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1. INTRODUCTION

This is the second paper discussing constant scalar curvature Kéhler metrics.
We prove Donaldson’s conjecture (mentioned in the abstract) as well as the exis-
tence part of properness conjecture. For simplicity, we will first consider the case
Auto(M,J) =0 and then follow with the general case. Here Auto(M,J) denotes
the identity component of the automorphism group and Auty(M, J) = 0 means the
group is discrete. In the general setting, we will need to study the twisted cscK
equation with more subtle constraints. Our main method is to adopt the continuity
path introduced in [21] and we need to prove that the set of parameter ¢ € [0, 1] in
the continuity path is both open (c.f. [21]) and closed under suitable geometric con-
straints. The a priori estimates obtained in [22] and their modifications in Section
3 (where the scalar curvature takes twisted form as in the twisted path introduced
in [21]) are the crucial technical ingredients needed in this paper.

We will begin with a brief review of the history of this problem. In 1982 and
1985, E. Calabi published two seminal papers [12,13] on extremal Kéahler metrics
where he proved some fundamental theorems on extremal Ké&hler metrics. His
initial vision is that there should be a unique canonical metric in each Kéhler class.
Levine (c.f. [60]) constructed examples on which there is no extremal metric in any
Kahler class. More examples and obstructions are found over the last few decades
and huge efforts are devoted to formulate the right conditions (in particular the

Received by the editors February 17, 2018, and, in revised form, February 24, 2020, and Sep-
tember 24, 2020.

2020 Mathematics Subject Classification. Primary 53C55, 53C21; Secondary 35J30, 35J60,
35J96.

The first author was partially supported by NSF grant DMS-1515795 and Simons Foundation
grant 605796.

(©2021 American Mathematical Society

937

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



938 XIUXIONG CHEN AND JINGRUI CHENG

algebraic conditions) under which we can “realize” Calabi’s original dream in a
suitable format. The well known Yau-Tian-Donaldson conjecture is one of the
important formulations which states that on projective manifolds, the cscK metrics
exist in a polarized Kéahler class if and only if this class is K-stable. It is widely
expected among experts that the stability condition needs to be strengthened to a
stronger notion such as uniform stability or stability through filtrations, in order
to imply the existence of cscK metrics.

In the seminal paper [46], S. K. Donaldson proposed a beautiful program in
Kahler geometry, aiming in particular to attack Calabi’s renowned problem of ex-
istence of cscK metrics. In this celebrated program, Donaldson took the point of
view that the space of Kahler metrics is formally a symmetric space of non-compact
type and the scalar curvature function is the moment map from the space of almost
complex structures compatible with a fixed symplectic form to the Lie algebra of a
certain infinite dimensional symplectic structure group, where the said Lie algebra
is exactly the space of all real valued smooth functions on the manifold. With this
in mind, Calabi’s problem of finding a cscK metric is reduced to finding a zero of
this moment map in the infinite dimensional space setting. From this beautiful new
point of view, S. K. Donaldson proposed a network of problems in Kéhler geometry
which have inspired many exciting developments over the last two decades, cul-
minating in the recent resolution of Yau’s stability conjecture on Kéhler-Einstein
metrics [24-26].

Let H denote the space of Kéahler potentials in a given Kéhler class (M, [w]). T.
Mabuchi [62], S. Semmes [65] and S. K. Donaldson [46] set up an L? metric in the
space of Kéahler potentials:

2 2 n
150]l? = /M (BoPull, Vg e T,H.

Donaldson [46] conjectured that # is a genuine metric space with the pathwise dis-
tance defined by this L? inner product. In [18], the first named author established
the existence of C1'! geodesic segment between any two smooth Kéhler potentials
and proved this conjecture of S.K. Donaldson. He went on to prove (together with E.
Calabi) that such a space is necessarily non-positively curved in the sense of Alexan-
drov [14]. More importantly, S. K. Donaldson proposed Conjecture/Question 1.1
to attack the existence problem:

Conjecture/Question 1.1 ([46]). Assume Auto(M,J) = 0. Then the following
statements are equivalent:

(1) There is no constant scalar curvature Kdhler metric in H;

(2) There is a potential o € Ho and there ezists a geodesic ray p(t)(t € [0, 00))
in Ho, initiating from @o such that the K-energy is non-increasing;

(3) For any Kdhler potential ¢ € Hy, there exists a geodesic ray p(t)(t € [0, 00))
in Ho, initiating from 1 such that the K-energy is non-increasing.

In the above, Ho = H N {¢ : I(¢) = 0}, where the functional I is defined by
(2.7). The reason we need to use H, is to preclude the trivial geodesic p(t) = @o+ct
where ¢ is a constant.

In the original writing of S. K. Donaldson, he didn’t specify the regularity of
these geodesic rays in this conjecture. In this paper, we avoid this issue by working
in the space £! (see Section 2 for definition) in which the potentials have only very
weak regularity but the notion of geodesic still makes sense. By Theorem 4.7 of [§],
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KAHLER METRICS (II) 939

we can extend the notion of K-energy to the space £'. The precise version of the
result we prove is the following which amounts to a weak version of Donaldson’s
Geodesic stability conjecture:

Theorem 1.1. The following statements are equivalent.

(1) There exists no constant scalar curvature Kdahler metrics in (M, [wo]);

(2) Either the Calabi-Futaki invariant of (M,[wo]) is nonzero or there exists
a Kdhler potential pg € £ with K(pg) < oo, and a locally finite energy
geodesic ray in EF initiating from ¢ where the K-energy is non-increasing
but it is not parallel to a holomorphic line;

(3) Either the Calabi-Futaki invariant of (M, [wo]) is nonzero or for any Kdhler
potential oo € EF with K(po) < oo, there ewists a locally finite energy
geodesic ray initiated from ¢y where K-energy is non-increasing but it is
not parallel to a holomorphic line.

In the above, holomorphic line means a continuous curve h : [0,00) — 5&, such
that for any ¢ > 0, the (1,1) current wy,(y) = wo + V/—100h(t) = afwy(o) for a one-
parameter family o; € G and “parallelism” is defined as in Definition 1.4. £! is the
metric completion of H under L' geodesic distance, and £} = £ N {¢ : I(¢) = 0},
where the functional I is defined as in (2.7). We learned about the idea of using
locally finite energy geodesic ray from the recent beautiful work of Darvas-He [39] on
Donaldson conjecture in Fano manifolds where they use Ding functional instead of
the K-energy functional. From our point of view, both the restriction to canonical
Kahler class and the adoption of Ding functional are more of analytical nature.

We will introduce the notion of geodesic stability (c.f. Definition 1.5) and The-
orem 1.1 can be reformulated as an equivalence between existence of cscK and
geodesic stability. Let us first introduce ¥ invariant associated with geodesic ray
and the notion of “parallelism” between two locally finite energy geodesic rays.
This invariant characterizes the growth of K-energy along a geodesic ray.

Definition 1.2 (c.f. Definition (3.10) in [20]). Let ¢ € & with K(¢) < oo. Let
p:[0,00) = &} be a locally finite energy geodesic ray with unit speed such that
K(p(t)) < oo for any ¢t > 0. We define:

K
¥[p] =lim inf M
k—o00 k
Remark 1.3. From the convexity of K-energy along locally finite energy geodesic
ray (c.f. [8, Theorem 4.7]), we see that actually the above limit exists, namely

¥lol = klingo @

Moreover
¥[o] = lim (K(p(k+ 1)) — K(p(k))).

k—o0
Definition 1.4. Let p; : [0,00) — &} be two continuous curves, i = 1,2. We say
that p; and py are parallel, if sup, o di(p1(t), p2(t)) < oco.

Obviously, one can modify this according to d, topology for any p > 1. We
can define a notion of geodesic stability /semi-stability in terms of ¥ invariant as
follows:
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Definition 1.5. Let ¢y € £} be such that K(¢g) < co. We say (M, [wo]) is geodesic
stable at ¢q if for any locally finite energy geodesic ray p : [0,00) — &} with unit
speed, exactly one of the following alternative holds:

(1) ¥[p] >0,

(2) ¥[p] = 0, and p is parallel to another geodesic ray p’ : [0,00) — &g,

generated from a holomorphic vector field X € aut(M, J).
We say (M, [wo]) is geodesic semistable at ¢g as long as ¥[p] > 0 for all geodesic
ray p described above.
We say (M, [wo]) is geodesic stable(resp. semistable) if it is geodesic stable (resp.

semistable) at every ¢ € £}.

We remark that the notion of geodesic stability /semi-stability is independent of
the choice of base potential ¢g, in virtue of Theorem 1.4 (see below).

Remark 1.6. It is possible to define the ¥ invariant for a locally finite energy
geodesic ray in £ with p > 1. Note that a geodesic segment in &} is automatically
a geodesic segment in £ for any ¢ € [1,p]. Following the preceding definition, one
can also define geodesic stability in £J(p > 1). Note that for a locally given finite
energy geodesic ray in £ (p > 1), the actual value of ¥ invariant in &) might differ
by a positive multiple from the ¥ invariant considered in £}. However, it will not
affect the sign of the ¥ invariant for a particular locally finite energy geodesic ray.
On the other hand, the collection of locally finite energy geodesic ray in Ef(p > 1)
might be strictly contained in the collection of geodesic rays in &i. Therefore,
the notion of geodesic stability in the £} is strongest while the notion of geodesic
stability in £5° is the weakest. Without going into technicality, we may define
geodesic stability in £5° as the ¥ invariant being strictly positive for any locally
finite energy geodesic ray which lies in ﬂp>1 &Y. For interested readers, we refer
to the following works and references therein: J. Ross [63], G. Székelyhidi [68],
Berman-Boucksom-Jonsson [5], R. Dervan [44].

Using this notion of geodesic stability, we can re-formulate Theorem 1.1 as:
Theorem 1.2. There exists a cscK metric if and only if (M, [wo]) is geodesic stable.

After we prove this theorem, we obtain the following characterization of geodesic
semi-stability.

Theorem 1.3. (M, [wo]) is geodesic semistable if and only if the continuity path
t(R, — R) = (1 — t)(trowo — n) has a solution for any t < 1.

Consequently, we deduce

Corollary 1.7. If the K-energy is bounded from below in (M, [wy)), then (M, [wo])
is geodesic semistable.

It is an interesting question to ask if the converse is also true. Namely if (M, [w])
is geodesic semistable, does it follow that K-energy is bounded from below? Note
even for the corresponding statement in the algebraic case, we don’t know how to
conclude the existence of a lower bound of K-energy from K-stability or uniform
stability except in the Fano manifolds where the authors proved it indirectly in
route of CDS’s theorem.

We have Theorem 1.4 which is useful to our characterization of borderline case.
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Theorem 1.4. Let p1(t) : [0,00) — &} be a locally finite energy geodesic ray with
unit speed. Then

(i) For any ¢ € &}, there exists at most one unit speed locally finite energy
geodesic ray pa(t) : [0,00) — &L initiating from o which is parallel to p1. Moreover,
¥[p1] = ¥[p2] for any such geodesic ray ps.

(ii) If ¥[p1] < o0 and K(p) < oo, then there exists such a geodesic ray pa as
described in point (i).

Remark 1.8. Tt is an interesting question whether such a parallel geodesic ray exists
in general, i.e. with no assumption on ¥ invariant.

The uniqueness part and that ¥ invariants for two rays are equal will be proved
in Appendix. For the existence part, we first give a proof in the special case with
p1(0), p € £2. This allows us to use the Calabi-Chen theorem (c.f. [14]) that (£2, d2)
is non-positively curved. Note that when p # 2, the infinite dimensional space
(EP,d,) is no longer Riemannian formally. Recall that for g, ¢1 € H, dp(p0, 1) is

defined as the infimum of fol (Jus \8t<p|flwz(t7_)) %dt, where the infimum is taken over
all smooth curves ¢(t,-) : [0,1] — H. The space P is just the metric completion
of the space H under the distance dp.

Nonetheless, we prove Theorem 1.5, which follows from the NPC (non-positively

curved) property when p = 2.

Theorem 1.5. Let 1 < p < oo. Let ¢o, ¢y, ¢1, ¢1 € EP. Denote {¢o,t}iefo,1]
{&1,t}eepo,1) be the finite energy geodesics connecting ¢o with ¢y and ¢1 with ¢}
respectively. Then we have

dp(¢0,t7¢1,t) S (1 - t)dp(¢07¢1) + tdp(¢67¢/1)

Remark 1.9. In [8, Proposition 5.1], the authors obtained Theorem 1.5 for the case
p = 1, using a representation formula of d;.

Given the central importance of the notion of K-energy in Donaldson’s beautiful
program, the first named author proposed the Conjecture/Question 1.10, shortly
after [18]:

Conjecture/Question 1.10. Assume Auto(M,J) = 0. The existence of constant
scalar curvature Kahler metric is equivalent to the properness of K-energy in terms
of geodesic distance.

Here “properness” means that the K-energy tends to 400 whenever the geodesic
distance tends to infinity (c.f. Definition 4.1). The original conjecture naturally
chose the distance introduced in [46] which we now call L? distance. After a series of
fundamental work of T. Darvas on this subject (c.f. [38,?Darvas1403]), it becomes
clear that the L' geodesic distance is a natural choice for the properness conjecture.
Indeed, the correct formulation appears earlier in Darvas-Rubinstein [40].

Definition 1.11 (c.f. [7,40]). We say K-energy is proper with respect to L!
geodesic distance modulo G := Auto(M, J), if
(1) For any sequence {¢;} C Ho, inf,eq di(wo,0*w,,) — oo implies K (p;) —
+00,
(2) K-energy is bounded from below.

Henceforth we will denote the group Auto(M,J) by G. With this in mind, we
will prove that
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942 XIUXIONG CHEN AND JINGRUI CHENG

Theorem 1.6 (Theorem 4.3). There exists a constant scalar curvature Kdhler
metric if and only if the K energy functional is proper with respect to the L' distance
modulo G.

For properness conjecture, we remark that there is a more well known formu-
lation due to G. Tian where he conjectured that the existence of cscK metrics
is equivalent to the properness of K-energy in terms of Aubin functional J (c.f.
definition (2.7)). Ome may say that Tian’s conjecture is more of analytical na-
ture while Conjecture/Question 1.10 fits into Donaldson’s geometry program in the
space of Kéhler potentials more naturally. According to T. Darvas (c.f. Theorem
5.5 of [38]), Aubin’s J functional and the L' distance are equivalent. Therefore,
these two properness conjectures are equivalent. Nonetheless, the formulation in
Conjecture/Question 1.10 is essential to our proof.

The direction that existence of cscK implies properness has been established by
Berman, Darvas and Lu in [7]. For the converse direction, Darvas and Rubinstein in
[40] have reduced this problem to a problem of regularity of weak minimizers of K-
energy over the space £, which we will resolve in Section 5. (In the special case of
toric varieties, Zhou-Zhu [77] proved the existence of toric invariant weak minimizers
of the modified K-energy under properness assumption and they first proposed the
properness definition modulo a group, similar to the one used in Darvas-Rubinstein
[40] and also in our paper.) Hence Theorem 1.6 has been established by combining
these results. Nonetheless, in this paper we will show how to obtain Theorem 1.6
by solving along the continuity path

t(Ry, — R) = (1 — t)(trowo —n), t e [0,1].

For this purpose, we develop new estimates for scalar curvature type equations
which may be of independent interest.

The existence part of Theorem 1.6 also holds for twisted cscK metric as well (c.f.
Theorems 4.1 and 4.2), which is the solution to the equation

(1.1) t(Ry — R) = (1 = t)(tryx — x)-

In the above, 0 < t < 1, x is a fixed K&hler form, and R is the average of scalar

n—1
curvature, and x = IM}L% It is well-known that R and x depend only on the
X w0 X

Kaéhler classes [wo] and [x].
Now we recall an important notion introduced in [21]:
(1.2)
R(Jwo], x) =sup{to € [0,1] : the above equation can be solved for any 0<t<ty}

In the same paper, the first named author conjectured that this is an invariant of
the Kéahler class [x]. In this paper, as a consequence of Theorems 4.1 and 4.2, we
will show that if x; and yo are two Kéhler forms in the same class, then one has

R([wo], x1) = R([wol; x2),

so that the quantity R([wp], [x]) is well-defined and gives rise to an invariant between
two Kéahler classes [wp], [x]. Moreover, when the K-energy is bounded from below,
the twisted path (1.1) can be solved for any ¢ < 1, as long as t = 0 can be solved.
Thus in this case we have

Theorem 1.7. Let x be a Kdhler form. If the K-enerqgy is bounded from below on
(M, [wo]), then R([wol, [x]) = 1 if and only if one can solve tryx = x.
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As noted in [21], it is interesting to understand geometrically for what Kéhler
classes this invariant is 1 but do not admit constant scalar curvature metrics. More
broadly, it is interesting to estimate the upper and lower bound of this invariant.
It is not hard to see the relation between the invariant introduced in [69] and the
invariant introduced above when restricted to the canonical Kéahler class in Fano
manifolds, where we take [x]| to be the first Chern class in (1.2). Hopefully, the
method used there can be adapted to our setting to get estimate for this new
invariant, in particular an upper bound.

T. Darvas and Y. Rubinstein conjectured in [40, Conjecture 2.9] that any mini-
mizer of K-energy over the space £! is actually a smooth Kihler potential. This is
a bold and imaginative conjecture which might be viewed as a natural generaliza-
tion of an earlier conjecture by the first named author that any C!' minimizer of
K-energy is smooth (c.f. [18, Conjecture 3]). Under an additional assumption that
there exists a smooth cscK metric in the same Kahler class, Darvas-Rubinstein con-
jecture is verified in [7]. In this paper, we establish this conjecture as an application
of properness theorem. Note that Euler-Lagrange equation is not available a priori
in our setting, so that the usual approach to the regularity problem in the calculus
of variations does not immediately apply. Instead, we need to use the continuity
path to overcome this difficulty.

Theorem 1.8 (Theorem 5.1). Let ¢, € E' be such that K(p.) = inf,ecer K(p).
Then @, is smooth and w,, = wy + v/ —100p. is a cscK metric.

We actually establish a more general result which allows us to consider more
general twisted K-energy and we can show the weak minimizers of twisted K-
energy are smooth as long as the twisting form is smooth, closed and nonnegative.
Previous result due to W. He and Y. Zeng [57] proved Chen’s conjecture on the
regularity of C''! minimizers of K-energy with some additional assumption on the
positivity of volume form.

E. Calabi believed that every Kéhler class should have one canonical represen-
tative. E. Calabi’s vision has inspired generations of K&hler geometers to work on
this exciting problem and without it, this very paper will never exist. To celebrate
his vision, we propose to call such a manifold a Calabi manifold.

Definition 1.12. A Ké&hler manifold is called Calabi manifold if every Kahler
class on it admits an extremal K&hler metric.

Clearly, all compact Riemann surfaces, complex projective spaces CP™ and all
compact Calabi-Yau manifolds [75] are Calabi manifolds. Our discussion above
asserts

Corollary 1.13. Any Kdhler surface with C1 < 0 and no curve of negative self-
intersection is a Calabi surface.

It is fascinating to understand how large this family of Calabi surfaces is. Fol-
lowing this corollary, one should be able to construct more examples of Calabi
manifolds.

To prepare ourselves for the general case, we will need to study a general equation
first. As before, we continue our study of the twisted cscK equation

t(R, — R) = (1 = t)(tryx — x), where ¢ € [0,1],
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but allow in more general form with x being some fixed smooth real (1,1) form in
[22]. In this paper, y is allowed to vary in a fixed K&hler class with some constraints.
More specifically, we consider

(1.3) x = xo0 + V—190f. > 0, sup f« =0, / e Pl < o0 for some p > 1.
M M

We are able to extend many of our previous estimates in [22] to these more gen-
eral right hand side as (1.3) (some of those will require p to be sufficiently large
depending only on dimension n). These new a priori estimates are crucial for us to
extend our proof of Donaldson’s conjecture on geodesic stability and the Proper-
ness conjecture for K-energy to the setting with general automorphism group. For
simplicity, we only state and prove the results on constant scalar curvature Kahler
metrics in this paper. Analogous results for extremal Kéhler metrics can be proved
in a similar way using our estimates.

Theorem 1.9 (Theorem 3.3). Let ¢ be a smooth solution to (3.1), (3.2), with
assumptions in (1.3) hold. Suppose additionally that p > Kk, for some constant k.,
depending only on n. Then for any p' < p,

[|F + fallyprer < Cosa, ||n+Ag0||Lp/(w6L) < Cas1.

Here Co5.1 depends only on an upper bound of entropy fM log (:—E)wg, p, p', the
0

bound for [,, e PFdvoly, ||R||o, maxar |Boly and background metric wo.

In a series of three fundamental papers [48-50], S. Donaldson proved that on
toric Kéahler surfaces, the existence of cscK metric is indeed equivalent to the K-
stability. This is partially generalized in [15] to extremal Kéahler metrics (c.f. [17]
and reference therein for interior regularity estimates on Ké&hler toric varieties).
However, in general algebraic Kahler manifolds, one expects that the K-stability
might fall short of the existence of cscK metrics; see the evidence provided by [2].
In the special case of Toric Kéhler manifold, we prove the YTD conjecture:

Theorem 1.10. On toric Kahler manifold, the existence of cscK metric is equiv-
alent to uniform stability.

The above “uniform version” of the YTD conjecture was made by Donaldson
[48]. That the existence of cscK implies uniform stability was shown by Chen-
Li-Sheng [15] in the toric setting. The general case (algebraic manifolds) follows
from combining Corollary B in [11] and Theorem 1.5 in [7]. Note that [43] proved
similar implications on algebraic manifolds for twisted cscK when the twisting form
is strictly positive. For general Kihler manifolds, Dervan and Ross [45] introduced
a notion of uniform stability in non-algebraic settings and proved that uniform
stability follows from the properness of the K-energy.

Finally we explain the organization of the paper:

In Section 2, we recall the necessary preliminaries needed for our proof, including
the continuity path we will use to solve the cscK equation and the theory of geodesic
metric spaces established by Darvas and others.

In Section 3, we derive estimates for scalar curvature type equations with more
general right hand side.

In Section 4, we prove the properness conjecture using continuity path. First
we handle the special situation when Auto(M, J) = 0, for which we only need the
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estimates already established in [22]. Then we move on to the general case, for
which the generalized estimates obtained in Section 3 become necessary.

In Section 5, we prove that the weak minimizer of K-energy over the metric
space (€1,dy) (c.f. Section 2.2) is given by a smooth cscK potential.

In Sections 6 and 7, we show that the existence of cscK metric is equivalent to
geodesic stability. Again we first prove it under the special case when Auto(M, J) =
0, where the notion of geodesically stability is simpler. Then in Section 7, we move
on to the general case. The YTD conjecture for toric setting is treated in Section
7.1.

In the Appendix, we prove some results about the non-positively curved proper-
ties of the metric space (EP,d,) which will be useful to us. Such results may be of
independent interest.

2. PRELIMINARIES

In this section, we will review some basic concepts in Kéhler geometry as well as
some fundamental results involving finite energy currents, which will be needed for
our proof of Theorems 1.1 and 1.3. In particular, it includes the characterization
of the space (£1,d;), a compactness result on bounded subsets of £! with finite
entropy. We also include results on the convexity of K-energy along C1'! geodesics
as well as its extension to the space £!. For more detailed account on these topics,
we refer to a recent survey paper by Demailly [41].

2.1. K-energy and twisted K-energy. Let (M,wq) be a fixed Kéihler class on
M. Then we can define the space H of Kahler metrics cohomologous to wg as:

(2.1) H=1{peC®M):wy,:=uwy+V—-100¢p > 0}.
We can introduce the K-energy in terms of its derivative:
dK Op wy
2.2 - = — i _
(22) G0 = | GBI el

Here R, is the scalar curvature of w,, and

R— [CL(M)] - [w]t" ] _ Jar wag_
o ]t Jarwn

Following [18], we can write down an explicit formula for K (p):

(2.3 k(o) = [ 0w (22) 5 4 il

where for a (1,1) form y, we define

(2.4)
wS\Lw
N —F— dA
//N (X = Xn!)
n—1
= A wk /\w _k—i w, /\w
n! kazox 6 CEE] /xwz 5
Here »
7fMX/\ (n— 1)'
X_ w§
M n!
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Following formula (2.19), we have

n

We
= [ Owpltrox —x)—y
M n

It is well-known that K-energy is convex along smooth geodesics in the space of
Kahler potentials.

