc)<0. So, ad�bc>0

and it must be 1 to make sure that the matrix is invertible. So, a+d=0, or a+d=±1.

Thus, ei✓ must satisfy one of the following quadratic equations:

x2+x+1=0, x2
�x+1=0, and x2+1=0.

We can solve ei✓ accordingly:

�1±i
p
3

2
= e2i⇡/3, e4i⇡/3,

1±i
p
3

2
= ei⇡/3, e5i⇡/3, and ±i= ei⇡/2, e3i⇡/2.

Therefore, the rotation angle ✓=2⇡� and the lattice ⇤=Z|v1|�Z⌧ |v1| are in the

following list (we may replace ⌧ with something like ⌧�1, but that will not change the

lattice at all):
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(Regular) Im ⌧>0, �=1.

(I⇤0) Im ⌧>0, �= 1
2 .

(II) ⌧=e2⇡i/3, �= 1
6 .

(II⇤) ⌧=e2⇡i/3, �= 5
6 .

(III) ⌧=i, �= 1
4 .

(III⇤) ⌧=i, �= 3
4 .

(IV) ⌧=e2⇡i/3, �= 1
3 .

(IV⇤) ⌧=e2⇡i/3, �= 2
3 .

Note that they all correspond to Kodaira’s classification of fibers of the elliptic

surface in [28]! If we identify (u, v) with (e2⇡i�u, e�2⇡i�v) in the space

{(u, v) : arg u2 [0, 2⇡�], |u|>R}⇢ (C\BR)⇥C/(Z|v1|�Z⌧ |v1|),

we have the standard flat hyperkähler metric h= 1
2 i(du^dū+dv^dv̄). Note that SU(2)

is transitive, so we can choose the complex structure a1I+a2J+a3K properly so that

@̄g=@̄h+O(r�✏)rh.

(ALH non-splitting) When C(S(1))=R+, h can be simply chosen to be the product

metric of [R,1) and a flat 3-torus.

4. The construction of holomorphic functions

In this section, we prove Theorems 1.2 and 1.3. Our goal in this section is to construct

global holomorphic functions on gravitational instantons M with prescribed growth or-

ders. It is usually very hard to do so directly. However, it is much easier to construct

holomorphic functions on the standard models (E, h) first. Then, it can be pulled back

to (M, g), and cut o↵ to obtain an almost holomorphic function f on M . To get rid of

the error, we can solve the @̄ equation

@̄g= @̄f

for g much smaller than f . If successful, then f�g will be the required function. Unfor-

tunately, it is hard for us to solve g directly. So instead, we solve the following equation:

�(@̄@̄⇤+@̄⇤@̄)�= @̄f.

The order of @̄⇤� and @̄� will be smaller than the order of f if we solve � properly.

Notice that there is a covariant constant (0, 2) form !�, so the harmonic (0, 2) form
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@̄� is essentially a harmonic function. Generally speaking, the order of the growth of

harmonic functions onM is the same as the harmonic functions on E. So, if we get f from

the smallest nonconstant harmonic function on E, we expect @̄� to be zero. Therefore,

f+@̄⇤� will be the required global holomorphic function on M .

To solve the Laplacian equation for (0, 1) forms, we need some elliptic estimates.

The ALH case requires more care. To obtain a good estimate in the ALH case, we need

to prove the exponential decay of curvature first. This is feasible after we develop some

elliptic estimates for the Riemannian curvature tensor.

Therefore, in the first two subsections, we develop the elliptic estimates for tensors

on a manifoldM asymptotic to the standard model. We would like to work on both forms

and on the curvature tensors on general M , which may not be hyperkähler. Therefore,

we always use the Bochner Laplacian �r
⇤
r to apply the Bochner techniques. For

gravitational instantons, the Weitzenböck formula tells us that the Bochner Laplacian

equals the operator �(@̄@̄⇤+@̄⇤@̄) for functions and (0, 1) forms. Then, in the third

subsection, we use the mentioned technique to construct global holomorphic functions

on ALF and ALG instantons. In the fourth subsection, we use this estimate to prove the

exponential decay of curvature of ALH instantons. This allows us to develop an elliptic

estimate with exponential growth weights in the fifth subsection. In the sixth subsection,

we use the same method to construct global holomorphic functions on ALH instantons

In the last two subsections, we make use of the global holomorphic functions to prove

our second and third main theorems.

Analysis in weighted Hilbert space is well studied, and perhaps some estimates in

this section are already known to experts [24], [20], [33]. However, to avoid problems

caused by subtle di↵erences between di↵erent settings, we instead provide a self-contained

proof.

4.1. Weighted Hilbert space

In this subsection, we do some technical preparations. We will use the following weighted

Hilbert spaces. (Please notice the change in the meaning of r as in the end of the second

section.)

Definition 4.1. Define the L2
�
-norm of a tensor by

k�kL2
�
=

sZ

M

|�|2r� dVol.

Let L2
�
be the space of tensors with finite L2

�
-norm. Define r�= in the distribution

sense if, for any ⇠2C1
0 , we have (�,r⇤⇠)=( , ⇠). Let H2

�
be the space of all tensors �
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such that

�2L2
�
, r�2L2

�+2, and r
2�2L2

�+4.

