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1. Introduction

This is our first paper in a series studying gravitational instantons. In 1977, the con-
cept of “gravitational instanton” was first introduced by Hawking as a building block of
the Euclidean quantum gravity theory [21]. The literature has provided many different
definitions. For clarity, we define a gravitational instanton as a complete, hyperkéahler

4-manifold satisfying a decay condition
R (2) <r(e) 727, (1.1)

where r(z) denotes the metric distance to a base point o in the complex surface and ¢>0

L

is any small positive number, say <i55-

Under those conditions, we want to study two
fundamental questions:

(1) What are the differential and metric structures of the infinity of these gravita-
tional instantons? Note that this is different from the tangent cone at infinity, especially
if the volume growth is sub-Euclidean.

(2) Given these end structures, to what extent do we know these instantons globally
and holomorphically? In other words, is a gravitational instanton uniquely determined
by its end structure?

Both problems seem to be well known to the research community. Since 1977, many
examples of gravitational instantons have been constructed [21], [2], [29], [12]. The end
structures of these examples are completely known now. According to the volume growth
rate, they can be divided into four categories: ALE, ALF, ALG, and ALH, where the
volume growth is of order 4, 3, 2, and 1, respectively. For readers’ convenience, we will
give a precise definition of these ends in §2. There is a folklore conjecture that when the
curvature decay is quick enough, any gravitational instanton must be asymptotic to one
of the standard models of ends.

In the ALE case, we understand these instantons completely through the works of
Kronheimer in [29], [30]. In the remaining cases, the asymptotical volume growth rate is
usually difficult to control, may oscillate, and may even not be an integer. In an important
paper, with additional assumption that the volume growth rate is sub-Euclidean but at
least cubic and a slightly weaker curvature decay condition depending on the volume
growth rate, Minerbe [33], [34] proved that it must be ALF. In our paper, we first prove

the folklore conjecture.

THEOREM 1.1. (Main Theorem 1) Any connected complete hyperkahler manifold
(M*,g) with curvature decaying as (1.1) must be asymptotic to the standard metric of
order €. Consequently, it must be one of the four families: ALE, ALF, ALG, and ALH.

For more detail about this theorem, see Theorems 3.7, 3.11, and 3.19. We would

like to remark that the curvature condition cannot be weakened to |[Rm|=0(r~2). In



GRAVITATIONAL INSTANTONS WITH FASTER THAN QUADRATIC CURVATURE DECAY. I 265

2012, besides the study of ALG and ALH instantons on rational elliptic surfaces, Hein
[22] also constructed two new classes of hyperkéhler metrics on rational elliptic surfaces

1/3 ,.—2
)

with volume growth, injective radius decay, and curvature decay rates /3, r=1/3 r

—1/2, 1 respectively. Note that curvature does not satisfy (1.1)

and 72, (logr) r=2(logr)~
and that they do not belong to any of the four families!

Our new contribution lies in the ALG and ALH cases; in the ALF case, our con-
tribution is to remove the volume growth constraint from Minerbe’s work [33]. In fact,
Minerbe’s volume growth constraint becomes a corollary instead of a condition of our
first main theorem. In particular, we can now apply his work and improve the curvature
decay rate of an ALF instanton to O(r~3). Therefore, the asymptotic rate can be im-
proved to any d <1. For ALH non-splitting instantons, we can also improve the curvature
decay rate. It turns out that the metric must converge to the flat model exponentially.
For more details, see Theorem 4.18. We believe there is a similar self improvement for

ALG instantons, but we will leave it for future study.

For the second question, the crucial point is to understand “the end” holomorphi-
cally. In the International Congress of Mathematicians 1978, Yau conjectured that every
complete Calabi—Yau manifold can be compactified in the complex analytic sense [39].
There are counterexamples if we only assume the completeness without a fast curvature
decaying condition [1]. However, when we assume the faster than quadratic curvature
decay condition, in both the ALG and ALH non-splitting cases, we can prove Yau’s con-
jecture. In the higher dimension n>3, assuming the curvature exponentially decays and
the metric is asymptotically cylindrical, Haskins, Hein, and Nordstrém [19] constructed

a compactification and therefore verified Yau’s conjecture in their settings.

THEOREM 1.2. (Main Theorem 2) For any ALG or ALH non-splitting gravitational
instanton M, there exists a compact elliptic surface M with a meromorphic function
u: M—CP* whose generic fiber is torus. The fiber D={u=0o0} is regular if M is ALH,
whereas it is either regular or of type I, 11, 1I*, 111, I11*, IV, IV* if M is ALG. There ez-
ists an (a1, az,a3) in S? such that when we use a1l+asJ+a3K as the complex structure,
M s biholomorphic to M\ D.

The converse problem is actually very well known and has been studied actively:
Given a compact complex manifold M and D an anti-canonical divisor, do we have a
complete Ricci-flat Kihler metric on M\ D? Tian—Yau [38] proved that, for a quasi-
projective surface M=M\D with M smooth and D a smooth anticanonical divisor
in M, as long as D?>>0, M has a complete Ricci-flat Kihler metric, which has the
volume growth of linear order (i.e. ALH). In [22], Hein generalized Tian—Yau’s work

and constructed ALG gravitational instantons on the complement of the anticanonical
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divisor to the rational elliptic surface M\ D. We do not know whether one can repeat the
Hein—Tian—Yau construction for a general elliptic surface, which is not algebraic. The
complete understanding of ALG and ALH non-splitting gravitational instantons is even
more difficult.

In addition, using gauge theory, Biquard—Boalch [4] also constructed a complete
hyperkahler 4-manifold. It is also closely related to the complement of the anticanonical
divisor to the rational elliptic surface through the Painlevé equations [6], [37], but it is
still unclear whether the Biquard—Boalch metric is ALG or not.

In the ALF case, more discussions are needed:

(1) In the ALF-Aj case, Minerbe [35] proved that any ALF-Aj instanton must be
the trivial product or the multi-Taub-NUT metric. In particular, there is no ALF-Ay
instantons for k<—1.

(2) In the ALF-Dy, case, Biquard and Minerbe [5] proved that there is no ALF-Dy,
instantons for k<0. For k>0, the first example was constructed by Atiyah and Hitchin
[2], where k=0. Ivanov and Rocek [25] conjectured a formula for larger k using the
generalized Legendre transform developed by Lindstrom and Rocek. This conjecture
was proved by Cherkis and Kapustin [12], and computed more explicitly by Cherkis
and Hitchin [11]. It is conjectured that any ALF-Dj instanton must be exactly the
metric constructed by them. This conjecture has not been solved yet. However, we are
able to prove the existence of the O(4) multiplet, which plays an important role in the
Cherkis—Hitchin-Kapustin—Ivanov-Lindstrom—Roc¢ek construction.

THEOREM 1.3. (Main Theorem 3) In the ALF-Dy, case, there exists a holomorphic
map from the twistor space of M to the total space of the O(4) bundle over CP!, which

commutes with both the projection to CP' and the real structure.

For the definitions of the twistor space and the real structure, see Theorems 4.24
and 4.25.

One of our main tools comes from the equivalence between the hyperkahler condi-
tion and the Calabi—Yau condition. Actually, for hyperkéhler manifolds, we have three

complex structures: I, J, and K. They induce three symplectic forms by
w1 (X,Y)=g(IX,)Y), w(X,Y)=g(JX,)Y), and w3(X,Y)=g(KX,Y).

The form w*=ws+iws is a I-holomorphic symplectic form. This induces the equivalence
of Sp(1) and SU(2). Notice that, for any (ai,as,a3)€S?, ail+asJ+asK is a Kihler
structure. There is a special property of Sp(1): Given any vectors v, weT),, which are
orthogonal to each other and have the same length, there exists an (ay, as, a3) in S? such

that (a1 /4+asJ+a3K)v=w. We will use this property to find the best complex structure.
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We obviously benefited from studying a series of papers by Minerbe [33], [34], and
[35]. Although his work seems only valid in the ALF-Aj, case, we manage to make some

modest progress in all cases in the present work.
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2. Notation and definitions

First, let us understand the standard models near infinity. The explicit expression of
those models is defined in Theorem 3.19. To avoid singularity, a ball Br is always

removed.

Ezample. Let (X, hy) be any manifold of dimension 3—k with constant sectional
curvature 1 and let C'(X) be its metric cone with the standard flat metric dr?+r2h;.
Let T* be a k-dimensional flat torus. Then, the T* fibration E over C(X)\ Br with a
T* invariant metric h provides the standard model near infinity.

(1) C(X)=R*/T', where I is a discrete subgroup in SU(2) acting freely on S. In
this case, (E, h)=C(X)\ Bgr with the flat metric. It is called ALE.

(2) C(X)=R3, and (E, h) is either the trivial product (R3\ Br)xS! or the quotient
of the Taub-NUT metric with mass m outside a ball by Z.|, where me<0. It is called
ALF-Ay, with k=—1 in the first case and k=—e—1 in the second case.

(3) C(X)=R3/Zy, and (E,h) is either the Zy quotient of the trivial product of
R3\ Br and S! or the quotient of the Taub-NUT metric with mass m outside a ball by
the binary dihedral group Dyj.| of order 4|e|, where me<0. It is called ALF-D; with
k=2 for the first case, and k=—e+2 for the second case.

(4) C(X) is the flat cone Cg with a cone angle 273, and (E, h) is a torus bundle
over Cg\ Br with a flat metric, where (8, E, h) is in the list of some special values. It is
called ALG.

(5) C(X)=R, and (E,h) is the product of R\ Bgr and a flat 3-torus. It is called
ALH splitting.
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(6) C(X)=R,, and (E, h) is the product of [R,+0c0) and a flat 3-torus. It is called
ALH non-splitting.

We may call such fiberation a standard model near infinity. It serves as an asymptotic
model in the following sense.

Definition 2.1. A complete Riemannian manifold (M, g) is called asymptotic to the
standard model (E,h) of order ¢ if there exist a bounded domain K CM, and a diffeo-
morphism &: F— M\ K such that

d*g=h+0'(r")

for some §>0.

Any manifold asymptotic to the standard ALE model is called ALE. It stands for
asymptotically locally Euclidean. Similarly, any manifold asymptotic to the standard
ALF model is called ALF. It means asymptotically locally flat. The ALG and ALH
manifold are defined similarly. The letters “G” and “H” do not have any meanings.
They are just the letters after “E” and “F”.

Notice that our definition of ALH manifold is different from Hein’s definition in
[22]. However, Theorem 4.18 implies that there is no essential difference for gravitational

instantons.

Notation. We have that o is a fixed point in M. In §3, r(p)=dist(o, p) is the geodesic

distance between o and p. In §4, E is a fiberation over
C(X)\Br={(r,0):r>R,0€ X}.

So, the pull-back of r by the projection is a function on £. On M, we pull back that
function, cut it off by some smooth function, and add 1 to get the smooth function r>1.
The reader should be careful about the changing meanings of r in various sections of our
paper.