Let 8 > 0 be a smooth closed (1,1) form, we define a “twisted K -energy with
respect to 87 by

(2:5) Kp(p) = K(p) + s ().
The critical points of Kg(y) satisfy the following equations:

fM/B/\(n 1)!

wg
M n!

(2.6) R, —R=tr,f— [, where =

For later use, we also define the functionals I(¢), J(¢), given by

en 0= gy fe et a6 = [ et )

We also need to consider the more general twisted K-energy, which is defined to

be
(2.8) Ky =tK + (1 —1t)J,.
Following [18], we can write down Euler-Lagrange equation for twisted K-energy:
(2.9) HR, — B) = (1= )(trpx — ), t € [0,1].
Following [21], for ¢ > 0, we can rewrite this into two coupled equations:
(2.10) det(g;; + ¢i;) = €” det g3,
1-1¢ . 1-1¢
(2.11) AL F =—(R- TX) + tr,(Ric — Tx)

In the following, we will assume x > 0, that is, x is a Kahler form. The equation
(2.9) with ¢ € [0,1] is the continuity path proposed in [21] to solve the cscK equa-
tion. More generally, one can consider similar twisted paths in order to solve (2.6).
Namely we consider

(2.12) t(R, — R) = t(try 8 — B) + (1 = t)(trex — x)-
The solution to (2.12) is a critical point of tKg + (1 — t)J,,. We will see later that
it is actually a minimizer. For ¢t > 0, this again can be equivalently put as
(2.13) det(g;5 + ¢i7) = el det 9i5»

1-t¢ 1-1¢
(2.14) Ag,F:—(E—Q—TX)—th(Ric—ﬁ—Tx).

An important question is whether the set of ¢ for which (2.12) can be solved is open.
The cited result is only for (2.9), but the same argument would work for (2.12).

Lemma 2.1 ([21,56,76]). Let 5 > 0 be nonnegative closed smooth (1,1) form and
x be a Kdhler form. Suppose that for some 0 < to < 1, (2.12) has a solution
o € C*(M) with t = to, then for some & > 0, (2.12) has a solution in C** for
any t € (to — 0,to +6) ([0, 1).
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We observe that we can always make sure (2.9) or (2.12) can be solved for ¢t = 0
by choosing y = wp or any Kéhler form in [wp].

Remark 2.2. Clearly if x is smooth, it is easy to see by bootstrap that a C*©
solution to (2.9) is actually smooth.

Hence Lemma 2.1 shows the set of ¢ for which (2.9) has a smooth solution is
relatively open in [0, 1).

From the Theorem 5.3 of [22], we can conclude that

Proposition 2.3. Let ¢ be a smooth solution to (2.9) or (2.12) with t > §y > 0,
normalized so that sup,; o = 0. Then the higher derivatives of ¢ can be estimated

in terms of an upper bound of entropy, defined as fM log(:)—ﬁ)wg, as well as dg.
0

Proof. This follows directly from Theorem 5.3 of [22], by taking f = R— 8 — %X?

and n = Ric(wy) — 8 — %x. Note that the assumption ¢t being bounded below by
Jo guarantees f and n is bounded. O

2.2. The complete geodesic metric space (£7,d,). In Section 3.3 of [54] intro-
duced the following space for any p > 1:

(2.15) EP ={p e PSH(M,w) : / Wy = / wy s / lp[Pwy, < oo}
M M M

In the above, ¢ € PSH(M,wy) means that wy + v/—19090p > 0 in the sense of

currents. A fundamental conjecture of V. Guedj [53] stated that the completion of

the space H of smooth potentials equipped with the L? metric is precisely the space

E%(M,wy) of potentials of finite energy. This has been shown by Darvas [37]. In

[38], he has shown similar characterization holds for general LP metric. Note that

the extension to the L' metric is essential and fundamental to our work.
Following Mabuchi, T. Darvas [38] introduced the notion of d; on H.

(2.16) lello = [ 165, ¢ Tm =)

Using this, we can define the path-length distance d; on the space H, i.e. dq(ug,u1)
equals the infimum of length of all smooth curves in H, with a(0) = ug, (1) = u;.
T. Darvas [38, Theorem 2] proved, following Chen [18] in the case of da, that (H,d;)
is a metric space.

We have the following characterization for (£1,d;):

Theorem 2.1 ([38, Theorem 5.5]). Define

wh w
Il(u,v):/ |u—v|—‘:—|—/ lu—v|=%, u,v €H.
M n. M n.

Then there exists a constant C' > 0 depending only on n, such that
1
(2.17) 511(%71) <di(u,v) < CI(u,v), for any u,v € H.

For later use, here we describe how to obtain “finite energy geodesics” from the
CU! geodesics between smooth potentials.

Theorem 2.2 ([38, Theorem 2]). The metric completion of (H,dy) equals (€1, dy)
where

dl (UO7 Ul) = kli}n;o dl (’UJIS, u’f),
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for any smooth decreasing sequence {uf}kzl C H converging pointwise to u; € E*.
Moreover, for each t € (0,1), define

ug := lim uf, t € (0,1),
k—o0

where uf is the C1'1 geodesic connecting uf and uf (c.f. [18]). We have u; € £,
the curve [0,1] 5 t — w; is independent of the choice of approximating sequences
and is a dq-geodesic in the sense that for some ¢ > 0, di(ug, us) = c|t — s|, for any
s, t €10,1].

The above limit is pointwise decreasing limit. Since the sequence {uf}i>; is
decreasing sequence for i = 0, 1, we know {uf},>1 is also decreasing for ¢ € (0, 1),
by comparison principle.

We say u; : [0,1] > ¢t — &' connecting ug, up is a finite energy geodesic if it is
given by the procedure described in Theorem 2.2. The following result shows the
limit of finite energy geodesics is again a finite energy geodesic.

Proposition 2.4 ([8, Proposition 4.3]). Suppose [0,1] > t — ul € &£ is a se-
quence of finite energy geodesic segments such that dy(ub,ug), dy(ui,u1) — 0. Then
di(ul,u;) — 0, for any t € [0,1], where [0,1] > t — u; € E is the finite energy
geodesic connecting ug, Uj .-

Finally we record the following compactness result which will be useful later.

This result was first established in [6]. The following version is taken from 8],
which is the form most convenient to us.

Lemma 2.5 ([6, Theorem 2.17], [8, Corollary 4.8]). Let {u;}; C £ be a sequence
for which the following condition holds:

sup dy (0, u;) < oo, sup K(u;) < oo.
i i

Then {u;}; contains a di-convergent subsequence.

2.3. Convexity of K-energy. In this subsection, we record some known results
about the convexity of K-energy and J, functional along CU! geodesics and also
finite energy geodesics. In [18], the first named author proved the following result
about the convexity of the functional J,.

Theorem 2.3 ([18, Proposition 2]). Let x > 0 be a closed (1,1) form. Let ug, uy €
H. Let {u}repo,1) be the CH' geodesic connecting uo, uy. Then [0,1] 5 ¢ — Jy(uy)
18 convez.

The convexity of K-energy along smooth geodesics was first observed by T.
Mabuchi, c.f. [62]. However, such convexity over non-smooth geodesics is more
challenging, and is conjectured by the first named author:

Conjecture/Question 2.6 (Chen). Let ug, uy € H. Let {u}iepo,1) be the CH1
geodesic connecting ug, uy. Then [0,1] 2 ¢t — K(ut) is conver.

This conjecture was verified by the fundamental work of Berman and Berndtsson
[4] (c.f. Chen-Li-Paun [29] also).

Theorem 2.4. Conjecture/Question 2.6 is true.

It turns out that the K-energy and also the functional J, can be extended to
the space (€', d;) and is convex along finite energy geodesics. More precisely,
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Theorem 2.5 ([8, Theorem 4.7]). The K-energy defined in (2.3) can be extended
to a functional K : €' — R U {+o00}. Besides, the extended functional K|g1 is
the greatest dy -lower semi-continuous extension of K|y . Moreover, K|g1 is convex
along finite energy geodesics of &;.

Theorem 2.6 ([8, Propositions 4.4 and 4.5]). The functional J,, as defined by (2.4)
can be extended to be a di-continuous functional on E'. Besides, Jy is convex along
finite energy geodesics.

2.4. Chen’s decomposition formula for K-energy. In view of Theorem 1.3,
it is important to study, under what conditions, the K-energy functional is proper
in a given Kéhler class. In [18], the first named author proposed a decomposition
formula for K-energy:

(2.18) K()—/lo Yo\l Ly )

. ¥)= u g Wl oy —Ric\¥P),

where the functional J_g;. is defined through its derivatives:
dJ_R‘ 8()0 ' wnfl wn

2.19 <= —(=Ric N —= R—2).

(2.19) di o e T HELD)

One key observation in [18] (based on this decomposition formula) is that K-energy
has a lower bound if the corresponding J_g;. functional has a lower bound. Note
that when the first Chern class is negative, one can choose a background metric such
that —Ric > 0. Then, J_p;. is convex along C!! geodesics in H and is bounded
from below if it has a critical point. In [73], Song-Weinkove further pointed out that
J_Rric functional being bounded from below is sufficient to imply the properness of
K-energy. The research in this direction has been very active and intense (c.f. Chen
[18], Fang-Lai-Song-Weinkove [52], Song-Weinkove [74], Li-Shi-Yao [61], R. Dervan
[42], and references therein). Combining these results with Properness Theorem
4.1, we have Corollary 2.7.

Corollary 2.7. There exists a cscK metric in (M, [w]) if any one of the following
conditions holds:

(1) There exists a constant € > 0 such that € < "oy ([w]) and 7C1 (M) < €[w]

such that
(_n% + e) Cwl 4+ (n—=1)C1 (M) > 0.
Here apr(w) denotes the a-invariant of the Kahler class (M, [w]) (c.f. [70]).
(2) If
ot > S
and

[w]-

Here part (1) of Corollary 2.7 follows from Li-Shi-Yao [61] (c.f. Fang-Lai-Song-
Weinkove [52], Song-Weinkove [74]), part (2) of Corollary 2.7 follows from R. Dervan
[42].

- [w]™ n+1
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Following Donaldson’s observation in [47], if a K&hler surface M admits no curve
of negative self intersections and has C7(M) < 0, then the condition

2[w] - [-C1(M)]

[w]?
is satisfied automatically for any Ké&hler class [w] (c.f. Song-Weinkove [73]). Con-
sequently, on any Ké&hler surface M with C;(M) < 0 with no curve of negative

self-intersection, the K-energy is proper for any Kéhler class (c.f. Song-Weinkove
[74]). Tt follows that on these surfaces, every Kéhler class admits a cscK metric.

Cw] = [=Ci(M)] >0

Corollary 2.8. Any Kdhler surface with Cy < 0 and no curve of negative self-
intersection is a Calabi surface.

It is fascinating to understand how large this family of Calabi surfaces is. It is
possible to construct such examples explicitly.

3. SCALAR CURVATURE TYPE EQUATIONS WITH SINGULAR RIGHT HAND SIDE

Let (M, J,wy) be a compact Kéhler manifold. We consider the following scalar
curvature type equation:

(3.1) det(g;; + ¢i5) = e’ det 955
(3.2) ALF = tr,(Ric — ) — Ro.

In the above, 8 = By + /—1909f, > 0. Also we assume that 3 is a real bounded
(1,1) form and f is normalized to be sup,, f, = 0, e~/* € LP°(M) for some py > 1.
Ry is a bounded function. Here fy is bounded just means that if we write Sy in
coordinates as Sy = v/—1(80);5dzi A dz;, the coefficients (f);; are bounded.

As before, ¢ should be such that g;; +¢,; > 0 on M, so that w,, := wo++v/—100¢p
defines a new Kéhler metric in the same class as wy. We note that (4.28), (4.29)
can be combined to give the following scalar curvature type equation:

(3.3) R, = t’I“S(;,B + Rp.
Here R, denotes the scalar curvature of the metric w,. In the following, we will

always assume that the solution ¢ is smooth and our goal is to derive a priori
estimates.

3.1. Boundedness of F + f,. The estimate in this subsection only requires a
bound for fM e~ Pof- dvoly for some pg > 1. In particular, we don’t need any posi-
tivity assumption on the form (.

Lemma 3.1. Let ¢ be the solution to the following equation:

eF'VF?2 +1

3.4 det ,L'f'+ ,L'f' = det Z'f',
(3-4) (9:7 + ¥i7) [P T T Tdvol, 9
(3.5) supt = 0.

M

Suppose also supy; p = 0. Then for any 0 < g9 < 1, there exists a constant Cy,
such that

F+ fi+eop— 2(mj\z}x|Ric — Bolg + 1) < Co.

Here Cy depends only on eq, the upper bound of the entropy fM Fedeolg, the bound
for maxar |Bolg, ||R||o and the background metric (M,wy).
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Proof. Similar to the cscK case, the proof is by Alexandrov maximum principle.
Observe from (3.2) that

(3.6) Ay (F + f) =try(Ric — By) — R.
Denote C' = 2(maxyy |Ric — folg + 1) and we compute
(3.7 AL(F+ fu +eop — Cyp) =try(Ric — By) — R+ e0App — Cn+ Ctryg.
Using arithmetic-geometric mean inequality, we have
Agtp = gg(gi; +5) —trog > A™n (F24 1) — tryg.

Here A = fM ef'VEF?2 + 1dvol,. Also due to our choice of the constant C', we obtain
from (3.7) that

C 1 1
(3.8) Ap(F 4 foteotb = Cp) 2 Strpg + g0A 7 (F2 4 1)z — C).

Here C7 has the said dependence as stated in the lemma. By Proposition 2.1 in
[70], there exists & > 0, and a constant C5, such that for any wg-psh function ¢, we
have

/ e—a(¢—supy ¢)dvolg < (.
M

Now denote u = F'+ fi +e0t) — Cyp, § = 575, and let 0 < § < 1 to be determined.
First for any p € M, we can construct a cut-off function 7,, so that n,(p) = 1,

np, = 1 — 6 outside the ball By, (p), and |Vn,| < Z—z, [V2n| < 2%. Here dy is
0

a sufficiently small constant depending only on the background metric (M, wy).
Assume that the function u achieves maximum at the point py, then we compute
(3.9)

Dy (e 11p,) = 65u52|ku‘g2977po + e, 00 pu + €7 Aty + 26740V st - Vi,

c 1 L
> eVl + €0l (5 g + €0 AT (F2 +1)37 = )

Su |2 Su 52 2 Su |V<P77P0‘g20
— €™V np,|treg — 767 VpulJmp, — e o
Po
oC 20 462
> ou _ _
z< (S~ A=)~ Ba—9)

Choose ¢ small enough so that (note that 6C' = 3-)

E _ 26 _ 46*
2 dB(1-6) d3(1-90)
With this choice of 6, (3.9) gives

)irog + ¢Sy, (204”7 (F? 4 1)20 — ).

> 0.

(310)  Ap(e™npy) > € o, (sgA™ 7 (F? +1)77 — C1) > =6y, CrX r<cy) -

Here x{r<c,} is the indicator function of the set {F' < Cs}, and Cj3 is a constant
determined by the inequality

SoA_%(Fz—’—l)ﬁ — Oy <0 implies F < Cs.

Hence C5 depends only on ¢y, C7 and A. We wish to apply Alexandrov maximum
principle to (3.10) inside By, (po), and with a similar derivation as (5.16) in the first
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paper [22], we obtain:
(3.11)

eﬁunpo (pO) < sup eéunpo
9By (po)

1
1 1 n 2n
+ Cndo (/ §2me enou (gg A7 (F2 4+ 1)27 — C1)_)2 dvolg> :
Ba, (po)

To estimate the integral appearing above, observe that f <0, ¢ < 0, then we have

/ e2F62n5u((50A—%(F2 + 1)% . 01)_)2nd’UOlg
(312) Bdo (po)

</ 62F+2n5F672nC§<pX{FSCS}Cfndvolg S 6(2+2n5)0302(01)2n'
M

Since 1,, < 1 — 6 on 0By, (po), the result follows from (3.11). Indeed, since e’*

achieves maximum at pg, we have
e (po) < (1 — 0)e’(po) + Crdode2T2m0)C 0y (C1)?n,
The desired estimate then follows. (]
Corollary 3.2. There exists a constant Cy, such that
F+ f. <Cy.
In particular, if ¢ is normalized so that sup,; o = 0, then

llello < Cys.

Here Cy and Cy5 depend only on the upper bound for the entropy fM ef Fdvol,,
the bound for maxus |Bolg, ||Rl|o, po (uniform for po > 1 as long as po — 1 bounded
away from 0), the bound [, e7P°/=dvoly and the background metric (M, wy).

Proof. First we obtain from Lemma 3.1 that

. C

(3.13) L (F + f. — 2(max [Ric — Boly + 1)) < —ath + 222,
20 M o

Hence for any p > 1, if we choose gg so that p = =, then we obtain

50’
(3.14) /M ePEHE) dyol, < Cs.

The constant C5 has the dependence as described in Lemma 3.1 with additional
dependence on p, but will be uniform in p as long as p remains bounded. Choose

€1 = p02—1’ then we can estimate

/ e(HEl)deolg = / e(te)(FHfe) e*(lﬂl)f*dvolg
M M

( . ) 14eg 14eq

, , 1- 1
< (/ e_po-f*dvolg> ° </ eﬁm(F+f*)dvolg> ’ < Cs5.
M M

Here C5 5 is uniform in py as long as pg — 1 is bounded away from 0. Then we can
conclude from (3.15) and Kolodziej’s main result (c.f. [59]) that

(3.16) llellos [1%]lo < Ce.
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The result now follows from Lemma 3.1, with choice of gy so that % = m =
2po O
po—1"

Next we would like to estimate the lower bound for F + f..
Lemma 3.3. There exists a constant C; such that
F+ f.>-Cr.

Here C7 depends only on ||¢llo, maxas |Bolg, ||Rllo, the background metric g, the
bound for fM e Pof dvoly, and po (uniform in po as long as po — 1 bounded away
from 0). In particular

F>—-C.
Proof. We choose C' = 2(maxys |Ric — folg + 1). Then we have

(3.17) Ap(F+fu+Cyp) = try(Ric—fo) —Ro+Cn—Ctryg < —tryog+||Rollo+Cn.

In [22, Proposition 2.1], we estimated tr,g from below by ne~w and the result fol-

lows from maximum principle. Here one cannot do a pointwise maximum principle
as before and needs to argue differently.
Choose €5 = %, and the cut-off function 7, as in the proof of Lemma 3.1

(with a parameter 6 to be chosen later), and denote u; = F + f, + Cp. Assume
the function w; achieves minimum at p; € M. We may compute

(3.18)
Agp(e =" mp,) = 6_52“(53|V«:U1|i77p1
— e28punnp, + Apnp, — 262Vur - Vi, )
> e~ (&5 Vpua |}, + eatrogny, —ea(||Rllo + Cn) — [Vny, |4treg

IV onp, \?;> 5 emenn 20 462

2 2
p— - t - -
52|V¢“1|<p77p1 Tipy = g (2 dg(1—0) di(1 - 9))

—&2(||Rollo + Cn)).

Since n,, > 1 — 6, we may choose § sufficiently small so that

20 462
1—0)ey — — > 0.
G=0e~ =9~ B1-9)
With this choice, we then have
(3.19) Ag(emmy,) > —eae (|| Rolo + Cn).

Hence if we apply the Alexandrov maximum principle in By, (po), we have

—E&2uU1 —E&2U1

e Np(P1) < sup e

9B, (p1)

Mp1
(3.20)

2n

+ Cndo(/ e*emnezuicn(| | Rollo + Cn)zndvolg>
M
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To estimate the integral appearing above, we may calculate:

/M62F€_2n62u15§n(”R0‘|0 + Cn)zndUOlg < CS /M 6(2—27L52)F—2n52f* d’UOlg

po—2 jal

h po—T - Po=T
< Cy /e dvol, . /e p(’f*dvolg .
M M

Since we have n,, = 1 — 6 on 0By, (p1), the desired estimate then follows in the
same way as in the last part of the proof for Lemma 3.1. O

3.2. W?2P estimate. In this subsection, we will need to assume 3 > 0 (or more
generally a lower bound for j3), besides assuming a bound for [ o e~Pof duol, for
some po > 1.

Theorem 3.1. Assume > 0 in (3.1), (3.2). For any p > 1, there ezists a
constant Cp, depending only on ||F + fillo, ||Rollo, maxas|Bolg, the background
metric (M, wo), a bound for [, e Pof=dvoly, ||¢|lo and p, such that

/ PV (n 4+ Ap)Pdvol, < C,.
M
Proof. Let k > 0, C' > 0, 0 < § < 1 be constants to be chosen later, we will

compute:

(3.22)
Ap (7RI (- Ap)) = Ay (€7 HHC) (n Ag) 47" IRIHEDAL (M)

— 2ke "UITHIACAY (F +6f. 4+ Cp) - Vo (Agp).
We can compute
A, (efn(FJréf*JrC@)) — o H(F+if+Cop) (H2|V¢(F—|— 5. + Cyp)
= KAG(F + fu + Cp) + k(1 = 0)Ap f.)
(3.23) = e "FHACA T (F 4+ 6f + Co)l2
+ 67“(F+5f*+c“")n(0tr¢g — try(Ric — Bo))
+ e MEHLACO) (K Ry — kCO) + k(1 — §)e FETLACOIN ..

| 2
%)

We choose C' > 2(maxys |Ric — Bolg + 1), then we obtain from above:

A, (e_"(FHf**‘C*’)) > e_”(F+5f*+C4’)m2|V¢(F +4f + C’go)|i
C
(3.24) + e—m(F+6f*+C¢)%tng + Ke—n(F+5f*+Csa)(1 — A, f.

_ m—m(F+6f*+Cq:)cg.

The constant Cg appearing above will depend on our choice of C'. On the other
hand, let p € M, we choose normal coordinate in a neighborhood of p so that

9i5(p) = i, Vgi5(p) =0, ;5 = 905
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We have computed in our first paper [22] (following Yau [75]) that

i (1 i1 afBi 2
Ap(Ap) = R”i‘”‘_ﬁ + ¢ii) . [Pasi ~+AF—-R
Paa (1+ ¢aa) (1 + ¢gp)
(3.25) o
> —Chotryg(n+ Ap) + i +AF —R.

(1+ paa)(1+¢g5)

Here C1¢ depends only on the curvature bound of g. Also we notice the complete
square similar to our calculation in cscK case:

|<pa,(§i|2

(14 paa)(1+ ¢s3)
— 26V (F+6fc +Cp) - Vuo(Ap)

Vo (Ap)[2
> 4.2 2 | L ®
> KV (F +0f + Cp)|5(n + Ap) + Nt Ap

— 26V, (F +0f. +Cp) -, Vo, Ap > 0.
Combining (3.22), (3.24) and (3.25), we conclude

K2V (F + 6 f. + C’np)|i(n + Ap) +

Aw (6—H(F+5f*+090)(n + As&)) > e—n(F+6f*+C<p)(§ _ Clo)twg(n 4 A<p)

(3.26) + Hefm(FJréf*JrCLp)(l _ 5)A¢f*(n + A(p) + efn(F+5f*+C<p)AF
_ e—m(F+5f*+Cw)(Cg,$ +R).

In the following, we will always choose x > 1, hence if we choose C > 4C1g, we
obtain for some constant C{1, it holds:

C
A¢(675(F+5f*+04,0)(n+Aw))en(FJr&f*JrCtp) > %trwg(n‘FA@)
+ k(1= 0)Ayfi(n+ Ap) + AF — kCh1.

(3.27)

The constant C7; above will depend on our choice of C. Let p > 1, denote v =
e RUIHIfHC9) (n + Ag), we have

/M(p - 1)vp*2|V@v|idvol%, = /M WP (=Ayv)dvol,,

C
(3.28) < - / i (%vmg + e IR ACR (1= 6) Ay fu(n + Agp)
M
+ e MRS ACONE — jCye IHLFCR) dyol,,.

