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Dedicated to Sir Simon Donaldson for his 60th birthday

1. Introduction

This is the first of two papers in the study of constant scalar curvature Kähler
metrics (cscK metrics), following a program outlined in [14]. In this paper, we focus
on establishing a priori estimates for cscK metrics on compact Kähler manifolds
without boundary. Our estimates can be easily adapted to extremal Kähler metrics
and for simplicity of presentations, we leave such an extension to the interested
readers except to note that for extremal Kähler metrics, its scalar curvature is
apriori bounded depending on Kähler class. In the subsequent two papers, we
will use these estimates (and their generalizations) to study the Calabi-Donaldson
theory on the geometry of extremal Kähler metrics, and in particular, to establish
the celebrated conjecture of Donaldson on geodesic stability (the L1 version) as
well as the well known properness conjecture relating the existence of cscK metrics
with the properness of K-energy functional.

Let us recall a conjecture made earlier by the first named author (c.f. [20]).

Conjecture 1.1. Let (M, [ω0]) be any compact Kähler manifold without boundary.
Suppose ωϕ is a constant scalar curvature Kähler metric. If ϕ is uniformly bounded,
then any higher derivatives of ϕ are also uniformly bounded.

It is worthwhile to give a brief review of the history of this subject and hopefully,
this will make it self-evident why this conjecture is interesting. A special case of
constant scalar curvature Kähler metric is the well known KE metric which has
been the main focus of Kähler geometry since the inception of the celebrated Calabi
conjecture [7] on Kähler Einstein metrics in 1950s. In 1958, E. Calabi published
the fundamental C3 estimate for Monge-Ampère equations [8] which later played
a crucial role in Yau’s seminal resolution of Calabi conjecture [48] in 1976 when
the first Chern class is either negative or zero (In negative case, T. Aubin [1] has
an independent proof) . This work of Yau is so influential that generations of
experts in Kähler geometry afterwards largely followed the same route: Securing
a C0 estimate first, then move on to obtain C2, C3 estimates etc. In the case
of positive first Chern class, G. Tian proved Calabi conjecture in 1989 [44] for
Fano surfaces when the automorphism group is reductive. It is well known that
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there are obstructions to the existence of KE metrics in Fano manifolds; around
1980s, Yau proposed a conjecture which relates the existence of Kähler Einstein
metrics to the stability of underlying tangent bundles. This conjecture was settled
in 2012 through a series of work CDS [16] [17] [18] and we refer interested readers
to this set of papers for further references in the subject of KE metrics. The
proof of CDS’s work is itself quite involved as it sits at the intersection of several
different subjects: algebraic geometry, several complex variables, geometry analysis
and metric differential geometry etc.

To move beyond CDS’s work on Kähler Einstein metrics, one direction is the
study of the existence problem of cscK metrics which satisfy a 4th order PDE. The
following is a conjecture which is a refinement of Calabi’s original idea that every
Kähler class must have its own best, canonical representatives.

Conjecture 1.2 (Yau-Tian-Donaldson). conj1.2 Let [ω0] be an integral class in-
duced by a line bundle L → M . There exists a cscK metric in [ω0] if and only if
(L,M) is K-stable.

One conspicuous and memorable feature of CDS’s proof is the heavy use of
Cheeger-Colding theory on manifolds with Ricci curvature bounded from below.
The apriori bound on Ricci curvature for KE metrics makes such an application of
Cheeger-Colding theory seamlessly smooth and effective. However, if we want to
attack this general conjecture, there will be a dauntingly high wall to climb since
there is no apriori bound on Ricci curvature. Therefore, the entire Cheeger-Colding
theory needs to be re-developed if it is at all feasible. On the other hand, there is a
second, less visible but perhaps even more significant feature of CDS’s proof is: The
whole proof is designed for constant scalar curvature Kähler metrics and the use of
algebraic criteria and Cheeger-Colding theory is to conclude that the a C0 bound
holds for Kähler potential so that we can apply the apriori estimates for complex
KE metrics developed by Calabi, Yau and others. Indeed, this is exactly how we
make use of Cheeger-Colding theory and stability condition in CDS’s proof to nail
down a C0 estimate on potential. Unfortunately, such an estimate is missing in
this generality for a 4th order fully nonlinear equation. Indeed, as noted by other
famous authors in the subject as well, the difficulties permeating the cscK theory
are two folds: one cannot use maximal principle from PDE point of view and one
cannot have much control of metric from the bound of the scalar curvature.

In this paper, we want to tackle this challenge and we prove:

Theorem 1.1. If (M,ω0) be a Kähler manifold such that the class [ω0] admits a
cscK metric ωϕ := ω0+

√
−1∂∂̄ϕ. Let ϕ be normalized so that supM ϕ = 0, then all

derivatives of the Kähler potential ϕ can be estimated in terms of an upper bound

of
∫
M

log
(ωn

ϕ

ωn
0

)
ωn
ϕ.