O'(r*) means that, for any m>0, the mth derivative of the tensor is O(r*=™).
Then, x will be a smooth cut-off function from (—oo,400) to [0,1] such that y=1 on
(—00,1] and x=0 on [2,00). We will always use A=—V*V as the Laplacian operator.

3. Asymptotic fibration

In this section, we prove Main Theorem 1. It is essentially a theorem in Riemannian
geometry. The basic tool is to view a ball in the manifold M as a quotient of the ball

inside the tangent space, equipped with the metric pulled back from exponential map, by
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the group of local covering transforms corresponding to the short geodesic loops in M.
In the first subsection, we discuss this picture. In the second subsection, we provide a
rough estimate of the holonomy of short geodesic loops. In the third subsection, we use
that rough estimate to classify the tangent cone at infinity. In the fourth subsection, we
use this information to get a better control of the geodesic loops. Finally, we use this

better control to prove our Main Theorem 1.

3.1. Short geodesic loops and the local covering space

In 1978, Gromov [18] started the research of almost flat manifolds (i.e., manifolds with
very small curvature). In 1981, Buser and Karcher wrote a book [7] to explain Gromov’s
ideas in detail. In 1982, Ruh [36] provided a new way to understand it. Let p be a point
in M. The exponential map exp:7T,—+M is a local covering map inside the conjugate
radius. We can pull back the metric from M using the exponential map inside the

conjugate radius. There is a lemma about the local geometry on the tangent space.

LEMMA 3.1. Let g;; be a metric on B1(0)CR™ satisfying the following conditions:

(1) The curvature is bounded by A?;

(2) 9i;(0)=0i;;

(3) The line y(t)=tu is always a geodesic for any unit vector u.

Then, there exist constants A(n) and C(m,n) such that, as long as A<A(n)<im,

(1) Any two points x and y in B1(0) can be connected by a unique minimal geodesic
inside B1(0);

(2) If the Ricci curvature is identically zero, then
| D™ (g3 () = dij)| < C(m, n)A?

for all m>0 and x€By ;.

Proof. (1) It was proved by Buser and Karcher as [7, Proposition 6.4.6].
(2) Therefore, all the works in [26] apply. We can find functions [; satisfying

|Vii(2)—ei(x)] <C(n)A? and |V3;(x)] < C(n)A?

for all x€By/2(0) as long as A(n) is small enough, where e;(z) is a vector field that is
parallel along radical geodesics and equals to 9/dz; at origin. For even smaller A(n), we

can use [; as coordinate functions in

Lo.o(0) = {;z? < (0.9)2} C By (0) = {Zﬁ’ < 1}.
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In this coordinate,
gijwiwj—|w|2| < C’(n)/\2|w|2 < 01|w|2
|Okgis| < C(n)A?

L Ou
_ ) ij I
A ﬂ‘%(”q" )

What is more, |Al;|<C(n)A2. By [16, Theorem 9.15], for all 1<p<oo, there is a unique
solution u1v€W2*p(L0_g)ﬂW01’p(Lo,9) such that Au;=Al;. By [16, Lemma 9.17], we actu-
ally have

[willw2e (Lo o (0)) < C(n P) I AL Lo (Lo o (0)) < C (12, ) A

By the Sobelev embedding theorem (cf. [16, Theorem 7.26]),

luillcr zray) < Cluillwe2n (1g.00) < C(n)A

In particular, when A(n) is small enough, h;=1; —u; gives a harmonic coordinate in

Ho5(0 {Z h? < }CLO‘Q(O).

In this harmonic coordinate,
—|w|2 < gijw'w! < 1.02wl|?.

By elliptic regularity, all of the above functions are actually smooth. So, we can differ-
entiate them to get equations. Since FZJ ¢ =0, we know that

2Ricmr = ¢ Rijrig” + 9" Rijmig”
satisfies

TS 82 (glj 52] )

Oh,Ohs = —2Rici; +Qi5(g, 09)+Q;i(g, 09),

where
ka (97 ag) = gﬂalgim]:wllc] _gjlgimrzj'r;‘h _gimakgjlr;l .
We already know that

from the W2? bound of ;. So,

1Qi3 (9 09) | Lor2 (kg 5 0) < C(n)A™.
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When the Ricci curvature is identically zero, by [16, Theorem 9.11], we have

9i5=0i5llw2mrz g ) < C()(gi5 =i | o2 (g o)+ Qi o2y 5)) < C(n)A%.

After taking more derivatives, we can get the required bound in the harmonic coordinate.
This in turn bounds the Christoffel symbol and gives a bound of the geodesic equation.
So, when we solve this geodesic equation, we can get the required bound in the geodesic
ball. O

The above estimate is an interior estimate. The number % can be replaced by any
number smaller than 1.

To find out the local covering transform, we look at the preimage p; of p under
the exponential map inside B;(0). There is a local covering transform F that maps
zero to p;. The image of the radical geodesic from zero to p; is a geodesic loop based
at p. This gives a one-to-one correspondence between short geodesic loops and covering
transforms.

Now suppose that we have two short-enough geodesic loops v; and 2 with the same
base point p. Then, they correspond to two local covering transforms F} and F,. The
composition FjeF5 is also a local covering transform. It corresponds to another geodesic
loop based at p. It is exactly the product of v; and 5 defined by Gromov.

For any q close enough to p, choose a preimage qg of ¢ close enough to zero. Then,
¢1=F(qo) is another preimage of ¢, which is very close to p;. The image of the shortest
geodesic connecting ¢; and go under the exponential map is a geodesic loop based at gq.
It is called the sliding of v. When ¢ moves along a curve «, the sliding of v becomes a
1-parameter family of curves. It is called the sliding of « along the curve a.

When we parallel transport any vector v along the geodesic loop, we will get an-
other vector hol(v). The function hol: T,,—T, is called the holonomy of the loop. For
hyperkéhler manifolds, hole Sp(1)=SU(2). Under a suitable orthonormal basis, any ele-

ment in SU(2) can be written as

So,
i0_ 10 _
A_Id:(e 1 _2 ) and (A_Id)(m):((e ) 1)v1)_
0 e -1 vg (e —1)vy
So, [(A—Id)v|=|A—1d||v| if we define the norm by

|A—Id|= e —1|=]e~ " —1].
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This property is also a special property of SU(2). For instance, SO(4) does not have this
property.

In the flat case, local covering transforms are all linear maps. Let T3(x)=ax+b
and Ty(x)=Ax+B be two local covering transforms, where a, A€SO(n) and b, BER™.
They correspond to two geodesic loops v; and 75 with the same base point p. Note that
A and a are exactly the holonomy of v; and 72, whereas |B| and |b| are the same as the

length of loops ;1 and 72, respectively. We have that
T1T5(x)=a(Ax+B)+b=aAx+aB+b
will correspond to the Gromov product of 1 and 5. So,
T T ' T Th(x) =a ' A 'aAx+a ' A7 ((a—1d)B+(Id— A)b).
The Lie algebra also consists of linear maps. Taking the derivative in the above expression
of the commutator at the origin
T (x) =Ty(x) =1d(x) =1d(x)+0,
the Lie bracket is
[ax+b, Ax+B]=[a, A]x+(aB—Ab).

In a general case, we can understand the covering transform in the following way:
We start from go in Bq(0)CT,(M). Then, the exponential map at p maps the point
p1€B1(0) to pe M. The derivative maps the tangent vector at p; to the tangent vector
at p. Let A be the inverse of the map. Then, F(qo)=exp,, (Ago). In the Ricci flat case,
by Lemma 3.1, g;; and its mth derivatives are bounded by C(m,n)A%. So, the Christoffel
symbols and their higher derivatives are also bounded. By the property of ODE, all of
the parallel transports, the geodesic equations, and their higher derivatives have the same
kind of bound. In particular, the difference between A and the holonomy A of the geodesic
loop is bounded by C(n)A2. The difference between F(g) and p;+Ago is bounded by
C(n)A2. In conclusion, the difference between F(qg) and p; + Aqo is bounded by C(n)A2,
whereas the difference between their higher derivatives is bounded by C(m,n)AZ.

From now on, we are back to the gravitational instanton M with the point 0. We
will rescale the ball By (o,p) /Q(p) to a ball with a radius of 1 and apply the theory in
this section. In particular, the metric on the local covering space is d;;+0O’(r~°). The
difference between the local covering transform with the linear map given by the length,
direction, and the holonomy of the geodesic loop is O'(r!=¢).

For short loops, there is a better control given by Buser and Karcher as [7, Propo-
sition 2.3.1). They proved that the rotation (i.e. holonomy) part of Gromov’s prod-
uct of v; and 79 is given by the calculation in the flat case with an error bounded by

Cr=27¢L(y1)L(72), whereas the error of the translation (i.e. length) part is bounded by
Cr=27L(y1)L(72)(L(m) +L(72))-
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3.2. Control of holonomy of geodesic loops

In this section, we will use the ODE comparison to study the sliding of geodesic loops and

the variation of the induced holonomy. First, let us recall a well-known Jacobi equation,

()= (;)_Q_EJO:),

which satisfies the following property.

PROPOSITION 3.2. (Cf. [17, Theorem C]) Let J be the solution of the Jacobi equation
with
J(2)=0 and J'(2)=1.

Then,
0o ¢ —2—€
1< J(t) /T (00) (::tlim J'(t)) <exp/ (t—2) (2> dt < 0o
—00 9

and
t—2< J(t) < J'(00)(t—2).

Let v be a geodesic loop based at p€ M and « be an arc-length parameterized curve
passing through p. Suppose r=dist(0, p)=r(p)>3. As discussed before, we slide v along
« and get a 1-parameter family of geodesic loops ; based at a(t). Then, their length

and induced holonomy satisfy the following.

PROPOSITION 3.3. Suppose the length and the holonomy of the geodesic loop ~; are
L(t) and hol(t), respectively. Then,

1L/ (1)] < hol(t)~Id

and
[hol(t)—1d| < L(t) max |Rm|(x).
TEYE

Proof. Let v(s,t)=>:(s), then v(0,¢)=~(1,t)=a(t), and for any fixed ¢, v(s,t) is a
geodesic. So,
0 0
Os 1= Vs (85) and 0 1=, (E)t)
1

Vo.00=0, (048] =Vo.0—Vs,05=0, L(t):/ 104 ds.
0

satisfy
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Then,
dL(t) ' (Vy,0,,05) , 1 !
7 J= to—/o EARE dS_L(tO)/ (Vo,0¢, 05) ds
_ (04,05)13=5 </ (hol—Id)[as(O,to)]>
Vo, {0, 0s 5= = to), .
to/ 0%  L(to) o (t) L(to)
So,
|L'| < |hol —1Id|.