We will handle the term involving AF' via integrating by parts, but somewhat
differently from the calculation for cscK(here we assume s > 1):

(3.29)
—/ Upflef'{(FJr‘sf*Jrc“")Adeol(P = —/ Upfle(lf“)Ff'“;f*7“C“"Ade0lg
M M

1
= —/ vpfle(lfﬁ)Ffmsf*7”C“"—A((1 — K)F — kb f. — KCp)dvol,,
M 1—+x
_/ P~ Le(1=R) F—rdf.—KCe ROA Sy + KCA@dvol
M

1—k 9
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For the first term in (3.29), we have

1
_ / vpfle(lfﬁ)F*“‘;f**“C%"—A((l — K)F — k0 f. — kC)dvoly
M

1-—k
,Up—le(l—n)F—néf*—nCLp
= _/ — IV((1 = k)F — kdf. — kCy)[*dvol,,
M K
-1

_ / P p=2,(0-R)F—rdf.—rCoyy,, . V((1=r)F — k6 f. — kCp)dvoly

MR — 1 )

(3.30) 2
< / (p - ) ,Up—3e(1—fi)F—m3f*—fnga‘V,U|2d,vol
“Jm2(k-1) !
< / —(p —1” vpfse*”(FHf*JrC”’”V v]2 (n + Ag)dvol
= 26— 1) orle v
—1)?
= /M 752(: — )1)vp_2|V¥,v|idvolg,.
From 3rd line to 4th line above, we observed that
-1
Y 1vp_2e(1_”)F_“5f*_”C“"Vv . V((l —k)F — Ko f. — nC’go)
e —
Upfle(lfn)Ffmnf*fnC(p v((1 . 5 o )
< — — . —
< V(1= R)F — sbf. = KC)
(P =1 s (1—r)P—rbf.—nCp 2
+2(H_1)v e |Vo|=.

Combining (3.29), (3.30), we see
2
1, —n(F+6f.+C (p—1)7° , 5 2
—/M pP~ e ¢) AFdvol, </M mvp Vvl dvol,
_/ WP~ Le—R(F+3f.+Cp) 'ﬂsAf*‘F"fCASDd ol,.
M

11—k

(3.31)

Plugging (3.31) back to (3.28), we obtain

—1)2 C
/M (p —1- %)yp_2|vwv|id00l4p S - /M %tnpgupdvolq,

KOA [
- )dvolw

(3.32) + / pP~Le T RIFHOLFOR) ( (1 — §) Ay fuln + Ap) —
M

A
+/ vp—le—N(F-i-(sf*-i-C‘P)(HCll—ch Qo)dvol
M

Now we choose § = , then we have

(3.33)
R = )AL+ D) - TEL ALk a0 s,
——Z (f)a(l+¢5) Zﬁoul-HPH)
vy 14 @5z Py 1+ vz

We also have for k > 2,

< max |Bolgtrog(n + Ap).

A
(334) IiCll — H]-C_ 1

< k(Ci2+ C)(n+ Ayp).
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Here we used the fact that n+ Ay > e%, which is bounded from below in terms of
|| f« + Fllo. Indeed, F > —f. — ||f« + F|lo = —||f« 4+ F||o. Hence if we plug (3.33),
(3.34) back to (3.32), we conclude that for p > 1, k > 2, C' chosen sufficiently large
depending only on the curvature bound of the background metric and maxyy |5olg,
we have

(3.35)

(p—1)2, ,_ kC
/M (p — 1 — ﬁ)vp 2‘V¢v|idv0l¢ —+ " (T — m]\?[:X |B0|g)tT¢gUdeOl¢

S/ k(Cr2 + C)vPdvol,,.
M

Next we choose k so that k > 2 and k > p, with this choice, we have

(p—1)°

> 0.
k—1 =

p—1-—

Choose C sufficiently so as to satisfy C' > 8(maxys |Bo|g + 1), with this choice, we
can guarantee
kC kC

A > s

Hence we obtain from (3.35) that for some constant C3

(3.36) /M e wT (n+ Ap) ﬁvpdvolw < /M tryogvPdvol, < /M CizvPdvol,,.

Recall our definition for v, this means:

(3.37)

/ Gt —PR)F=p (i) fo=prCoe (1 1 A GYPHT duol,,
M

< 013/ 6(17pK)F7p(K71)f*7pHC<’0(TL—|—Agﬁ)pdvalg,
M

From the boundedness of F'+ f and ¢ proved in Corollary 3.2 and Lemma 3.3, we
obtain for p > 1:

(3.38) / =iz (n+ Aap)“ﬁdvolg < C14/ eP=DF(n 4 Ap)Pdvol,.
M M

Take p = 1 + k—15 in (3.38) with k > 0, the result follows from induction on
k. O

As a consequence of above calculation, we obtain:

Corollary 3.4. For any 1 < q < pg, there exists a constant C'q, depending only
on the bound [, e7P°/=dvoly, ||R||o, maxa|Blg, the bound ||F + f.llo, ||¢llo, the
background metric (M,wp), and q, such that

/ (n+ Ap)?dvol, < C,.
M
Besides, C’q is uniform in q as long as q is bounded away from py and remains

bounded.
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—1
Proof. Choose s = (qpo—_)fo, then we can calculate

/ (n+ Ap)?dvol, = / e et (n + Ap)iduvol,
M

M
s 1—=
PO s . PO
< </ ep“f*dvolg> (/ epo~s (n—i—Aap)%dvolg) .
M M
Notice our choice of s makes % = z% — 1, so the result follows from Theorem
3.1. O

3.3. Estimate on V(F + f.). In this section, we continue to assume 5 > 0. More-
over, we also need py to be sufficiently large depending only on n. Our goal is to
obtain the following estimate.

Theorem 3.2. There exists k,,, depending only on n, such that as long as py > Kn,
we have

Vo (F + fi)lp < Cra.

Here C14 is a constant with the same dependence as in Theorem 3.1.

Proof. Denote w = F + f., we need to calculate:
1 1
Aw(€2w|vww|i) = A«p(62w)|vs&w‘i

+ efwA<p(|V¢w\i) +ex"Vow -y V¢(|V¢w|i)
(3.39) 1

1w 1 1,
=7 \waﬁ + 3¢ A¢w|V¢,w\i

+ eiwA@(|V¢w\i) +e2"Vow -y V¢(|V¢w|i).

Now we have

(3.40) Ayw = try(Ric — o) — Ro.

Also

(3.41) Ay (IVpwl3) = 07 957w riw g5 + 97 657w 05w i + 2V 0w - Vo Agw
+ gfpjggﬁRic%i[gwaw}

Besides,

(3.42) Vow o Vo (IVowl?) = Re(g g5 wiw ajws + waw 53)).

In the above, w;, denotes the covariant derivative under the metric g,. Again
observe the complete square:

’ o -
1 Vewly + 0798w aiw g5 + Re(97 93" wiwaw 55)

- 1 1
= 9795" (Wiia + Jwiwa) (w55 + Swjwg).
Hence we obtain from (3.39):

1 1 . 1 = oz
(3.43) 2o IVeul}) 2 GeH IVl (tro(Ric = fo) = R) 4¢3 g g w oo 5

+ e%MZVWw o VoAyw + ggggBRic%igwawj + Re(ggggﬁwiwﬁ-w,ag).
Note that
Ric(p,iﬁ = RlczB - FlB'
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Hence
94 93" Ric,, jgwaw; + Re(gd g2 wiwgw o)
(3.44) = 993" Ricigwaw; + Re(g g3 wiwg(w o5 — Fuj))

= 993" Ricigwaw; + Re(g g5 wiwp foj)
> ggggﬂRiciBwawE — Re(gfjggﬁwiwg(ﬂo)ag).

In the last line, we use the fact that /—190f, = B — By > —fo, hence (f*)lj >
—(Bo);- Hence we obtain from (3.43):

(3.45)
Aw(e%w|vww|i) > %e%w|vww|i(trw(Ric —Bo) — R) + e%w2vww o VoAyw
+ e%wggggBRicigwawj - e%wRe(gggzgwin(ﬁo)aj).
Next we estimate:
(3.46)  tr,(Ric— Bo) — R > —Cis(trewo + 1) > —Cis(e”F(n+ Ap)" ! +1).
Also

(3.47)
95927 Ricigwaw; > —Chas(trowo)?|Vuwl® > —Cis(trpwo)? (n + Ap)|Vewl?
> —Cize 2F(n+ A‘P)Qn_lwww‘i-

We can also estimate

—Re (gfjgg'éwiwg (50)0&) > —Clys (tr¢w0)2|Vw|2

(3.48)
> —0156_2F(n—|—AL,0)27L_1‘VLPUJ|?O-

Hence we may conclude from (3.45) that

Aw(e%“’|vww|i) > 2e%wv<,,w o VoAyw — e%w|V¢w|i

3.49
(3.49) x Ci5(2e7 2 (n+ Ap) L+ e F(n+ Ap)" ! +1).

Denote u = e%w|V¢w|i +1,G=Cs (2e72F(n+ Ap)* 1+ e F(n+Ap)" 1 +1).
Then we have

(3.50) Agu > Qe%wvww o VoA w — uG.

Now let p > 1, then we have

/M(p - 1)u”_2|V¢u\idvolw = /M P~ (= Ayu)dvol,

(3.51)
S/ qudvolg,—/ 2u”_1e%“’V¥,w ‘o VoAywdvol,.
M M
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We need to integrate by parts to handle the last term above. We have
(3.52)
/ 2uP~ 1e2wV w -, VoAgwdvol, / 2u”_1e%“’(A¥,w)2dvol¥,
M M

_l_

/ uP” 1(32w|V w| A, wdvol, —I—/ 2(p—1)u”72e%wku o VowA wdvol,
M M

/2 “lezw )deolv—I—/ upAg,wdvolw—/ uP"t A wdvol,,
M M M

—l—/ p2 uP"3|V,, u|2dvol +/ 2(p—1)up72e“’\V¢w|i(A¢w)2dvol¢
M M
</ 2puP~ 162“’ Ayw)?dvol +/ u? ((Apw)? + 1)dvol,,
M M
p—1
+/M Tup 2|V¢u|idvol¢.

Some explanations of above calculations are in order.
In the first inequality, we observed that

p—1_Lw 2 __.P _ . p—1
uP" ez |Vowl Apw = uP Ayw — uP ™ Ayw,
from our definition of u. Also we observed that

2(p— 1)u”*26%wv¢u o VowA w

<p;1
2

WPVl 4 2(p — DuP%e” Vw2 (Ayw)?.
In the second inequality, we noticed that
1
uPAyw —uP T A w < §(u” +uP ) (14 (Apw)?) <P (14 (Ayw)?).

Hence we conclude from (3.51):
~1 N
/ pTup72|V(pu|Z,dvol¢ < / u? (G + (Apw)? + 1) dvol,,
M M
(3.53) - / 2puP ez (A w)2dvol,
M
< / uP (G + (Ayw)? + 1)dvol, + / 2pupe%w(A@w)2dvol@.
M M

From 1st line to 2nd line above, we noticed u > 1. Now denote G = G + (A, w)? +
1+ 2e3%(A,w)?, we have

-1
(3.54) / p—up72|v¢u|idvol¢, < / puPGe" dvol,,.
Mo 2 M
For the left hand side, we have

-1 1 2(p—1 P
(3.55) /M P AV uldvol, > - / <pp2 )|V (u®) 2 dvol,.
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Let € > 0 to be determined, we can also estimate

| whP-cdvoty < [ (9 b+ ap) - dvol,
M M

£—c £

< (/ |V¢(u%)idvolg> X (/ (n+Aap)%_1dvol9) .
M M

£

(3.57) K. — (/ (n+A<p)?—1dvolg> -
M

(3.56)

Denote

Then we have

(3.58)

P 202 K.Cigp? p—2 2
IV(@)l[Le-e gy < BelllVi(u?)lollzewy) < —5— L IV puldvol,

3
< M/ quedeolg.
20-1) Ju

In the above, the first inequality follows from (3.56). The second inequality follows
from (3.55), and the last inequality uses (3.54).

Apply the Sobolev inequality with exponent 2 — & to conclude
(3.59)

102 2ne oy < Co(IIV(u)|[Fame + ||u]|72-c)

L 2n—2+e¢
K5016p3
2(p—1)
K.Cyep® . 2 ER
§D6(416]9 / u%dvolg X G%e%dvolg + w2 ).
2(p—1) M M L2-¢

In the last line above, we use Holder’s inequality to estimate ||u?%||p2-c, and D,
depends on C. and vol(M). Denote

< C(

/ uPGe" dvol, + Hu§||%27€)
M

£

(3.60) L.= (/ Gie"fdvol_(,) .
M

Also we choose ¢ to be sufficiently small so that the following holds:

2n(2 —¢) 4

.61 .
(3.61) 2n—2+¢ 2—¢

Hence we may conclude from (3.59) that

3
(362) 1P gy < Crs g (e + D2

n(2—e
2n—2+¢ P — 1

We need to have a bound for K., L.. Choose ¢ = %, it is clear that this ¢ verifies
(3.61) since n > 2. With this choice, from the expressions of K. and L. in (3.57)
and (3.60), we need [,,(n + Ap)*"tdvoly, [, G*™e*"Fdvol, is bounded. First

from Corollary 3.4, if py > 4n, then [, (n + Ap)*"'dvol, is bounded.
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While for [, G*"e*F dvoly, first we have
(3.63)
G=Ci5(2c7 2 (n+A0)>" e F(n+Ap)" 1) + (A (F+ f.))° + 1
+2e3FH) (AL (F + £,))? < Cor(n+ Ap) 21 4 Con (trp9) + Can (treg)?
< Cor(n4Ap) 4 Core F(n+ Ap)" 1 + Core 2 (n + Ap)?n—2
< Cop(n+ Ap)® 1,

Here we used that F' has a lower bound, thanks to Lemma 3.3. Hence

/ Ggegdvolg < (/ GSndUOlg)% x (/ eSanUOZg)%
M M M

< (/M C8y(n + A@)S"(anl)dvolg)% X (/M eS”deolg)%.

By Corollaries 3.2 and 3.4, it’s enough to assume that pg > 8n(2n — 1) + 1. With
this choice, we know that K. and L. given by (3.57), (3.60) are bounded with the
said dependence in the theorem. Then we can iterate (3.62) as in cscK case to
deduce [|ul|z is bounded in terms of ||u||p1(up)-

To see that we have an estimate for ||ul||z1, we can compute

(3.64) Ay (e3?) = ie%“ﬂvww@ + %e%wAww.
Hence
/ e%w|V¢w\idvolg < 6’23/ e%“’\wa@dvolg, < 023/ 26%“’(—A@w)dvol¢
M M M
< Coy(trowo + 1)dvol, = (n+ 1)Cagvol (M). O

M

As an immediate consequence, we observe

Corollary 3.5. Assume 8> 0 in (3.1), (3.2). Suppose pg > Kk, where K, is as in
Theorem 3.2, then for any p < po, we have

HV(F+ f*)”L?p(wg) S C25.

Here Cos has the same dependence as in Theorem 3.1, but additionally on p. Be-
sides, the bound is uniform in p as long as p is bounded away from pg.

Proof. We know from Theorem 3.2 that |V, (F + f.)|, < Cia. On the other hand,

we have
(3.65) IV(F + f)P < [Vo(F + f)lh(n+ Ap) < Cy(n+ Ap).
Hence the result follows from Corollary 3.4. O

Combining the estimates in this section, we can formulate Theorem 3.3.

Theorem 3.3. Assume >0 in (3.1), (3.2). Let ¢ be a smooth solution to (3.1),
(3.2). Suppose pyg > K, for some constant K, depending only on n. Then for any
p < po,
I[F + fellwize < Casay |In+ A¢|[Le(wn) < Casa.
Here Ca51 depends only on an upper bound of entropy fM log (%%)wg, po > 1,
0

p < po, the bound for [, e"Pof=dvoly, ||R||o, maxas|Boly and background metric
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wp. Besides, the bound is uniform in pg as long as po is bounded away from 1 and
p bounded away from pg.

4. K-ENERGY PROPER IMPLIES EXISTENCE OF CsSCK
4.1. The case Auto(M,J) = 0. Let the functional I be as given by (2.7), we define
Ho={peH:I(p) =0}
Following [40,72] , we introduce the following notion of properness:

Definition 4.1. We say the K-energy is proper with respect to L' geodesic distance
if for any sequence {;}i>1 C Ho, lim; o0 d1(0, ¢;) = oo implies lim;_, o K(p;) =
00.

The goal of this section is to prove the following existence result of cscK metrics.

Theorem 4.1. Let 8 > 0 be a smooth closed (1,1) form. Let Kg be defined as in
(2.5). Suppose Kpg is proper with respect to geodesic distance di, then there exists
a twisted cscK metric with respect to B (i.e., solves (2.6)).

For the converse direction, we have

Theorem 4.2 (Main theorem of [7] and Theorem 4.13 of [8]). Let 5 be as in the
previous theorem. Suppose that either
(1) B>0; or
(2) B8 =0 and Auto(M,J) = 0. Suppose there exists a twisted cscK metric
with respect to B (i.e., solves (2.6)), then the functional Kg is proper with
respect to geodesic distance dy.

In this theorem, the case 8 = 0 and Auto(M, J) = 0 is the main result of [7], and
the case with 5 > 0 follows from the uniqueness of minimizers of twisted K-energy
when the twisting form is Kéahler (c.f. [8, Theorem 4.13]). For completeness, we
will reproduce the proof in this paper.

First we prove Theorem 4.1. For this we will use the continuous path (2.12) to
solve (2.6). Put x = wy in (2.12), define

(4.1) S = {top €[0,1] : (2.12) has a smooth solution for any ¢ € [0, to]}.

Remark 4.2. One may also consider the set S’, consisting of t; € [0, 1] for which
(2.12) has a solution with ¢ = t¢. In general, ¢, € S’ does not imply [0, ] C 5.
For instance, in [?chen-Zeng14], it is shown that if a cscK metric exists (i.e., (2.12)
can be solved at ¢ = 1), then we can solve this equation for all ¢ sufficiently close
to 1, for any 5 > 0. However, we can always find a x > 0 such that (2.12) has no
solution with ¢t = 0.

By Lemma 2.1, we know the set S is relatively open in [0, 1]. Also when ¢ = 0,
(2.12) has a trivial solution, namely ¢ = 0. In particular S # (). The only remaining
issue for the continuity method is the closeness of S. Due to Proposition 2.3, we
can conclude the following criterion for closeness:

Lemma 4.3. Suppose t; € S, t; S t. >0, and let ; be a solution to (2.12) with

w,

t =t;. Denote F; =log —t. Suppose that sup; fM efi Fydvol, < oo, then t, € S.

T
Wo
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Proof. We just need to show (2.12), or equivalently the coupled equations (2.13),
(2.14) have a smooth solution with ¢ = .. The assumption implies that we can
assume t; > §y > 0 for some &g > 0. Moreover, we can normalize the solution ¢;
to (2.12) so that sup,; ¢; = 0 and the assumption implies that we have a uniform
upper bound of entropy. Then Proposition 2.3 implies that we have a uniform
bound for all higher derivative bounds of ¢;. Hence we may take a subsequence of
©; which converges smoothly. Say ¢; — .. Then we know that ¢, solves (2.12)
with ¢t = ¢,. O

To connect this criterion with properness, we need some estimates connecting
the L' geodesic distance d; and the I , J, functional defined in (2.7), (2.4).

Lemma 4.4. There exists a constant C > 0, depending only on n and the back-
ground metric wg, such that for any ¢ € Hy, we have

(4.2) [sup ] < C(da(0,9) +1), | (@)] < Cmax |l dr (0, 0).
Proof. This is well known in the literature and we give a proof for completeness

here. We now prove the first estimate. Let G(z,y) be the Green’s function defined
by the metric wg, then we can write:

43) ¢(0) = s [ B0+ s [ s D

We know that sup,; s G(z,y) < Cis, hence

Wy

(y)-

/ G2, 9) Do (y) (?L(y) /M(G(:c,y)—015)(Aw0¢(y)+n)%§1

(4.4) —/ nG(z, y) —|—C’15n — < —n inf / G(z y
M

M zeM

+ 01571/ W_(: = ClGUOZ(M, wo).
M
Take sup in (4.3),

wn
(4.5) s]1\1/[pg0 < gon—(; + C16 < Cd1(0, ) + Cis.

1
vol (M, wy) /M

On the other hand, since I(y) = 0, it follows from (2.7) that sup,; ¢ > 0, so the
first estimate follows. For the second estimate, first we can calculate

n—1

/@ZX/\wg/\wgflfk—n/ <px/\wg_1
M M
n—2
(46) = [ e anuba @t —ug Y
k=0
n—2
:/ —\/—13@/\5(,0/\Z(n—l—l)x/\wg_Q_l/\wfp.
M 1=0
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Thus,

n—1
I/ sOZXAngwZ_I_k—/ npx Awg !
M o M
n—1
gnmﬁxwwo/ \/—1830/\8@/\2(#{;*1—1/\0‘);
M 1=0

— ngxlxl, [ o] —af).
M

Using Theorem 2.1, we conclude

n—1
| / ® Z XA wWh A wg*kk - / nex Awy !t < O, max | x|w,d1(0, ).
M k=0 M M
Similar calculation shows

|/ X@Zu}g /\Wg—’C —(n+ 1)/ chwm <C, mj\r/:[mx|x|w0d1(0,<p).
M~ 5 M

n—1

On the other hand, the quantities [, ngox Awy ™" and [,, x¢w( can be bounded in
terms of maxps |x|w,d1(0, ¢), again due to Theorem 2.1. Now the claimed estimate
follows from (2.4). O

From Theorem 2.2, any two elements in £! can be connected by a “locally finite
energy geodesic” segment. On the other hand, from Theorem 4.7 in [8], we know Kp
is convex along locally finite energy geodesic segment. This implies tK g+ (1—1t)Jy,
is convex along locally finite energy geodesics. In view of this, we can observe:

Corollary 4.5. Let ¢ be a smooth solution to (2.12) for some t € [0,1], then ¢
minimizes the functional tKg + (1 — t)J,,, over EL.

Proof. Observe that it is sufficient to show that ¢ minimizes tKg+ (1 —t)J,, over
H, in view of the fact that an element in £! can be approximated (under distance
dq) using smooth potentials with convergent entropy, as proved in Theorem 3.2 in
(8], while the J, functional is continuous under di, as shown by Proposition 4.1
and Proposition 4.4 in [8].

Next we can write tKg + (1 — t)Ju, = tK + Jigi(1—t)w,- Take ¥ € H. Let
{us}seo,) be the CH1 geodesic connection ¢ and ¢, with ug = ¢, u1 = 9. From
Lemma 3.5 of [4] and the convexity of K-energy along C! geodesics, we conclude:

n

(A7) K@)- K@)z lm w . /M(E_ R@)%E:O%.

The first inequality used the convexity of K-energy along C'''! geodesics, proved by
Berman-Berndtsson [4], and the second inequality is Lemma 3.5 of [4].
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966 XIUXIONG CHEN AND JINGRUI CHENG

On the other hand, let {ys}scp0,1] be any smooth curve in H with ¢y = ¢,
©1 =1, and let x > 0, we know from the calculation in [18, Proposition 2], that

(4.8)
50) = 1) = [ anox =) oo+ [ (1= G5 pds

dps wso ! 8290 Ips o wgs
/(tﬁpX X) ds ls=0—r +/ (1_3)d5/M(@_|V% Ds #s tro X ol

! Do\ Do, wy,
+/0(1_8)d8/ g@&sg@sle(as) (g)f .

J n!

Now we choose ¢, = uf, namely the e-geodesic(which is smooth by [18]), which

means ,
¢ 0ps
( 3828 - |V¢SE Z,S) det g,,, = edet go > 0.

Hence we obtain from (4.8) that

dut wy
(19) B = 140) > [ (trx—0G0.

Also we know that u$ — us weakly in W2? for any p < oo as ¢ — 0. This implies
%|5:0, as a function on M, is uniformly bounded with its first derivatives. Hence

we may conclude (ZL; =0 — d;f; s=o uniformly. This convergence is sufficient to
imply
dus wy du wg
t _ S o— _¥ t — - 5= _<p, 0.
/M( TeX ~X) ds | = _>/M( TeX = X) ds | =l ase=
Therefore,
dus w”
(4.10) T = (@) 2 [ (trox =20 G o
M n.
Take x = t8 + (1 — t)wp in (4.10). Then multiply (4.7) by ¢, add to (4.10), we
conclude
(tKﬁ + (1 - t)on)(w) - (tKﬁ + (1 - t)on)(SD)
(4.11) dug, W
> [ (2= Ro)+ (rox =) ) 1o 0.