We can define the norm in this weighted space by

k�kH2
�
=

sZ

M

|�|2r� dVol+

Z

M

|r�|2r�+2 dVol+

Z

M

|r2�|2r�+4 dVol.

The inner product is defined accordingly.

Proposition 4.2. For any �, we have that H2
�
is a Hilbert space, and the space of

compactly supported smooth tensors C1
0 is dense.

Proof. The map � 7 �r�/2 defines an isometry between L2
�
and L2. Because L2 is

complete, L2
�
is also complete. Now, if |�i��j |H2

�
0, then both

|�i��j |L2
�

and |r
m�i�r

m�j |L2
�+2m

go to zero, m=1, 2. By completeness, �i converge to � in L2
�
, and r�i converge to  in

L2
�+2. Now, pick any test tensor ⇠2C1

0 ,

(�,r⇤⇠)= lim
i 1

(�i,r
⇤⇠)= lim

i 1
(r�i, ⇠)= ( , ⇠).

So, r�= in the distribution sense. The second derivative is similar. So, �i converge to

� in H2
�
, too.

For the density, let �R=�(r/R). Then,

|����(r/R)|H2
�
6C

Z

M

(|(1��R)�|
2r�+|(1��R)r�|2r�+2+|r�R| |�|

2r�+2

+|r
2�R�|

2r�+4+|(1��R)r
2�|2r�+4+|r�Rr�|r�+4)

So, �(r/R)� converge to � in H2
�
when R goes to infinity, because |r�R|6C/R and

|r
2�R|6C/R2. Now, the standard convolution method implies the density of C1

0 .

Lemma 4.3. For any harmonic tensor � in H2
�
and any r large enough,

|�(y)|6Ck�kH2
�
r(y)��/2+k/2�2.

When �
1
2�+

1
2k�2<0, we have �=0.

Proof. Given y2M , suppose r(y)=20R. Then, the ball B2R(y)⇢M is asymptotic

to B2R(0)⇥Tk
⇢R4�k

⇥Tk. Consider the covering space R4 of R4�k
⇥Tk. If we apply

Gilbarg and Trudinger’s Theorem 9.20 in [16], we get

|�|2(y)6 C

|B2R(0)|

Z

B2R(0)
|�|2.
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So,

|�(y)|6Ck�kH2
�
r(y)��/2+k/2�2.

Now, the maximal principle implies the last result in the lemma because

�|�|2 =2|r�|2 > 0.

At this point, we need a weighted L2-estimate.

Lemma 4.4. For the standard ALF, ALG, or ALH metric in Theorem 3.19, suppose

that � is a smooth form supported in B eR\BR. Then, as long as R is large enough,

Z

E

|r
2�|2r�+4+

Z

E

|r�|2r�+2 6C

✓Z

E

|��|2r�+4+

Z

E

|�|2r�
◆
.

Proof. We only need to prove the same thing on Brj (pj)⇢E uniformly. It is enough

to consider the covering Brj (0)⇢R4. Notice that h is a flat metric plus O0(r�1). Thus,

we can simply use [16, Theorem 9.11].

4.2. Elliptic estimates with polynomial growth weights

In this subsection, we will prove the main estimate for tensors in the weighted Hilbert

space with polynomial growth weights.

We started the estimate for functions on Rd. Then, we extend this to Tk invariant

tensors. We can improve it to general tensors on the standard fiberation E. Then, we

can transfer that estimate back to any manifold M asymptotic to the standard model.

This main estimate allows us to prove the solvablity of the Bochner Laplacian equation

for tensors.

Theorem 4.5. Suppose that f is a real smooth function on Rd (d=1, 2, 3, ... ) sup-

ported in an annulus and that � is not an integer. Then,

Z

Rd

|f |2r� dVol<C

Z

Rd

|�f |2r�+4 dVol.

Proof. For the Laplacian on the standard sphere Sd�1, it is well known it has eigen-

functions �j,l with eigenvalue �j(d�2+j), l=1, 2, ..., nj . (For d=1, all nj are zero,

except n0=1 and �j,1=1.) We write f in terms of those eigenfunctions:

f ⇠

1X

j=0

njX

l=1

fj,l(r)�j,l(✓),
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where

fj,l(r)=

Z

Sd�1

f(r, ✓)�j,l(✓) dVol.

Then,

�f ⇠

1X

j=0

njX

l=1

✓
f 00
j,l
+
d�1

r
f 0
j,l
�
j(d�2+j)

r2
fj,l

◆
�j,l(✓)

=
1X

j=0

njX

l=1

r�j�d+1[r2j+d�1(r�jfj,l)
0]0�j,l(✓).

From the integral by parts and the Cauchy–Schwartz inequality

✓Z 1

0
g2rµ dr

◆2
=

✓
�2

µ+1

Z 1

0
gg0rµ+1d r

◆2

6 4

(µ+1)2

Z 1

0
g2rµ dr

Z 1

0
(g0)2rµ+2 dr.

So we get the Hardy’s inequality

Z 1

0
g2rµ dr6 4

(µ+1)2

Z 1

0
(g0)2rµ+2 dr.