Moreover, given any unit length vector V' at v(0,%p), we can parallel transport it
along a(t)=+(0,t), and then parallel transport it along ;. Then, hol(V(0,t))=V(1,t).
So,

1 1
]|h0171d|’]g\vay(l,mg/ |V35VatV|:/ |R(8S,8t)V(s,t)|gmeax|Rm|L. O
0 0 TEYE

THEOREM 3.4. For any geodesic loop based at p with r=r(p)=d(p,0)>3 and length
L<LCyr, the holonomy along the loop satisfies

lhol — Id| < J/((T))Lgcgf,
where the constants are
=gt g7 i Comaw O sy
Proof. If we choose «(t) so that
hol—Id 0

"~ Thol —1d| L(to)’

we can get L'(t)=|hol —Id|. Tt is some kind of gradient flow. The other fundamental
equation is that |hol —Id|’ is bounded by the product of L and the maximal Riemannian
curvature along the geodesic loop.

Given p whose distance to origin r=r(p)=d(p, 0) >3 and any geodesic loop based at
p with a length smaller than Cir< %n if
J(r
J ((r)) L,

we can slide the curve back along the gradient flow. In other words, we start from a(r)=p

|lhol —Id| >

and get the curve a: [t1,r]— M, as well as the corresponding 7;. Let ¢; be the biggest t;
such that one of the following happens:

(1) L(t1)=3t1;

(2) L'(t1)=|hol —1d|=0 or L(t;)=0;

(3) t1=2.
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Then, when t&(t1,r), we have O<L(t)<%t and t>t;>2. So, the distance to the
origin is at least t—L(t)>%t, the curvature is bounded by (%15)_2_67 and the conjugate

)1+E/2

radius is at least w(%t > %t>L(t). So, the geodesic loop can exist without going out

of the conjugate radius. Combining two fundamental equations together, we have
L”(t) < L(t) max |[Rm| < L(t) (b= L(£)) ">~ < L(£) (3¢) >, for all t & (t1,7).

Therefore, (L'J—J'L) =L"J—J"L<0. By our hypothesis,

So,

L'#t)Jt)=J ) L(t)>0 = <§EB> >0 = 58<§§g, for all ¢t € [t1,r).

Thus,

L(t1) < {;E;;J(tl) < cljz"r)‘]gl) L < t21

and L'(¢1)J(t1)>J'(t1)L(t1) >0. In other words, t;=2. But then

It is a contradiction. O

For any fixed geodesic ray « starting from o, any number >3, and any geodesic loop
~ based at p=«(r) with length L<Cyr, when we slide it along the ray toward infinity, it
will always exist (i.e., stay within the conjugate radius). This follows from the following

rough estimate.

COROLLARY 3.5. The length L(t) of the geodesic loop based at «(t) is smaller than
%t for all t>r.

Proof. By Proposition 3.3 and Theorem 3.4, we know that

J'(t)
J(t)

L'(t) < L(t).

So,
L(r)
J(r)

We will derive a better estimate and use it to prove the first main theorem.

(InL)Y<(InJ) = L)<

J(t) < for all t >r > 3. O

t
27
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3.3. Classification of tangent cone at infinity

To understand how the length of geodesic loops varies, we first need to understand the
structure at infinity. Our assumption of the decay of the curvature means that we are
at a manifold with asymptotically non-negative curvature. The end of such a manifold
is well studied and goes back to Kasue [27]. Here, a complete connected non-compact
Riemannian manifold M with a base point o is called asymptotically non-negative curved
if there exists a monotone non-increasing function k: [0, c0) — [0, 00) such that the integral
fooo tk(t) dt is finite and the sectional curvature of M at any point p is bounded from
below by —k(dist(o, p)). Of course, the gravitational instanton M satisfies this condition.

THEOREM 3.6. ([27], [14], [32]) Let M be a manifold with asymptotically non-

negative curvature. Two rays o and 7y starting from o are called equivalent if

lim dist(a(t),y(t))

t—00 t

=0.

Denote the set of equivalent classes of geodesic rays starting from o by S(co). Then,
there exists a metric 0o on S(c0) such that (S(00),dx0) forms a compact inner metric
space, in other words, a length space. Consider the cone C(S(00)) over S(oo) with the

natural distance

Aso((t,p), (', 7)) = /12 +t"2=2tt" cos(min{m, 6o (p, ') }).
Fiz the representative o from each equivalent class [o]. Define the map
Oy {rea,b}NC(S(c0)) — {r € [at, bt]}NnM

by ®(r, [o])=0(rt) for any fixred 0<a<b<oo and any t>0. Then, the Gromov-Hausdorff
distance between ({ré€la,b]}NC(S(x0)), As) and ({relat, bt]}NM,dist /t) using the map
®; converges to zero when t goes to infinity. In other words, the tangent cone at infinity

is unique and must be a metric cone C(S(00)).

Remark. Drees [14] pointed out a gap in [27]. It was corrected by Mashiko, Nagano,
and Otsuka [32].

The following additional thing is true for gravitational instantons.

THEOREM 3.7. (ALH splitting) If the S(c0) of a gravitational instanton M has
more than one connected component, M must be isometric to the product of R and a flat

3-torus.



GRAVITATIONAL INSTANTONS WITH FASTER THAN QUADRATIC CURVATURE DECAY. I 277

Proof. Tf S(c0) has more than one connected component, we can find a large-enough
ball Br and two sequences p; and ¢; such that dist(o, p;) =00, dist(o, ¢;)—00, and any
minimal geodesics connecting p; and g; must pass through Bp for any i large enough. By
compactness of Bg, the minimal geodesics converge to a line. Notice that M is Ricci-flat,
so the splitting theorem [10] implies that M must be isometric to the product of R and
a 3-manifold. The 3-manifold is also Ricci-flat and therefore flat. Now, any geodesic
loop in this 3-manifold must have the trivial holonomy by Theorem 3.4. So, it must be

a 3-torus. O

From now on, we assume that S(co) has only one component.

As a corollary, the following is true.

COROLLARY 3.8. Fiz a ray 7 starting from o. There is a constant Cs such that,
for any point p in the large-enough sphere S,.(,), there is a curve within By 1)\ Bo.or(p)

connecting p and y(r(p)) with a length bounded by Csr(p).

There is more information about the tangent cone at infinity of the gravitational

instanton M.

THEOREM 3.9. The tangent cone at infinity C(S(c0)) of the gravitational instanton
M must be a flat manifold with only possible singularity at the origin.

Proof. Pick peC(S(c0))\{o}. We may find p;€ M such that p; —p in the Gromov—
Hausdorff sense. Pick some small-enough number . For i large enough, the ball
(Byr, (p,»),ri_2g) is B, /G;, where B, is the ball in the Euclidean space with the met-
ric pulled back by the exponential map, and G; is the group of local covering transforms.
By Fukaya’s result in [15], G; converge to some Lie group G, and B,;/G; converge to
B,./G. So, G is a subgroup of R*xSU(2)<Iso(R?*). The action of G on B, corresponds
to the action of G; on By, (p;). So, if an element g€ G\ {Id} has a fixed point in B,;, the
geodesic loops in By, (p;) corresponding to the sequence ¢; €G; converging to g would
have large |hol —Id| compared with their lengths by the relationship between the geo-
desic loops and covering transforms. This contradicts Theorem 3.4. So, the action of G
is free. Therefore, it is enough to look at the Lie algebra g (i.e., the infinitesimal part
of G) to determine the local geometry. We have the following cases:

(0) dim G=0. We get R* locally.

(1) dim G=1. Then, g is generated by x—>ax—+b, where acsu(2). Notice that SU(2)
can be identified naturally with the unit sphere of quaternions. Then, su(2) would be
the space of pure imaginary quaternions. So, the Lie bracket is exactly twice the cross
product in R3.

Note that a must be O or must be invertible by the property of quaternions. When

a=0, the group G consists of pure translations, and we get R3.
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Otherwise, ax+b=a(x+a~'b). The fixed point —a~'b must be outside of B,.. The
group G is generated by

eiG 0 . .
X— e |(xta " "b)—a""b.
0 e

If we take the one-to-one correspondence

x— x+a b= (z4iy, z+iw) — (x+iy, z—iw),

(eiO 0>
0 ¢?)

So, it is a cone over S3/S!, where S?/S! is the Hopf fiberation. So, B, is a local piece of

then G becomes

the cone over S2, in other words, R?, too.
(2) dim G=2. Any 2-dimensional Lie algebra has a basis ey, es satisfying [e1, ea]=ce;.
For g, e;(x)=ax+b and es(x)=Ax+B must satisfy

[a, A]x+(aB—Ab) =[ax+b, Ax+B| =ce; =c(ax+b).

Here, A acsu(2). If a=0, then Ab=—cb. So, A=0, G consists of pure translations,
and we get R2. If a£O, then because [a, A]=ca, we must have a= A and c¢=0. Therefore,

we have aB=Ab=ab, and so B=Db, which is a contradiction.
(3) dim G=3. We get R'. a

THEOREM 3.10. The tangent cone at infinity C(S(c0)) must be one of the following:
(ALE) R*/T, where T is a discrete subgroup of O(4) acting freely on S?;
(ALF-A;) R3;

(ALF-Dy) R3/Zs, that is a cone over RP?;

(ALG) flat cone with angle €(0,27];

(ALH non-splitting) R,.

Proof. By Theorem 3.6, the tangent cone at infinity is unique and must be a metric
cone C'(S(c0)). By Theorems 3.7 and 3.9, S(0) is a connected manifold because we have
assumed that M is not ALH splitting.

(ALH non-splitting) If S(c0) is zero-dimensional, C'(S(c0)) must be R,.

(ALG) If S(o0) is 1-dimensional, C'(S(c0)) is a flat cone. If the cone angle is bigger
than 27, it contains a line, so there is a contradiction from the almost splitting theorem
(cf. [8, Theorem 6.64]).

(ALF) If S(c0) is 2-dimensional, S(co) must be a 2-manifold with constant positive

curvature 1. So, its universal cover is the space form S?. Thus, S(co)=S?/I', where the
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group of covering transforms T is a subgroup of Iso(S?)=0(3) acting freely. Now, pick
any element A in I, A2€S0(3). However, any element in SO(3) has a fixed point, so
A?=1Id. Thus, A==1Id. Therefore, S(cc)=S? (the Aj, case) or RP? (the Dy case).
(ALE) If S(c0) is 3-dimensional, S(oco) must have constant sectional curvature, too.
Its universal cover is the space form, too. So, C(S(c0))=R*/T, where T is a discrete

subgroup of O(4) acting freely on S3. O

From now on, we use the terminology of ALE, ALF, ALG, and ALH to distinguish
the different type of the (unique) tangent cone at infinity. Those terminologies make

sense after we prove more properties.

THEOREM 3.11. In the ALE case, M has the maximal volume growth rate, and it is

in Kronheimer’s list.