The last equality using that ¢ solves (2.13), (2.14). O

Using this fact, we can obtain the following improvement of Lemma 4.3, which
asserts that having control over the geodesic distance d; along the path of continuity
ensures we can pass to limit.

Lemma 4.6. Supposet; € S, t; S t. >0, and let @; be the solution to (2.12) with
t = t;, normalized so that I(p;) = 0. Suppose sup,; d1(0,¢;) < 0o, then t. € S.

Proof. As before, we assume t; > § > 0. First observe that sup,(t;Kg + (1 —
ti)Jw ) (@i) < oo. Indeed, we know from Corollary 4.5 that ¢; are minimizers of
tiKpg + (1 —t;)Ju,, hence

tiBKp(pi) + (1= i) Juo (9i) < Ky 1, (0) = £ Kp(0) + (1 = i) S, (0)

(4.12) < max(K5(0), J. (0)).
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On the other hand, we know
(4.13)
tiKp(pi) + (1 —ti) Ju, (0i) = ti /M e Fidvoly + tiJ_Ric+p(¢i) + (1 = i) Juo (90)-
Since we assumed sup; d1 (0, ¢;) < oo, Lemma 4.4 then implies that sup, |J_ riets(¢i)]
+ [Juwy ()] < o0. Consequently, sup; [,, X" Fydvol, < oo since t; > § > 0. The
result then follows from Lemma 4.3. (]

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let S be defined as in (4.1), we just need to prove S = [0, 1].
First we know from Lemma 2.1 that ¢, > 0. We want to show that ¢, = 1 and
1 € S. Indeed, if t, < 1, then we can take a sequence t; € S, such that t; .. Let
@i be the solution to (2.9) so that I(p;) = 0.

As observed in (4.12), sup; (t; Kz + (1 — t;)Ju, ) (i) < o0. On the other hand,
since 0 € H is a critical point of J,,, we know from Corollary 4.5 that J,,,(y;) >
Ju (0). Therefore we know sup, Kg(p;) < oo. By properness, we can then conclude
sup, d1 (0, ¢;) < co. From Lemma 4.6 we see t, € S. But then from Lemma 2.1 and
Remark 2.2 we know t, + ¢’ € S for some ¢’ > 0 small. This contradicts ¢, = sup S.
Hence we must have t, = 1. Repeating the argument in this paragraph, we can
finally conclude 1 € S. ]

For completeness, we also include here the proof of Theorem 4.2, following [7,8].

Proof of Theorem 4.2. First we assume that f = 0 and Auto(M,J) = 0. Let
©wo € Ho be such that wy, := wo + V=100 is cscK. We will show that for some
£ >0, and for any ¥ € Ho, di (20, %) > 1, we have K (1) > edy (5, 0) + K (o).
Indeed, if this were false, we will have a sequence of ; € Hp, such that
d1(po,%i) > 1, but g; = W — 0. Let ¢ : t € [0,d1(p0,:)] — E*
be the unit speed C1'! geodesic segment connecting ¢q and 1; [18]. Let ¢; = (1),
then di(¢;, v9) = 1. On the other hand, from the convexity of K-energy, we have

1 1
E———— wo) + ———
leu@o)) (o) di(¥i; o)
By the compactness result Lemma 2.5, there exists a subsequence of {¢;};>1 C &1,
denoted by ¢;,, such that ¢;, ay ¢oo. Hence dq(po, o) = 1. From the lower

semi-continuity of K-energy(Theorem 4.7 of [8]), we obtain:

(4.15) K(¢oo) < Jli)f{)lo inf K (¢s;) < K(po).

(4.14) K(¢:) < (1 K(¥i) = K(po) + €.

But since g is a minimizer of K-energy over £!, it follows that ¢, is also a
minimizer. From Theorem 1.4 of [7], we know ¢, is also a smooth solution to
cscK equation, and there exists g € Auto(M, J), such that g*wy = w,,. But we
assumed Auto(M, J) = 0, hence wy_, = wy,,. Therefore ¢ — o is constant. But
from the normalization I(¢o) = I(po) = 0, we know @g — ¢poo = 0, this contradicts
d1(<p03¢00) =1

Next we assume 3 > 0. Let ¢ solves (2.12), normalized so that I(¢?) = 0. We
show that for some € > 0, one has Kz () > edy(”, ) + Ks(p?) for any ¢ € Ho
with dy (%) > 1.
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968 XIUXIONG CHEN AND JINGRUI CHENG

Indeed, if this were false, then there exists a sequence of 1; € Hg, such that

di(¢P,9;) > 1, but &} = %ﬁggm — 0. Note that K-energy is lower semi-
continuous with respect to d; convergence and Js is continuous ([8, Proposition
4.4]). Hence Kj is lower semicontinuous as well. So the same argument as last
paragraph applies and we get a minimizer of Kg, denoted as ¥ € Hg, such that
d1 (Yoo, ©®) = 1. But by [8, Theorem 4.13], we know 1o, and ¢? should differ by a
constant. Because of the normalization (1) = I(p?) = 0, we know that actually

Voo = ¢P. This contradicts dy (a0, ) = 1. -

As a corollary to this theorem, we show that the supreme of ¢ for which (2.9)
can be solved depends only on cohomology class of x. More precisely,

Corollary 4.7. Let x1, x2 be two Kdhler forms in the same cohomology class. We
define

S = {to €10,1] : (2.9) with x = x; has a smooth solution for any t € [0,to]}.

Then S1 = So. In particular, if we define R([wo], x;) = sup S;, then R([wo], x1) =
R([wol, x2).-

Proof. First we know from [36, Proposition 21 and Proposition 22], that existence
of smooth solutions to tryx; = X, i =1, 2 are equivalent. So we may assume both
equations are solvable. Then it follows from Lemma 2.1 that R([wo], x;) > 0. In
virtue of Theorem 4.1 and Theorem 4.2, we just need to show for any 0 <ty < 1:

(4.16) K, is proper & K, 4, is proper.

Here K, 4, is defined as in (2.8).

Indeed, suppose to € S and tg < 1, then for any 0 < ¢t < ¢g, (2.9) with x = x1
has a solution. From Theorem 4.2 applied to 8 = %le we know this implies
K, . is proper, for any 0 < ¢ < to. If (4.16) were true, then K,, , is proper for
any 0 < t < tg. Using Theorem 4.1 again, we know (2.9) with x = x2 is solvable
for any ¢ € [0,%p]. This means ty € Ss.

If ty € S; and ty = 1, then it means K-energy is bounded from below, hence
K, + will be proper for 0 < ¢t < 1 ([36, Proposition 21]). Then Theorem 4.1 implies
(2.9) will be solvable for x = x2 and any 0 < t < 1. While for ¢ = 1, the solvability
follows from the assumption that tg = 1, since equation (2.9) for ¢ = 1 does not
involve x1 or xa2. Therefore 1 € Ss.

Now we turn to the proof of (4.16), which is an elementary calculation (c.f. [69]).
Since x; and yo are in the same Kéhler class, we can write

X1 — X2 = V—100v, for some smooth function v.
From (2.4), we can compute for ¢ € Hy:

n—1
1 - —
Ta(@) = Tale) = 5 3 [ (=) T00w A A
P

(4.17)

n—1
1 _
- /= n—p—1 P
o E . /M vV —100p A w) Awg
=

-1 1
—_— v + — VW .
TL’ M ¥ M TL’
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From this it is clear that

(4.18) 50 () = S (P)] < ensup Jv].

On the other hand,

(4.19) Koxa.t0(#) = Koo to (@) < (1= t0) T3 (9) = s (P)] < cnsip [,

From this (4.16) immediately follows. O

4.2. General case when Autg(M,J) # 0. In this subsection, we will denote
Auto(M, J) by G for convenience. Define

Ho={p e C®(M):w, :=wy+ V—=190¢ >0, I(p)=0}.

Here the functional I is defined as

I(%’)—m/ Sﬁzwo Awy™

The set Hg can be identified as the set of Kahler metrics cohomologous to wg. We
also know that for any ¢ € Hg, any o € G, one has that o*w,, is still in the Kahler
class [wo]. Hence there exists a unique element ¢ € Ho, such that o*w, = w,;. We
will write in short as 0. = 1. It is clear that this defines an action of G on Hy.

Let d; be the L' geodesic distance defined in Section 2.2. Now we try to explain
how to extend the notion of properness to the general case. For any given metric
wp, we may consider its G orbit

Ou, ={p e M| 0wy = w,, for some o € G}.

Note that if wy is a cscK metric, then it is symmetric with respect to a maximal
compact subgroup [12,13]. Moreover, one can check directly that O,, C H is a
totally geodesic submanifold (c.f. Proposition 2.1 in [30]). Therefore, it is natural
to define a notion of distance to this submanifold O, from any Kahler potential ¢
by
dp(QO, Owo) = infweowo dp(% ’l/})

= infUEwa:a*wo dp(@a w)

= infaEG,w,¢=a*w¢ d;,,((),l/))
More importantly, this infimum can be realized (c.f. Proposition 6.8 and Theorem
7.1 in [40]), i.e., there exists a o9 € G such that

dp(We, ogwo) = dp(p, Ouy)-

It means that this distance is positive unless ¢ lies in this orbit. Motivated by this
observation, we extend the properness definition to the general case, following [40].
First, as in [40], one can define

(4.20) dic(p,¢) = inf dl(Ul ©,09.1)), for any ¢, ¥ € Ho.

01,02€

The group G acts on Hy by isometry, in the sense that
di(o.p,0.9) = di(p,¢), for any o € G, any ¢, ¢ € H.

As a result of this, we see that

(4.21) dic(p,¥) = f di(p,09) = inf di(o.p,9).
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Also it is immediate to check that d; ¢ satisfies triangle inequality: for any ¢; € Ho,
i=1,2,3, we have
(4.22) di,c(p1,p3) < dig(e1, 2) + dic(p2, 03)-

The cscK metrics in the class [wg] are critical points of the K-energy, which is
implicitly defined by

(4.23) d[fii@) - / %f(R R )T:

In the above, R is the average scalar curvature, R, is the scalar curvature of the
metric w,. The K-energy has the following explicit formula:

w2\ W
(4.24) K(p)= [ log (=2 )—F + J-ric(¥),
M wy ) nl
where for any (1,1) form x, we define J, as
(4.25)
1 n
Wi
o= [ f o )
n—1
_H @ZX/\WO/\W - (nT/ X‘PZWO/\W
dJy () Op W
4.26 XA t _‘P
( ) dt M at ( TSDX X)

The readers may look up Section 2 for more details. First we make precise the notion
of properness of K-energy with respect to d; ¢, in a similar vein as properness with
respect to d; introduced in the second paper. The following definition of properness
modulo G is due to Zhou-Zhu [77, Definition 0.1].

Definition 4.8. We say K-energy is proper with respect to d; ¢, if
(1) for any sequence {¢;} C Ho, d1.¢(0,¢;) — oo implies K (p;) = +o0.
(2) K-energy is bounded from below on H.

Remark 4.9. The first point in the above definition can be replaced with: for any
sequence {p;} C Ho, infyeq J(o.0;) — oo implies K(p;) — +oo, where J(p) =
Jar p(wf —w?). This follows from the fact that & infeeq J(0.0:) —C < d1,6(0,¢) <
Cinfyeq J(o.p;) + C, for some C' > 0 and any ¢ € Hg, which can be found in
[40, Lemma 5.11].

In this section, we will prove the following result:

Theorem 4.3. Suppose that K-energy functional is proper with respect to di ¢ as
defined in (4.8), then the class [wy] admits a cscK metric.

Remark 4.10. The converse direction has been established by [7] and [40].

As a preliminary step, we observe that the assumption K-energy being bounded
from below implies it is invariant under the action of G.

Lemma 4.11. Suppose that the K-energy is bounded from below, then the K-energy
is invariant under the action of G, i.e. K(o.0) = K(¢) for any p € H and o € G.
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Proof. We will prove this by showing the Calabi-Futaki invariant vanishes. Let
o € @G, then there exists a holomorphic vector field X which generates a one-
parameter path {o(t)}ter, with o(0) = id and o(1) = 0.
From the definition of K-energy and Calabi-Futaki invariant, we know that
d
dt
Here a is a constant depending only on the holomorphic vector field X and coho-
mology class of [wg]. Since K-energy is bounded from below on the holomorphic
line {o(t)*wy }er, we must have a = 0. This implies that K (o.¢) = K(y). O

(K(a(t)*wg,)) = Re(]:(X, [wo])) =aq.

Theorem 4.3 will be proved by solving the following path of continuity:
(4.27) t(R, — R) = (1 —t)(trowo —n), t € [0,1].

Let ¢ solves (4.27), then we call w,, to be twisted cscK metric. For ¢ > 0, equation
(4.27) can be equivalently put as:

(4.28) det(g;; + ¢i5) = e’ det 9i5>
—t

(4.29) A F = —(E — ?n) +tr, (Ric(wo) 1 wo).

One important fact about this continuity path is that the set of solvable ¢ is open,
more precisely,

Lemma 4.12 ([21,56,76]). Suppose for some 0 < to < 1, (4.27) has a solution
© € CY(M) with t = tg, then for some & > 0, (4.27) has a solution in CH*(M)
forany t € (to — d,to + ) N[0, 1].

Remark 4.13. One can see by bootstrap that the solution ¢ of (4.27) (or equivalently
of (4.28), (4.29) for ¢t > 0) is smooth if we know it’s in C*2.

Another important fact about twisted path is that solutions to (4.27) are mini-
mizers of the twisted K-energy, defined as

n n

w w,
(430) Kugp = tK + (1 - t)on = t/ log (w_i> ’I’L_f + J—tRiC+(1—t)wo’ te [07 ”
M 0 :

First we observe that if the K-energy satisfies the assumptions of Definition 4.8,
the twisted path (4.27) is solvable for any 0 < ¢ < 1. Indeed, we have

Lemma 4.14. Suppose the K -energy is bounded from below, then (4.27) is solvable
for0<t<1.

Proof. In view of Theorem 4.1, we just need to verify for 0 < tg < 1, K.y, 18
proper with respect to dy. More specifically, since we know K-energy is bounded
from below, we just need to observe J,, is proper with respect to d;.

To see that J,,, is proper, this follows from Proposition 22 in [36], which says
that for some d > 0 and some C > 0, one has

Juo (@) > 0J(p) — C, for any ¢ € Hy.

Here J is Aubin’s J-functional, defined as

It is elementary to show that J(¢) > Z7d1(0,¢) — C” for ¢ € Hy (c.f. [40, Propo-
sition 5.5]). Hence we see that J,, is proper with respect to d. (]

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



972 XIUXIONG CHEN AND JINGRUI CHENG

Hence to get existence of cscK, the only remaining issue is to understand what
happens as t — 1. We will handle this difficulty now. Throughout the rest of this
section, we assume the K-energy is proper with respect to d; ¢, in the sense defined
by Definition 4.8.

Let ¢; < 1, and ¢; monotonically increase to 1. Denote ¢; € Hy to be solutions
to (4.27) with ¢ = ¢;. They exist due to Lemma 4.14. First we show that for the
sequence @;, the K-energy is uniformly bounded from above.

Lemma 4.15. Let p; be as in previous paragraph, then we have

(4.31) Koot (3) = f Koo 1, (0) = if K(p), asti = 1.
Also
(4.32) K(g;) — i%fK(gp), as t; — 1.

Proof. That K, ,(¢;) = infy K1, () follows from the convexity of the twisted
K-energy and has been proved in Corollary 4.5. By the second part of Definition
4.8, we know that infz; K (@) > —oo. On the other hand, let ° € H be such that
K (%) <infy K(p) + €, and we know that

(4.33) lim sup Ky, (Pi) < lim sup K, ¢, (¢%) = K(¢°) < i%fK(np) +e.

1—00 1—00
On the other hand, we also know that
(434) Koo (9i) = i (i) + (1 = i) S (¢i) 2 i if K () + (1 = 1) Juy (0).

In the last inequality above, we used the fact that 0 is the solution to tr, wo = n,
therefore a minimizer of J,,,. Hence we have

(4.35) lim tigfl Ky 1, (4i) > 171_1[f K(p).

From (4.33) and (4.35), (4.31) follows. To see (4.32), we observe for ¢; sufficiently
close to 1, we have

i%fK(w) +e 2> K (@) + (1 —t3) Juy (Pi) > LK (@i) + (1 —t5)Ju, (0).

The first inequality follows from (4.31). Hence we have

1-¢

. - NS :
(4.36) lim sup K(@;) < tlilinl (E(I%f K(p)+¢)— Juo (0)) < 1%fK(<,0) +e.

t;—1 i

From this (4.32) follows. O

As an immediate consequence of Lemma 4.15 and the properness assumption of
K-energy, we deduce

Corollary 4.16. Let ¢; be as in previous lemma, we have
sup d1,¢(0,9;) < cc.
Proposition 4.17 is the key technical result from which Theorem 4.3 immediately
follows.

Proposition 4.17. Consider the continuity path (4.27). Suppose for some se-
quence t; 1, there exists a solution @; to (4.27) with t = t; with ¢; € Ho
and sup; d1 (0, 9;) < oo. Let ¢; € Hoy be in the same G-orbit as @; such that
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sup,; d1(0, ;) < oo. Suppose also that K-energy is G-invariant, then {@;}; con-
tains a subsequence which converges in CH* (for any 0 < a < 1) to a smooth cscK
potential.

Let 0; € G be such that
(4.37) sup di(0,0;.4;) < oo.

The existence of such a sequence o; follows from Corollary 4.16. Denote ¢; = 0;.¢;.
Next we briefly explain how to obtain above proposition.

First we write down the equation satisfied by the sequence ¢;, and they turn
out to satisfy an equation in the form studied in Section 2, as shown by Lemma
4.19. Moreover, the integrability exponent py improves to infinity as ¢; approaches
1. Hence the estimates in Section 2 allow us to get uniform bounds of ¢; in WP
for any p < co. Hence we can use compactness to take limit and we show the limit
solves a weak form of cscK equation, as shown in Proposition 4.23. Finally one
argues that this weak solution of cscK equation is actually smooth.

As a preliminary step, we show the sequence {y;} has uniformly bounded en-

tropy.

Lemma 4.18. Denote ¢; = 0;.¢;, then we have

wn
Pi n
sup/ log <—n>w% < 00.
i JMm wo

Proof. First due to the G-invariance of K-energy observed in Lemma 4.11, we have

(4.38) sup K (p;) = sup K(¢;) < oo.

On the other hand, we know from Lemma 4.4 that

(4.39) sup [J_ric(p:)| < sup Cp|Riclu,d1 (0, ¢;) < oco.
7 7

From (4.38), (4.39), and recall the formula for K-energy in (4.24), the desired
conclusion follows. O

Next we derive the equation satisfied by the sequence ¢;. We have the following
result:

Lemma 4.19. Let 0; be such that 0wy = wy,, with sup,; 0; = 0. Then ¢; satisfies
the following equations:

(4.40) det(gog + (9i)ag) = € det g3,
1-— ti . 1- ti

(4.41) Ay Fy=—(R- : n) + try, (Ric(wo) — : we, ).
Proof. Define efi = w? . We have the following calculations:
(4.42) o7 (wg,) = (07 wz,)" = wy,
On the other hand,
(4.43) ot (eFiwn) = el (aFwo )™
So

w =
4.44 _Yoi _ Fioos.
(t49 (o7wo)"
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974 XIUXIONG CHEN AND JINGRUI CHENG

Hence if we define F; to be e = tﬁ , S0 as to make sure (4.40) always holds, we
0

have
“o
To see (4.41), we go back to (4.29), and note that (4.29) is equivalent to:
wi ! 1—14; wg, 1-—1t; Wg:l

(4.46) \/_88F/\( — ) =—(R- ; n) 7:;!1“‘(1%1'0(“0)_ t wo)/\(n_ n-

Pulling back using ¢;, we obtain

n—1 n
. , 1—t, w?
V109(F; 0 07) A (:%1)' = —(B-—"n) “:;j
(447) . ' 1 _ t wn—l
+ (Ric(ofwo) — Z “ofwg) A ( “iil)!.

Using (4.45) and recall that
a (O-;,kw )n . . *
V—1901og <w—610 = Ric(wo) — Ric(o]wy),

we conclude

= - . we! 1—t; \wg,
(V=190F; + Ric(o;wy) — Ric(wo)) A = =—(R—-—n)—%
(n—1)! t; n!
(4.48) —1
+ (Ric(o; wo) — Fwo) A Y.
oiwg) — o; :
1o t; VY =)
This is equivalent to (4.41). O

Next we would like to use the result obtained in the last section to study the
regularity of ¢;. Denote R; = R 1tt = —wgl, (Bo): = ”wo, and
fi = %91'. Then we have 8; > 0, and 3; = ( 0)i + vV — 100f;. Here we prove a

property about the f; which will be crucial for our proof.

Lemma 4.20. There exists a constant Cag, which depends only on the background
metric wy, such that for any p > 1, there exists €, > 0, depending only on p and
the background metric wo, such that for any t; € (1 —¢,,1), one has e~ /i € LP(w})
with ||e~ 7

Lo(wy) < Co.

Proof. Since we know that wg, = wo + V/—1006; > 0, with sup,, 6; = 0, hence by a
result of Tian (c.f. [70, Proposition 2.1]), we know that there exists a > 0, Ca5.5 >
0, depending only on the background metric wo, such that for any u € C?(M),
wo + v/—100u > 0, one has Jae —alu=supy W dyol, < Cas 5.

Given p > 1, suppose t; is sufficiently close to 1 such that p =t < «, then we
have

(4.49)
-tig 1oty _p(—ty)
/ e_pf'idvolg :/ e_pTgldvolg < (/ e“widvolg)p ati vol(M)1 ot
M M M

1-t;
i p(1—t;)

< Cgf?vol(M)lf ot <max (Cgs.5,v0l(M)) :=Ca6. O

As an application of the estimate in Theorem 3.3, we conclude the following
uniform estimate for the sequence ;.
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Proposition 4.21. For any p > 1, there exists a constant Ca7, and s; > 0, such
that for any t; € (1 — ¢, 1),
I[1F: + fillwrzr < Coz, [0+ Api|| Lo (wy) < Cor.
In the above, E; depends only on p and background metric wy, and Cy7 depends on

)wgi .

n
w
©q
7
wo

D, background metric wy and the uniform entropy bound sup;, fM log (

Proof. We may assume that ¢, is chosen so small such that for any ¢; € (1 —¢),,1),
e~fi € L9 for some ¢ > k,. Such smallness depends only on n and the a-invariant

of the background metric. The result then follows from Lemma 4.20 and Theorem
3.3. O

With this preparation, we can pass to the limit. Hence we may take a subse-
quence of ¢; (without relabeled), and a function ¢, € W2P for any p < oo, and
another function F, € WP for any p < oo, such that

(4.50)
©; =@, in OB for any 0<a <1 and vV—190¢; —+/—109p, weakly in LP.
(4.51) F; + fi— F, in C° for any 0<a<1 and V(F; + f;) = VF. weakly in L?.

As a result of (4.50), we have

(4.52) wﬁi — wf,*, weakly in L for any 1 < k < n and p < co.

Here we provide an argument(more or less standard) for this weak convergence.

Lemma 4.22. Suppose the convergence in (4.50) holds. Then for any p < co and
any 1 <k <n,

wf;i — wi* weakly in LP.
Proof. We need to show that, for any ¢, a smooth (n — k,n — k) form, the following
convergence holds:

(4.53) / wf,/\(j—)/ wf,* A, as 1 — oo.
M M

Since wf,i is uniformly bounded in LP for any p < oo, (4.53) will imply the same

convergence holds for any ¢ € L? with ¢ > 1. Now we prove (4.53) by induction in
k.