Conjecture 1.1 follows from this theorem. To see this, note that any cscK met-
ric minimizes K-energy. This combined with a bound for ||ϕ||0 implies an upper

bound for the entropy functional
∫
M

log
(ωn

ϕ

ωn
0

)
ωn
ϕ. Hence Conjecture 1.1 follows from

Theorem 1.1. This is explained in more detail in section 5.
With later applications in mind, we study equation of general type:

Rϕ = f +Δϕ η.

In the above, f is a given smooth function and η is a given smooth real (1, 1)
form. In local coordinates, η =

√
−1ηij̄dzi ∧ dz̄j . We remark that when η = Ricg
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KÄHLER METRICS (I) 911

and f = R,1 this gives rise to the well known constant scalar curvature Kähler
metric equation. We can re-write this 4th order equation in a coupled second order
equations:

log det(gαβ̄ + ϕαβ̄) = F + log det(gαβ̄),(1.1)

ΔϕF = −f + trϕη.(1.2)

Theorem 1.1 can be extended to a more general version.

Theorem 1.2. Suppose (M,ωϕ) satisfy the coupled equations (1.1), (1.2). Let ϕ
be normalized so that supM ϕ = 0, then all derivatives of the Kähler potential ϕ

can be estimated in terms of an upper bound of
∫
M

log
(ωn

ϕ

ωn
0

)
ωn
ϕ and |f |L∞ , |η|ω0

.

Now we present technical theorems which lead to this main theorem. Indeed,
these technical theorems are interesting in its own right and may be used in other
applications.

Theorem 1.3 (Corollary 5.1). Let ϕ be a smooth solution to (1.1), (1.2), then
for any 1 < p < ∞, there exists a constant C, depending only on the background
Kähler metric (M, g), an upper bound of

∫
M

eFFdvolg, and p, such that

(1.3) ||eF ||Lp(dvolg) ≤ C, ||ϕ||0 ≤ C.

The constants C in the theorems below can change from line to line. More
generally, throughout this paper, the “C” without subscript may change from line
to line, while if there is subscript, then it is some fixed constant.

Theorem 1.4 (Corollary 5.2). Let ϕ be a smooth solution to (1.1), (1.2), then
there exists a constant C, depending only on the background metric (M, g) and an
upper bound for

∫
M

eFFdvolg, such that

(1.4) eF ≤ C.

Theorem 1.5 (Theorem 2.1). Let ϕ be a smooth solution to (1.1) and (1.2), then
there exists a constant C, depending only on ||ϕ||0, and the background metric g,
such that

(1.5) max
M

e
F
n ≤ Cmax

M
|∇ϕ|2.

For the second order estimate, Chen-He[20] established an apriori bound on
n+Δϕ in terms of |∇F |Lp(p > 2n) via integral estimates, in the absence of (1.2).
Inspired by this paper [20] and utilizing the additional equation (1.2), we are able
to obtain a W 2,p estimate for any p > 0, using only ||F ||0. Theorem 1.9 is used
essentially in this estimate.

Theorem 1.6 (Theorem 3.1, Corollary 3.1). Let ϕ be a smooth solution to (1.1),
(1.2), then for any 1 < p < ∞, there exists a constant α(p) > 0, depending only on
p, and another constant C, depending only on ||ϕ||0, the background metric g, and
p, such that

(1.6)

∫
M

e−α(p)F (n+Δϕ)p ≤ C.

In particular, ||n+Δϕ||Lp(dvolg) ≤ C ′, where C ′ has the same dependence as C in
this theorem, but additionally on ||F ||0.

1Here Ricg is the Ricci curvature of background metric g and R is the average scalar curvature

in Kähler class [ω].
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912 XIUXIONG CHEN AND JINGRUI CHENG

If we can prove an upper bound for F , then the following theorem becomes very
interesting.

Theorem 1.7 (Proposition 4.1). Let ϕ be a smooth solution to (1.1), (1.2). Then
there exists pn > 1, depending only on n, and a constant C, depending on ||ϕ||0,
||F ||0, ||n+Δϕ||Lpn (dvolg), and the background metric g, such that

(1.7) n+Δϕ ≤ C.

We now discuss a direct application in Kähler geometry from Theorem 1.1 and
delay more applications to our second and third paper.

Theorem 1.8. The Calabi flow can be extended as long as the scalar curvature is
uniformly bounded.

Remark 1.1. This is a surprising development. With completely different moti-
vations in geometry, the first named author has a similar conjecture on Ricci flow
which states that the only obstruction to the long time existence of Ricci flow is the
L∞ bound of scalar curvature. There has been significant progress in this problem,
first by a series of works of B. Wang (c.f. [46], [23]) and more recently by the inter-
esting and important work of Bamler-Zhang [2] and M. Simons [42] in dimension
4.