Therefore,

Z 1

0
f2
j,l
r�rd�1 dr

=

Z 1

0
(r�jfj,l)

2r�+2j+d�1 dr

6 4

(�+2j+d)2

Z 1

0
[(r�jfj,l)

0]2r�+2j+d+1 dr

=
4

(�+2j+d)2

Z 1

0
[r2j+d�1(r�jfj,l)

0]2r��2j�d+3 dr

6 16

(�+2j+d)2(��2j�d+4)2

Z 1

0
(r�j�d+1[r2j+d�1(r�jfj,l)

0]0)2r�+4rd�1 dr.

Using the Fubini theorem and the Hilbert–Schmidt theorem (when d=2, we get exactly

the Fourier series, so the Hilbert–Schmidt theorem is reduced to Parseval’s identity), as

long as � is not an interger, we are done.

Theorem 4.6. Suppose that (E, h) is the product of [R,1) and T3, and that � is

a smooth T3-invariant tensor supporte B eR\BR. Then, as long as � is not an integer,

for R large enough, Z

E

|�|2r� dVol<C

Z

E

|��|2r�+4 dVol
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Proof. Since the tangent bundle is trivial, the estimate of tensors is reduced to the

estimate of their coe�cients, which has been proved in Theorem 4.5.

Theorem 4.7. Suppose that (E, h) is the standard ALG metric as in Theorem 3.19

and that � is a smooth T2-invariant tensor supported in B eR\BR. Then, as long as 30�

is not an integer, for R large enough,
Z

E

|�|2r� dVol<C

Z

E

|��|2r�+4 dVol.

Proof. Let �=m/n. Then, it is enough to do the same estimate on the n-fold

covering eE\BR of E\BR. Note that eE\BR is the isometric product of the m-fold

covering of C\BR and T2. So, it is enough to prove Theorem 4.5 on the m-fold cover of

C\BR. If we write

f ⇠

1X

j=�1
fj(r)e

i✓j/m,

where ✓2[0, 2m⇡], then all the works in the proof of Theorem 4.5 go through, except

that we have to replace j by j/m there. So, as long as m� is not an integer, we are done

(m=1, 2, 3, 5).

Theorem 4.8. Suppose that (E, h) is the standard ALF metric as in Theorem 3.19

and that � is a smooth S1-invariant tensor supported in B eR\BR. Then, as long as � is

not an integer, for R large enough,
Z

E

|�|2r� dVol<C

Z

E

|��|2r�+4 dVol.

Proof. By Theorem 3.19, it is enough to consider the trivial product of R3 and

S1 or the Taub-NUT metric with non-zero mass m. We use 1-forms as an example

because the proof for general tensors is similar. In the trivial product case, we can

write any form as Adx1+B dx2+C dx3+Dd✓. In the remaining cases, any form can

be written as Adx1+B dx2+C dx3+D⌘. In each case, we get four functions on R3
\BR

which can be filled in by zero on BR to get smooth functions on R3. So, we can apply

Theorem 4.5 to them. Since the Taub-NUT metric is the flat metric with error O0(r�1),

while ⌘=d✓+O0(r�1) locally, by Lemma 4.4, we can get our estimate as long as R is

large enough.

Theorem 4.9. Suppose that (E, h) is the standard ALF, ALG, or ALH non-splitting

metric in Theorem 3.19 and that � is a smooth tensor supported in B eR\BR. Then, as

long as 30� is not an integer, for R large enough,
Z

E

|�|2r� dVol<C

Z

E

|��|2r�+4 dVol.
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Proof. First, we average � on each Tk (k=1, 2, 3) to get an invariant tensor �0.

Then, we only need to get some estimates of the ���0 part. It is enough to prove that

in each Bri(pi)⇢E,

Z

Bri (pi)
|���0|

2 dVol<C

Z

Bri (pi)
|�(���0)|

2 dVol

for a uniform constant C and any tensor � supported in Bri(pi)⇢E, because then we can

use the partition of unity and move every error term to the left-hand side by Lemma 4.4.

Again, we may cancel error terms and assume that the metric is flat. So, the estimate of

forms is reduced to the estimate of functions that are the coe�cients of the forms. The

standard Poincaré inequality on torus implies that

✓Z

Br⇥Tk

|f�f0|
2

◆2
6C

✓Z

Br⇥Tk

|rTk(f�f0)|
2

◆2

6C

✓Z

Br⇥Tk

|r(f�f0)|
2

◆2

=C

✓Z

Br⇥Tk

(f�f0)�(f�f0)

◆2

6C

Z

Br⇥Tk

|f�f0|
2

Z

Br⇥Tk

|�(f�f0)|
2,

where rTk means the partial derivative with respect to the fiber direction. So, we are

done when R is large enough.

Lemma 4.10. Let X, Y , and Z be Banach spaces, D:X Y , i:X Z be bounded

linear operators, and i be compact. Suppose that k�kX6C(kD�kY +ki�kZ). Then, as

long as KerD={0}, we have k�kX6CkD�kY .

Proof. If the estimate does not hold, then there are �k satisfying k�kk=1, but

kD�kk 0. By the compactness of i, we know that ki�k�i�lkZ 0. So,

k�k��lkX 6C(kD�k�D�lkY +ki�k�i�lkZ) 0.

So, �k �1. Then, D�k D�1, D�1=0, and �12KerD, which is a contradiction.