First observe that when k = 1, (4.53) follows from the weak convergence of
vV —188<pl

Now assume (4.53) holds for &k = [ — 1, we need to show (4.53) holds for k = .
Indeed, let ¢ be a smooth (n —I,n — ) form, we have

/wfai/\gz/ wf;il/\wo/\C—i—/ wo P AV=100p; A ¢
M M M

:/ wf;il/\wo/\C—/ wf;il/\dcgoi/\dg.
M M

Here d¢ = @(a — 9). From the induction hypothesis, we know that

(4.54)

(4.55) /wfo_ilAwoAg“—)/ wi,:l/\wo/\(j, as i — oo.
M M
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On the other hand, we know from (4.50) that d°p; — d°p. uniformly, hence d°p; A
d¢ — d°ps A dC strongly in L? for any ¢ > 1. This combined with the weak
convergence of wfo_il is sufficient to imply

(4.56) / wfp_il ANdp; NdC — / wfp:l ANdCp, NdC, as i — co.
M M

Combining (4.54), (4.55) and (4.56), we conclude as i — oo,

(4.57) / wh, /\C—>/ wh /\wo/\C—/ wh /\dc<p*/\d<:/ wh, A C.
M M M M
This proves (4.53) for k = and finishes the induction. O

It is crucial matter to identify the limit. Actually we will show the solution .
is a weak solution to cscK in the following sense:

Proposition 4.23. Let ., F, be the limit obtained in (4.50), (4.51). Then v, is
a weak solution to cscK in the following sense:

(1) wg, = e uwg,

(2) For anyn € C*(M), we have
n—1

wn—l wn
4.58 — | d°F.Adph —2— = —nR—2%= Ric A —2——.
(4.58) /M T =) /M TR T

In the above, d° = @(8 - 9).

Before we prove this proposition, we need Lemma 4.24, which shows f; — 0 in
L'. This is needed to justify (1) in the above proposition.

Lemma 4.24. Recall 0; is defined as 0wy = wy, with sup,,;0; = 0. f; = 1;“ 0;.
Then we have

e i 51 in LP(W}) as t; — 1 for any p < oo.
Proof. First we know from (4.31) that there exists e; — 0, such that
inf K () +ei 2 Kao,t, (91) = i (91) + (1 = i) Ju (1)

(4.59) > tinf K (i) + (1= 1:)3d1(0,5:) — (1 = :)C.

This implies (1 — ¢;)d1(0,9;) — 0 as t; — 1. On the other hand, denote 0, =
0; — L) then we have 0; € Ho and 0;.0 = 0;. Also we know that G acts on Ho

vol(M)”
by isometry, hence
(460) d1(07 él) - dl (07 (pz) < dl (élu SDZ) = dl (Ui‘ou UZSZ)Z) = dl (O> 951)

Since sup, d1(0, ;) < oo, we know (1 — ti)dl(O,éi) — 0. Therefore from [38,
Theorem 5.5], we see that as t; — 1,

(1- ti)/ 10ifwp < (1= t:)da(0,6,) — 0.
M
Now we claim that

(461) 1(92)(1 — ti) — 0, as t; — 1.

If we have shown this claim, then we will have [, |fi|wg — 0. Hence at least up
to a subsequence, we would have f; — 0 pointwise outside a measure zero set.
This would imply e ?fi — 1 outside a measure zero set. On the other hand, by
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taking p’ > p, we know sup, fM e’p/fiwg < o0, we can then conclude {e’pfi}izl is
equi-integrable. Then we can conclude e /i — 1 in L' using standard results in
measure theory.

Hence it only remains to show the claim (4.61). Since we know that sup,, 6; = 0,
we know that

0< / (=0;)wy < Cag, Cag depends only on background metric wy.
M

On the other hand,
wo o _ n
z(ei)+/M<—9i>m - 5371 ). ¢ Z Wb Ak~ up)

/9\/ 889/\271— Jwg, Awpht

1
(4.62) (n+
n—1—k
> n+1 / V=100, 1 96; /\Zwo Awg
n 0 n n 0
= ot Mei(wo —wg ) = —Cdy(0,6;).
Hence we have
0> 1(0;) > —C'(1+dy(0,6;)).
From here the claim (4.61) immediately follows. O

Now we are ready to show Proposition 4.23. We will obtain this as the result of
the previous lemma,

Proof of Propositz'on 4.23. First we show the equation (1) holds. First for each fixed
i, we have wj = efiwl. (4.52) shows wg, — wg, weakly in LP for any p < oo. For
the convergence of the right hand side, we can write e = efitfi . e=fi | According

0 (4.51), we see that F; + f; is uniformly bounded, and converges to F; strongly in
LP for p < oo. This implies e +7i — ef* in LP for any finite p. On the other hand,
we have just shown in Lemma 4.24 that e~f* — 1 in L? for any p < co. From here
we can conclude ef — ef* in LP for p < co. Hence the equation (1) of Proposition
follows.

To see the second equation, first we see from (4.41) that

1-1
Ay, (Fi+ fi) = (R i ) +try, (ch i wo).
7 K]
This implies for n € C*>° (M), one has
n 1
(4.63) M Ly - .
— ¢ w — 1. w,
_ _ R— 7 22 R _ 7 A Pi .
/M L L A ]
We wish to pass to limit in (4.63) as t; — 1. First because of (4.52), we can easily
conclude:
wn UJ" 1
(4.64) R.H.S. of (4.63) — / n( R—2= + Ric A >
M n! (n—1)!
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For the left hand side, since F; + f; — F) strongly in LP, w&fl — wg:l weakly in
LP for any p < oo, we can conclude

wn n—1
/ (F; +fz)dcdn/\7 —>/ chdn/\i
M (n (n—1)!
Since F, € WP, we have
(4.65)
/dCF/\d/\wg*_l /chd/\wnl / ( Rw“"*+R /\wn_l>
- AN —F—— A —— 7 ich —— ).
M (n—1)! M ( 1! M ( 1!

Next we argue that w,, is quasi-isometric to wp.
Lemma 4.25. There exists a constant Cag, such that C%gwo <w,, < Cogwy.

Proof. We know that F, € WP for any p < oo, hence we may take Gy € C>°(M),
uniformly bounded, and G}, — F, in WP, Let 93, be the solution to Wepy = eCruwp
with sup,; ¥x = 0. The result of [28, Theorem 1.1], shows that for any p < oo, one
has

sup |[¢g||lwzr < oo,
K

Hence up to a subsequence, we can assume that for some v, € WP for any finite
p, ¥ — ¥, in W2P for any finite p. Therefore Wy, = ef*wl. Because of uniqueness
result of Monge-Ampere equations (c.f. [9, Theorem 1.1]), we can conclude ¢, and
1, differ by a constant, hence w,, = wy, < Crpwy. That w,, = wy, > C%)gwo

follows from F, is bounded from below.
As a result of this, we now show that ¢, is actually a smooth cscK.
Corollary 4.26. ¢, is a smooth solution to cscK.

Proof. We know from the proof of Lemma 4.25 that ¢, € WP for any p < oo,
hence we know that w,, € C® for any 0 < a < 1. From (4.58) and Schauder
estimate, we conclude F, € C? for any 0 < a < 1. Then the higher regularity
follows from bootstrap. O

5. REGULARITY OF WEAK MINIMIZERS OF K-ENERGY

Our main goal in this section is to show the minimizers of K-energy over £! are
always smooth. The main ingredients are the continuity path as well as a priori
estimates obtained in Section 3. The strategy of the proof is somewhat different
from the usual variational problem. Indeed, the usual strategy for variational prob-
lem will be first to take some smooth variation of the minimizer, and derive an
Euler-Lagrange equation for the minimizer (in weak form). Then one works with
the Euler-Lagrange equation to obtain regularity (or partial regularity).

However, the same strategy runs into difficulty here. Indeed, an Euler-Lagrange
equation for minimizer is not a priori available, since an arbitrary smooth variation
of ¢, does not necessarily preserve the condition that w, > 0.

To get around this difficulty, we will still use the continuity path and our argu-
ment is partly inspired from [7]. The difference here is that the properness theorem
(Theorem 4.1) plays a central role. Here we sketch the argument. Take ¢; to be
smooth approximations of ¢, (in the space £'), and we solve continuity path from
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;. That K-energy is bounded from below ensures the continuity path is solvable
for t < 1. We will show the existence of a minimizer ensures that for each fixed
j, L' geodesic distance remains bounded as t — 1. Hence we can take limit as
t — 1 and obtain a cscK potential u;. Besides, such a sequence of u; will also
be uniformly bounded under L' geodesic distance, which follows from the uniform
boundedness of ¢; under L' geodesic distance. Our a priori estimates allow us to
take smooth limit of u; and conclude that u; — 1 smoothly and v is a smooth
cscK potential. The proof is then finished once we can show ¢ and ¢, only differ
by an additive constant.

First we show that the existence of minimizers implies existence of smooth cscK
metric.

Lemma 5.1. Suppose that for some . € E*, we have K (p,) = inf ce1r K(p), then
there exists a smooth cscK in the class [wp).

Proof. We consider the continuity path (2.9) with ¥ = wg. By assumption, K-
energy over £! is bounded from below. Therefore the twisted K-energy K.,
defined by (2.8) is proper for any 0 < ¢ < 1. Hence we may invoke Theorem 4.1
with 8 = %wo to conclude that there exists a solution to (2.9) for any 0 < ¢t < 1.
The only remaining issue is to see what happens in (2.9) as t — 1.

Choose t; < 1 and t; — 1, and let ; be solutions to (2.9) with ¢ = ¢;, normalized
up to an additive constant so that I(@;) = 0. Corollary 4.5 implies that ¢; is the
minimizer to K, ¢,. Therefore we have
(5.1)

LK (px) + (1= 15) Jug (8i) < G K (i) + (1= 13) Jug (#i) < GK (0) + (1= ti) oy (04)-
Hence (5.1) implies that

Juso (951) < on(sﬁ*)~
On the other hand, we know .J,, is proper, in the sense that J,, () > dd1(0,¢)—C,
for ¢ € Ho (c.f. [36, Proposition 22]). This implies that

5 1
sup dy (0, $;) < =(C + Juy (1)) < 0.

Now from Lemma 4.6 we conclude that (2.9) can be solved up to ¢ = 1, and we
obtain the existence of a cscK potential. O

The main result of [7] showed the following weak-strong uniqueness property: as
long as a smooth cscK exists in the Kéhler class [wo], all the minimizers of K-energy
over £! are smooth cscK. Therefore, we can already conclude the following result:

Theorem 5.1. Let . € E be such that K(p.) = infe1 K(p). Then ¢, is smooth,
and w,, s a cscK metric.

Next we will prove a more general version of Theorem 5.1. More precisely, we
will prove:

Theorem 5.2. Let x > 0 be a closed smooth (1,1) form. Define K, () =
K () + Jy (), where J,(p) is defined by (2.4). Let p. € E' be such that K, (p.) =
infer Ky (¢). Then @, is smooth and solves the equation R, — R =tryx — x.

Note that one can run the same argument as in Lemma 5.1 to show once there
exists a minimizer to K, there exists a smooth solution to

(5.2) R, — R =tryx —x.
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However, it is not clear to us whether the argument in [7] can be adapted to this case
to show a weak-strong uniqueness result. Namely if there exists a smooth solution
to R,—R = tr,x—YX, can one conclude all minimizers of K, are smooth? Therefore,
in the following, we will use a direct argument. This argument is motivated from
[7], but now is more straightforward because of the use of properness theorem.

Let ¢, be a minimizer of K. Then by [8, Lemma 1.3], we may take a sequence
of p; € H, such that di(¢;, ps) — 0, and K, (p;) = K, (¢.). Indeed, that lemma
asserts the convergence of the entropy part, but the J_g;. and J, are continuous
under d; convergence, by [8, Proposition 4.4].

Since there exists a minimizer to K, the functional K, is bounded from below.
On the other hand, for each fixed j, by [36, Proposition 22|, we know that stoj is
= tK, + (1 -
t)waj is proper. Hence we may invoke Theorem 4.1 to conclude there exists a
smooth solution to the equation

proper. Therefore, for 0 < ¢ < 1, the twisted K,-energy K

7wgoj)

(5.3) t(Ry, — R) = (1 = t)(tryow,, —n) +t(tryx — x), forany 0 <t < 1.

Denote the solution to be <p§, normalized up to an additive constant so that gog» € Ho,
namely I(p%) = 0.

Since x > 0 and closed, we know that J, is convex along C11 geodesic (though
not necessarily strictly convex). Hence the functional K, is convex along C*!
geodesic. This again implies the convexity of tK, + (1 — t).]%j along C1! geodesic.
In particular, Lp;- is a global minimizer of tK, + (1 — t)Jw‘pJ_ by Corollary 4.5.

Hence we know that
(5.4)

LR (05) + (1= 1) Ju,, (95) < tE(05) +(1=1) o, (05) < tE(95) +(1=1) T, (#5)-

The first inequality above uses that ¢; minimizes stoj' Hence

(5.5) sup K (¢5) < sup Ky ().
0<t<1,j j
Next we will show that the family of solution 4,0; are uniformly bounded in d;. First
we have
(5.6)

tKX(¢§)+(1_t)Jw¢J (@E) < tKX(QO*)_F(l_t)Jw% (SO*) < th(@;)"i’(l_t)Jw@] (‘P*)

The first inequality follows from that ¢’ minimizes ¢ K, + (1 —t)Jw‘pJ_ and the second
inequality follows since ¢, minimizes K, . Therefore,

(5.7) Jwgpj (Spj) < Jwgpj (303) < Jwg;,j (¢x)-

The first inequality follows from that ¢; is a minimizer of waj. The second in-
equality follows from (5.6). As a first observation, we have

Lemma 5.2. As j — oo,

Ty, (0s) = Ju,, (05) = 0.
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Proof. We can compute
(5.8)

Teoy (0 = o (2) = [ 250, O+ (1= Ng)ar

n—1
(s — (pl)wwwr(l*)\)% NWe; — wi\i@ﬂr(l*/\)w
o (n—1)!

n—1

[,
! 5 Wrg. (12,
= [0 [ A=) A V100 — ) O
0
[ o],

(n—1)!
Awg, + (1= Nawg,)"
(n—1)! '

MW =10(ps — ©5) N0 — ) A

Define

n—1
I(pjp.) = / V=10(p; — @) NO(pj — ) N Y wh Awp 1
(5.9) M k=0

= /M(SDj — ) (wg, —wi,)-

Since we know di(¢;,¢x) > & [3, 15 — ¢x|(wi, +wi,) for some dimensional con-
stant C, by [38, Theorem 5.5], we have I(p;, p.) < Cdi(g¢j, p«) — 0. On the other
hand, we have J,, (px) — T, (pj) < C'I(pj, ) from (5.8) and (5.9). Hence
waj (ps) — qu,j (¢j) < C'Cdi(pj,05) = 0. .

Corollary 5.3. Let I(pj, ) be defined similar to (5.9), then we have
SUPg<i<1 1(¢; 805) — 0 asj — oo.
Proof. From previous lemma and (5.7), we know that as j — oo,

SR Taog, (5) = Juy, (03) S Jury, (92) = sy, (07) = 0.

On the other hand, we know from (5.8), (5.9) with ¢, replaced by ¢, the following
estimate holds:

G (84) = o (09)) (6} 03) < Culdn, (80) = (0)

O

Next we would like to show the d; distance of <p§- remains uniformly bounded.
For this we will need the following key lemma:

Lemma 5.4 ([6, Theorem 1.8 and Lemma 1.9]). There exists a dimensional con-
stant Cy,, such that for any u, v, w € E', we have

Iu,w) < Cp(I(u,v) + I(v,w)).

Besides, we have

V—10(u—w) AN (u—w)Aw? ! < C, 1 (u, w)w+1 (I(u, v)1_2"+1 +I(w, v)l_’z"%l).
M

As an immediate consequence of this lemma and Corollary 5.3, we see that:

Corollary 5.5. supg.,; [(}, 0.) = 0 as j — oc.
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Proof. Indeed,
I(ph, pu) < Cu(I(€5,05) + (05, 04)) < Cr(1(65,05) + Cdi (5, ¢4))-

In the second inequality above, we again used Theorem 5.5 of [38]. (]
Using Lemma 5.4, we can show the following:

Lemma 5.6. There exists a constant C, depending only on sup; d1(0,¢,), n, such
that

sup dl(O,an) <C.

jo<t<1

Proof. Denote d¢ = @(8 —0), and let € > 0, we may calculate
(5.10)
Juoo (95) = Juo,., (¢5)

1
d
:/ a(JWO(AQD;)—Jw_(mp;))dx
0
wo/\ww W Mo w?;&
// (n—l - <n—1 )‘” //d Ad“’“(n—n!
Se//dﬂp?/\dgpﬁ- ( d>\+ //dcwj/\dgaj (_Jl)dA
0o Ju !

n—1 -
Cn
§EC’n/ deot /\dapj/\ g wg /\w”t1 k—l——/ dp; Ndp; A
M € JMm

dX

n—1
Wy 4
2%;

(n—1)!

1 1 1 1 .

< 5énd1 (07 @;) +

< Eéndl (0, (,0;) +

m’SQI m|Q2

1 1 a1

I(O, spj)2n—1 <I(07 §s02)1 TroT
l= g 1 tyl——1—
+ DnI(Ov <P]) 2n—1 l)nI(O7 5@]) on—1

- 1 " - n—1
< eCadi(0.6}) +£1(0, 5¢5) + e (Cu(1+ D))" 10, y).

In the first line above, we used that J,, (0) = S, (0) = 0, which follows from (2.4).
We used the second inequality of Lemma 5.4 in the passage from the 5th line to 6th
line, and the first inequality in the passage from 6th line to 7th line. In the passage
from 7th line to the last line, we used Young’s inequality. Next observe that

n—1
1 1 =1
1<o,§¢§)=/M \/——1@(530;“@(5@;“2% Ak

n—1
1
/\/ 19( gaj)/\a gaj /\Z—kwo—ka) Awpm1imk
(5.11) i
<C / vV 6<p]/\5<p§/\2w0/\wf C / ©; +)
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Hence we obtain

271,—1

(5.12) Ju (‘P;) < Ju (902) + Eéndl(o, 903) 272! (Cn(l + Dn)) 1(0, ¢;).

)
On the other hand, since we know J,,, is proper in the following sense:
Juwo () > 0d1(0, ) — C, v € Hp.

Choose € small enough so that

[NYST)

Hence we obtain from (5.12) that

n—1

(613)  h0,6) < 5 (L, (6 +e 2 1+ D) T0,65) +C).

Since we know that I(0,¢;) < Cdy(0,¢;), and di(0, ¢;) is uniformly bounded, it
only remains to find an upper bound for J, (gpj) In order to bound J, (¥%)
from above, we just need to find an upper bound for J.,, () thanks to (5.7). For
this we can write:

w/\ /\wSa wy
w . d\ . D i P
s (£2) / / v ( (n—1)! (n—l)!)

n—1

(5.14) < / [ oav/=108(0; = X0 1 (wk—v)

/dA/ AC, A dp, A **”* /d)\/ d°p. A dpj (n*_“’*).

In the above, d° = @(8 — 0), hence d°d = v/—100. For the first term above, it
can be bounded in the following way:
(5.15)

n—1
/d)\/ Ao, Adp, A w *_“”*) g/ Ao Ndipu Ny wi Awl TR < Cdy (0, 4).
! k=0

For the second term on the right hand side of (5.14),

/dA/ dp. Adip;j A M’* '_2/ dA/ d°0s A dp, A G Aj*l)

/d)\/ d°p; Adpj A ﬁ
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The first term above can be estimated in the same way as in (5.15). For the second
term above, we have

n—1

1 w
A\ | V=10p; Adp; N — 2P
/0 /M PRI )]

Wt
<C V=10¢; A dp; N —22
Y & i (n—1)!

1 _ 1 1
BT < CI(0,p5) 7 <I(0’§@*)1 T 4 I(pg, )’ _>

1
< Cul(0,5)7 T <I(0, 590*)1*2”%1 + Dy I(0,))' 7T

1
+ DnI(07 _30*)17 2"171 ) .

2
By [38, Theorem 5.5], I(0, ¢;) is controlled by d1 (0, ;) and the calculation in (5.11)
shows that I(0, 3¢.) can be controlled in terms of dy(0, ¢.) respectively. O

Next we are ready to pass to limit. From supg ;. d1(0,4p§) < 00, we may
conclude that sup; o<1 [J-ric(¢})| < 00 and sup; o4y |Jy (¢5)| < 0o by Lemma

w
4.4. By (5.5) and our definition of K,, we know that sup;, [,,log (%;)wgf < 0.
Hence we may use Lemma 4.3 (the same argument works for K, ) to conclude that
up to a subsequence of ¢, <p§- — u; as t — 1 and u; solves (5.2) for each j with
I(uj) = 0. This convergence is smooth convergence due to our previous estimates.
Again due to the last lemma, we have sup; d;(0,u;) < sup;,di(0,¢%) < C for
some fixed constant C' depending only on n and sup, di(0,¢;). Hence we may
again assume that up to a subsequence of j, u; — 1 smoothly as j — oo and ¥
is a smooth solution to (5.3). To finish the proof that ¢, is smooth, we just need
Lemma 5.7:

Lemma 5.7. ¢, and ¥ differ by an additive constant.

Proof. By taking limit as ¢ — 1, we can conclude from Corollary 5.5 that I(u;, ¢.)
— 0 as j — oco. On the other hand, since u; — v smoothly, we have I(u;,1) — 0
as j — o0o. Hence

That is, I(¢«, 1) = 0. On the other hand, from Lemma 5.8, we know ¢, € H'(M)
and

Tpuw) > [ V(o =Dl
Therefore 1 and ¢, differ only up to a constant. O
In the above lemma, we used the following fact.

Lemma 5.8. Let p € £, then o € HY(M,wy). Moreover, for any v € H, we have
(5.1) Io) = [ Vol =)t

In the above, |V (¢ — @/1)@ = gfi(sﬁ —Y)i(p —);-
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Proof. First we assume that both ¢, ¢ € H. Then we know that

(o) = /M@—w)(wz—wz)
= [ - nde— o)A Yk Awg
M k=0

> /M 0(p — ) Ad(p — ) AWt = /M Vol — )Rl

So (5.18) holds as long as ¢ € H. If ¢ € £, then we can find a sequence ¢; € H,
such that ¢; decreases pointwisely to . Such approximation is possible due to the
main result of [10]. Also due to Lemma 4.3 of [38], we know that di(¢;, ) — 0.
This implies that I(¢;,v¢) — I(¢, ).

Since (5.18) holds with ¢ replaced by ¢;, we see that

(5.19) /M V(65 — )Pl < 165, 6) = Lo, ).

From sup; dy (0, ¢;) < 0o, we know that sup; [}, [¢;]dvoly < co. Now (5.19) shows
¢; is uniformly bounded in H'(M, wy;). Hence we can find a subsequence of ¢,
which converges weakly in H'(M, w,}), strongly in L?(M, wy). Clearly this limit
must be ¢. This shows ¢ € H'(M,w}}), hence also in H'(M,wg). Also we can
conclude from (5.19) that

/ V(o — ) [Fwy; < lim inf / V(5 — ) Pwy < liminf I(¢;,1) = (e, ).
M J=00 M J
O

6. GEODESIC STABILITY AND EXISTENCE OF CSCK (Auto(M, J) =0)

In this section, we prove Theorem 1.2. Similar to the definition of Hy, we define
& =&"n{u:I(u) =0}

Here I(u) for u € €' is understood as the continuous extension of the functional
I from H to £!. This is possible because of Proposition 4.1 in [8]. Also we notice
that for any ug, u; € &3, the finite energy geodesic segment (defined by Theorem
2.2) [0,1] > t — &' will actually lie in £}. This follows from the fact that the I
functional is affine on C''! geodesics and I can be continuously extended to the
space £'. As before, 3 > 0 is a smooth closed (1, 1) form.

First we note that when Auto(M,J) = 0 the notion of geodesic stability given
by Definition 1.5 simplifies to (since the second alternative in Definition 1.5 does
not happen when Auto(M,J) = 0):

Definition 6.1. Let ¢ € £} be such that K(¢g) < co. We say (M, [wo)) is geodesic
stable at ¢q if for any locally finite energy geodesic ray p : [0,00) — &£} with unit
speed, one has ¥(p) > 0.

We will first prove the following result in this section, which covers Theorem 1.2
when Auto(M, J) = 0.
Theorem 6.1. Suppose that either

(1) B >0 everywhere; or
(2) B =0 everywhere and Auto(M,J) = 0.
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Then the following statements are equivalent:

(1) There exists no twisted cscK metric with respect to 5 in Hop.

(2) There is an infinite geodesic ray p; with locally finite energy with K (p(0)) <
o0, t € [0,00) in &}, such that the functional Kg is non-increasing along
the ray.

(3) For any ¢ € £} with K(¢) < oo, there is a locally finite energy geodesic ray
starting at ¢, such that the functional Kg is non-increasing along the ray.