Proof. By Colding’s volume convergence theorem [13], M* has the maximal volume
growth rate. Moreover, the faster than quadratic curvature decay condition ensures that
[5; IRm|*<oo. So, by Bando-Kasue-Nakajima’s work [3], M is ALE of order 4. Thus,
Kronheimer’s works in [29] and [30] apply. O

3.4. Decomposing geodesic loops into basis

Before proceeding, we need a theorem about Lie groups. For any Lie group H, the
exponential map exp from a small ball B,=B(0) in its Lie algebra h to H is a bijection.
We call the inverse of exp to be log. If there is no ambiguity, the length of ge H will

mean |log g|.

THEOREM 3.12. ([7, Theorem 4.5]) Suppose that H is a Lie group, G; are discrete
subgroups of H converging to a k-dimensional Lie subgroup G of H. Then, for i large
enough and k small enough, there exist k elements g; ; (j=1,2, ..., k) such that |log g; ;|
converge to zero as i goes to infinity, and all elements in B,.(Id)NG; are generated by g; ;.
What is more, for any fived large-enough i, the angles between log g; ; are bounded from
below by a small positive number independent of i. In addition, the commutator of g;q
and g;p s generated by g;. for ¢=1,2,..,min{a,b}—1. In particular, g;1 commutes

with others.

Remark. According to [7, Theorem 4.5], it is enough to assume that G; have a local
group structure near the identity rather than being a group. Actually, the theorem is
true even if the product of a,beG; contains an error controlled by Cjla||b|, where C;
converge to zero as i goes to infinity. In particular, the local groups G; in Theorem 3.9

satisfy the theorem. For those local groups, since the rotation (i.e., holonomy) part is
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bounded by the translation (i.e., length) part by Theorem 3.4, the length of the geodesic

loop is equivalent to the length in the above theorem.

Now, we are ready to go back to study the length of short geodesic loops. In the rest
of this section, we fix a geodesic ray « from o to infinity and begin doing the analysis of
geodesic loops based on the ray. This ray corresponds to the point (1,[a]) in the tangent
cone at infinity C(S(00)).

THEOREM 3.13. In the ALF-Ay or ALF-Dy cases, there is a geodesic loop vy such
that when we slide it along the fized ray to get .1 based at a(r), its length

L(r) :=L(yr1) = Loo +O0(r™°)

and its holonomy satisfies |hol —1d|=0(r=1=¢). What is more, any loop based at a(r)

with a length smaller than kr is generated by v, 1 in the sense of Gromov.

Proof. In this case, (B (a(r)),r 2g) converge to B,((1,[a]))CC(S(c0)) by Theo-
rem 3.9. We may make x even smaller to apply Theorem 3.12. We get ;.1 corresponding
to gr1 in Theorem 3.12. Then, any loop based at a(r) with a length smaller than r is
generated by 7,1 in the sense of Gromov. There is ambiguity in choosing «, 1. The same
loop with the reverse direction would play the same role. However, we can choose them
consistently so that they are the sliding of each other along the ray. By Theorem 3.12,

lim @

r—00 T

=0.

So, the holonomy along the loop converges to the identity by Theorem 3.4. It follows
that

Ihol — Id| () = hol — 101|(oo)—/oo Ihol — Id|/ dt < o+/oo CLt 2 dt < O(r—)
by the equation that “hol - Id|” <CLr~27¢. Plug this back into the equation
|L'| < |hol —1d|.
We obtain

L(r) :L(r0)+/r L'(t)dt < L(r0)+/r Ihol — Id| dt

70

<L(7"O)+/ Ct_edtZL(TQ)—i—C(rl—G_Té%).
To

In turn, |hol —Id|<O(r=2¢), LLO(r1~2¢). Through finite steps of iterations, we have

L=Ly+O0(r™¢) and |hol—Id|<O(r~'7°).
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Claim. The limit length
Lo = lim Ly > 0.
t—o0

Otherwise, because L=0(r~¢), after the integration from infinity to r, we can easily
obtain
[hol —1d| < O(r~172)

After a finite number of iterations, we have
L=0(r"'7¢) and |hol —1d| <O(r—27%).

Now, let
(2+6)k:,r.—ke

2
e(e+1)2e(2e+1) ... ke(ke+1)"

fry=>"
k=

0
Then,

Fr) =G TR ), f)=140079),  fi(r) =061,

So, for any R large enough, we have
L(R)<R™'f(R)

and
IL'(R)| <R[ f'(R)].

By the ODE comparison, we have L(r)<R~!f(r). Let R goes to infinity. We see that
L(r)=0. This is a contradiction. So, Ls,>0. O

THEOREM 3.14. In the ALG case, there are commutative geodesic loops 1 and 7o
such that when we slide them along the fized ray o to get .1 and 7y, 2 based at a(r), their
length Lj(r):=L(7;)=Leo ;+O(r=¢) and their holonomy satisfy |hol —Id|=0(r=17°).
What is more, any loop based at a(r) with a length smaller than kr is generated by 1

and 72 in the sense of Gromov.

Proof. We proceed as in the proof of Theorem 3.13. We get two loops, v, and
7r.2, based at a(r). In this case, the ambiguity is as large as GL(2,Z). In other words,
Yr,1 and vy, 2 may jump to 77%70107?’92 and 77%217}’020, respectively, after the sliding. Actually,
GL(2,Z) is a noncompact group, so we cannot estimate the length of the geodesic loops
obtained by sliding directly. However, we can still get the same conclusion from the fact
that v,,1 and 7,2 commute and that they form a detectable angle.

Suppose that the manifold is flat. Then, the covering transforms corresponding to

Yr,1 and 7y, 2 are linear maps

Ti(x)=ax+b and T5(x)=Ax+B,
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where a, A€SU(2),b,BeC?. So,
x=T'T,'T1Th(x)=a 'A 'aAx+a 'A~!((a—1d)B+(Id—A)b).

Note that by the construction, |b|<C|B|. On the manifold, we need to count the error
caused by the curvature. So, actually

|(a—1d)B—(A—Id)b|<Cr2¢|b||B|*> and |a ‘A 'aA-Id|<Cr 2 ¢b||B].
Now, if [a—Id|>r~'"¢/3|b|, then
|A—1d| |b| > |a—Id||B|-Cr~2~¢|b| |B|*.

It follows that |A —Id|>c-r~1~¢/3|B| for some constant c. Thus, if r is large enough, the
two vectors (A—Id)b and (a—Id)B have almost the same angle because their difference
has a much smaller length. Note that both A and a are very close to the identity,
so A—Id and a—Id are almost log(A) and log(a), respectively. So, Theorem 3.12 is
reduced to that (a—Id,b) form a detectable angle with (A—1Id,B). Therefore, A—Id
and a—Id also form a detectable angle because (A —Id)b has almost the same angle
with (a—Id)B.

Because the Lie algebra in su(2) is simply the cross product and all of the matrices

are very close to the identity,
la—Id||A—Id| < Cla A 'aA —-1d| < Cr~2 ¢|b| |B].

This is a contradiction. So, |a—Id|<r~*~/?|b|. Similarly, |A —Id|<r~1~<3|B.

We have proved that for v, 1 and v, 2, [hol —Id|<r~1=¢/3L. For any loop with a
length smaller than k7, we have |hol — Id|<Cr_€/3. When we slide v, ; along the fixed
ray toward infinity, the holonomy of the limiting loops must be trivial. The proof in
Theorem 3.13 then implies our conclusion. Note that the ambiguity of choosing v, ; can

now be removed by requiring that they are the sliding of loops along a. O

THEOREM 3.15. In the ALH non-splitting case, there are commutative geodesic loops
Y1, Y2, and 3 such that when we slide them along the fized ray o to get vr1, V2, and
Yr,3 based at a(r), their length L;(r):=L(7y j) =L ;j +O(r~°) and their holonomy satisfy
|hol —Id|=0(r~17¢). What is more, any loop based at o(r) with a length smaller than

kr s generated by Yr.1, Yr2, and 7Y, 3 in the sense of Gromov.

Proof. We can proceed exactly in the same way as in Theorem 3.14. The only thing
we need to prove is that v, commutes with v, 3. It follows from the fact that the
length of the commutator converges to zero, since the curvature and therefore the errors

converge to zero as r goes to zero. O
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3.5. From geodesic loops to Riemannian fiberation

In [9], Cheeger, Fukaya, and Gromov first introduced the N-structure (i.e., nilpotent
group fiberations of different dimensions patched together consistently). Torus is the
simplest nilpotent group. In [34], Minerbe followed their method and improved the
result for circle fiberations under a strong volume growth condition in the ALF case. In
their papers, they all view R*~* xT* as the Gromov-Hausdorff approximation of R*~*.
In this subsection, we also include the T* factor in the analysis. Therefore, we are able
to obtain a better estimate without any volume assumptions.

In the last subsection, we get geodesic loops 7, ; along a ray. They can be represented
by s€[0, 1]~>exp,,(svi(p)) for some vectors v;(p) in the tangent space of the base point p.
When p goes to infinity, the vectors v;(p) converge to some limits v; ER*. Actually, the
difference between v;(p) and v; is O(r~¢). Define the lattice A:@le Zv; and the torus
’]I‘]“:(GBL1 Ro;)/A with the induced metric. From the estimates in the last subsection
and the estimates in the last paragraph of §3.1 (cf. [7, Proposition 2.3.1]), it is easy to
see that, for Zle a;v; €EAN By (),

is Zle a;v; with an error O(r!=¢), whereas the holonomy is O(r~¢). So, the lattice A

the translation part of the Gromov product Hle Vi

almost represents the geodesic loops whose lengths are smaller than xr(p).

By Proposition 3.3, Corollary 3.8, the estimates in Theorems 3.13-3.15, we can
slide the geodesic loops 7,,; along a path within By 1,(0)\ Bo.or(0) to get geodesic loops
Yp,i over the whole manifold M except a compact set K. It satisfies all of the above
properties. The choice of path is not unique, so after sliding along different paths, 7, ;
may be different. However, all of the differences come from a change of basis in A.

Locally, we may assume that 7, ; are well defined.

THEOREM 3.16. We can find a diffeomorphism from Bi..(p) to
B, (0)xTF c R*F xT*

such that g is the pull-back of the flat metric plus O'(r~¢).

Proof. First of all, we look at the map exp:T,—M. Any ¢€B,,(p) has lots of
preimages. Choose one preimage ¢qg. Then, all of the other preimages are Hle F(qo),
where F; are the covering transforms corresponding to v;, and a; are integers. We know
that Hle F[(qo) is actually qO+Zf:1 a;v; with an error O'(r'=¢). Define

ko poi _
ZX<1O‘HZH;(:DZ) (qo)|> (T3 F (a0) =200y asvi)

ZX(lomf_l Ffi(qo>|>

kr(p)

eR*Fx Tk,

f(q) =mqx
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then it is independent of the choice of g9. Roughly speaking, f(q) is the weighted average
of the projections of all of the preimages of gy to R**xTF. It is easy to prove that
using f, the metric g is the pull-back of the flat metric plus O'(r~°). O

LEMMA 3.17. We can find good covers {B..(p,)/2(pi) icr such that I can be divided
into =1 U...Uly, and if i,j€0;, [=1,2,..., N, then By (p,)(pi)\Byr(p,)(pj)=2

Proof. This type of theorem was first proved in [9]. In our situation, we can choose
maximal 2! nets in B(2/*1)\ B(2'). Then, the volume comparison theorem implies

the property. O

THEOREM 3.18. Qutside of a compact set K, there is a global fiberation and a T*
invariant metric g=g+O'(r=¢) with the curvature O'(r=2-¢).