Theorem 4.11. Suppose that M is asymptotic to the standard ALF, ALG or ALH

non-splitting model. Then, for any tensor �2H2
�
(M), as long as 30� is not an integer

and �
1
2��2+ 1

2k<0, we have

k�kH2
� (M) <C

Z

M

|��|2r�+4 dVol.
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Proof. It is enough to prove everything for C1
0 . Note that

�g�=�h�+O(r�✏)|r2�|+O(r�✏�1)|r�|+O(r�✏�2)|�|.

After applying Theorem 4.9 and Lemma 4.4, we know that the estimate holds as long as

� is zero inside a big-enough ball BR. For general �, we can apply the estimate to the

form (1��(r/R))2�. So,

k�kH2
� (M) <C

✓Z

M

|��|2r�+4 dVol+k�kH2(B2R)

◆

<C

✓Z

M

|��|2r�+4 dVol+

Z

B4R

|�|2
◆

by [16, Theorem 9.11]. By Lemma 4.10 and Rellich’s lemma, it is enough to prove that

Ker�={0}. This follows from Lemma 4.3.

Theorem 4.12. Suppose that 30� is not an integer and that �
1
2��2+ 1

2k<0. For

any �2L2
��

(M), there exists a tensor  2H2
���4(M) such that � =�.

Proof. Consider the Laplacian operator �:L2
���4 L2

��
. The formal adjoint is

�⇤�=r�+4�(r���). Apply Theorem 4.11 to r���:

C�1
k�⇤�kL2

���4
6 k�kH2

��
= kr���kH2

�
6Ck�⇤�kL2

���4
.

So �⇤ has a closed range. Now,

|(�, ✓)L2
��
|6 k�kL2

��
k✓kL2

��
6Ck�kL2

��
k�⇤✓kL2

���4
.

So, �⇤✓ (�, ✓)L2
��

defines a bound linear function in the range of �⇤. Using the

Riesz representation theorem, there exists  2Im(�⇤) such that ( ,�⇤✓)L2
���4

=(�, ✓)L2
��
.

Now, we get the theorem from the standard elliptic regularity theory.

4.3. Holomorphic functions on ALF and ALG instantons

After proving the main estimate in the last subsection, we are ready to prove the existence

of global holomorphic functions on both ALF and ALG instatons. Our first theorem deals

with the growth order of harmonic functions on M

Theorem 4.13. Suppose M is asymptotic to the standard ALF or ALG model.

Given any harmonic function f2L2
�
(M) for some �, there exists an � such that f is

O(r�) but not o(r�). Also, when C(S(1))=C�(ALG), �� must be an integer. When

C(S(1))=R3(ALF-Ak), � must be an integer. When C(S(1))=R3/Z2(ALF-Dk), �

must be an even number.
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Proof. The function f also belongs to L2
�0(M) for other �0. Without loss of gener-

ality, assume that � is bigger than the supremum of those �0 minus ✏. The supremum

exists because of the vanishing part of Theorem 4.3. By Lemma 4.4, f2H2
�
(M). Cut

o↵ f so that it vanishes inside of a large ball BR. Move this function to E. Then,

�(f(1��(r/R))2L2
�+4+✏

. Decompose f(1��(r/R)) into Tk-invariant part f0 and the

perpendicular part f1.

Then, f1 is much smaller than the growth rate of f(1��). Without loss of generality,

we may assume that f(1��(r/R)) is invariant.

Now again, we can transfer this invariant function to the tangent cone at infinity

C(S(1)). When C(S(1))=R3/Z2 (ALF-Dk), we get a function f̃ on its double cover

R3 naturally. When C(S(1))=C� (ALG), we get a function f̃(z) on C=R2 defined by

f̃=(f(1��(r/R)))(z�). Again, the growth rate of �(f̃) is at most the growth rate of f̃

minus 2 then minus ✏, so we can find out a function  whose growth rate is the rate of

f̃ minus ✏ such that � =�(f̃). So, f̃� becomes a harmonic function on R3 or R2.

The gradient estimate implies that after taking derivatives for some times, we get zero.

In other words, f̃� must be a polynomial, so the growth rate must be an integer. For

the C(S(1))=R3/Z2(ALF-Dk) case, we may replace  (x) by 1
2 ( (x)+ (�x)), so that

it is invariant under the Z2 action. So, the polynomial must have an even degree.

Now we can prove the existence of a global holomorphic function on any ALG

gravitational instanton.

Theorem 4.14. There exists a global holomorphic function on any ALG gravita-

tional instanton M such that any fiber far enough is biholomorphic to a complex torus.

Proof. In this case, k=2. By Theorem 3.19, the metric near infinity is asymptotic to

the elliptic surface (E, h). For (E, h), u1/� is a well-defined holomorphic function outside

BR. Now, if we pull back u1/� from the elliptic surface, cut it o↵, and fill it in with zero

inside K, we obtain a function f satisfying

@̄gf =�=O(r1/��1�✏).