In the case B > 0, then from (1) one can additionally conclude Kpg is strictly
decreasing in (2) and (3) above.

Definition 6.2. Let [0,00) >t — u; € £ be a continuous curve. Then we say u;
is an infinite geodesic ray with locally finite energy, if the following hold:

(1) di(ug, us) = c|t — s| for some constant ¢ > 0 and any s, t € [0, 00).
(2) For any K > 0, [0, K] >t — uy is a finite energy geodesic segment in the
sense defined by Theorem 2.2.

Remark 6.3. Observe that the implication (3) = (2) is trivial. (2) = (1) follows
from Theorem 4.2, which is already proved in [7,8]. We will use our a priori
estimates and the continuity path (2.9) to resolve the implication (1) = (3). We
are partly motivated from arguments in the proof of Theorem 6.5 of [8].

Next we observe Lemma 6.4:

Lemma 6.4. Consider the continuity path (2.12). Suppose there is no twisted cscK
metric with respect to § in Kihler class [wo]. Denote t, = sup S, where the set S is
defined in (4.1). Let S > t; 7 t.. Denote p; to be the solution to (2.9) with t =t;,
normalized so that I(p;) = 0. Then we have sup, d1(0, ¢;) = co.

Proof. Suppose otherwise, then sup, d1(0,¢;) < co. We can apply Lemma 4.6 to
conclude t, € S. If t, < 1, then we conclude from Lemma 2.1 that ¢, + ¢’ € S for
some &’ > 0 sufficiently small. This contradicts t, = supS. If t, =1, then 1 € S.
But this will contradict our assumption that there is no cscK metric in [wp]. In
either case, the contradiction shows one cannot have sup; d1(0, ;) < co. 0

With the help of above lemma, we are ready to prove (1) = (3) in Theorem 6.1.
Lemma 6.5. In Theorem 6.1, item (1) implies item (3).

Proof. Let @; be as in Lemma 6.4, we know that sup; d1 (0, ¢;) = co. Hence we may
take a subsequence ¢;;, such that d1 (0, ;;) /* co. We will construct a geodesic ray
as described in Theorem 6.1, point (2) out of this subsequence ;,. For simplicity,
we will still denote this subsequence by ;.

By Theorem 2.2, there exists a unit speed finite energy d;-geodesic segment
connecting ¢ and ¢;, such that the functional I is affine on the segment. Indeed,
one can check I is affine on C''! geodesic and the extension to d;-geodesic follows
from continuity of the functional I (c.f. [8, Proposition 4.1]).

Denote this geodesic by ¢! : [0, d1 (¢, ¢;)] — E*. Since I(¢) = I(p;) = 0, we know
I =0on c'. In other words, ¢ : [0,d;(¢, ;)] — £}. As noted in (4.12), we have

SUp (15 + (1= 1)) () < max(K5(0), Juy (0))

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



KAHLER METRICS (II) 987

On the other hand, since the functional J,,, is convex along C1'! geodesic, and we
know 0 is a critical point of J,,, we see that

(6.1) Joo (01) > Juy (0).
Therefore
(6.2) Kﬂ(@i) < maX(Kﬁ(O)v on(o)) - (1 — ti)on (0) < C

t;
Hence from the convexity of Kg-energy as remarked before, we obtain for any
L € [0,d1 (e, ¢i)],

l l

(63)  Kole'() < (1= 35 Kp(0) + s Kol < max(E5(0).C).

Therefore, for each fixed I, if we consider the sequence {¢'(I)}a, (4,01 C €, it
satisfies the assumption in Lemma 2.5. Indeed, di(¢,c*(l)) = I, Vi, which implies
sup; |J5(c*(1))] uniformly bounded for fixed ! (by Lemma 4.4). Therefore, we have
K-energy is uniformly bounded and we may apply Lemma 2.5.

Hence we may take a subsequence c%(I), such that c¢%(l) — ¢>(I) for some
element ¢ (1) € £ as j — oo. Since the functional I is continuous under d; con-
vergence, we obtain ¢ (1) € £} as well. Clearly we may apply this argument to each
l € Q, then by Cantor’s diagonal sequence argument, we can take a subsequence of
i, denoted by ¢;, such that

(6.4) (1) = ¢>(1) in dy, as j — oo, for any [ € Q.

Since ¢ are unit speed geodesic segment, we see that for any r, s € Q, with
0 <7, s<di(o,pi), we have dy(c'(r),c"(s)) = |r — s|. Sending j — oo gives

(6.5) dy(c™(r),c™(s)) =|r—s|, forany 0 <r, s € Q.

We can then define ¢>(r) for all = € R by requiring ¢>*(r) = d; —
lim,, e, ry—r ¢ (rr). From property (6.5) it is easy to see this is well defined,
i.e., the said limit exists and does not depend on our choice of sequence ;. Hence
[0,00) 2 r — ¢™(r) is a unit speed geodesic ray in . Besides, if we apply
Proposition 2.4 to [0,74] for any 7, > 0, 7% € Q, we know ¢ (1) — uy(r) for any
r € [0,7]. Here [0,7] > 7 — ug(r) is the finite energy geodesic segment connect-
ing ¢ and ¢ (ry). Hence we know ¢ (r) = ug(r) for any r € [0,r,] N Q, by (6.4).
Therefore ¢ (r) = ug(r) for any r € [0, 7] by density. Therefore, we have shown
c®[0,d (¢,c%(r))] 18 the finite energy geodesic segment connecting ¢ and ¢>(r) for
r € Q. It is easy to extend this to all » € R, by rescaling in time and apply
Proposition 2.4 again.

We can now invoke Theorem 4.7, Proposition 4.5 of [8] to conclude r +——
K(c™(r)), r —> Jp(c>=(r)) is convex. Hence r — Kz(c>(r)) is convex as well.

Now from the lower semi-continuity of Kg-energy under d;-convergence, we ob-
tain from (6.3) that

(6.6) Kg(c™(r)) <lim inf Kg(c¥(r)) < max(Kg(¢),C), for all r € Q.
j—o0

Using the lower semi-continuity again, we deduce

(6.7) Kp(e®(r)) < lim inf_ Ka(c(ry)) < max(Ks(6),C).

Therefore, (0,00) 3 r — Kg(c™(r)) is both convex and bounded, this forces
K -energy must be decreasing along c*°.
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To see the “in addition” part, if Kz is not strictly decreasing, then from the
convexity of r — Kg(c®(r)), we can conclude that for some ro > 0, Kg(c>(r))
remains a constant for r > 7. Since both K and J3 are convex, we know .Jg remains
linear for r > rg. Now [8, Theorem 4.12], shows ¢>(r1) = ¢*°(r,) + const for any
r1, T2 > ro. Because of the normalization I(c*(r)) = 0, we know ¢™(ry) = ¢*(r2)
for any 71, ro > ro. But this contradicts di(c™(r1),c>*(r2)) = |r1 — r2| for any
r1, T2 Z 0. O

Finally, the implication (2) = (1) follows immediately from Theorem 4.2.

Proof. Suppose otherwise, namely there exists a twisted cscK metric with respect
to B in Hg, denoted by ©?. Then we can conclude from Theorem 4.2 that the
twisted K-energy Kp is proper. In particular, K3 — 400 along any locally finite
energy geodesic ray. This contradicts the assumption in (2). ([l

We can deduce the following immediate consequence of Theorem 6.1.

Corollary 6.6. Let 0 < tg < 1, and let x be a Kdhler form. Then the following
statements are equivalent:

(1) There is no twisted cscK metric with t = to in Ho (i.e. solves (2.9) with
t=tg).

(2) There is an infinite geodesic ray p, of locally finite energy, t € [0,00) in &F,
such that the twisted K -energy K, 4, (defined by (2.8)) is strictly decreasing
along the ray.

(3) For any ¢ € £} with K(¢) < oo, there is a locally finite energy geodesic
ray starting at ¢, such that the twisted K-energy K, ., (defined by (2.8))
is strictly decreasing along the ray.

Also we can show Theorem 1.2 as a consequence (in the special case of Auty(M, J)
= 0, so that geodesic stability reduces to Definition 6.1).

Proof of Theorem 1.2 when Autq(M,J) = 0. First we prove the necessary part.
Assume (M, [wp]) admits a cscK metric. Let ¢ be the corresponding cscK po-
tential. Recall we have shown in the proof of Theorem 4.2 (the direction ex-
istence implies properness) that for all ¢ € &}, with dq(¥,¢9) > 1, one has
K@) > edi(¢,00) + K(po). Let ¢ € & and p : [0,00) D t — &} be a locally
finite energy geodesic ray initiating from ¢. We can assume p(t) has unit speed.
Then as long as dy(p(t), o) > 1, one has

K(p(t) = K(¢) _ edi(p(t), po) + K(po) = K(¢)

t - t
(6.8) S €di(p(t), §) — edr(d, po) + K(po) = K(9)
N t
_ . _ £di(,90) — K(po) + K(¢)

t

This implies

K (p() ~ K(9)

t—o0 t
In particular this means ¥([p]) > e. Thus, (M, [wp]) is geodesic stable.

Now we want to show the converse. We assume (M, [wp]) is geodesic stable and

we want to prove that there is a cscK metric in the Kéhler class. Suppose otherwise,
then according to Theorem 6.1 with 5 = 0, point (3), we know that there exists

> €.
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a locally finite energy geodesic ray p : [0,00) > t + &}, initiating from ¢ € &}
with K(¢) < oo, such that the K-energy is non-increasing. It is clear that for
this geodesic ray, one has ¥([p]) < 0. This contradicts the assumption of geodesic
stability at ¢. This finishes the proof. |

7. GEODESIC STABILITY AND EXISTENCE OF CSCK (GENERAL CASE)

In this section, we show that geodesic stability in the sense of Definition 1.5 is
equivalent to the existence of cscK, when Auto(M, J) # 0. As before, we denote
G = Auto(M,J). The main result we will prove in this section is:

Theorem 7.1. The following statements are equivalent:

(1) The Kdhler class [wo] admits a cscK metric.
(2) There exists ¢ € E5 with K (¢g) < 00, such that (M, [wo)) is geodesic stable

at ¢0.
(3) (M, [wo)) is geodesic stable.

Here geodesic stability is defined as in Definition 1.5. Observe that the impli-
cation (3) = (2) is trivial. Therefore we will focus on the implications (2) = (1)
and (1) = (3). First we show the implication (2) = (1). As a preliminary step, we
observe that (2) implies that K-energy is invariant under G.

Lemma 7.1. If (M,[wo]) is geodesic semistable at ¢o, in particular, if (2) of
Theorem 7.1 holds, then the K -energy is invariant under G.

Proof. Let 0 € G, and let ¢ € Hg, we need to check K(p) = K(o.p). Here 0.
is defined as in the beginning of Section 3. We will prove the desired result by
showing that the Calabi-Futaki invariant must vanish. To see why this implies our
result, let X be a holomorphic vector field and {o(t)}+cgr be the one-parameter
family of holomorphic transformation generated by Re(X), such that o lies inside
the one-parameter subgroup {o(t)}tcr. Define p; := o(t).¢0 € Ho. Then for any
t € R we have

(7.1)

de(%) = / Oip(R — Ry)dvol, = —/ Re(X)(&)dvol, = —Re(F (X, [wo))).

t M M
In the above, £ is a function chosen so that A ,§ = R, — R. F(X, [wo]) is the
Calabi-Futaki invariant which depends only on X and Kéhler class [wo]. So the
right hand side of (7.1) is a constant. Our result immediately follows as long as we
can show Claim 7.2:

Claim 7.2.

d
(K (o) =0.

To see the claim, we can assume that % (K (¢¢)) := a < 0, and consider the holo-
morphic ray {¢;}+ejo,00)- If instead we have a > 0, we can consider the holomorphic
12y {Pt}te(—o0,0), and the same argument below applies.

First we show that dy (¢, ¢:) — 00 as t — oo. Indeed, we know that K(¢:) =
K(p)+at < K(p). If there exists a sequence of t, — 00, such that supy, di(p, ¢, ) <
00, then we may apply [6, Theorem 2.17], or [8, Corollary 4.8], to conclude that there
exists a subsequence tj,, and ¢ € &L, such that dl((Ptkl ,%0) — 0. But then from
the lower semicontinuity of K-energy, we know that K(¢p) < liminf; K(gptkl) =
—oo. This is a contradiction.
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Besides, we also have di (g, ;) < Ct for some C > 0. Indeed, if denote § =
Orpli—0, then dyp(t) = 6(o(t)). To see this, fix tg > 0, we can compute

(007w, ity = VE100(Auplity) = S0(t0)" (9(8) ") im0 = o (t0)" (vV=1000)

dt
=V—-199(0 0 o (to)).
Hence Opp|i=t, = 0 0 o(to) + h(to), for some function h, with A(0) = 0. Then from

the normalization I(p;) = 0, we get
i AN
I(py) = / 90(7(t)+h(t))0(t) (—‘> /9 T+ h(t)vol (M).
n M N
Since h(0) = 0, we have fM —¢ =0, which implies A(t) = 0 for all £. But then

d1 (o, 07) 7/ / |Orp(t) Wdt—T/ |0|—

Let t /oo and let py(s) : [0,d1(¢o, @1, )] — £} be the unit speed finite energy
geodesic connecting ¢o and ¢y, . Using the convexity of K-energy along pj (c.f.
[4]), we know that for any s € [0, d1 (o, ¢, )]s

K(pr(s)) < (1 - W)K(%) + WK(W
B s (K () + aty)
B (1 a d1(¢07 wtk))K(¢O) * d1(¢07 Qotk)
(7.2) < max(K (¢o), K () + W—t’;)
saty
< max(K (o), K()) + di (¢, 1) + di (o, ¢)
saty

< max(K(¢o), K(p)) + C’tk—f—d—l(cﬁo)

In the first line of (7.2), we used the convexity of K-energy along py. From the
first to the second line, we used that K (¢, ) = K(p) + tga. From the third to the
fourth line, we used triangle inequality for d; and also a < 0. From the fourth line
to the last line, we used dy (¢, 1, ) < Cty.

In particular, for each fixed s, the K-energy is bounded from above, uniform in
k. Hence we can use the compactness result [8, Corollary 4.8], to conclude there
exists a subsequence pg, (s) which converges under d; distance. Then we may apply
the same argument as in the proof of (1) = (3) in Theorem 6.1 to conclude there
exists a subsequence k;, such that for all s > 0, py, (s) converges under d; distance.
And the limit, denoted as po(s), is a unit speed locally finite energy geodesic ray
initiating from ¢g. Using the lower semicontinuity of K-energy, we obtain from

(7.2):
o sa
K (psc(s)) < it Ky (5)) < max(K (), K(60)) + -
Hence we get
- K(p(s)) _ a
= — P —
¥[poo] glg{)lo s <5< 0.
This contradicts the geodesic semi-stability. O

As a preliminary step, we show that (2) implies K-energy is bounded from below.

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



KAHLER METRICS (II) 991

Proposition 7.3. Under the assumption of point (2) of Theorem 7.1, we have that
K-energy is bounded from below.

Proof. Suppose otherwise, then there exists a sequence of potentials @; € £, such
that K (@;) — —o0o. We can choose o; € G, such that for ¢; := 0,.9; € £}, we have
d1,c(¢0, @) < di(o, vi) < di,c(¢o,P:) + 1. Because we have shown K-energy is
invariant under G, we know K (p;) — —oo as well. Next we distinguish two cases
and we show there is contradiction in both cases.

(1) sup; d1(¢o, i) < oo. We can invoke [6, Theorem 2.17], or [8, Corollary 4.8], to

conclude that there exists a subsequence ¢;, dy 1 € E'. Because of lower semicon-
tinuity of K-energy (c.f. [8, Theorem 4.7]), we see that K () < liminf;, K(p;,) =
—o00. This is not possible.

(2) sup; d1 (o, i) = co. Without loss of generality, we can assume dy(¢o, @;) —
0o. Let p; : [0,d1(¢o, ¢:)] — £ be unit speed geodesic segment connecting ¢g with
©;. Since K-energy is convex along p; (c.f. [8, Theorem 4.7]), we conclude that for
any t € [0, d1(¢o, i)l

t t
d1 (o, i) JE o)+ di (o, ¥i)

Hence for each fixed ¢ > 0, we may apply [8, Corollary 4.8] to conclude there
exists a subsequence, denoted as iy, such that p;, (t) converges under d;. Repeating
the argument of Lemma 6.5, one can actually conclude it is possible to take a
subsequence iy, such that p;, (t) converges for all ¢ € R, and the limit poo(t) is
a unit speed locally finite energy geodesic ray (first use Cantor’s process to get a
subsequence which converges for all ¢ € Q, then use geodesic property to extend
to t € R). Also because of lower semicontinuity of K-energy and (7.3), we actually
have K-energy is uniformly bounded from above on p.. Due to convexity, the
alternative (1) in Definition 1.5 cannot hold for ps,. Hence po, must be in the second
alternative, which means p., is parallel to a geodesic ray p’, which is generated from
a holomorphic vector field. This implies po is dy,¢ bounded. Indeed, for any ¢ > 0,

d1,6(pos(0), poc(t)) < d1,6(psc(0), p'(0)) + d1,c(p'(0), /(1)) + dr,c (P (2), oo (t))
< di(p(0),0'(0)) + sup d1(p'(t), pc(t))-

(7.3) K(pi(t)) < (1 K (i) < max(K(¢o), K(g:))-

In the above, note that dy,g(p'(0),p'(t)) = 0 since p’ is generated from a one-
parameter family of holomorphic automorphism. Also we have sup,.di(p'(t),
Poo(t)) < oo since p’ and po, are parallel.

On the other hand, due to Lemma 7.4, we know that di g(p;(t), ¢o) >t — 1, for
any ¢ € [1,d1(¢o, ¢:)]. Therefore,

dl,G(poo(t)7 ¢0) > dl,G(pi(t)a ¢0) - dl,G’(pi(t)vpoo(t)) >t- 1- dl (pi(t)vpoo(t))
—t—1, as 1 — oo.

This contradicts that p is di,¢ bounded. O

Above proof involves the use of Lemma 7.4:

Lemma 7.4. Let ¢, ¢ € . Suppose that for some € > 0, we have di(p,1) <
di.c(p,) +e. Let p:[0,K] — &} be a finite energy geodesic connecting ¢ and v,
then we have dy c(p, p(t)) > di(e, p(t)) — €.
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Proof. Let o € G be arbitrary, we need to show

(7.4) di(p,0.p(t)) = di(p,p(t)) —e.
Indeed,
dia(p,¥) < di(p,0.0) < di(p,0.p(t)) + di(0.p(t), 0.9)
= di (i, 0.p(t)) + di(p(t), V) = di(p, 0.p(t)) + di(p,9) — di(ep, p(1))
< di(p,0.p(t)) +dic(p, ) + e —di(p,p(t)).

In the first equality of the second line, we use that G is dj-isometry. In the second
equality, we use that p(t) is a geodesic. In the last inequality, we use our assumption.
(7.4) immediately follows from this calculation. O

With this preparation, we are ready to prove (2) = (1).

Proof. Consider the continuity path (4.27). Since we have shown K-energy is
bounded from below, we know from Lemma 4.14 to conclude that (4.27) can
be solved for any ¢t < 1 (This follows from the properness of twisted K-energy
tK + (1 —1)Jy,.)

Let ¢; 1, and let ¢; be solution to (4.27). We distinguish two cases:

(1) sup; d1,¢(¢o, ¢;) < co. Since we have shown K-energy is invariant under the
action of G in Lemma 7.1, Proposition 4.17 applies and we are done.

(2) sup; d1,¢(¢o, ¢;) = co. We will show contradiction occurs in this case. With-
out loss of generality, we may assume dy, ¢ (¢o, p;) — co. We may find o; € G, such
that for Y; = Ji~¢i; we have dl,G(QSOa@i) S dl(gbo,gﬁi) S dl,G(QSOaQbi) + 1. From
Lemma 4.15, we know that in particular sup; K(§;) < co. From G-invariance of K-
energy, we know that sup,; K(¢;) < oo. From now on, the argument is very similar
to Proposition 7.3. Indeed, let p; be the unit speed finite energy geodesic connect-
ing ¢o, ;. From the convexity of K-energy, we see that K-energy is uniformly
bounded from above on p;(independent of 7). Hence we may take limit and get a
geodesic ray pso initiating from ¢y, on which the K-energy is decreasing. Hence
the first alternative in Definition 1.5 fails for p,. On the other hand, the argument
of Proposition 7.3 shows that p is di ¢ unbounded. Hence the second alternative
in Definition 1.5 fails as well. Therefore po, violates geodesic stability at ¢y. ]

Remark 7.5. In the proof for existence, we observe that one can weaken the second
alternative in Definition 1.5 to only assume this geodesic ray is dq ¢ bounded.

Next we will move on to show the implication (1) = (3).

Proof of (1) = (3). Without loss of generality, we may assume wy itself is cscK. By
the main result of [7] and [40], the existence of cscK metric implies that K-energy
is G-invariant and K () > Cdy,¢(0,¢) — D, for some constant C' > 0, D > 0.

Let ¢ € &} be such that K(¢) < oo and let p : [0,00) — &3 be a geodesic
ray initiating from ¢. There is no loss of generality to assume it is of unit speed.
Namely di(p(s), p(t)) = |s — t|, for any s, ¢ > 0. Again we distinguish two cases:

(1) K-energy is unbounded from above on p. Since K-energy is convex on p, we
see that we are in the first alternative of Definition 1.5.

(2) K-energy is bounded from above on p. We need to argue that we are in the
second alternative of Definition 1.5. Actually we will show that p is parallel to a
geodesic ray which initiates from 0 and consists of minimizers of K-energy. From
the main result of Section 5, we know the ray consists of cscK potentials. Then the
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uniqueness result of [4, Theorem 1.3] applies and shows they differ from each other
by a holomorphic transformation.

Let t;, > 0 be such that t, — oo. Let 7 : [0,d1(0, p(tx))] — &} be the unit
speed finite energy geodesic segment connecting 0 and p(tx). Due to the convexity
of K-energy along r; and cscK being minimizers of K-energy, we know for ¢ €

[0,d1(0, p(tr))),
t t

7.5) Klrelt) < 0= G5y X O F @, ptay 0
: t . t
< O T o)) BT 370, o) b A0

In particular, this shows that K-energy is uniformly bounded from above, indepen-
dent of k and ¢. Hence we may repeat the argument of Lemma 6.5 (in particular
we use the compactness result [8, Corollary 4.8]), to conclude that one may take a
subsequence, denoted as ki, such that 7y, (t) = 7o (t) for any ¢t > 0, and r(t) is a
locally finite energy geodesic ray with unit speed. Now one can replace k by k; in
(7.5) and take the limit k; — oo, we see that

(7.6) K(reo(t)) < lim ing(Tk,, () < igllf K, for any t > 0.

This again uses lower semicontinuity of K-energy with respect to d;-convergence
(c.f. [8, Theorem 4.7]). So we get 7 is a unit speed geodesic ray consisting of
minimizers of K-energy. The only matter left is to show 7o, and p are parallel. We
prove this in Lemma 7.6. O

Lemma 7.6. Let p: [0,00) — &} be a locally finite energy geodesic ray with unit
speed. Let t, /0o, ¢ € EF, and i @ [0,d1(¢, p(tr))] — EF be the finite energy
geodesic connecting ¢ and p(ty) with unit speed. Suppose 11(t) = roo(t) as k — 00
i dy, for any t > 0. Then rs is a locally finite energy geodesic with unit speed
parallel to p.

Proof. That r is a unit speed locally finite energy geodesic follows the same ar-
gument in the proof of (1) = (3) in Theorem 6.1. It only remains to show that r
and p are parallel.
Fix t > 0, we may take tj, sufficiently large so that t; > ¢+ d1(¢, p(0)). Define s
S0 as to satisfy
t s

e di(d,p(te))

Observe that

(7.7) di(p(t),rx(t)) < di(p(t), () + di(rr(s), (1)) = da(p(t), i (5)) + |s — t].

Now
5 — t] = ¢l = (@ P _ | (p(0), pltr)) = da (@, p(t))]
(7.8) tk te
<209 g (0), ).

173

rr(s)). For this we consider the repara-

),
p((1=7)tx), (1) = i (1=7)d1 (6, p(th))).