Proof. By Lemma 3.17, we can first modify 1€ 1; and j€ I so that they are compat-
ible. Then, modify i€l;, j€Is, and [€]5 to make sure that they are compatible. After

N times, we are done. So, we start from a map
fij: Bnri (pz) XTk — anj (p]) X Tk.

defined by
fzJ(Qﬂ ) (fzj(Q79)7 i2j(Q7 )) fj f (7 )

Average it and get filjz Bir, (pi)%Bm_j (pj) by

1
From the higher derivative control, we know that the distance from the origin to
'sz(q?9>_ 'LQJ(Qa())_QGTk

is O(r—¢). (Here we view T* as an Abelian group.) For any r large enough, we can lift
it to R* while keeping it O(r¢). Fix ¢, average it with respect to @, and then project it
back to T*. We get a map ffj By, (pi)—TF. Define

f‘lj.BKZT,,(pZ) XTk —>BKT‘J' (p]) XTk

by

fii(a,0) = (f5(a), 0+ f7(9,0)+ [ (0)).
It is easy to see that \mezﬂ— (r'=m=¢). We may glue the common part using f”
Now, there are two metrics gFla”t and gFl“t Choose a partition of unity x;+x;=1, with

|mel-\— ( ) Let

g=xigi “+xi95 .
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It is a T* invariant metric with [V™§|=0(r~™7¢). Note that there are still two maps
from M to the gluing
Bier, (pi) x TFU 7y Brers (93) % T*

namely fijo fi and f;. However, their distance is O(r~¢). For any r large enough, we can
find out the unique g-minimal geodesic v satisfying 7(0):ﬁjofi and y(1)=f;. Then,

v(x;) gives a new map from M to
By, (pi) xT*Uj, Bror, (pj) x T

Call that f;Uf;.

In conclusion, we have a T*-invariant metric h on
ani (pz) X Tk Ufij anj (p]) X Tk

and
fiUfj: M — By, (pi) x'IFkaij Byer, (pj) X TF,
with both |[V™h|=0(r=™=¢) and |V™(f;Uf;)|=0(r'=""°).
After repeating everything for

(qu;(pi)XTkaijBﬁrj(pj)XTkmgafiU.fj) and (Bnm(pl)XTkvglﬂatvfl)a

we can get a new big chart. After N times, we are done. O

THEOREM 3.19. Outside of K, there is a T*-fiberation E over C(S(c0))\Br and
a standard T* invariant metric h such that, after the pull-back by some diffeomorphism,
h=g+0'(r—°).

Proof. The metric g can be written as

14—k k 4—k 2
S iy (o) dri day + 3 (dé)ﬂrz ns() da;i) .
i,j=1 =1 i=1

The curvature of a;; is O'(r=27°)

. By the result of Bando, Kasue, and Nakajima [3],
there is a coordinate at infinity such that the difference between a;; and the flat metric
on C(S(00))\Bgr is O'(r=¢). So, we may assume that a;;=0;; without changing the
condition g=g+O’(r~¢). Similarly, we may also replace 7;;(x) with any standard con-
nection form. As long as n;; is still O'(r~¢), we still have h=g+O'(r~¢). Therefore, we
only need to classify the torus fiberations over C(S(c0))\ Br topologically, and give it a

good-enough standard metric h.
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(ALF-Aj) When S(00)=S?, the circle fiberation must be orientable. It is determined
by the Euler class e.

When e=0, we have the trivial product (R3\ Br)xS! as our standard model.

When e=+1, we have the Taub-NUT metric with mass m##0. Let

M, = ({(z1, 22, 73) : 25 +a5+23 > R*}\{(0,0,23) : 23 <0}) xS,
M_ = ({(x1, 12, 73) : 23 +x5+23 > R*I\{(0,0,23) : 23 > 0}) xS’

Identify (21, xa,23,0,) in M, with (21,22, x3,0_+sign(m) arg(z1+izs)) in M_. We get
a manifold M.
Let r:\/m, V=1+42m/r, and
(x3—7)(z1 deg—x2 dx1)
2(x2+a2)r
(x3+7) (21 dre —29 dx1)
2(z2+23)r

n=4|m|df,.+4m

=4|m|df_+4m

Then, the Taub-NUT metric with mass m outside of the ball B (R>|m|) is
ds* =V dx*+V~'n?,

with
dey=T"(V7ln)=J"dry = K* duas.

There are lots of different conventions in the literature. We use the convention
from [31], but we compute the explicit form of n using the formulas in [23]. When
m>0, LeBrun [31] proved that M can be smoothly extended inside of Br and becomes
biholomorphic to C2. For m <0, the metric is defined only outside of Bg, but it is enough
for our purpose.

There is a natural Z, action on the Taub-NUT metric by 0.+ 0.+27/|e| for e=
+1,£2,.... The quotient of the Taub-NUT metric with positive mass m by Z.| has Euler
class e<0, The quotient of the Taub-NUT metric with negative mass m by Z.| has Euler
class e>0. Notice that the mass parameter m is essentially a scaling parameter. Only
the sign of m determines the topology.

Usually, people let k=—e—1 and call that a standard ALF-Aj metric.

(ALF-Dy) When
S(00) =RP? = {(z1, 29, 23) €S> : 23 >0}/ ((cost,sint,0) ~ (— cost, —sint, 0))

topologically, the fiberation is the trivial fiberation over the disc following the identifica-
tion of (cost,sint,0,0) with (cos(t+m),sin(t+m),0, f(¢t)—6). So f(7w)—f(0)=—2em. The

integer e determines the topological type.
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When e=0, we have the trivial product (R3\Bgr)xS! after identifying (x,6) with
(—x, —0) as our standard model.

When e is non-zero, it is the quotient of the Taub-NUT metric outside Br by the
binary dihedral group

Dyje) = (o, T: o2l =1, glel =72 ror1l = o1y,

which acts by o(x,0.)=0(x,0.+7/le|) and 7(x,0,)=(—x,0_=—0,) from M, to M_
with 7(x,0_)=(—x,0,=n—0_) from M_ to M,. When the mass is positive, e is negative.
When the mass is negative, e is positive.

Usually, people let k=—e+2 and call that a standard ALF-Dj, metric.

(ALG) When S(co0)=S!, the topological type is determined by the monodramy. In

other words, when we travel along S(oc0), there is some rotation, but the lattice
A=7|v|®Z7|v1]

is still invariant. So, we have the equation

(200 20

for some
(“ b)eGL(Q,Z).
c d
So,
a—e' b i0 012
0=det o | =ad—bc—(a+d)e” +(e"”)".
c d—e*

Except for the case where =41, we have A=(a+d)?—4(ad—bc)<0. So, ad—bc>0
and it must be 1 to make sure that the matrix is invertible. So, a+d=0, or a+d==1.

Thus, e?’ must satisfy one of the following quadratic equations:

2?+r+1=0, 22—2+1=0, and 22+1=0.

0

We can solve e’ accordingly:

—H;i\/g _ 2in/3_tin/3 1i;'\/§ _eim/3 /3 and i ein/2 (3im/2,
Therefore, the rotation angle §=2r3 and the lattice A=Z|vi|®Z7|v;| are in the
following list (we may replace 7 with something like 7—1, but that will not change the

lattice at all):
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(Regular) Im7>0, 8=1.
(I5) Im7>0, B=3.

(1) T=e*m"/3, f=5.
(Ir*
(
(
(
(

) e27ri/3’ B:%
1) r=i, B=1.
II*) r=i, f=3.

T _ 1
IV) 7=e>™i/3 g=1

IV*) r=e>i/3 g=2.
Note that they all correspond to Kodaira’s classification of fibers of the elliptic
surface in [28]! If we identify (u,v) with (e2™"#u, e=27y) in the space

{(u,v):argue0,2n5], |u| > R} C (C\Br) xC/(Z|v1|®Z|v1]),

we have the standard flat hyperkéhler metric h=21i(duAdu+dvAdv). Note that SU(2)
is transitive, so we can choose the complex structure a;l+asJ+a3K properly so that

5g:5h+0(r*f)vh.

(ALH non-splitting) When C'(S(00))=R,, h can be simply chosen to be the product
metric of [R,00) and a flat 3-torus. O

4. The construction of holomorphic functions

In this section, we prove Theorems 1.2 and 1.3. Our goal in this section is to construct
global holomorphic functions on gravitational instantons M with prescribed growth or-
ders. It is usually very hard to do so directly. However, it is much easier to construct
holomorphic functions on the standard models (E, h) first. Then, it can be pulled back
to (M, g), and cut off to obtain an almost holomorphic function f on M. To get rid of

the error, we can solve the 0 equation
dg=0f

for g much smaller than f. If successful, then f—g will be the required function. Unfor-

tunately, it is hard for us to solve g directly. So instead, we solve the following equation:
—(00*+0%0)¢p = 0f.

The order of 0*¢ and d¢ will be smaller than the order of f if we solve ¢ properly.

Notice that there is a covariant constant (0,2) form w~, so the harmonic (0,2) form
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0¢ is essentially a harmonic function. Generally speaking, the order of the growth of
harmonic functions on M is the same as the harmonic functions on E. So, if we get f from
the smallest nonconstant harmonic function on E, we expect d¢ to be zero. Therefore,
f+0*¢ will be the required global holomorphic function on M.

To solve the Laplacian equation for (0,1) forms, we need some elliptic estimates.
The ALH case requires more care. To obtain a good estimate in the ALH case, we need
to prove the exponential decay of curvature first. This is feasible after we develop some
elliptic estimates for the Riemannian curvature tensor.

Therefore, in the first two subsections, we develop the elliptic estimates for tensors
on a manifold M asymptotic to the standard model. We would like to work on both forms
and on the curvature tensors on general M, which may not be hyperkahler. Therefore,
we always use the Bochner Laplacian —V*V to apply the Bochner techniques. For
gravitational instantons, the Weitzenbock formula tells us that the Bochner Laplacian
equals the operator —(99*+0*0) for functions and (0,1) forms. Then, in the third
subsection, we use the mentioned technique to construct global holomorphic functions
on ALF and ALG instantons. In the fourth subsection, we use this estimate to prove the
exponential decay of curvature of ALH instantons. This allows us to develop an elliptic
estimate with exponential growth weights in the fifth subsection. In the sixth subsection,
we use the same method to construct global holomorphic functions on ALH instantons
In the last two subsections, we make use of the global holomorphic functions to prove
our second and third main theorems.