Pick any small positive number �2(max{�2, 2/��2✏}, 2/��✏) such that 30� is not an

integer. Thus, �2L2
��

. By Theorem 4.12, there exists  2H2
���4 such that

�=� =�(@̄⇤@̄+@̄@̄⇤) 

in the distribution sense. Elliptic regularity implies that  is a smooth (0, 1) form. Take

@̄ on both sides of this equation. Notice that @̄�=0. Thus,

0=�@̄@̄⇤(@̄ )=�(@̄ ).
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By Lemma 4.3, @̄ =O(r1/��✏/2). We can write this (0, 2) form as ⇠!+, where !+ is the

parallel (0, 2) form. Then, ⇠ is a harmonic function. By Theorem 4.13, ⇠ is a constant.

Therefore, @̄(f+@̄⇤ )=0, so f+@̄⇤ is a global holomorphic function. After analyzing

the growth rate, we can also show that |d@̄⇤ |⌧|df | for any large r. So, the fiber far

from origin is a compact Riemann surface with genus 1. It must be a complex torus by

the uniformization theorem.

Similarly, we can prove the following.

Theorem 4.15. There exists a global holomorphic function on any ALF-Dk gravi-

tational instanton M .

Proof. The instantonM is asymptotic to a fiberation over R3/Z2=R3/(x⇠�x). The

function (x2+ix3)2 is well defined over E. The proof of the last theorem will produce a

global holomorphic function in the ALF-Dk case.

The existence of a global holomorphic function on any ALF-Ak gravitational instan-

ton M can also be proved the same way. Actually, Minerbe had a simpler proof in [35].

It is an essential step in his classification of ALF-Ak instantons.

4.4. Exponential decay of curvature of ALH instantons

For ALH non-splitting instantons, there is a self-improvement forcing the curvature to

decay exponentially. Therefore, the metric must converge to the flat one exponentially.

Proposition 4.16. If the Ricci curvature is zero, then

�Rijkl =Q(Rm).

Proof. We have

�Rijkl =Rijkl,m
m =�Rijlm,k

m
�Rijmk,l

m =�Rijlm
,m

k�Rijmk
,m

l+Q(Rm).

By Bianchi identity and the vanishing of the Ricci curvature,

Rijlm
,m =Rlmij

,m =�Rlmj
m

,i�Rlm
m

i,j =0.

Similarly,

Rijmk
,m =0.

Then, we reach the conclusion.

Theorem 4.17. In the ALH non-splitting case, there exists a constant µ such that

the Riemannian curvature at p is bounded by Ce�µr(p).
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Proof. Pull back the Riemannian curvature tensor of g to ([R,1)⇥T3, h), where

h is the standard flat metric, we get a tensor T satisfying the equation DT=0, where

D=Aij
rirj+Bi

ri+C is a tensor-valued, second-order elliptic operator such that

|Aij
��ijId|6Cr�✏, |Bi

|6Cr�1�✏, |C|6Cr�2�✏.

By Theorem 3.1,

|T|=O(r�2�✏), |rT|=O(r�3�✏), |r
2T|=O(r�4�✏),

so T2H2
�
for all �<3+2✏. By Theorem 4.11 and the interior L2 estimate (cf. [16, Theo-

rem 9.11]), for any R large enough,

Z

[R+2,1)⇥T3

|T|
2 6

Z

[R,1)⇥T3

(r�R)✏(1��(r�R))2|T|
2

6C

Z

[R,1)⇥T3

(r�R)✏+4
|D((1��(r�R))T)|2

6CkTk
2
H2([R+1,R+2]⇥T3)

6C

Z

[R,R+3]⇥T3

|T|
2.

So Z

[R,1)⇥T3

|T|
2 >

✓
1+

1

C

◆Z

[R+3,1)⇥T3

|T|
2.

In other words, the Riemannian curvature decays exponentially in the L2 sense. The

improvement to L1 bound is simply Gilbarg and Trudinger’s Theorem 9.20 in [16].

From this better control of curvature, the holonomy of the loops �r,i in Theorem 3.15

can be improved to |hol� Id|<Ce�µr. Therefore, we are able to prove the following

theorem.

Theorem 4.18. For any ALH non-splitting gravitational instanton (M, g), there

exist a positive number µ, a compact subset K⇢M , and a di↵eomorphism

�: [R,1)⇥T3
� M \K

such that

|r
m(�⇤g�h)|h 6C(m)e�µr

for any m=0, 1, 2, ... , where h=dr2�h1 for some flat metric h1 on T3.
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4.5. Elliptic estimates with exponential growth weights

In this subsection, we are trying to prove the elliptic estimates for weighted Hilbert spaces

with exponential growth weights.

We first look at the Laplacian operator on T3=R3/⇤. We define the dual lattice ⇤⇤

by

⇤⇤ = {�2R3 : h�, vi 2Z for all v 2⇤}.

Then, � has eigenvalues �4⇡2
|�|2 with eigenvectors e2⇡ih�,✓i for all �2⇤⇤. We call �

critical if �=4⇡|�| for some �2⇤⇤. So, Theorem 4.5 is replaced by the following theorem

on [R,1)⇥T3.

Theorem 4.19. Suppose that f is a real smooth function on [0,1)⇥T3 supported

in [R,R0]⇥T3, and that � is not critical. Then,
Z

[0,1)⇥T3

|f |2e�r dVol<C

Z

[0,1)⇥T3

|�f |2e�r dVol.

Proof. We write f in terms of its Fourier series:

f ⇠

X

�2⇤⇤

f�(r)e
2⇡ih�,✓i.