Theorem 1.8 is a direct consequence of Theorem 1.1 and Chen-He short time
existence theorem (c.f. Theorem 3.2 in [19]), where the authors proved the life
span of the short time solution depends only on C3,α norm of the initial Kähler
potential and lower bound of the initial metric. By assumption, we know that ∂tϕ
remains uniformly bounded, hence ϕ is bounded on every finite time interval. On
the other hand, since K-energy is decreasing along the flow, in particular K-energy
is bounded from above along the flow. Due to a K-energy function decomposition
formula in [12] and that ϕ is bounded, we see that the entropy is bounded as well.
Following Theorem 5.3 with η = 0 and f bounded, the flow remains in a pre-
compact subset of C3,α(M) on every finite time interval, hence can be extended.

In light of Theorem 5.3 and a compactness theorem of Chen-Darvas-He [21],
a natural question is if one can extend the Calabi flow assuming only an upper
bound on Ricci curvature. A more difficult question is whether one-sided bound of
the scalar curvature is sufficient for the extension of Calabi flow. Ultimately, the
remaining fundamental question is

Conjecture 1.3 (Calabi, Chen). Initiating from any smooth Kähler potential, the
Calabi flow always exists globally.

Given the recent work by J. Streets [43], Berman-Darvas-Lu[4], the weak Calabi
flow always exists globally. Perhaps one can prove this conjecture via improving
regularity of weak Calabi flow. On the other hand, one may hope to prove this
conjecture on Kähler classes which already admit constant scalar curvature Kähler
metrics and prove the flow will converges to such a metric as t → ∞. An important
and deep result in this direction is Li-Wang-Zheng’s work [35].

We also show that one can estimate the upper bound of F directly in terms of
gradient bound of potential ϕ. This result is not directly needed for our main result,
but we believe it is important for follow-up problems in more general settings where
full C2 estimate is not feasible.

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:01:24 EDT 2022 for download from IP 129.49.89.105.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



KÄHLER METRICS (I) 913

Proposition 1.1 (Proposition 2.1). Let ϕ be a smooth solution to (1.1), (1.2), then
there exists a constant C, depending only on ||ϕ||0, such that

(1.8) F ≥ −C.

Theorem 1.9 (Theorem 2.2). Let ϕ be a smooth solution to (1.1), (1.2), then there
exists a constant C, depending only on ||ϕ||0 and the background metric g, such that

(1.9)
|∇ϕ|2
eF

≤ C.

Finally we would like to explain the organization of this paper:
In section 2, we prove Proposition 1.1, Theorem 1.9 and Theorem 1.5.
In section 3, we prove Theorem 1.6 by iteration, which is a crucial step towards

the main result.
In section 4, we use iteration again to improve Lp bound of n +Δϕ for p < ∞

to an L∞ bound of n+Δϕ, proving Theorem 1.7. This estimate requires a bound
for ||n + Δϕ||Lp for some p > pn,

2 depending on ||F ||0. The key ingredient is a
calculation for Δϕ(|∇ϕF |2). We also explains how the L∞ bound of n+Δϕ gives
estimates for higher derivatives. This is not new and has been observed in [14].

In section 5, we prove Theorem 1.3 and Theorem 1.4. From these two results,
we get estimate for ||F ||0 and ||ϕ||0 depending only on an upper bound of entropy

of F defined as
∫
M

log(
ωn

ϕ

ωn
0
)ωn

ϕ. The key ingredient is the use of α-invariant and the

construction of a new test function. On the other hand, if we start with a bound for
||ϕ||0, and use the convexity of K-energy along C1,1 geodesics, it is relatively easy
to get an upper bound of entropy bound of F , hence all higher estimates follow.

2. The volume ratio
ωn

ϕ

ωn and C1
bound on Kähler potential

The main theorem in this section is to prove that the first derivative of ϕ is
pointwisely controlled by volume ratio eF from above, assuming a bound for ||ϕ||0.
Conversely, the bound for ||∇ϕ||0 can in turn control eF . However, this control is
much weaker since it is of global nature.

First we show that a C0 bound for ϕ implies a lower bound for F .

Proposition 2.1. Let (ϕ, F ) be a smooth solution to (1.1), (1.2), then there exists
a positive constant C2 depending only on ||ϕ||0, ||f ||0, maxM |η|ω0

, such that F ≥
−C2.

This proposition first appeared in [33]. However, for the convenience of the
reader, we include a proof here.

Proof. This step is relatively easy. Let p ∈ M , we may choose a local normal
coordinate in a neighborhood of p, such that

(2.1) gij̄(p) = δij , ∇gij̄(p) = 0, and ϕij̄(p) = ϕīi(p)δij.

In this paper, we will always work under this coordinate unless specified otherwise.

Choose the constant C2.1 to be C2.1 = 2maxM maxi |ηīi| + 2||f ||0
n + 1. Under this

2Here pn ≤ (3n− 3)(4n+ 1). But this most likely is not sharp.
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914 XIUXIONG CHEN AND JINGRUI CHENG

coordinate, we can calculate:

Δϕ(F + C2.1ϕ) = −f +
∑
i

ηīi
1 + ϕīi

+ C2.1

∑
i

ϕīi

1 + ϕīi

= −f + C2.1n−
∑
i

C2.1 − ηīi
1 + ϕīi

≤ −f + C2.1n− nC2.1

2
e−

F
n

≤ 2C2.1n− nC2.1

2
e−

F
n .