Hence it only remains to bound dq(p(t
metrization: for 7 € [0, 1], define p(7) =
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First we consider the case where one has ¢, p(0) € £2. The main result of [14]
and also the extension in [37] shows that (£2,ds) is non-positively curved. Hence

di(p(7), (7)) < da(p(7), 71 (7)) <72 (p(1), 74 (1)) = Td2(p(0), ¢), for any 7€[0,1].

Now we take 7 =1 — i to conclude
(7.9)

di (p(t), i (8t du (@, p(t))) = da(p(t),mi(s)) < (1 — i)dz(ﬂ(o), ¢) < da(p(0), ¢).

Combining (7.7), (7.8), (7.9), we conclude that dy(p(t), rr(t)) < 2da(¢, p(0)) for all
tr, sufficiently large. We can send k — oo and use that ri(t) — 7r(t) in dy to
conclude that

d1(p(t), 7oo(t)) < 2d2(9, p(0))-

In the general case where we don’t assume that p(0) or ¢ € £%, we need to use
Theorem A.1 to conclude

(7.10) di(p(7), (7)) < 7d1(p(1),7%(1)) = 7d1(p(0), ).
Then the rest of the above argument goes through but we no longer need to use ds
distance. ]

Next we will prove Theorem 1.1, as an application of equivalence between ge-
odesic stability and existence of cscK metric. Again observe that the implication
(3) = (2) is trivial. It only remains to show the implications (2) = (1) and
(1) = (3).

Proof of Theorem 1.1. First we show (2) = (1). If Calabi-Futaki invariant is
nonzero, then we know cscK metric cannot exist.

In the other case, let p: [0,00) — &} be such a geodesic ray as described in (2),
initiating from . We show that this geodesic ray violates the geodesic stability at
©. Indeed, since K-energy is non-increasing on p, we have ¥[p] < 0.

If ¥[p] < 0, then it violates both alternatives in Definition 1.5.

If ¥[p] = 0, then Definition 1.5 requires p to be parallel to a geodesic ray gener-
ated from a holomorphic vector field, but we assumed this is not the case.

Next we show (1) = (3). If Calabi-Futaki invariant is nonzero, then (3) already
holds. Now suppose this invariant is zero and there exists ¢ € &}, such that all
geodesic rays either have K-energy unbounded from above or parallel to a holo-
morphic ray. Observe that Calabi-Futaki invariant being zero means K-energy is
G-invariant. Also for all geodesic rays p initiating from ¢, either ¥[p] > 0 (when
K-energy is unbounded) or p is bounded under d; ¢, when p is parallel to a holo-
morphic ray, following the argument of Proposition 7.3. As observed in Remark
7.5, this is sufficient to imply cscK metric exists. (Il

Finally we prove Theorem 1.3.

Proof of Theorem 1.3. First we assume that (M, [wg]) is geodesic semistable. Fix
0 < to < 1, if there is no solution to the twisted equation to(R, — R) = (1 —
to)(tryowo — n), then we can apply Corollary 6.6 to conclude there exists a locally
finite energy geodesic ray with unit speed p(s) : [0,00) — &}, such that K, ¢,
toK+(1—1t9)J., is non-increasing along p. On the other hand, from [36, Proposition
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21], we know that J,,(¢) > Cdi(0,¢) — D, for some constant C, D > 0 and any
¢ € H}. This implies

Koo 10 (p(0)) = Koy 10 (p(s)) = toK (p(s)) + (1 = t0)Cs — (1 = t0) D.

This means ¥[p] < —M < 0, contradicting the geodesic semi-stability.

Then we assume that the twisted equation can be solved for any 0 < ¢t < 1. Since
we know the solutions are minimizers of the twisted K-energy from Corollary 4.5,
we see that K, ;, are bounded from below. From this we can conclude that for
any locally finite energy geodesic ray,

—Cty <toK (p(s)) + (1 —t0)Ju, (p(5)) < toK (p(s)) + (1 —t0)C'd1 (0, p(s))
< toK (p(s)) + (1 = to)C'(d1(0, p(0)) + 5).

In the second inequality above, we used Lemma 4.4. Here C’ depends only on the
background metric wg. In the last inequality, we use that p(s) is of unit speed.

Hence
K 1—1t9)C’
5—00 S to
Since tg < 1 is arbitrary, we actually have ¥[p] > 0. a

7.1. Toric Kahler manifolds. Now we turn our attention to the special case of
toric Kahler manifolds in this subsection and present the proof of one version of
Yau-Tian-Donaldson conjecture in this setting. There is a general set up of differ-
ential geometric framework on toric differential manifolds (c.f. Guillemin [55]). For
any polarized toric Kéhler manifold (M, [wo], L), there is a corresponding Delzant
polytope P C R™ representing it; and any toric invariant Kéhler potential in [wp]
can be represented by a symplectic potential in P. The equation for constant
scalar curvature metrics becomes a real fourth order equation in terms of the sym-
plectic potential, i.e., Abreu’s equation; see Abreu [1]. Working within a general
differential-geometric framework developed by Guillemin [55], Abreu [1], Donaldson
proved Yau-Tian-Donaldson’s conjecture for two dimensional toric Kdhler manifolds
in [48]. In this subsection, we extend Donaldson’s theorem to all dimensional toric
Kahler manifolds and prove an analogous theorem that the existence of constant
scalar curvature metric is equivalent to the uniform stability of the polarization.
Our proof is inspired by ideas in Section 5 of Donaldson [48].

In the following, do denotes the standard surface measure on the boundary and
dp is the n-dimensional Lebesgue measure on the polytope. Following [48], we
denote ug to be the following smooth convex function in P

(7.11) Zék ) log 0y ().

Here 0y (z) is the linear distance to the kth boundary face. Here g corresponds to
the smooth toric invariant background Kéahler metric wy. Now we denote S to be
the set of continuous convex functions u (we will call them “symplectic potentials”
below) on P such that:

e u — ug is smooth on P,
e The restriction of u on the lower dimensional polytopes on 0P is smooth
and strictly convex.
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Due to the work of Abreu [1], Guillemin [55] and Proposition 3.1.7 of Donaldson
[48], we now know that the functions in S have one-to-one correspondence with toric
invariant Kahler potentials in [wo] under appropriate normalization of the Kahler
potentials and symplectic potentials respectively. We refer the readers to Abreu
[1], Guillemin [55] and [48] for more details about this correspondence.

It is important to remark that the geodesic equation in the space of Kahler
potentials H = {p : wo + vV—190¢ > 0} takes a simple and elegant form in the
toric invariant setting: for any two symplectic potentials w1, us € S, the geodesic
segment connecting u; and us is the linear interpolation (c.f. D. Guan [51]):

(1 — s)uy + sug, s €10,1],

which holds for any L? Finsler norm with p > 1. Thus, for any p > 1, the L?
distance d,(u1,u2) takes a simple formula

1
dp(u1,uz) = (/ |uy —uzpdﬂ>
P

We can define a linear functional on S:

Lp(f) = fda—A/ izm where A — dop 97
opP P J, p du
Since our purpose is to study the existence of cscK metrics, we may assume that
the Futaki invariant is zero, which is a necessary condition for the existence of
cscK metrics. Under toric setting, it means that this functional £p vanishes for all
affine-linear functions on P. (In Remark 7.11 we will observe that the vanishing
of the Futaki invariant will be entailed by each Definition from 0.1 to 0.4 below.)
Therefore, it is natural to normalize an element f € S in the following way: Pick
a point p € P, we say a function f € S is normalized if f > 0 in P and f(p) = 0.
Without loss of generality and for later convenience, we may choose the point p
so that ug (given by (7.11)) achieves minimum at p. Note that uy must achieve
minimum in the interior of P, since one has d,ug(xg) = —oo, for any vector v
pointing inward of P, at any point xy € JP. So that ug + ¢ is normalized, for
some constant ¢y € R.
The K-energy on the symplectic side now takes the following simple form:

(7.12) Fa(u) = —/ log det(u;;)d p+ Lp(u), YuesS.
P

For the convenience of readers, we list various notions of stability as follows.
Note that in the following, we do not require the functions f to be in S.

Definition 7.7. L' stability: For all convex functions f defined on P* (the union
of P and its codimension 1 faces) whose boundary values lie in L'(OP,do), we
have Lp(f) > 0. The equality holds only if f is affine.

Definition 7.8. Uniform stability: Lp(f) > 0 for all piecewise linear convex
functions. Moreover, there is an € > 0 such that for all piecewise linear convex
functions f on P which are normalized, we have

(7.13) Lp(f)>e | fdo.

oP
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Definition 7.9. Filtrated stable (in the sense of G. Székelyhidi [68]): For all
convex, continuous functions f on P, we have Lp(f) > 0. The equality holds only
if f is affine.

Definition 7.10. K-stable: For all piecewise linear convex functions f on P, we
have Lp(f) > 0. The equality holds only if f is affine.

Remark 7.11.

(1) The definitions above imply that Lp(f) = 0 if f is affine. Indeed, since
both f and —f are convex, one has Lp(f) >0 and Lp(—f) > 0.

(2) Under uniform stability assumption as Definition 7.8, one can conclude that
(7.13) holds for all normalized convex continuous function f on P which
is smooth on P. This immediately follows from the fact that any such f
can be approximated uniformly on P by a sequence of normalized piecewise
linear functions f;.

Indeed, for each integer ¢ > 1, one can find a finite subset F; C P such
that p € E;, E; C E;11 and U;>1 E; is dense on P. Then one may define
fi(z) = maxyep, Ly(x), where Ly(z) = f(q) + (Vf(q),z — q) is the linear
approximation of f at g.

From these definitions, one can easily see the following:
Uniform Stability = Filtrated Stability = L' stability = K-stability.
In fact, for the converse direction, the following is true:

Proposition 7.12. If P is L' stable, then it is both uniform stable and filtrated
stable.

Proof. Tt follows directly from Proposition 5.2.2 in Donaldson [48] that L' stable
implies uniform stable, then it is clear that it is also filtrated stable. (I

Proposition 7.13. If P is L' stable, then the K-energy is proper in the sense
of L' distance among all toric invariant potentials which correspond to normalized
symplectic potentials in S.

Proof. First from Proposition 7.12, we may assume that P is uniform stable. In
other words, there is a positive constant € > 0 such that for all piecewise linear
convex functions f on P which are normalized, we have

(7.14) Lp(f)>e | fdo
oP

Following Remark 7.11, we know that (7.14) holds for all normalized convex func-

tions which are continuous on P and smooth on P. Now we can appeal to Lemma
2.3 in [77] (which is first proved in [48]) that the following holds:

Fa(u) > 5/ udp — C, Yu € §, u is normalized
P

for some positive constants §, C' which depend only on the constant € in (7.14) (or
alternatively, Definition 7.8), the function uy and the polytope P.

On the other hand, we note that di(u,uo +co) = [p [u—uo — coldp < [ udp +
fp(uo + ¢g)dp. The last inequality is due to the fact that both w and ug + co
are nonnegative since they are normalized. Hence we can conclude that F4(u) >
0dq (u,up + o) — C for all u € S. O
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Now we can use the properness theorem to deduce the existence of cscK metrics.
Indeed, if one assumes the L' stability, then the above proposition shows that
the K-energy is proper in terms of the L'-distance, when restricted to the set of
Kéhler potentials which are normalized in the sense above. However, our previous
properness theorem requires that ¢ € Hy. This is a different normalization than
mentioned above on the symplectic side. Recall that

Ho = {¢ : wo+V—100¢ > 0} ﬂ{cp v) =0}, where I(¢ / waS Z/\ww

which is an affine function along any geodesic segment in H. Now we explain in
detail how we switch to Kahler side. We denote Ho 1 to be the toric invariant
elements in Hg, then the following holds:

Lemma 7.14. There exists 6 > 0, C > 0, such that for any ¢ € Hor, one has
K(p)>—-C+d inf J(o.p).
oe(C*)n

Here J(p) = [, o(wg —wy).

Proof. The constants § and C appearing below may change from line to line.

Let v be the symplectic potential in S corresponding to ¢. Let u be the normal-
ized convex function from v (namely u — v is an affine function).

Let ¢ be the Kéahler potential corresponding to u via the Legendre transform.
Following a normalization argument in the proof of Proposition 2.4 [77], one can
find o € (C*)™, such that ¢ = g¢.¢ + ¢, for some ¢ € R.

From Proposition 7.13, there are two constants d, C' such that Fa(u) > —C +
0dq (uo + co,u) for any u € S and normalized, where ¢ is chosen so that ug + ¢ is
normalized. This is possible since the point p is chosen to be the minimum point
of ug. Switching to K&hler side, we have K (@) > —C + 6d1(0, ).

According to Darvas [38, Theorem 3], we know that

& [ 1ol v < di0.9) <0 [ jelug + )
for some uniform constant C7 > 0. Hence we see that
K(@) > —C +68J(p),

where J() = [, p(wf —wp).
On the other hand, since the Futaki invariant is zero, we know that K-energy is
invariant under the action of o € (C*)™, hence:

K(¢) = K(0o.¢) = K(¢)
and

J(@) = J(o0.p) = Lomf J(o.0).

So that we finally get the desired properness of K-energy on Ho r:

K(p)>-C+¢ i(%f) J(o.9), v € Hor.
(T )n
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Note that our continuity path (1 —t)tr, wo = t(R, — R), t € [0,1] is invariant
under the torus action, and (C*)™ acts on Ho 7, hence our proof for the Theorem
4.3 carries over (see also Remark 4.9). Thus we can conclude the existence of a
cscK potential in Hg 7.

For the converse, Theorem 4.6 of Chen-Li-Sheng [16] shows that the existence
of cscK metric will imply the uniform stability as defined above. Hence we may
conclude

Theorem 7.2. On toric Kdahler manifolds, the existence of a toric invariant cscK
metric in the class [wo] is equivalent to the L' stability.

With Theorem 7.2 in mind, one wonders if we can replace the L! stability con-
dition by some algebraic conditions which can be checked relatively easily.

APPENDIX A

Our goal in this section is to prove the following result, which is used in the
proof of Theorem 7.1.

Theorem A.1. Let 1 < p < oco. Let ¢o, ¢4, ¢1, @) € EP. Denote {do,t}ref0,1]
{@1,t}teo,1) be two finite energy geodesics, such that ¢o; connects ¢o and ¢, ¢1,¢
connects ¢1 and ¢}y. Then we have

dp(o,t,d1,6) < (1= )dp(¢o, $1) + tdp(dp, ¢1)-

When p = 2, this result follows from that (£2,dy) is NPC, proved in [37] (see
also [14]). For general p, we were not able to prove (€7, d,) is NPC in the sense of
Alexandrov. Nevertheless, above weaker result still holds.

In the following argument, we will mostly follow the notation in [14]. Let
o(x,s,t) € C°(M x [0,1] x [0,1]) be such that (-, s,t) € H. Denote X = 0,
Y = 05¢. Given U € C°°(M x[0,1] %[0, 1]), consider the connection first introduced
by Mabuchi:

(A1) VxU = 0,U — V0 VU, VyU =0,U — V04, V,U.

The dot product in the above equation has the following expression in local coor-
dinates:

1 .-
Vot o Vv = 5933 (uivy + viug).

Given 91, ¥y € C*°(M), we denote

(P1,92) = /M Y1¢advol.,.

This is the so-called Mabuchi’s metric on H.
Given g, ¢1 € H, and € > 0, one can consider the so-called e-geodesic, intro-
duced in [18]:
(A.2) (07 — \Vwatgo@) det g, = edet go for (x,t) € M x [0,1]
' li—o = ¢o, Pli=1 = 1.

It is shown in [18] that (A.2) can be written as a complex Monge-Ampere equation
on M x [0,1] with non-degenerate and smooth right hand side, hence is smooth.
The key to prove Theorem A.1 is the following estimate:

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1000 XIUXIONG CHEN AND JINGRUI CHENG

Proposition A.1. Let v; : s € [0,1] = H, i = 0,1 be two smooth curves in
H. Let x : R — Ry be smooth and conver. Suppose that for each s € [0,1],
[0,1] 3 t — @c(s,t) is the e-geodesic connecting ¢o(s) and p1(s). Denote X = Oy,
Y = 05, then we have

8,52/ X((‘)sga)dvole/ X (0s¢) (VxY)?dvol,.
M M

We will postpone the proof of this proposition later, and we will show next how
to use this proposition to deduce Theorem A.1.
First we apply Proposition A.1 to obtain

Lemma A.2. Let ¢g, &), ¢1, ¢) € H. Let c1(s) : [0,1] — H be a smooth curve
connecting ¢o and ¢1, ca(s) : [0,1] — H be a smooth curve connecting ¢, and
@y Let {0°(5,1)}s,07ej0,1)2 be such that for each fized s, [0,1] 5 t = ©°(s,t) is
the e-geodesic connecting c1(s) with ca(s). Denote Li(t) be the length of the curve
[0,1] > s = ¢°(s,t) € H under the distance d,, then t — Li(t) is convex.

Proof. In the following, we will write L7 () simply as L,(t). By definition, we have

(A.3) L,(t) = /01 </M 8scp|pdvol¢> %ds.

Denotelz xs(z) = (22 + 6%)% and put L,s(t) = fo ( [as X5(0s0)dvol,, ) ds =
fol Y|%,ds. Here for simplicity, we use the notation: [Yl|, = [, Xs(9s¢)dvol,.

Then we have
a0 = [ SRvIa

1
We claim that 87(|Y|£,) > 0. If this were true, then we know ¢ — Ly, 5(t) is convex.
Also we know that L, 5(t) — L,(t) for each t € [0,1] as ¢ — 0. This will imply the
desired result. Hence it only remains to verify the claim. We can compute

1 1 1_7
6t2(|y‘>125) = 5t(]—3|Y|>’Z5 at(|Y|X5))
1 1 1 1 1_9
(A.4) = §|Y|;5 at2(|Y|X5) - }_7(1 - §)|Y|;5 |6t(‘Y|X5)|2

1 19 1 _
> 2yl < /M N (0u0) (V¥ 2dvol, — (1 — 5>|Y|X;|8t<Y|X5>|2).

In the last inequality, we used Proposition A.1.
On the other hand

(A5)
(Y ys) = /M (X5(050) st + X5 (0s0) Ay (Dyp) ) dvol,

= / X5(059) (0510 — VpOsp - Vo0yp)dvol, = / X5(9s)VxY dvol,,.
M M

Hence we may apply Cauchy-Schwarz inequality to get

(A.6) 10, (Y |s)I? < /M (X5(959))”

X5 (0s¢p) dvol,, x /M Xg(astp)(VXY)deolw
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It is straightforward to calculate
X5(x) = p(z® + 6%)
X () = p(p = 2)(a® + 8%) § 22 4 p(a® + %) 1,

P
271y,

Therefore
Xg)@ _ p(p _ 2)(:L‘2 + 62)p—2x2 —l—p(.’L‘Q + 52);0—1
-1
> plp— D)(a? + 02722 = L= ()2,
p
Hence we obtain from (A.6) that

(A7)
_l 2 p—l()d;(asnp))z vo 1" 2 vo
(1= v < [ SR dvol, x| o) (O ot

< / Xs(0sp)dvol, X / X5 (950)(VxY)?dvol,,.
M M
Combining (A.4) and (A.7), the result follows. O

As a consequence, we have

Corollary A.3. Let ¢o, ¢, ¢1, ¢y € H. Let {po(t)}icoq) be the C11 geodesic
connecting ¢o and ¢, and {p1(t)}rejo1] be the CH geodesic connecting ¢y and ¢ .
Then we have

dp(po(t)vpl(t)) < (1 - t)dp(¢0a ¢1) + tdp(¢6v ¢Il)a for anyt € [Oa 1]

Proof. Let ¢ > 0. Let ¢5(s) : [0,1] — H be the e-geodesic connecting ¢y and
o1, ¢5(s) : [0,1] — H be the e-geodesic connecting ¢, and ¢}. Then define
{©°(5,8) }(s,tej0,1)2 such that for each fixed s, t — ¢°(s,t) is the e-geodesic con-
necting ¢ (s), ¢5(s).

We can apply the previous lemma to conclude that
(A38) Aol (0,1), ¢7(1,0) < L(1) < (1= OL3(0) + LL(1).
Then we let ¢ — 0. Since t — ¢°(0,t) is the e-geodesic connecting ¢g, ¢f, we have
©°(0,t) — po(t) uniformly (c.f. [18, Lemma 7, point 3]), hence in d, distance, for
each fixed t, as ¢ — 0. Similarly, ¢°(1,¢) — p1(¢) in dp,. Therefore,

dp((0,1), 9 (1, 1)) = dp(po(t), pr(t)), as e —= 0.
While L7(0) is the length of ¢, hence L5(0) — dp(¢o,#1) as € — 0. Similarly
Ly (1) = dp(, ¢1)- 0
Now we are ready to prove Theorem A.l, via an approximating argument.

Proof of Theorem A.1. We choose smooth approximations of ¢g, ¢, ¢1, ¢;. Namely
we choose ¢o . — do, ¢y — B0, D1k — P15, @) — @1 as k — oo under distance
dp. Then from previous corollary, we know

(A.9) dp(dok(t), p1k(t)) < (1 —t)dp(do.k, P1,k) +tdy(dp 1 D1 1), for any t € [0,1].
In the above, {¢ok(t)}ecpo) is the CT' geodesic connecting ¢or, ¢, and
{#1,5(t) }eefo,1) is the C! geodesic connecting ¢y x, W g-

From the end point stability of finite energy geodesic segment (c.f. [8, Proposition
4.3]), we know that ¢ox(t) = ¢+ in dp as k — oo, and ¢1 x(t) = @1+ as k — oo.
Taking limit as k — oo in (A.9), the result follows. O
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It only remains to show Proposition A.1.

Proof. For simplicity, we denote |Y'|, = [;, x(0s¢)dvol,. Then we may calculate:

%(Y]x) = / (X' (050) 0510 + X (050) A (Dpp)) dvol,
(A.10) M

= /M X (0s¢) ((%tap —V0s¢ 4 V@(’?t(p)dvolw = (X' (0s), Vy X).

Differentiate in ¢ once more, we have

82(\Y|X):/ X”((’?S@)ﬁstapVdevolw—k/ X' (0s¢)0:(Vy X )dvol,
M M

+/ X' (0sp)Vy XAy (dpp)dvol,
M

(A.11) :/MX”(asgo)(Vydevolw-l—(x'(assO),VXVYX)

= / X" (0s)(Vy X)*dvol, + (X' (9s), Vy Vx X)
M
+ (X (95¢), VxVy X = Vy Vx X).

det go
det g,

Since t — ¢°(s,t) is an e-geodesic, we have Vx X = ¢H, where H = . Hence

(X'(0s¢), VyVxX) = /M X' (0s¢)eVy Hdvol,,

_ / X (0s0) (D H — ¥ y0yp -, ¥y H)dvol,,
(A.12) M

= /M eX'(050) (—HA L (95p) — V05 - Vi, H)dvol,,

:/ 5X/’(3S¢)H|V¢3S<p|idvol¢ > 0.
M

From third line to the last line above, we integrated by parts. Hence it only remains
to handle the term (x/'(9s¢), VxVy X — VyVx X). Lemma A.13 shows this term
is > 0, so we are done. O

Lemma A.4.
(A.13)

(V(0.). 9y VX = VW X) = [ 00,007 (000)i0.0); - 00107

- 2
x gba ((0t<p)p(8ss0)q - (c%w)q(asw)p) dvol, = — /M X" (0s¢) ({0rp, Dsip}) “dvol,.
In the above, {-,-} is the Poisson product, defined as

{f.9}o :=1Im(g% fig;), . 9€C®(M), p € H.
In particular, if X" > 0, the expression in (A.13) < 0.
When x(z) = %xz, this lemma just expresses the well-known fact that H has
nonpositive sectional curvature under Mabuchi metric.
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Proof. We know that the curvature operator can be represented in terms of Poisson

product:
R,(X,Y)Z:=VxVyZ -VyVxZ ={{X,Y},Z}, X,Y, Zec C®(M), p € H.
Therefore,
(X/(asw)’vvaX - VXVYX) - _/ X' (8s0) Ry (8yp, Dsp) Orpduol,,
M
M
= —/MIm(x'(as@)gg{atw,Bsap}i(atgo)j>dvol<p
(A.14)

= [ (X000 105001010135 ) vl
M
+ /M Im (X”(asso)gf(assﬁ)i{at% asw}(atw)j> dvol,

By SOy

From the third line to fourth line above, we integrated by parts. Also we noticed

that g7 (0;¢);7 = Ay (drp) is real. O
As an immediate consequence of Theorem A.1, we have

Corollary A.5. Let p; : [0,00) = &Y, i =1, 2 be two locally finite energy geodesic
rays, then the function t — d,(p1(t), p2(t)) is convezx on [0,00).