Then,

�f ⇠

X

�2⇤⇤

(f 00
�
(r)�4⇡2

|�|2f�(r))e
2⇡ih�,✓i

=
X

�2⇤⇤

✓
d

dr
�2⇡|�|

◆✓
d

dr
+2⇡|�|

◆
f�(r)e

2⇡ih�,✓i.

This time the Hardy’s inequality is
Z 1

0
g2e⌫r dr6 4

⌫2

Z 1

0
(g0)2e⌫r dr.

Therefore,
Z 1

0
f2
�
e�r dr=

Z 1

0
(e2⇡|�|rf�)

2e(��4⇡|�|)r dr

6 4

(��4⇡|�|)2

Z 1

0
[(e2⇡|�|rf�)

0]2e(��4⇡|�|)r dr

=
4

(��4⇡|�|)2

Z 1

0

✓
d

dr
+2⇡|�|

◆
f�

�2
e�r dr

6 16

(�+4⇡|�|)2(��4⇡|�|)2

Z 1

0

✓
d

dr
�2⇡|�|

◆✓
d

dr
+2⇡|�|

◆
f�(r)

�2
e�r dr.

So, as long as � is not critical, we are done.
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Now we define L2
�
by

k�kL2
�
=

Z

M

|�|2e�r dVol,

and H2
�
by

k�kH2
�
=

sZ

M

|�|2e�r dVol+

Z

M

|r�|2e�r dVol+

Z

M

|r2�|2e�r dVol.

Then, Theorem 4.12 is replaced by the following.

Theorem 4.20. Suppose � is not critical and �<0. For any �2L2
�
, there exists a

tensor  2H2
�
such that � =�.

4.6. Holomorphic functions on ALH instantons

To go through all the steps in the ALF and ALG cases, we first need to control the

growth rate of harmonic functions.

Lemma 4.21. Let (N, h) be a smooth manifold such that, outside of a compact set, it

is exactly [R,1)⇥T3 with the flat metric. Then, any smooth function u on N harmonic

outside of a large-enough ball with at most exponential growth rate can be written as

linear combinations of 1, r, e2⇡|�|re2⇡ih�,✓i, and an exponential decay function, where r

and ✓ are the coordinate functions on [R,1)⇥T3 pulled back by the di↵eomorphism.

Proof. Write u as its Fourier series

X

�2⇤⇤

u�(r)e
2⇡ih�,✓i.

Then, u00
�
=4⇡2

|�|2u�. So,

u⇠ a0+b0r+
X

�2⇤⇤\{0}

a�e
2⇡|�|re2⇡ih�,✓i+

X

�2⇤⇤\{0}

b�e
�2⇡|�|re2⇡ih�,✓i.

By Parserval’s identity, the growth condition of u implies that the first sum has finite

terms. For the second sum U , Parseval’s identity again implies that
R
[R,R+1]⇥T3 |U |

2

decays exponentially. By [16, Theorem 9.20], we have that U also decays exponentially

in the L1 sense.

Now, we can still find the global holomorphic function on ALH non-splitting instan-

ton (M, g).
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Theorem 4.22. In the ALH non-splitting case, there exist (a1, a2, a3)2S2 and a

global holomorphic function with respect to a1I+a2J+a3K on M such that any fiber far

enough is biholomorphic to a complex torus.

Proof. As before, let

[R,1)⇥T3 = {(r, ✓) : r>R and ✓=(✓1, ✓2, ✓3)2R3/⇤}.

Let ⇤⇤ be the dual lattice. Choose �2⇤⇤
\{0} with minimal length. Choose (a1, a2, a3)2

S2 such that

(a1I
⇤+a2J

⇤+a3K
⇤) dr=�

�1 d✓1+�2 d✓2+�3 d✓3
|�|

.

The function e2⇡|�|re2⇡ih�,✓i is holomorphic with respect to a1I+a2J+a3K. The

growth rate of this function is exactly O(e2⇡|�|r).

Now, we pull back this function from [R,1)⇥T3 to M , cut it o↵, and fill it in with

zero inside K so that we obtain a function f satisfying

@̄gf =�=O(e(2⇡|�|�µ)r),

where µ is the constant in Theorem 4.17. So, �2L2
�2� for any non-critical positive number

�2(2⇡|�|�µ, 2⇡|�|). By Theorem 4.20, there exists  2H2
�2� satisfying

�=� =�(@̄⇤@̄+@̄@̄⇤) 

in the distribution sense. Elliptic regularity implies that  is a smooth (0, 1) form. As

before, @̄ =⇠!+ is a harmonic (0, 2) form, so ⇠ is a harmonic function of order O(e�r).

Now, we use a cuto↵ function and the di↵eomorphism to average g and the pull-back

of h. We get a smooth metric g0 on M , which is identically the pull-back of h outside a

very big ball. Now let ⌫ be the infimum of positive ⌫0 such that ⇠ is O(e⌫
0
r). If ⌫>0,

then �g0⇠2L2
�2�0 for any positive ⌫>�0>⌫�µ. It follows that there exists a function in

L2
�2�0 whose Laplacian �g0 is �g0⇠. The di↵erence of those two functions is a g0-harmonic

function. By Lemma 4.21, it must have an at most linear growth rate since the growth

rate is below the first non-linear harmonic function. It follows that ⇠ must be O(e�
0
r),

which is a contradiction. So, ⌫=0. Therefore, ⇠ is bounded by any exponential growth

function.