(2.2)

In the second line above, we used the arithmetic-geometric mean inequality:

1

n

∑
i

1

1 + ϕīi

≥ Πi(1 + ϕīi)
− 1

n = e−
F
n .

Now let p0 be such that the function F +C2.1ϕ achieves minimum at p0, then from
(2.2), we see

(2.3) 0 ≤ 2C2.1n− nC2.1

2
e−

F
n (p0).

This gives a lower bound for F , depending only on C0 bound for ϕ. �

Next we move on to estimate the upper bound of F in terms of maxM |∇ϕ|.
Here and in the following, we denote ∇f · ∇h = Re(gij̄fihj̄), and ∇ϕ ·ϕ ∇ϕf =

Re(gij̄ϕ fihj̄).

Theorem 2.1. Let (ϕ, F ) be smooth solutions to cscK, then there exists a constant
C2.2, depending only on ||∇ϕ||0, ||f ||0, maxM |η|ω0

and lower bound of bisectional
curvature of the background metric g, such that F ≤ C2.2.

Proof. The argument uses maximum principle again. This time we will calculate
Δϕ(e

F−λϕ(K + |∇ϕ|2)) where λ,K > 0 are constants to be determined later. We
choose a normal coordinate (equation (2.1)) and do the following calculations. We
have
(2.4)
Δϕ(e

F−λϕ(K + |∇ϕ|2)) = Δϕ(e
F−λϕ)(K + |∇ϕ|2) + eF−λϕΔϕ(K + |∇ϕ|2)

+ eF−λϕ · (Fi − λϕi)(|∇ϕ|2)ī + (Fī − λϕī)(|∇ϕ|2)i
1 + ϕīi

.

We can first calculate:

Δϕ(e
F−λϕ) = eF−λϕ |Fi − λϕi|2

1 + ϕīi

+ eF−λϕ(ΔϕF − λϕīi

1 + ϕīi

)

= eF−λϕ |Fi − λϕi|2
1 + ϕīi

+ eF−λϕ(−f − λn+
λ+ ηīi
1 + ϕīi

).

(2.5)

By differentiating equation (1.1) in zα direction, we obtain

(2.6)
∑
i

ϕīiα

1 + ϕīi

= Fα and
∑
i

ϕīiᾱ

1 + ϕīi

= Fᾱ.
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Then we calculate

Δϕ(|∇ϕ|2) =
Rαβ̄īiϕαϕβ̄

1 + ϕīi

+
|ϕiα|2
1 + ϕīi

+
ϕ2
īi

1 + ϕīi

+
ϕαϕᾱīi + ϕᾱϕαīi

1 + ϕīi

(2.7)

≥ −C2.21|∇ϕ|2
1 + ϕīi

+
|ϕiα|2
1 + ϕīi

+
ϕ2
īi

1 + ϕīi

+ ϕαFᾱ + ϕᾱFα

= −C2.21|∇ϕ|2
1 + ϕīi

+
|ϕiα|2
1 + ϕīi

+
ϕ2
īi

1 + ϕīi

+ ϕα(Fᾱ − λϕᾱ)

+ ϕᾱ(Fα − λϕα) + 2λ|ϕα|2

≥ −C2.21|∇ϕ|2
1 + ϕīi

+
|ϕiα|2
1 + ϕīi

+
ϕ2
īi

1 + ϕīi

− ε(n+Δϕ)

− |Fα − λϕα|2|ϕα|2
ε(1 + ϕαᾱ)

+ 2λ|ϕα|2.

Here C2.21 depends only on lower bound of bisectional curvature of g.
For the last term in (2.4), we estimate in the following way:

|(Fī − λϕī)(|∇ϕ|2)i|
1 + ϕīi

(2.8)

=
|(Fī − λϕī)(ϕαϕᾱi + ϕᾱϕαi)|

1 + ϕīi

≤ |(Fī − λϕī)ϕiϕīi|
1 + ϕīi

+
|(Fī − λϕī)ϕᾱϕαi|

1 + ϕīi

≤ |Fi − λϕi|2|ϕi|2
2ε(1 + ϕīi)

+
|Fi − λϕi|2|ϕα|2

2ε(1 + ϕīi)
+

εϕ2
īi

2(1 + ϕīi)
+

ε|ϕiα|2
2(1 + ϕīi)

.

The other conjugate term satisfies the same estimate as above. Combining above
calculations, we obtain:

Δϕ(e
F−λϕ(K + |∇ϕ|2))

eF−λϕ
(2.9)

≥
(
K + |∇ϕ|2 − 3ε−1|∇ϕ|2

) |Fi − λϕi|2
1 + ϕīi

+
(λ+ ηīi)(K + |∇ϕ|2)− C2.21|∇ϕ|2

1 + ϕīi

+
(1− ε)ϕ2

īi

1 + ϕīi

− ε(n+Δϕ)

+
|ϕiα|2(1− ε)

1 + ϕīi

+ (−R− λn)(K + |∇ϕ|2).