Analysis in weighted Hilbert space is well studied, and perhaps some estimates in
this section are already known to experts [24], [20], [33]. However, to avoid problems
caused by subtle differences between different settings, we instead provide a self-contained

proof.

4.1. Weighted Hilbert space

In this subsection, we do some technical preparations. We will use the following weighted
Hilbert spaces. (Please notice the change in the meaning of r as in the end of the second

section.)

Definition 4.1. Define the L?—norm of a tensor by

6z =/ /M 6127 dVol.

Let L} be the space of tensors with finite L2-norm. Define V¢=1 in the distribution
sense if, for any £€CF°, we have (¢, V*¢)=(¢,£). Let HZ be the space of all tensors ¢
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such that
peLli, Véeli,, and VZ¢elLi,,.

We can define the norm in this weighted space by

6llz = \/ /M |6[2r9 d Vol + /M IV [2r5+2 dVol + /M IV26[2r5+4 dVol.

The inner product is defined accordingly.

PROPOSITION 4.2. For any §, we have that Hg 1s a Hilbert space, and the space of

compactly supported smooth tensors C3° is dense.

Proof. The map ¢+ ¢r®/? defines an isometry between L% and L?. Because L? is
complete, L? is also complete. Now, if |¢i—¢j|H§HO7 then both

|pi—¢jlz and [V7"¢;—V™g;

12,0,

go to zero, m=1,2. By completeness, ¢; converge to ¢ in L%, and V¢; converge to 1) in

L§+2. Now, pick any test tensor £€C§°,
So, V=1 in the distribution sense. The second derivative is similar. So, ¢; converge to
¢ in Hg, too.

For the density, let xg=x(r/R). Then,

[¢—ox(r/R)|mz < C/ (IA=xr)OPr’ +|(1=xr)VO[r* T2+ [V g [¢r"?

M
+|V2X RSP H[(1—xR) V2B 2 T4+ | VX R VB rOT)

So, x(r/R)¢ converge to ¢ in H when R goes to infinity, because |Vxg|<C/R and
|V2xr|<C/R?. Now, the standard convolution method implies the density of C&°. O

LEMMA 4.3. For any harmonic tensor ¢ in H? and any r large enough,

16(y)| < Clp| rar(y) ~0/3+4/22,
When —50+5k—2<0, we have ¢=0.

Proof. Given y€ M, suppose r(y)=20R. Then, the ball Byr(y)CM is asymptotic
to Bap(0)xTFCR*=*xT*. Consider the covering space R* of R**xT*. If we apply
Gilbarg and Trudinger’s Theorem 9.20 in [16], we get

C
81*() < 75— 2.
| B2r(0)] B2r(0)
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So,
|6(y)] < Ol () ~0/2++/22,

Now, the maximal principle implies the last result in the lemma because
Alg[2 =2|Ve[2 >0, 0

At this point, we need a weighted L?-estimate.

LEMMA 4.4. For the standard ALF, ALG, or ALH metric in Theorem 3.19, suppose
that ¢ is a smooth form supported in B\ Bg. Then, as long as R is large enough,

Liveprsts [ wome <o [[1aopeeis [ jopr).
E E E E

Proof. We only need to prove the same thing on By, (p;) C E uniformly. It is enough
to consider the covering By, (0)CR*. Notice that h is a flat metric plus O’(r~!). Thus,
we can simply use [16, Theorem 9.11]. O

4.2. Elliptic estimates with polynomial growth weights

In this subsection, we will prove the main estimate for tensors in the weighted Hilbert
space with polynomial growth weights.

We started the estimate for functions on R¢. Then, we extend this to T* invariant
tensors. We can improve it to general tensors on the standard fiberation E. Then, we
can transfer that estimate back to any manifold M asymptotic to the standard model.
This main estimate allows us to prove the solvablity of the Bochner Laplacian equation

for tensors.

THEOREM 4.5. Suppose that f is a real smooth function on R? (d=1,2,3,...) sup-

ported in an annulus and that § is not an integer. Then,
/ | £ dVol<C/ |Af|?ro* dVol.
Rd Rd

Proof. For the Laplacian on the standard sphere S, it is well known it has eigen-
functions ¢;,; with eigenvalue —j(d—2+j), (=1,2,...,n;. (For d=1, all n; are zero,

except no=1 and ¢;;=1.) We write f in terms of those eigenfunctions:

oo My

[~ Z Z Fi(r)d5.1(0),

§j=0 i=1
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where

fia(r)= /S  F(1,0)8;,(0) dVol.

Then,

S d-1, jd—2+j
Af”ZZ(ﬁfﬁ . fﬁ,z—]( H)fj,l)%l(@)

2
§=0 I=1 r
co Mj
=D D T T 10 ) 65(0).
7=01=1

From the integral by parts and the Cauchy—Schwartz inequality

2 2
2,14 _ /41 2,14 N2, 142
ridr | = — rFdr | < — rH dr r dr.
</0 I ) (lH'l /0 99 ) (n+1)2 Jo g 0 )

So we get the Hardy’s inequality

o0 4 oo
/ g rHdr < / (g')QT“Jrz dr.
0 M 0

Therefore,
(o]
/ fj%lr‘grd_l dr
0
oo
—j 2 5+2j+d—1
:/ (r JJCJ-71)7ﬂJrJ+ dr
0

4 o ; ;
< (5+2j+d)2 / [(T*ijvl)/]2T6+2j+d+1 dr
0
~ G P ) Py
0
16

< ‘ .
(0425+d)2(6—25

T, G e ) e
- 0

Using the Fubini theorem and the Hilbert—Schmidt theorem (when d=2, we get exactly
the Fourier series, so the Hilbert—Schmidt theorem is reduced to Parseval’s identity), as

long as ¢ is not an interger, we are done. O

THEOREM 4.6. Suppose that (E,h) is the product of [R,00) and T3, and that ¢ is
a smooth T3-invariant tensor supporte Bg\Br. Then, as long as § is not an integer,

for R large enough,
/|¢\2r‘5 dVol<C/ |AG|2r° T dVol
E E
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Proof. Since the tangent bundle is trivial, the estimate of tensors is reduced to the

estimate of their coefficients, which has been proved in Theorem 4.5. O

THEOREM 4.7. Suppose that (E, h) is the standard ALG metric as in Theorem 3.19
and that ¢ is a smooth T?-invariant tensor supported in Bz \Br. Then, as long as 300

s mot an integer, for R large enough,

/ |p|?r° dVol < C / |AG|?rot* dVol.
E E

Proof. Let f=m/n. Then, it is enough to do the same estimate on the n-fold
covering E\Bpg of E\Bg. Note that E\Bpg is the isometric product of the m-fold
covering of C\ Br and T2. So, it is enough to prove Theorem 4.5 on the m-fold cover of
C\ Bg. If we write

feo Y0 e,
j=—o0
where 6€]0,2mm], then all the works in the proof of Theorem 4.5 go through, except
that we have to replace j by j/m there. So, as long as md is not an integer, we are done
(m=1,2,3,5). O

THEOREM 4.8. Suppose that (E, h) is the standard ALF metric as in Theorem 3.19
and that ¢ is a smooth S'-invariant tensor supported in Bg\Bpgr. Then, as long as ¢ is

not an integer, for R large enough,

/ |p|?r® dVol < C / |Ag|2ro+4 dVol.
E E

Proof. By Theorem 3.19, it is enough to consider the trivial product of R? and
S' or the Taub-NUT metric with non-zero mass m. We use l-forms as an example
because the proof for general tensors is similar. In the trivial product case, we can
write any form as Adx;+ B dxa+Cdxs+Ddf. In the remaining cases, any form can
be written as A dwxy+ B dwy+C dzz+Dn. In each case, we get four functions on R?\ Bg
which can be filled in by zero on Bg to get smooth functions on R3. So, we can apply
Theorem 4.5 to them. Since the Taub-NUT metric is the flat metric with error O’(r—1),
while n=df+0'(r=1) locally, by Lemma 4.4, we can get our estimate as long as R is
large enough. O

THEOREM 4.9. Suppose that (E, h) is the standard ALF, ALG, or ALH non-splitting
metric in Theorem 3.19 and that ¢ is a smooth tensor supported in B\ Bgr. Then, as

long as 306 is not an integer, for R large enough,

20 dVol < C | |Ag|?rPT* dVol.
9|
E E
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Proof. First, we average ¢ on each T* (k=1,2,3) to get an invariant tensor ¢p.
Then, we only need to get some estimates of the ¢—¢g part. It is enough to prove that
in each By, (pi)CFE,

/ |6 ol dVol < C / |A(6—o)|? dVol
wr; (Di)

Bir; (pi)

for a uniform constant C and any tensor ¢ supported in B, (p;) C E, because then we can
use the partition of unity and move every error term to the left-hand side by Lemma 4.4.
Again, we may cancel error terms and assume that the metric is flat. So, the estimate of
forms is reduced to the estimate of functions that are the coefficients of the forms. The

standard Poincaré inequality on torus implies that

([ -se)<e(f ont-mr)
(w07
= (/Bmxw(ffo)A(ffo)>2

_ 2 A(f— 2
<c [ uenl [ Ao

where Vpx means the partial derivative with respect to the fiber direction. So, we are

N
Q

done when R is large enough. O

LEMMA 4.10. Let X, Y, and Z be Banach spaces, D: X =Y, i: X —Z be bounded
linear operators, and i be compact. Suppose that ||¢||x <C(||D@|ly +||i¢|lz). Then, as
long as Ker D={0}, we have ||¢||x <C| D¢y .

Proof. Tf the estimate does not hold, then there are ¢y satisfying ||¢r||=1, but
||Dér||—0. By the compactness of i, we know that ||i¢r —i¢]|z—0. So,

lox — il x < C([[Dor.— Déilly +lligr —igul|z) — 0

S0, ¢ — Poo- Then, Dop— Doy, Dpoo=0, and ¢, €Ker D, which is a contradiction. [J

THEOREM 4.11. Suppose that M is asymptotic to the standard ALF, ALG or ALH
non-splitting model. Then, for any tensor ¢€ HZ (M), as long as 308 is not an integer
and —%5—2+%k<0, we have

16l 22 a1y < C /M AG[2r5+ dVol
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Proof. It is enough to prove everything for C§°. Note that
Agd=App+0(r~) V2o +0(r™ 1)Vl +0(r™7?)]g].

After applying Theorem 4.9 and Lemma 4.4, we know that the estimate holds as long as
¢ is zero inside a big-enough ball Br. For general ¢, we can apply the estimate to the
form (1—x(r/R))%*¢. So,

lollazan) < c( P dVo1+|¢||Hz(Bm>)

< c(/ Ag[2roH dv01+/ |¢|2>
M Bur

by [16, Theorem 9.11]. By Lemma 4.10 and Rellich’s lemma, it is enough to prove that
Ker A={0}. This follows from Lemma 4.3. O

THEOREM 4.12. Suppose that 306 is not an integer and that —%5—2+%k<0. For
any ¢€L? ;(M), there exists a tensor YeH?5 (M) such that Ap=¢.