As a consequence of this corollary and elementary properties of convex functions
on [0,00), we can conclude

Corollary A.6. Let p; : [0,00) = &Y, i =1, 2 be two locally finite energy geodesic
rays. Then exactly one of the two alternative holds:

(1) The limit lim;—, oo M exists and is positive (may be +00);
(2) t = dp(p1(t), p2(t)) is decreasing. In particular, d,(p1(t), p2(t)) < dp(p1(0),
p2(0)) for any t > 0.

The rest of this section is devoted to proving Theorem 1.4. First the uniqueness
of such a geodesic ray ps parallel to p; initiating from ¢ follows immediately from
Corollary A.6. The existence part is given by Lemma 7.6. Here we need the
assumption ¥[p;] < oo to show that for each fixed ¢, K (r(t)) is uniformly bounded
from above when k is sufficiently large (by convexity of K-energy), and then we
can use the compactness result of [8, Corollary 4.8] to conclude the convergence of
{rk(t)}x up to a subsequence.

It only remains to check that ¥ invariants are equal for two parallel locally finite
energy geodesic rays.

Proposition A.7. Suppose p; : [0,00) = EF, i = 1, 2 are two parallel geodesic rays
with unit speed, then we have ¥[p1] = ¥[p2].

Proof. Tt is clear that we just need to show ¥[p;] < ¥[pa]. The reverse inequality
can be obtained by reversing the role of p; and ps. Also we may assume that
¥[p2] < 00, otherwise there is nothing to prove.
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Choose t, ' oo, and let 75 : [0,d1(p1(0), p2(t))] — &} be the unit speed
geodesic segment connecting p;1(0) and ps(t;) (with ¢t = 0 corresponding to p1(0)).
Let t € [0,d1(p1(0), p2(tx))], we know from the convexity of K-energy:

(A.15)

K(re(t) < (1 - JE (p1(0)) + K(p2(tr))

d1(p1(0), pa(t))
t

tr — d1(p1(0), p2(0))

di(p1(0), p2(tx))

~ | ~

IN

K(p1(0)) + K (p2(tr))-

A PRONA AL
In the second inequality, we used
d1(p1(0), p2(tr)) > di(p2(0), p2(tr)) — di(p1(0), p2(0)) = tx — di(p1(0), p2(0)).

Hence

K(n(®) _ (1 ! t’“
(a16) D < (; - m)mpl(o)) T di(pr(0),p2(0) "

Next we make the following claim

Claim A.8. ri(t) — p1(t), for fixed ¢ > 0 in d; distance as k — oo.

Assuming this claim for the moment, we can fix ¢, and take limit in (A.16) as
k — o0, and use lower semicontinuity of K-energy to get:

(A.17) M K(T:(t)) < K(pz(O))

+ a, for any ¢ > 0.

< liminf <
k
Then we take limit as t — oo, and conclude ¥[p;] < a.
Now it only remains to show the claim. We define the reparametrization: for
7€ [0,1], 7r(r) = 7 (7d1(p1(0), p2(tr))), p1(1) = p1(7di(p1(0), p2(tr))). Then we
may use Theorem A.1 to conclude (here sy = dy(p1(0), p2(t)))

(A.18) dy (P (1), p1(7)) < 7d1(p2(tk), p1(sk)), for any 7 € [0, 1].

Then choose 7 = é, we have

dy (ri(t), pr (1)) < idmpz(tk),m(sk»

< i(dupz(tk),m(tk» +di(pr (), pr(51))
< = (supda(pa(t). pa (1) + [t = 1)

(A.19)

< i(slgpd1<p2<t)7pl<t>> +di(p1(0), 2(0))-

In the second inequality, we used triangle inequality.
In the third inequality, we used that p; is a unit speed geodesic ray.
In the last inequality, we used triangle inequality again to conclude

[tk — skl = |d1(p2(0), p2(tr)) — di(p1(0), p2(tx))| < d1(p1(0), p2(0)).
Finally we let £ — oo in (A.19) to see the claim. O

Next we observe that ¥-invariant has the following “lower semicontinuity” prop-
erty.
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Proposition A.9. Let pg, p : [0,00) — & be locally finite energy geodesic rays
with unit speed. Define di = lim;_, o M (This is well-defined according
to Corollary A.6). Suppose that di, — 0 and dp(pr(0), p(0)) — 0 as k — oo, then
¥[p] < liminfy_, o ¥[pr]-

Proof. Observe that for any s > 0, we have d,(pr(s), p(s)) — 0. Indeed, from the
convexity property of ¢ — d,(pk(t), p(t)) obtained in Corollary A.5, we know that
for any s’ > s > 0, and any k

dp(pr(s), p(s)) = dp(pr(0), p(0)) <

dy(pr(s'), p(s")) — dp(pk(0), p(0))

/
Let s’ — oo, we know that

(AQO) dp(pk(‘?vp(s))

<d+

d 0),p(0
M — 0, as k — oo by assumption.
s

Hence from the lower semicontinuity with respect to d, convergence, we can con-

clude that

K K
(A.21) Klp(s)) <lim inf M, for any s > 0.

S k—o0 S

On the other hand, from the convexity of K-energy along py, it follows that for any
s >5>0,

K(pr(s)) _ K(pr(s”)) (1 1
(A.22) S < o + P K(p(0)).

Let s” — oo in the above and use the definition of ¥-invariant, we conclude

K(pr(s)) K(pr(0))

(A.23) :

< ¥[pr] + , for any s > 0.

Finally we let & — oo in (A.23) and combine (A.21), we see

aapy Kt Kiputs)

K
< lim i%f < lim iréf¥[pk] + M, for any s > 0.
s

Finally we let s — oo in (A.24) to conclude the proof. O

ACKNOWLEDGMENTS

Both authors wish to thank Gao Chen for his meticulous reading of the earlier
drafts of this set of papers and numerous valuable comments, corrections. The
second named author wishes to thank his graduate advisor Mikhail Feldman for his
interest in this work and warm encouragement.

Both authors are also grateful to Sir Simon Donaldson, Weiyong He, Song Sun,
Chengjian Yao and Simone Calamai for their interest in this work and their insight-
ful comments and suggestions. Both authors would also like to thank Hongnian
Huang for help with toric varieties.

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1006 XIUXIONG CHEN AND JINGRUI CHENG

REFERENCES

[1] Miguel Abreu, Kdhler geometry of toric varieties and extremal metrics, Internat. J. Math. 9
(1998), no. 6, 641-651, DOI 10.1142/50129167X98000282. MR1644291
[2] Vestislav Apostolov, David M. J. Calderbank, Paul Gauduchon, and Christina W. Tgnnesen-
Friedman, Hamiltonian 2-forms in Kdahler geometry. III. Extremal metrics and stability,
Invent. Math. 173 (2008), no. 3, 547-601, DOI 10.1007/s00222-008-0126-x. MR2425136
Richard H. Bamler and Qi S. Zhang, Heat kernel and curvature bounds in Ricci flows with
bounded scalar curvature, Adv. Math. 319 (2017), 396-450, DOI 10.1016/j.a2im.2017.08.025.
MR3695879
[4] Robert J. Berman and Bo Berndtsson, Convezity of the K-energy on the space of Kdihler
metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017), no. 4, 1165-1196,
DOI 10.1090/jams/880. MR3671939
[5] R. J. Berman, S. Boucksom, and M. Jonsson, A wariational approach to the Yau-Tian-
Donaldson conjecture, arXiv:1509.04561v2 (2018)
[6] Robert J. Berman, Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed
Zeriahi, Kahler-Einstein metrics and the Kdhler-Ricci flow on log Fano varieties, J. Reine
Angew. Math. 751 (2019), 27-89, DOI 10.1515/crelle-2016-0033. MR3956691
Robert J. Berman, Tamas Darvas, and Chinh H. Lu, Regularity of weak minimizers of the K-
energy and applications to properness and K-stability (English, with English and French sum-
maries), Ann. Sci. Ec. Norm. Supér. (4) 53 (2020), no. 2, 267-289, DOI 10.24033 /asens.2422.
MR4094559
Robert J. Berman, Tamas Darvas, and Chinh H. Lu, Convezity of the extended K-energy and
the large time behavior of the weak Calabi flow, Geom. Topol. 21 (2017), no. 5, 29452988,
DOI 10.2140/gt.2017.21.2945. MR3687111
[9] Zbigniew Blocki, Uniqueness and stability for the complex Monge-Ampére equation on
compact Kdihler manifolds, Indiana Univ. Math. J. 52 (2003), no. 6, 1697-1701, DOI
10.1512/ium;j.2003.52.2346. MR2021054
[10] Zbigniew Blocki and Stawomir Kolodziej, On regularization of plurisubharmonic functions
on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089-2093, DOI 10.1090/S0002-
9939-07-08858-2. MR2299485
[11] Sébastien Boucksom, Tomoyuki Hisamoto, and Mattias Jonsson, Uniform K-stability and
asymptotics of energy functionals in Kdhler geometry, J. Eur. Math. Soc. (JEMS) 21 (2019),
no. 9, 2905-2944, DOI 10.4171/JEMS/894. MR3985614
[12] Eugenio Calabi, Eztremal Kdhler metrics, Seminar on Differential Geometry, Ann. of Math.
Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259-290. MR645743
[13] Eugenio Calabi, Extremal Kdhler metrics. II, Differential geometry and complex analysis,
Springer, Berlin, 1985, pp. 95-114. MR780039
[14] E. Calabi and X. X. Chen, The space of Kdhler metrics. II, J. Differential Geom. 61 (2002),
no. 2, 173-193. MR1969662
[15] Bohui Chen, An-Min Li, and Li Sheng, Extremal metrics on toric surfaces, Adv. Math. 340
(2018), 363—-405, DOI 10.1016/j.aim.2018.10.015. MR3886172
[16] Bohui Chen, An-Min Li, and Li Sheng, Uniform K-stability for extremal metrics on toric va-
rieties, J. Differential Equations 257 (2014), no. 5, 1487-1500, DOI 10.1016/j.jde.2014.05.009.
MR3217046
[17] Bohui Chen, Qing Han, An-Min Li, and Li Sheng, Interior estimates for the n-dimensional
Abreu’s equation, Adv. Math. 251 (2014), 35-46, DOI 10.1016/j.aim.2013.10.004.
MR3130333
[18] Xiuxiong Chen, The space of Kdhler metrics, J. Differential Geom. 56 (2000), no. 2, 189-234.
MR1863016
[19] Xiuxiong Chen, On the lower bound of the Mabuchi energy and its application, Internat.
Math. Res. Notices 12 (2000), 607-623, DOI 10.1155/S1073792800000337. MR1772078
[20] Xiuxiong Chen, Space of Kdhler metrics. III. On the lower bound of the Calabi energy and
geodesic distance, Invent. Math. 175 (2009), no. 3, 453-503, DOI 10.1007/s00222-008-0153-7.
MR2471594
[21] Xiuxiong Chen, On the existence of constant scalar curvature Kdhler metric: a new per-
spective (English, with English and French summaries), Ann. Math. Qué. 42 (2018), no. 2,
169-189, DOI 10.1007/s40316-017-0086-x. MR3858468

3

[7

B

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



KAHLER METRICS (II) 1007

[22] X.-X. Chen and J. Cheng, On the constant scalar curvature Kdhler metrics (I): a priors
estimates, arXiv:1712.06697, 2017.

[23] Xiuxiong Chen, Tamds Darvas, and Weiyong He, Compactness of Kdhler metrics with bounds
on Ricci curvature and I functional, Calc. Var. Partial Differential Equations 58 (2019), no. 4,
Paper No. 139, 9, DOI 10.1007/s00526-019-1572-6. MR3984099

[24] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kdhler-Einstein metrics on Fano mani-
folds. I: Approzimation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015),
no. 1, 183-197, DOI 10.1090/S0894-0347-2014-00799-2. MR3264766

[25] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kahler-FEinstein metrics on Fano mani-
folds. II: limits with cone angle less than 2w, J. Amer. Math. Soc. 28 (2015), no. 1, 199-234,
DOI 10.1090/S0894-0347-2014-00800-6. MR3264767

[26] Xiuxiong Chen, Simon Donaldson, and Song Sun, Kahler-Einstein metrics on Fano mani-
folds. III: limits as cone angle approaches 2w and completion of the main proof, J. Amer.
Math. Soc. 28 (2015), no. 1, 235-278, DOI 10.1090/50894-0347-2014-00801-8. MR3264768

[27] X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), no. 2, 539-570,
DOI 10.1353/ajm.2008.0018. MR2405167

[28] Xiuxiong Chen and Weiyong He, The complex Monge-Ampére equation on compact Kihler
manifolds, Math. Ann. 354 (2012), no. 4, 1583-1600, DOI 10.1007/s00208-012-0780-6.
MR2993005

[29] XiuXiong Chen, Long Li, and Mihai Pauni, Approzimation of weak geodesics and subhar-
monicity of Mabuchi energy (English, with English and French summaries), Ann. Fac. Sci.
Toulouse Math. (6) 25 (2016), no. 5, 935-957, DOI 10.5802/afst.1516. MR3582114

[30] X. X. Chen, M. Paun, and Yu Zeng, On deformation of extremal metrics, arXiv:1506.01290,
2015.

[31] X. X. Chen and G. Tian, Geometry of Kdhler metrics and foliations by holomorphic discs,
Publ. Math. Inst. Hautes Etudes Sci. 107 (2008), 1-107, DOI 10.1007/s10240-008-0013-4.
MR2434691

[32] Bing Wang, On the conditions to extend Ricci flow, Int. Math. Res. Not. IMRN 8 (2008),
Art. ID rnn012, 30, DOI 10.1093/imrn/rnn012. MR2428146

[33] Xiuxiong Chen and Bing Wang, On the conditions to extend Ricci flow (III), Int. Math. Res.
Not. IMRN 10 (2013), 2349-2367, DOI 10.1093/imrn/rns117. MR3061942

[34] Xiuxiong Chen and Yuangi Wang, C?“-estimate for Monge-Ampére equations with Hélder-
continuous right hand side, Ann. Global Anal. Geom. 49 (2016), no. 2, 195-204, DOI
10.1007/s10455-015-9487-8. MR3464220

[35] Xiuxiong Chen and Song Sun, Space of Kdhler metrics (V)—Kdhler quantization, Metric and
differential geometry, Progr. Math., vol. 297, Birkhduser/Springer, Basel, 2012, pp. 19-41,
DOI 10.1007/978-3-0348-0257-4.2. MR3220438

[36] Tristan C. Collins and Gébor Székelyhidi, Convergence of the J-flow on toric manifolds, J.
Differential Geom. 107 (2017), no. 1, 47-81, DOI 10.4310/jdg/1505268029. MR3698234

[37] Tamds Darvas, The Mabuchi completion of the space of Kahler potentials, Amer. J. Math.
139 (2017), no. 5, 1275-1313, DOI 10.1353/ajm.2017.0032. MR3702499

[38] Tamds Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015), 182—
219, DOI 10.1016/j.aim.2015.08.005. MR3406499

[39] Tamds Darvas and Weiyong He, Geodesic rays and Kdhler-Ricct trajectories on Fano man-
ifolds, Trans. Amer. Math. Soc. 369 (2017), no. 7, 5069-5085, DOI 10.1090/tran/6878.
MR3632560

[40] Tamds Darvas and Yanir A. Rubinstein, Tian’s properness conjectures and Finsler geom-
etry of the space of Kdhler metrics, J. Amer. Math. Soc. 30 (2017), no. 2, 347-387, DOI
10.1090/jams/873. MR3600039

[41] Jean-Pierre Demailly, Variational approach for compler Monge-Ampére equations and geo-
metric applications, Astérisque 390 (2017), Exp. No. 1112, 245-275. Séminaire Bourbaki.
Vol. 2015/2016. Exposés 1104-1119. MR3666028

[42] Ruadhai Dervan, Alpha invariants and coercivity of the Mabuchi functional on Fano mani-
folds (English, with English and French summaries), Ann. Fac. Sci. Toulouse Math. (6) 25
(2016), no. 4, 919-934, DOI 10.5802/afst.1515. MR3564131

[43] Ruadhai Dervan, Uniform stability of twisted constant scalar curvature Kdhler metrics, Int.
Math. Res. Not. IMRN 15 (2016), 4728-4783, DOI 10.1093/imrn/rnv291. MR3564626

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1008 XIUXIONG CHEN AND JINGRUI CHENG

[44] Ruadhai Dervan, Relative K-stability for Kahler manifolds, Math. Ann. 372 (2018), no. 3-4,
859-889, DOI 10.1007/s00208-017-1592-5. MR3880285

[45] R. Dervan and J. Ross, K-stability for Kdahler manifolds, arXiv: 1602. 08983.

[46] S. K. Donaldson, Symmetric spaces, Kdhler geometry and Hamiltonian dynamics, Northern
California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer.
Math. Soc., Providence, RI, 1999, pp. 13-33, DOI 10.1090/trans2/196,/02. MR1736211

[47] S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math. 3 (1999), no. 1, 1-15,
DOI 10.4310/AJM.1999.v3.nl.al. Sir Michael Atiyah: a great mathematician of the twentieth
century. MR1701920

[48] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62
(2002), no. 2, 289-349. MR1988506

[49] S. K. Donaldson, Eztremal metrics on toric surfaces: a continuity method, J. Differential
Geom. 79 (2008), no. 3, 389-432. MR2433928

[50] Simon K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct.
Anal. 19 (2009), no. 1, 83-136, DOI 10.1007/s00039-009-0714-y. MR2507220

[61] Daniel Guan, On modified Mabuchi functional and Mabuchi moduli space of Kdihler
metrics on toric bundles, Math. Res. Lett. 6 (1999), no. 5-6, 547-555, DOI
10.4310/MRL.1999.v6.n5.a7. MR1739213

[62] Hao Fang, Mijia Lai, Jian Song, and Ben Weinkove, The J-flow on Kdahler surfaces: a bound-
ary case, Anal. PDE 7 (2014), no. 1, 215-226, DOI 10.2140/apde.2014.7.215. MR3219504

[63] V. Guedj, The metric completion of the Riemannian space of Kdahler metrics,
arXiv:1401.7857, 2014.

[64] Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampére energy of quasiplurisubhar-
monic functions, J. Funct. Anal. 250 (2007), no. 2, 442-482, DOI 10.1016/j.jfa.2007.04.018.
MR2352488

[65] Victor Guillemin, Kaehler structures on toric varieties, J. Differential Geom. 40 (1994), no. 2,
285-309. MR1293656

[56] Yoshinori Hashimoto, Ezistence of twisted constant scalar curvature Kdhler metrics with
a large twist, Math. Z. 292 (2019), no. 3-4, 791-803, DOI 10.1007/s00209-018-2133-y.
MR3980270

[57] Weiyong He and Yu Zeng, Constant scalar curvature equation and regularity of its weak
solution, Comm. Pure Appl. Math. 72 (2019), no. 2, 422-448, DOI 10.1002/cpa.21790.
MR3896025

[568] T. Hisamoto, Stability and coercivity for toric polarizations, arXiv:1610.07998v1, 2016.

[59] Stawomir Kotodziej, The complex Monge-Ampére equation, Acta Math. 180 (1998), no. 1,
69-117, DOI 10.1007/BF02392879. MR1618325

[60] Marc Levine, A remark on extremal Kdhler metrics, J. Differential Geom. 21 (1985), no. 1,
73-77. MR806703

[61] Haozhao Li, Yalong Shi, and Yi Yao, A criterion for the properness of the K-energy in a
general Kdhler class, Math. Ann. 361 (2015), no. 1-2, 135-156, DOI 10.1007/s00208-014-
1073-z. MR3302615

[62] Toshiki Mabuchi, Some symplectic geometry on compact Kahler manifolds. I, Osaka J. Math.
24 (1987), no. 2, 227-252. MR909015

[63] J. Ross, Unstable products of smooth curves, Invent. Math. 165 (2006), no. 1, 153-162, DOI
10.1007/s00222-005-0490-8. MR2221139

[64] Julius Ross and David Witt Nystrom, Analytic test configurations and geodesic rays, J.
Symplectic Geom. 12 (2014), no. 1, 125-169, DOI 10.4310/JSG.2014.v12.n1.a5. MR3194078

[65] Stephen Semmes, Complex Monge-Ampére and symplectic manifolds, Amer. J. Math. 114
(1992), no. 3, 495-550, DOI 10.2307/2374768. MR1165352

[66] Jacopo Stoppa, K-stability of constant scalar curvature Kdhler manifolds, Adv. Math. 221
(2009), no. 4, 1397-1408, DOI 10.1016/j.aim.2009.02.013. MR2518643

[67] Jacopo Stoppa, Twisted constant scalar curvature Kahler metrics and Kdhler slope stability,
J. Differential Geom. 83 (2009), no. 3, 663-691. MR2581360

(68] Gabor Székelyhidi, Filtrations and test-configurations, Math. Ann. 362 (2015), no. 1-2, 451—
484, DOI 10.1007/s00208-014-1126-3. With an appendix by Sebastien Boucksom. MR3343885

[69] Chi Li, Greatest lower bounds on Ricci curvature for toric Fano manifolds, Adv. Math. 226
(2011), no. 6, 4921-4932, DOI 10.1016/j.aim.2010.12.023. MR2775890

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



KAHLER METRICS (II) 1009

[70] Gang Tian, On Kdhler-Einstein metrics on certain Kdhler manifolds with C1(M) > 0, Invent.
Math. 89 (1987), no. 2, 225-246, DOI 10.1007/BF01389077. MR894378

[71] Gang Tian, On a set of polarized Kdihler metrics on algebraic manifolds, J. Differential Geom.
32 (1990), no. 1, 99-130. MR1064867

[72] Gang Tian, Kdhler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997),
no. 1, 1-37, DOI 10.1007/s002220050176. MR1471884

[73] Jian Song and Ben Weinkove, On the convergence and singularities of the J-flow with ap-
plications to the Mabuchi energy, Comm. Pure Appl. Math. 61 (2008), no. 2, 210-229, DOI
10.1002/cpa.20182. MR2368374

[74] Jian Song and Ben Weinkove, The degenerate J-flow and the Mabuchi energy on minimal
surfaces of genmeral type, Univ. Iagel. Acta Math. 50, [2012 on articles] (2013), 89-106.
MR3235005

[75] Shing Tung Yau, On the Ricci curvature of a compact Kihler manifold and the complex
Monge-Ampére equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411, DOI
10.1002/cpa.3160310304. MR480350

[76] Yu Zeng, Deformations from a given Kdihler metric to a twisted CSCK metric, Asian J.
Math. 23 (2019), no. 6, 985-1000. MR4136486

[77] Bin Zhou and Xiaohua Zhu, Relative K -stability and modified K-energy on toric manifolds,
Adv. Math. 219 (2008), no. 4, 1327-1362, DOI 10.1016/j.aim.2008.06.016. MR2450612

INSTITUTE OF GEOMETRY AND PHYSICS, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA,
No. 96 JinzgHAl RoaD, HEFEI, ANHUI, 230026, CHINA AND DEPARTMENT OF MATHEMATICS,
STONY BROOK UNIVERSITY, STONY BROOK, NY, 11794-3651, USA

Email address: xiu@math.sunysb.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, 480 LINCOLN DRIVE,
MADISON, WI, 53706, USA AND DEPARTMENT OF MATHEMATICS, STONY BROOK UNIVERSITY,
SToNYy BrOOK, NY, 11794-3651, USA

Email address: jingrui.cheng@stonybrook.edu

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:00:10 EDT 2022 for download from IP 129.49.89.105.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



	1. Introduction
	2. Preliminaries
	3. Scalar curvature type equations with singular right hand side
	4. 𝐾-energy proper implies existence of cscK
	5. Regularity of weak minimizers of 𝐾-energy
	6. Geodesic stability and existence of cscK (𝐴𝑢𝑡₀(𝑀,𝐽)=0)
	7. Geodesic stability and existence of cscK (general case)
	Appendix A.
	Acknowledgments
	References