Now it’s time to choose the constants ε, λ, and K appearing above.
First we choose ε = 1

4 . With this choice, we have

∑
i

(1− ε)ϕ2
īi

1 + ϕīi

− ε(n+Δϕ) =
3

4
(n+Δϕ)− 3n

2
+

3

4

∑
i

1

1 + ϕīi

− 1

4
(n+Δϕ)

≥ 1

2
(n+Δϕ)− 3n

2
.

(2.10)
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916 XIUXIONG CHEN AND JINGRUI CHENG

Then we choose λ so large that λ −maxM maxi |ηīi| > 1. Finally, we choose K so
large that

K > C2.21 max
M

|∇ϕ|2(2.11)

K > 3ε−1 max
M

|∇ϕ|2 = 12max
M

|∇ϕ|2.(2.12)

With above choices for λ and K, we have

(2.13) (λ+ ηīi)(K + |∇ϕ|2)− C2.21|∇ϕ|2 ≥ K − C2.21|∇ϕ|2 > 0,

and also

(2.14) K − 3ε−1|∇ϕ|2 > 0.

Hence we conclude from (2.9) that
(2.15)

Δϕ(e
F−λϕ(K+|∇ϕ|2)) ≥ eF−λϕ

(
−(||f ||0+λn)(K+max

M
|∇ϕ|2)−C2.22+

1

4
(n+Δϕ)

)
.

Denote v = eF−λϕ(K + |∇ϕ|2), it is enough to show v has an upper bound. We
see from (2.15) that there exists constants C2.23 > 0, C2.24 > 0, possibly depending
on maxM |∇ϕ|2, such that

(2.16) Δϕ(v) ≥ v(−C2.23 +
1

C2.24
(n+Δϕ)).

Here we notice that n+Δϕ ≥ ne
F
n . Hence we obtain from (2.16) that

(2.17) Δϕ(v) ≥ v(−C2.23 +
1

C2.24
e

F
n ).

Let the maximum of v be achieved at point p, then we know −C2.23 +
e
F
n

(p)

C2.24
≤ 0.

This gives an upper bound of F at p, hence an upper bound for v, where this
bound depends on maxM |∇ϕ|. Here we noted that ||ϕ||0 can be bounded in terms
of supM ||∇ϕ||0 as long as supM ϕ = 0 and that M is compact. �

Conversely, we have the following key estimate, which will be needed when we
do the W 2,p estimates of ϕ.

Theorem 2.2. There exists a constant C2.3, depending only on ||ϕ||0, lower bound
of bisectional curvature, ||f ||0, maxM |η|ω0

, such that

|∇ϕ|2
eF

≤ C2.3.

Proof. We will consider Δϕ(e
−(F+λϕ)+ 1

2ϕ
2

(|∇ϕ|2 + K)). Here λ > 0, K > 0 are
constants to be determined below. Then we have

Δϕ(e
−(F+λϕ)+ 1

2ϕ
2

(|∇ϕ|2 +K))(2.18)

= Δϕ(e
−(F+λϕ)+ 1

2ϕ
2

)(|∇ϕ|2 +K) + e−(F+λϕ)+ 1
2ϕ

2

Δϕ(|∇ϕ|2)

+
2e−(F+λϕ)+ 1

2ϕ
2

1 + ϕīi

Re
(
(−Fi − λϕi + ϕϕi)(|∇ϕ|2)ī

)
.

For simplicity of notation, set

A(F, ϕ) = −(F + λϕ) +
1

2
ϕ2.
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Similar as before, we may calculate:

Δϕ(e
A(F,ϕ))(2.19)

= eA
| − Fi − λϕi + ϕϕi|2

1 + ϕīi

+ eA
(
−Δϕ(F + λϕ) + ϕΔϕϕ

)
+ eA

|ϕi|2
1 + ϕīi

= eA
| − Fi − λϕi + ϕϕi|2

1 + ϕīi

+ eA
(
f − λn+ nϕ+

∑
i

λ− ηīi − ϕ

1 + ϕīi

)
+

eA|ϕi|2
1 + ϕīi

.

Recall the calculation in (2.7):

Δϕ(|∇ϕ|2) =
Rīiαβ̄ϕαϕβ̄

1 + ϕīi

+
|ϕiα|2
1 + ϕīi

+
ϕ2
īi

1 + ϕīi

+ Fᾱϕα + Fαϕᾱ

≥ −C2.21|∇ϕ|2
∑
i

1

1 + ϕīi

+
|ϕiα|2
1 + ϕīi

+
ϕ2
īi

1 + ϕīi

+ (−2λ+ 2ϕ)|∇ϕ|2 + 2Re
(
(Fα + λϕα − ϕϕα)ϕᾱ

)
.

(2.20)

Again C2.21 depends only on curvature bound of g. Also

(|∇ϕ|2)ī = ϕαϕᾱī + ϕīϕīi, (|∇ϕ|2)i = ϕᾱϕαi + ϕiϕīi.