So, �g0⇠ decays exponentially. In particular, it is in L2
1�✏

. By Theorem 4.12, we can

find out a function in H2
�3�✏

whose �g0 is �g0⇠. Therefore, we know that ⇠ is actually

O(r1+✏). Of course, @̄ =⇠!+ has the same estimate.
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By Lemma 4.4, the harmonic (0, 1)-form @̄⇤@̄ =@̄(f+@̄⇤ ) is O(r✏), and its co-

variant derivative is O(r�1+✏). The Weitzenböck formula implies that �r
⇤
r(@̄⇤@̄ )=0.

Therefore, Z

M

|r(@̄⇤@̄ )|2�6
Z

M

|@̄⇤@̄ | |r(@̄⇤@̄ )| |r�|

for any smooth compactly supported �. Let �=�(r�R) so that the right-hand side

converges to zero. Therefore, @̄⇤@̄ is a covariant constant (0, 1)-form. If this form is

non-zero, it would be invariant under the holonomy of any loop. However, elements

in SU(2) have no fixed point except the identity matrix, so (M, g) must have trivial

holonomy. Therefore, it is R4�k
⇥Tk with the flat metric. This contradicts our non-

splitting assumption. So, @̄⇤@̄ is actually identical to zero and f+@̄⇤ is a global

holomorphic function on M .

4.7. Compactification of ALG and ALH non-splitting instantons

In Theorems 4.14 and 4.22, we proved the existence of global holomorphic function u in

the ALG and ALH non-splitting cases such that any fiber far enough is biholomorphic

to a complex torus. Notice that du is never zero on any fiber far enough. We define a

holomorphic vector field X by !+(Y,X)=du(Y ). Then, since

X(u)= du(X)=!+(X,X)= 0,

we have that X is well defined when it is restricted to each fiber far enough . On each

fixed fiber far enough, there exists a unique holomorphic form � such that �(X)=1.

Locally,

!+ = f(u, v) du^dv, X = f�1(u, v)
@

@v
, �= f(u, v) dv.

Notice that each fiber far enough is topologically a torus. So, actually, we can inte-

grate the form � to get a holomorphic function v2C/(Z⌧1(u)�Z⌧2(u)) up to a constant.

We can fix this constant locally by choosing a holomorphic section of u as the base point.

Therefore, M is biholomorphic to (U⇥C)/((u, v)⇠(u, v+m⌧1(u)+n⌧2(u))), where ⌧1(u)

and ⌧2(u) are locally defined holomorphic functions. Actually, they are the integral of �

in the basis of H1 of each fiber. This gives a local holomorphic torus fiberation.

Recall that there is a di↵eomorphism from M minus a large compact set to the

standard fiberation. Denote the inverse image of the zero section by s. Note that s is

again a section outside of a large compact set because du di↵ers with the standard one by

a decaying error. Write @̄s as e(u) dū⌦X, and then e is a function defined on the inverse

of the punctured disc with polynomial growth rate. So, there is an at most polynomial
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growth function E on the inverse of punctured disc such that

@̄E(u)= e(u) dū.

Now we apply the flow �E(u)X to the section s to get a holomorphic section s0 on the

neighborhood of infinity. We view s0 as the zero section, and we know that M minus a

large compact set is biholomorphic to

((C\BR)⇥C)/((u, v)⇠ (u, v+m⌧1(u)+n⌧2(u)))

globally, where ⌧1(u) and ⌧2(u) are multi-valued holomorphic functions.

As proved in Kodaira’s paper [28], there exists an (unique) elliptic fiberation B over

BR�1 with a section such that B minus the central fiber D is biholomorphic to

((BR�1 \{0})⇥C)/((ũ, v)⇠ (ũ, v+m⌧1(ũ
�1)+n⌧2(ũ

�1))).

We can naturally identity points and get a compactification M of M . So, M is a compact

complex surface with a meromorphic function u=ũ�1. Now, since the subvariety of

critical points {du=0} is a finite union of irreducible curves (u is of course constant on

those irreducible curves) and points, we know that, except for finite critical values in

CP1, any fiber of u has no intersection with {du=0}. Therefore, a generic fiber has

genus 1 and must be an elliptic curve. In other words, M is a compact elliptic surface.

In conclusion, we have proved the second main theorem.

4.8. Twistor space of ALF-Dk instantons

On ALF-Dk gravitational instantons, we have found quadratic growth holomorphic func-

tions for each compatible complex structure. A natural question is the following: is there

any relationship between those functions? Before going ahead, let us recall the definition

of the twistor space of a hyperkähler manifold.

Definition 4.23. (Cf. [23]) Let (M, g, I, J,K) be a hyperkähler manifold. Then, the

twistor space Z ofM is the product manifoldM⇥S2 equipped with an integrable complex

structure

I =

✓
1�⇣⇣̄

1+⇣⇣̄
I�

⇣+⇣̄

1+⇣⇣̄
J+i

⇣�⇣̄

1+⇣⇣̄
K, I0

◆
,

where ⇣2C⇢C[{1}=CP1=S2 is the coordinate function, and I0 is the standard com-

plex structure on CP1.
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Notice that our definition is di↵erent from [23] to correct a sign error. We will briefly

rewrite pp. 554–557 of their paper with the correct sign.