Proof. Consider the Laplacian operator A: L%, ,—L?;. The formal adjoint is
A*¢p=r"T4A(r=9¢). Apply Theorem 4.11 to r°¢:

CHA G|z, <l bllaz, = lr°lluz <CIA* | 2

54’

So A* has a closed range. Now,

[(0,0) 2 [ <Mz 102, < Cll@l L2, [|A™0]] 2

“s-a’
So, A*0— (o, H)ng defines a bound linear function in the range of A*. Using the

Riesz representation theorem, there exists ¢ €Im(A*) such that (¢, A*0) 2 = =(,0)12 .
Now, we get the theorem from the standard elliptic regularity theory. O

4.3. Holomorphic functions on ALF and ALG instantons

After proving the main estimate in the last subsection, we are ready to prove the existence
of global holomorphic functions on both ALF and ALG instatons. Our first theorem deals

with the growth order of harmonic functions on M

THEOREM 4.13. Suppose M is asymptotic to the standard ALF or ALG model.
Given any harmonic function feL2(M) for some &, there exists an vy such that f is
O(r") but not o(r). Also, when C(S(x))=Cg(ALG), By must be an integer. When
C(S())=R3*(ALF-A4y), v must be an integer. When C(S(00))=R?/Zy(ALF-Dy), ~

must be an even number.
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Proof. The function f also belongs to L% (M) for other §’. Without loss of gener-
ality, assume that ¢ is bigger than the supremum of those ' minus €. The supremum
exists because of the vanishing part of Theorem 4.3. By Lemma 4.4, fe HZ(M). Cut
off f so that it vanishes inside of a large ball Bg. Move this function to E. Then,
A(f(1=x(r/R))€L?, 4. .. Decompose f(1—x(r/R)) into T*-invariant part fo and the
perpendicular part fi.

Then, f; is much smaller than the growth rate of f(1—y). Without loss of generality,
we may assume that f(1—x(r/R)) is invariant.

Now again, we can transfer this invariant function to the tangent cone at infinity
C(S(c0)). When C(S(c0))=R?/Zs (ALF-Dy), we get a function f on its double cover
R3 naturally. When C(S(c0))=Cg (ALG), we get a function f(z) on C=R? defined by
f=(f(1=x(r/R)))(z"). Again, the growth rate of A(f) is at most the growth rate of f
minus 2 then minus €, so we can find out a function » whose growth rate is the rate of
f minus € such that A@[J:A(f). So, f—1 becomes a harmonic function on R3 or R2.
The gradient estimate implies that after taking derivatives for some times, we get zero.
In other words, f —1) must be a polynomial, so the growth rate must be an integer. For
the C(S(00))=R3/Zy(ALF-Dy,) case, we may replace ¢(z) by % (¢(z)+(—z)), so that

it is invariant under the Z, action. So, the polynomial must have an even degree. O

Now we can prove the existence of a global holomorphic function on any ALG

gravitational instanton.

THEOREM 4.14. There exists a global holomorphic function on any ALG gravita-

tional instanton M such that any fiber far enough is biholomorphic to a complex torus.

Proof. In this case, k=2. By Theorem 3.19, the metric near infinity is asymptotic to
the elliptic surface (FE, h). For (E,h), u'/? is a well-defined holomorphic function outside
Bgr. Now, if we pull back u!/? from the elliptic surface, cut it off, and fill it in with zero

inside K, we obtain a function f satisfying
0,f == 0(1/77172),

Pick any small positive number § € (max{—2,2/5—2¢},2/8—¢) such that 300 is not an
integer. Thus, ¢€L2_5. By Theorem 4.12, there exists wEH35_4 such that

p= Ay =—(9*0+00" )

in the distribution sense. Elliptic regularity implies that 1) is a smooth (0, 1) form. Take
0 on both sides of this equation. Notice that 9¢=0. Thus,

0= —30* (31) = A(G¢).



GRAVITATIONAL INSTANTONS WITH FASTER THAN QUADRATIC CURVATURE DECAY. I 297

By Lemma 4.3, 9¢=0(r'/8=¢/2). We can write this (0,2) form as £w*, where w* is the
parallel (0,2) form. Then, £ is a harmonic function. By Theorem 4.13, £ is a constant.
Therefore, d(f+9*1))=0, so f+0*1 is a global holomorphic function. After analyzing
the growth rate, we can also show that |d0*y|<|df| for any large r. So, the fiber far
from origin is a compact Riemann surface with genus 1. It must be a complex torus by

the uniformization theorem. O
Similarly, we can prove the following.

THEOREM 4.15. There exists a global holomorphic function on any ALF-Dy gravi-

tational instanton M.

Proof. The instanton M is asymptotic to a fiberation over R?/Zy=R3/(x~—x). The
function (zo+ix3)? is well defined over E. The proof of the last theorem will produce a

global holomorphic function in the ALF-D;, case. O

The existence of a global holomorphic function on any ALF-Aj, gravitational instan-
ton M can also be proved the same way. Actually, Minerbe had a simpler proof in [35].

It is an essential step in his classification of ALF-A; instantons.

4.4. Exponential decay of curvature of ALH instantons

For ALH non-splitting instantons, there is a self-improvement forcing the curvature to

decay exponentially. Therefore, the metric must converge to the flat one exponentially.

PROPOSITION 4.16. If the Ricci curvature is zero, then
AR;ji = Q(Rm).
Proof. We have
ARijri=Rijrim ™ =—Rijimpk " —Rijmi,i " = —Rijim ™ k—Rijmr ™ 1 +Q(Rm).
By Bianchi identity and the vanishing of the Ricci curvature,

Rijim ™ = Rimij " = —Rim; " i—Rim ™ ij=0.

)

Similarly,
Rijmi ™ =0.

Then, we reach the conclusion. O

THEOREM 4.17. In the ALH non-splitting case, there exists a constant u such that

the Riemannian curvature at p is bounded by Ce +(P),
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Proof. Pull back the Riemannian curvature tensor of g to ([R,00)x T2, h), where
h is the standard flat metric, we get a tensor T satisfying the equation DT=0, where
D=AY ViV; +B!V,+C is a tensor-valued, second-order elliptic operator such that

|AY —§9Td|<Cr~¢, |BY<Cr ' |C|<Cr e
By Theorem 3.1,
|T|:O(T_2_e)ﬂ ‘VT|:O(T_3_E)7 |V2T|:O(T_4_€)7

so TeHZ for all §<3+2¢. By Theorem 4.11 and the interior L? estimate (cf. [16, Theo-
rem 9.11]), for any R large enough,

/ TP < / (r—R)(1—x(r—R))’| T
[R+2,00) XT3 [R,00) XT3

<C (r—R)“*|D((1—x(r—R))T)
[R,00) XT3

SCIT | ((re1,r+2)xT2)

< C/ T2
[R,R+3]xT3

/ TP > <1+1>/ T2,
[R,00) XT3 C ) JiR43,00)xT3

In other words, the Riemannian curvature decays exponentially in the L? sense. The

improvement to L bound is simply Gilbarg and Trudinger’s Theorem 9.20 in [16]. O

From this better control of curvature, the holonomy of the loops ;. ; in Theorem 3.15
can be improved to |hol —Id|<Ce™#". Therefore, we are able to prove the following

theorem.

THEOREM 4.18. For any ALH non-splitting gravitational instanton (M, g), there

exist a positive number p, a compact subset K CM, and a diffeomorphism
®:[R, 00) xT? — M\ K

such that
(V™(@*g—h)[n < C(m)e "

for any m=0,1,2, ..., where h=dr?@®h; for some flat metric hy on T3.
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4.5. Elliptic estimates with exponential growth weights

In this subsection, we are trying to prove the elliptic estimates for weighted Hilbert spaces
with exponential growth weights.
We first look at the Laplacian operator on T®=R3/A. We define the dual lattice A*
by
A ={NeR3: (\,v) €Z for all vE A}.
Then, A has eigenvalues —472|\|? with eigenvectors e2™ M9 for all A€ A*. We call &

critical if §=4r|\| for some A€ A*. So, Theorem 4.5 is replaced by the following theorem
on [R,00)xT3.

THEOREM 4.19. Suppose that f is a real smooth function on [0,00)x T supported
in [R, R'|xT3, and that & is not critical. Then,

/ |f|?e" dVol < C |Af]?e" dVol.
[0,00) XT3 [0,00) X T?
Proof. We write f in terms of its Fourier series:
fN Z f,\(’l“)€27ri<)\’9>.
AEA*
Then,
Af e~ Y7 (F(r) =472 A fa(r)) ™00

AEA*

_ d da 27i(A,0)
= Z <dr 27r|)\|)<dr+27r|/\|>f>\(r)e .

AEA*

This time the Hardy’s inequality is

[e's) 4 [e's)
2 _vr N2 vr
dr< — dr.
| e [ yer ar

Therefore,

/OO 2t dr:/OO(€2ﬂ\A|rfA)2€(5747T\A|)T dr

0 0

4 oo

< 27| A|r N2 (6—A4r|A)r
<G ), (e v

4 T/ d 2
- T= [(W%'A'M e dr

16 o0 d d 2 .
S (6+47r|)\|)2(6—47r|)\|)2/0 [(dr‘%'”) <dr+2ﬂlkl)fx(r)] e’ dr.

So, as long as ¢ is not critical, we are done. O
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Now we define L? by
613 = [ 1ofe’ avol
L= ),

and H? by

6]l 2 = \//M || 257 dVol+/M V|25 dv01+/M IV2¢|2e57 dVol.

Then, Theorem 4.12 is replaced by the following.

THEOREM 4.20. Suppose 6 is not critical and §<0. For any ¢€L3, there exists a
tensor e H?% such that Ap=a¢.

4.6. Holomorphic functions on ALH instantons

To go through all the steps in the ALF and ALG cases, we first need to control the

growth rate of harmonic functions.

LEMMA 4.21. Let (N, h) be a smooth manifold such that, outside of a compact set, it
is exactly [R,00) x T® with the flat metric. Then, any smooth function u on N harmonic
outside of a large-enough ball with at most exponential growth rate can be written as

A,0)
b

linear combinations of 1, r, e2™IMre2mi and an exponential decay function, where r

and 0 are the coordinate functions on [R,00)xT? pulled back by the diffeomorphism.

Proof. Write u as its Fourier series

Z U (7,)627”'()\,6) )

AEA*

Then, uf=4m2|\|?uy. So,

UNG/O+bQ7"+ Z a}\eQﬂ'\MreQﬂi()\,G)_'_ Z b)\e—27r|)\\7“627ri()\,9>.
AeA*\{0} AxeA*\{0}

By Parserval’s identity, the growth condition of u implies that the first sum has finite
terms. For the second sum U, Parseval’s identity again implies that f[R, R+1)xT |U|?
decays exponentially. By [16, Theorem 9.20], we have that U also decays exponentially

in the L°° sense. O

Now, we can still find the global holomorphic function on ALH non-splitting instan-
ton (M, g).
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THEOREM 4.22. In the ALH non-splitting case, there exist (a1,az,a3)€S? and a
global holomorphic function with respect to a1l+asJ+a3K on M such that any fiber far

enough is biholomorphic to a complex torus.