Hence if we plug in (2.19) and (2.20) back to (2.18), we obtain:

Δϕ(e
A(|∇ϕ|2 +K))e−A

≥ |∇ϕ(F + λϕ)− ϕ∇ϕϕ|2(|∇ϕ|2 +K) + |∇ϕϕ|2(|∇ϕ|2 +K)

+
(
f − λn+ nϕ+

∑
i

λ− ηīi − ϕ

1 + ϕīi

)
(|∇ϕ|2 +K) +

−C2.21|∇ϕ|2 + |ϕiα|2 + ϕ2
īi

1 + ϕīi

+ (−2λ+ 2ϕ)|∇ϕ|2 + 2Re
(
(Fα + λϕα − ϕϕα)ϕᾱ

)

+
2Re

(
(−Fi − λϕi + ϕϕi)(ϕαϕᾱī + ϕīϕīi)

)
1 + ϕīi

.

(2.21)

We notice the following complete square in the above sum:

1

1 + ϕīi

|ϕiα −
(
Fi + λϕi − ϕϕi

)
ϕα|2

=
|ϕiα|2
1 + ϕīi

+
2Re

(
(−Fi − λϕi + ϕϕi)ϕαϕᾱī

)
1 + ϕīi

+
| − Fi − λϕi + ϕϕi|2|∇ϕ|2

1 + ϕīi

.

(2.22)

We will drop this complete square in the following. Next we observe a crucial
cancellation, which is the key point of this argument. We look at the last two
terms in (2.21) and observe:

(2.23) (Fα + λϕα − ϕϕα)ϕᾱ +
(−Fi − λϕi + ϕϕi)ϕīϕīi

1 + ϕīi

=
(Fi + λϕi − ϕϕi)ϕī

1 + ϕīi

.
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Hence we have

Δϕ(e
A(|∇ϕ|2 +K))e−A ≥ K

| − Fi − λϕi + ϕϕi|2
1 + ϕīi

+
|ϕi|2(|∇ϕ|2 +K)

1 + ϕīi

+
∑
i

λ− ηīi − ϕ

1 + ϕīi

(|∇ϕ|2 +K) +

(
f − λn+ nϕ

)
(|∇ϕ|2 +K)

− C2.21|∇ϕ|2
∑
i

1

1+ϕīi

+
ϕ2
īi

1+ϕīi

+(−2λ+2ϕ)|∇ϕ|2+2Re

(
(Fi+λϕi − ϕϕi)ϕī

1+ϕīi

)
.

(2.24)

Now we make the choices of λ, K. We choose λ = 10(maxM maxi |ηīi|+ ||ϕ||0 +
C2.21+1) and K = 10. With this choice, we now estimate the terms in (2.24), with
various constants Ci which depends only on the curvature bound of g and ||ϕ||0.

(2.25)
(
R− λn+ nϕ

)
(|∇ϕ|2 +K) ≥ −C2.31(|∇ϕ|2 + 1).

(2.26) (−2λ+ 2ϕ)|∇ϕ|2 ≥ −C2.32|∇ϕ|2.

|(Fi + λϕi − ϕϕi)ϕī|
1 + ϕīi

≤ 1

2

|Fi + λϕi − ϕϕi|2
1 + ϕīi

+
1

2

|ϕi|2
1 + ϕīi

≤ 1

2

|Fi + λϕi − ϕϕi|2
1 + ϕīi

+
1

2
|∇ϕ|2

∑
i

1

1 + ϕīi

.

(2.27)

(2.28)
∑
i

λ− ηīi − ϕ

1 + ϕīi

(|∇ϕ|2+K)−C2.21|∇ϕ|2
∑
i

1

1 + ϕīi

≥ 10|∇ϕ|2
∑
i

1

1 + ϕīi

.

(2.29)
ϕ2
īi

1 + ϕīi

≥ 0.

Combining all these estimates, we obtain from (2.24) that
(2.30)

Δϕ(e
A(|∇ϕ|2 +K)) ≥ eA

( |ϕi|2|∇ϕ|2
1 + ϕīi

+ 9|∇ϕ|2
∑
i

1

1 + ϕīi

− C2.33(|∇ϕ|2 + 1)
)
.

Here C2.33 depends only on curvature bound of g and ||ϕ||0. Using Young’s in-
equality, we have, if n ≥ 2,

|∇ϕ| 2
n e−

F
n ≤

∑
i

|ϕi|
2
n

(1 + ϕīi)
1
n

· (1 + ϕīi)
1
n e−

F
n

≤ 1

n

∑
i

|ϕi|2
1 + ϕīi

+
n− 1

n

∑
i

(1 + ϕīi)
1

n−1 e−
F

n−1

≤ (n− 1)
( |ϕi|2
1 + ϕīi

+
1

n

∑
i

(1 + ϕīi)
1

n−1 e−
F

n−1
)

≤ (n− 1)
( |ϕi|2
1 + ϕīi

+ (n+Δϕ)
1

n−1 e−
F

n−1
)

≤ (n− 1)
( |ϕi|2
1 + ϕīi

+
∑
i

1

1 + ϕīi

)
.
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Thus, for n ≥ 2,

|ϕi|2|∇ϕ|2
1 + ϕīi

+ |∇ϕ|2
∑
i

1

1 + ϕīi

≥ 1

n− 1
|∇ϕ|2+ 2

n e−
F
n .