Let � be a (1, 0)-form of I. Then, we have I⇤�=i�, where (I⇤�)(X)=�(IX). Set

✓=�+⇣K⇤�, then

(1+⇣⇣̄)I⇤✓=((1�⇣⇣̄)I⇤�(⇣+⇣̄)J⇤+i(⇣�⇣̄)K⇤)✓= i(1+⇣⇣̄)✓,

because we have relationships like J⇤I⇤=K⇤. (In [23], they thought I⇤J⇤=K⇤ and

caused a sign error.)

Now, if the form !+=!2+i!3 can be written as

1

2
!+ =

nX

i=1

�i^�n+i

for some (1, 0)-forms of I, then we can define a form on the twistor space by

!=2
nX

i=1

(�i+⇣K⇤�i)^(�n+i+⇣K⇤�n+i)= (!2+i!3)+2⇣!1�⇣2(!2�i!3).

It is a holomorphic section of the vector bundle ⇤2T ⇤
F
⌦O(2), where F means the fiber

of Z, which is di↵eomorphic to M . We also have a real structure ⌧(p, ⇣)=(p,�1/⇣̄). It

takes the complex structure I to its conjugate �I. In [23], they proved the following

theorem.

Theorem 4.24. Let Z2n+1 be a complex manifold such that

(i) Z is a holomorphic fiber bundle ⇡:Z CP1 over the projective line;

(ii) The bundle admits a family of holomorphic sections each with a normal bundle

isomorphic to C2n
⌦O(1);

(iii) There exists a holomorphic section ! of ⇤2T ⇤
F
⌦O(2) defining a symplectic form

on each fiber ;

(iv) Z has a real structure compatible with (i), (ii), and (iii) and inducing the an-

tipodal map on CP1.

Then, the parameter space of real sections is a 4n-dimensional manifold with a

natural hyperkähler metric for which Z is the twistor space.

Return to the gravitational instantons for which n in the above theorems equals 1.

Recall that we have found the holomorphic function on M by modifying the pull-back

of the standard function on the standard model. So, let us look at the standard model

(E, h, I, J,K) first. It is the quotient of the Taub-NUT metric outside a compact set by

D4|e|. Recall that the Taub-NUT metric is (cf. Theorem 3.19)

ds2 =V dx2+V �1⌘2,
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with

dx1 = I⇤(V �1⌘)= J⇤ dx2 =K⇤ dx3.

So,
✓
1�⇣⇣̄

1+⇣⇣̄
I⇤�

⇣+⇣̄

1+⇣⇣̄
J⇤+i

⇣�⇣̄

1+⇣⇣̄
K⇤

�i

◆
(�2⇣ dx1�(1�⇣2) dx3+i(1+⇣2) dx2)= 0.

Therefore, (�x3+ix2�2x1⇣�(�x3�ix2)⇣2)2 is a holomorphic function on the twistor

space of E, so the holomorphic function on M⇥{⇣}2Z is asymptotic to

(�x3+ix2�2x1⇣�(�x3�ix2)⇣
2)2

with error O0(r2�✏).

Notice that any harmonic function has an even-integer growth rate, so the holomor-

phic function is unique up to the adding of constants. We may fix this ambiguity by

requiring the value at the fixed base point o to be zero. We will prove that, after the

modification, the holomorphic functions have a simple relationship.

Actually, we have a I-holomorphic (⇣=0) function u1+iv1 asymptotic to

(�x3+ix2)
2 =(x2

3�x2
2)�2ix2x3,

J-holomorphic (⇣=�1) function u2+iv2 asymptotic to

(2x1+2ix2)
2 =4(x2

1�x2
2)+8ix1x2,

and K-holomorphic (⇣=�i) function u3+iv3 asymptotic to

(�2x3+2ix1)
2 =4(x2

3�x2
1)�8ix3x1.

Notice that u2+u3�4u1 is a harmonic function asymptotic to zero, i.e., is O0(r2�✏), so

it must be zero. Similarly, the harmonic function

z(p, ⇣)= (u1+iv1)�
1
2 (v3+iv2)⇣+

1
2 (u2�u3)⇣

2+ 1
2 (v3�iv2)⇣

3+(u1�iv1)⇣
4

is asymptotic to

(�x3+ix2�2x1⇣�(�x3�ix2)⇣
2)2

and therefore must be the holomorphic one. In conclusion, we have proved the following

theorem.

Theorem 4.25. In the ALF-Dk case, there exist six harmonic functions ui and vi,

with 4u1=u2+u3, such that

z(p, ⇣)= (u1+iv1)�
1
2 (v3+iv2)⇣+

1
2 (u2�u3)⇣

2+ 1
2 (v3�iv2)⇣

3+(u1�iv1)⇣
4

is a I-holomorphic map from the twistor space of M to the total space of the O(4) bundle

over CP1.

There is a real structure on the O(4) bundle (⇣, ⌘) 7 (�1/⇣̄, ⌘̄/⇣̄4). It is easy to see

that the map z commutes with the real structure.
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