Proof. As before, let
[R,00)xT®*={(r,0):r > R and 0= (1, 02,03) €R®/A}.

Let A* be the dual lattice. Choose A€ A*\ {0} with minimal length. Choose (a1, as,as)€

S? such that
B A1 dO1+ Mo dBs+ A3 dbs

Al

(arI"+a2J* +agK*)dr=

The function 2772710 {5 holomorphic with respect to ai;I+agJ+asK. The
growth rate of this function is exactly O(e?71AI™).
Now, we pull back this function from [R, 00) x T? to M, cut it off, and fill it in with

zero inside K so that we obtain a function f satisfying
0yf == 0(eI-wr),

where g is the constant in Theorem 4.17. So, ¢€ L2_25 for any non-critical positive number
§€ (2m|A|—p, 27| A]). By Theorem 4.20, there exists 1€ H2 ,; satisfying

d=AY=—(0*0+00*)Y

in the distribution sense. Elliptic regularity implies that 1 is a smooth (0,1) form. As
before, 9y =¢&w™ is a harmonic (0,2) form, so ¢ is a harmonic function of order O(e’).

Now, we use a cutoff function and the diffeomorphism to average g and the pull-back
of h. We get a smooth metric ¢’ on M, which is identically the pull-back of h outside a
very big ball. Now let v be the infimum of positive v/ such that £ is O(e”lr). If v>0,
then Ay E€L? 5 for any positive v>0">v—pu. It follows that there exists a function in
L? 5, whose Laplacian A is Ay, The difference of those two functions is a g’-harmonic
function. By Lemma 4.21, it must have an at most linear growth rate since the growth
rate is below the first non-linear harmonic function. It follows that & must be O(e?"),
which is a contradiction. So, v=0. Therefore, £ is bounded by any exponential growth
function.

So, Ay§ decays exponentially. In particular, it is in L?_.. By Theorem 4.12, we can
find out a function in H2;__ whose Ay is A& Therefore, we know that £ is actually

O(r1*e). Of course, y=¢w™ has the same estimate.
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By Lemma 4.4, the harmonic (0, 1)-form 0*9y=0(f+09*1) is O(r€), and its co-
variant derivative is O(r~!*¢). The Weitzenbock formula implies that —V*V(9*9v)=0.
Therefore,

IV(°94)?x < / 10*8| [V(8*8)| |V x|
M M

for any smooth compactly supported x. Let x=x(r—R) so that the right-hand side
converges to zero. Therefore, 0*0v is a covariant constant (0, 1)-form. If this form is
non-zero, it would be invariant under the holonomy of any loop. However, elements
in SU(2) have no fixed point except the identity matrix, so (M, g) must have trivial
holonomy. Therefore, it is R**xT* with the flat metric. This contradicts our non-
splitting assumption. So, 9*0 is actually identical to zero and f+0*1) is a global

holomorphic function on M. O

4.7. Compactification of ALG and ALH non-splitting instantons

In Theorems 4.14 and 4.22, we proved the existence of global holomorphic function u in
the ALG and ALH non-splitting cases such that any fiber far enough is biholomorphic
to a complex torus. Notice that du is never zero on any fiber far enough. We define a
holomorphic vector field X by w* (Y, X)=du(Y). Then, since

X(u)=du(X)=w"(X,X)=0,

we have that X is well defined when it is restricted to each fiber far enough . On each
fixed fiber far enough, there exists a unique holomorphic form ¢ such that ¢(X)=1.
Locally,

wh = f(u,v) dundv, X:f_l(u,v)ag,
v

Notice that each fiber far enough is topologically a torus. So, actually, we can inte-

o= f(u,v)dv.

grate the form ¢ to get a holomorphic function v€C/(Zr (u)BZ72(u)) up to a constant.
We can fix this constant locally by choosing a holomorphic section of u as the base point.
Therefore, M is biholomorphic to (U xC)/((u,v)~ (u,v+m7(u)+n7a(u))), where 71 (u)
and 72(u) are locally defined holomorphic functions. Actually, they are the integral of ¢
in the basis of H; of each fiber. This gives a local holomorphic torus fiberation.

Recall that there is a diffeomorphism from M minus a large compact set to the
standard fiberation. Denote the inverse image of the zero section by s. Note that s is
again a section outside of a large compact set because du differs with the standard one by
a decaying error. Write Os as e(u) du® X, and then e is a function defined on the inverse

of the punctured disc with polynomial growth rate. So, there is an at most polynomial
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growth function F on the inverse of punctured disc such that
OE(u) = e(u) du.

Now we apply the flow —E(u)X to the section s to get a holomorphic section sg on the
neighborhood of infinity. We view sy as the zero section, and we know that M minus a

large compact set is biholomorphic to
((C\Bgr) xC)/((u,v) ~ (u, v+m71(u)+n7a(u)))

globally, where 71 (u) and 72(u) are multi-valued holomorphic functions.
As proved in Kodaira’s paper [28], there exists an (unique) elliptic fiberation B over

Bpg-1 with a section such that B minus the central fiber D is biholomorphic to
((Br-1\{0})x C)/((t, v) ~ (@, v+mri (@) +nra(a™"))).

We can naturally identity points and get a compactification M of M. So, M is a compact

complex surface with a meromorphic function u=a""1.

Now, since the subvariety of
critical points {du=0} is a finite union of irreducible curves (u is of course constant on
those irreducible curves) and points, we know that, except for finite critical values in
CP', any fiber of u has no intersection with {du=0}. Therefore, a generic fiber has
genus 1 and must be an elliptic curve. In other words, M is a compact elliptic surface.

In conclusion, we have proved the second main theorem.

4.8. Twistor space of ALF-D;, instantons

On ALF-Dy, gravitational instantons, we have found quadratic growth holomorphic func-
tions for each compatible complex structure. A natural question is the following: is there
any relationship between those functions? Before going ahead, let us recall the definition

of the twistor space of a hyperkéahler manifold.

Definition 4.23. (Cf. [23]) Let (M, g,I,J, K) be a hyperkihler manifold. Then, the
twistor space Z of M is the product manifold M x S? equipped with an integrable complex

structure

1-¢¢, ¢+¢ ., . ¢(—C
£ <1+<§I_ 1rec Pigee™ I°>’

where (€CCCU{o0}=CP'=S? is the coordinate function, and Iy is the standard com-

plex structure on CP'.



304 G. CHEN AND X. CHEN

Notice that our definition is different from [23] to correct a sign error. We will briefly
rewrite pp. 554-557 of their paper with the correct sign.

Let ¢ be a (1,0)-form of I. Then, we have I*¢p=i¢, where (I*¢)(X)=¢(IX). Set
§=¢+CK*¢, then

(1+¢O) "0 = (1=COI" = (¢+C) T +i(¢ = ) K)o =i(1+(C)0,

because we have relationships like J*I*=K*. (In [23], they thought I*J*=K* and
caused a sign error.)

Now, if the form w'=wy+iws can be written as
1 n
59 =D biNnsi
i=1
for some (1, 0)-forms of I, then we can define a form on the twistor space by

n
w=2Y ($iFCK G) A(dnsi TCK bnv) = (watiws) +20wn — ¢ (wa —iws).
i=1
It is a holomorphic section of the vector bundle A?T:®O(2), where F means the fiber
of Z, which is diffeomorphic to M. We also have a real structure 7(p,¢)=(p, —1/¢). Tt
takes the complex structure I to its conjugate —I. In [23], they proved the following

theorem.

THEOREM 4.24. Let Z?"*t1 be a complex manifold such that

(i) Z is a holomorphic fiber bundle m: Z—CP' over the projective line;

(ii) The bundle admits a family of holomorphic sections each with a normal bundle
isomorphic to C*"®@0O(1);

(iii) There exists a holomorphic section w of A*Tr®0O(2) defining a symplectic form
on each fiber;

(iv) Z has a real structure compatible with (i), (ii), and (iii) and inducing the an-
tipodal map on CP'.

Then, the parameter space of real sections is a 4n-dimensional manifold with a

natural hyperkdhler metric for which Z is the twistor space.

Return to the gravitational instantons for which n in the above theorems equals 1.
Recall that we have found the holomorphic function on M by modifying the pull-back
of the standard function on the standard model. So, let us look at the standard model
(E,h,I,J, K) first. It is the quotient of the Taub-NUT metric outside a compact set by
Dyje|. Recall that the Taub-NUT metric is (cf. Theorem 3.19)

ds’> =Vdx*+V~1n?,
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with
dey=TI*(V'n)=J* doy = K* dus.
So,
(1+CC_I 71+CC_J +11+C§K z)(?{dml(lc Ydxs+i(14¢*) dzg) =0.

Therefore, (—x3+ize—2x1(—(—x3—1i12)¢?)? is a holomorphic function on the twistor

space of E, so the holomorphic function on M x {{}€Z is asymptotic to
(—x3+ix2—2x1C—(—$3—ix2)§2)2

with error O'(r?7¢).

Notice that any harmonic function has an even-integer growth rate, so the holomor-
phic function is unique up to the adding of constants. We may fix this ambiguity by
requiring the value at the fixed base point o to be zero. We will prove that, after the
modification, the holomorphic functions have a simple relationship.

Actually, we have a I-holomorphic ((=0) function u;+iv; asymptotic to
(—w3+ixe)? = (23 —23) —2izox3,
J-holomorphic ((=—1) function uy+ivy asymptotic to
(221 +2ix0)? = 4(23 —23) +8ixq 20,
and K-holomorphic ((=—1i) function us+ivs asymptotic to
(—2x3+2ix)? = 4(x3 —2?) —8izzw:.

Notice that us+uz—4u; is a harmonic function asymptotic to zero, i.e., is O'(r2~¢), so
it must be zero. Similarly, the harmonic function
2(p, ) = (uq —i—im)—%(1}34—2'112)(4—%(uz—1¢3,)C2—|—%(113—1'112)C3~6—(u1—2'111)C4
is asymptotic to
(—x3+izy—2x1 —(—x3—ix2)C?)?
and therefore must be the holomorphic one. In conclusion, we have proved the following

theorem.

THEOREM 4.25. In the ALF-Dy case, there exist sixz harmonic functions u; and v;,
with 4uqy=us~+ug, such that
2(p,¢) = (w1 +ivl)—%(U3+iU2)C+%(uz—u3)<2+%(v3—ivz)C3+(U1—ivl)C4
is a I-holomorphic map from the twistor space of M to the total space of the O(4) bundle
over CP!.

There is a real structure on the O(4) bundle (¢, )~ (—1/¢,7/¢*). Tt is easy to see

that the map z commutes with the real structure.
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