Whereas if n = 1, |∇ϕ|2+ 2
n e−

F
n = |∇ϕ|4e−F = |ϕi|2|∇ϕ|2

1+ϕiī
. In any case, we have

|ϕi|2|∇ϕ|2
1 + ϕīi

+ |∇ϕ|2
∑
i

1

1 + ϕīi

≥ 1

n
|∇ϕ|2+ 2

n e−
F
n .

Hence we get from (2.30) that

Δϕ(e
A(|∇ϕ|2 +K)) ≥ e−λϕ+ 1

2ϕ
2(
e−(1+ 1

n )F |∇ϕ|2+ 2
n − C2.33e

−F |∇ϕ|2 − C2.33e
−F

)
= e−λϕ+ 1

2ϕ
2(
(e−F |∇ϕ|2)1+ 1

n − C2.33e
−F |∇ϕ|2 − C2.33e

−F
)
.

(2.31)

Suppose that the function e−(F+Cϕ)+ 1
2ϕ

2

(|∇ϕ|2 + K) achieves maximum at p.
Then at point p, we have

(2.32) 0 ≥ (e−F |∇ϕ|2)1+ 1
n − C2.33e

−F |∇ϕ|2 − C2.33e
−F .

Recall Proposition 2.1 gives an estimate for e−F which depends only on ||ϕ||0 and
the curvature bound of g. Therefore, we get a bound for e−F |∇ϕ|2(p) with the

same dependence. Hence we have a bound for e−(F+λϕ)+ 1
2ϕ

2

(|∇ϕ|2 +K)(p), with
the dependence as stated in the theorem.

But this function achieves maximum at p, so we are done. �

3. The volume ratio
ωn

ϕ

ωn
0

and W 2,p
bound on Kähler potential

In this section, we prove

Theorem 3.1. For any p > 0, there exist constants α(p) > 0, C(p) > 0, so that

(3.1)

∫
M

e−α(p)F (n+Δϕ)pdvolg ≤ C(p).

Here α(p) depends only on p(can be explicitly calculated). The constant Cp depends
only on p, ||ϕ||0, maxM |η|ω0

, ||f ||0, lower bound of the bisectional curvature of g,
and the volume of g.

Proof. One starts by calculating:

Δϕ(e
−α(F+λϕ)(n+Δϕ)) = Δϕ(e

−α(F+λϕ))(n+Δϕ) + e−α(F+λϕ)Δϕ(n+Δϕ)

+ e−α(F+λϕ)(−α)
(Fi + λϕi)(Δϕ)ī + (Fī + λϕī)(Δϕ)i

1 + ϕīi

.

(3.2)

If we choose λ > 2maxM maxi |ηīi|, then

Δϕ(e
−α(F+λϕ)) =

α2|Fi + λϕi|2
1 + ϕīi

e−α(F+λϕ) + αe−α(F+λϕ)(f − λn+
∑
i

λ− ηīi
1 + ϕīi

)

≥ α2|Fi + λϕi|2
1 + ϕīi

e−α(F+λϕ) + αe−α(F+λϕ)(f − λn) +
λα

2
e−α(F+λϕ)

∑
i

1

1 + ϕīi

.

(3.3)
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For the term Δϕ(n+Δϕ), we choose a normal coordinate (c.f. equation (2.1)) and
then follow Yau’s calculation [48]. First, note that

(3.4) Δϕ(n+Δϕ) =
1

1 + ϕkk̄

(
gij̄ϕij̄

)
kk̄

=
Rīikk̄ϕīi

1 + ϕkk̄

+
ϕkk̄īi

1 + ϕkk̄

.

We wish to represent the 4th derivative of ϕ in terms of F . For this we take equation
(1.1) and differentiate it twice in zi, zī and then sum over i = 1, 2 · · ·n. We obtain:

(3.5)
ϕkk̄īi

1 + ϕkk̄

− Rkk̄īi

1 + ϕkk̄

−
|ϕkβ̄i|2

(1 + ϕkk̄)(1 + ϕββ̄)
= Fīi −Rīi.

Hence

Δϕ(n+Δϕ) =
Rkk̄īi(1 + ϕkk̄)

1 + ϕīi

+
|ϕpq̄i|2

(1 + ϕpp̄)(1 + ϕqq̄)
+ ΔF −R(g)

≥ −C3.1(n+Δϕ)
∑
i

1

1 + ϕīi

+
|ϕpq̄i|2

(1 + ϕpp̄)(1 + ϕqq̄)
+ ΔF −R(g).

(3.6)

Here C3.1 depends only on curvature bound of g and R is the scalar curvature of
the background metric g. Plug in to equation (3.2) and we get

Δϕ(e
−α(F+λϕ)(n+Δϕ)) ≥ e−α(F+λϕ)(

λα

2
− C3.1)(n+Δϕ)

∑
i

1

1 + ϕīi

+ αe−α(F+λϕ)(f − λn)(n+Δϕ) + e−α(F+λϕ)(ΔF −R(g)).

(3.7)

Here we already drop the term:

α2|Fi + λϕi|2
1 + ϕīi

(n+Δϕ) + (−α)
(Fi + λϕi)(Δϕ)ī + (Fī + λϕī)(Δϕ)i

1 + ϕīi

+
|ϕpq̄i|2

(1 + ϕpp̄)(1 + ϕqq̄)

≥α2|Fi + λϕi|2
1 + ϕīi

(n+Δϕ)− 2αRe

(
(Fi + λϕi)(Δϕ)ī

1 + ϕīi

)
+

|(Δϕ)i|2
(n+Δϕ)(1 + ϕīi)

=
n+Δϕ

1 + ϕīi

|α(Fi + λϕi)−
(Δϕ)i
n+Δϕ

|2 ≥ 0.

From the first line to second line in the above, we observed that

|(Δϕ)i|2
1 + ϕīi

=
|
∑

p ϕpp̄i|2

1 + ϕīi

≤ |ϕpp̄i|2(n+Δϕ)

(1 + ϕīi)(1 + ϕpp̄)
≤ |ϕpq̄i|2(n+Δϕ)

(1 + ϕpp̄)(1 + ϕqq̄)
.

Set

u = e−α(F+λϕ)(n+Δϕ)

and note that

(n+Δϕ)
∑
i

1

1 + ϕīi

≥ e−
F

n−1 (n+Δϕ)1+
1

n−1 ,

then we know from equation (3.7):

Δϕu≥e−(α+ 1
n−1 )F−αλϕ(

λα

2
−C3.1)(n+Δϕ)1+

1
n−1 −αe−α(F+λϕ)(λn−f)(n+Δϕ)

+ e−α(F+λϕ)(ΔF −R(g)).

(3.8)

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:01:24 EDT 2022 for download from IP 129.49.89.105.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We use the following equality, which holds for any p ≥ 0:

1
2p+1Δϕ(u

2p+1) = 2pu2p−1|∇ϕu|2ϕ + u2pΔϕu

= 2pu2p−2e−α(F+λϕ)(n+Δϕ)|∇ϕu|2ϕ + u2pΔϕu

≥ 2pu2p−2|∇u|2e−α(F+λϕ) + u2pΔϕu.

Integrate with respect to dvolϕ = eF dvolg and plug inequality (3.8) to get:

∫
M

2pu2p−2|∇u|2e(1−α)F−αλϕdvolg

+

∫
M

e−(α−n−2
n−1 )F−αλϕ(

λα

2
− C3.1)(n+Δϕ)1+

1
n−1 u2pdvolg

+

∫
M

e(1−α)F−αλϕu2pΔFdvolg ≤
∫
M

αe(1−α)F−αλϕ(λn− f)(n+Δϕ)u2pdvolg

+

∫
M

e(1−α)F−λαϕR(g)u2pdvolg.

(3.9)

We need to handle the term involving ΔF , which is done by integrating by parts:

∫
M

e(1−α)F−αλϕu2pΔFdvolg =

∫
M

(α− 1)e(1−α)F−αλϕu2p|∇F |2dvolg

+

∫
M

αλe(1−α)F−λαϕu2p∇ϕ · ∇Fdvolg −
∫
M

2pe(1−α)F−λαϕu2p−1∇u · ∇Fdvolg.

(3.10)

Also we can estimate the last term of (3.10)

(3.11) u2p−1∇u · ∇F ≤ 1

2
u2p−2|∇u|2 + 1

2
u2p|∇F |2.

Then we estimate the second to last term of (3.10) and obtain:

αλe(1−α)F−λαϕu2p∇ϕ · ∇F

≤α− 1

2
e(1−α)F−λαϕu2p|∇F |2 + α2λ2

2(α− 1)
u2p|∇ϕ|2e(1−α)F−λαϕ

≤α− 1

2
e(1−α)F−λαϕu2p|∇F |2 + C2.3

α2λ2

2(α− 1)
u2pe(2−α)F−λαϕ.

(3.12)

When estimating |∇ϕ|2 above, we used Theorem 2.2, and C2.3 is the constant given
by that theorem. Plug (3.11), (3.12) back into (3.10), we obtain

∫
M

e(1−α)F−αλϕu2pΔFdvolg ≥
∫
M

(
α− 1

2
− p)e(1−α)F−αλϕu2p|∇F |2dvolg

−
∫
M

C2.3
α2λ2

2(α− 1)
e(2−α)F−λαϕu2pdvolg −

∫
M

pe(1−α)F−λαϕu2p−2|∇u|2dvolg.

(3.13)
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Plug (3.13) back to (3.9), we see

∫
M

pe(1−α)F−λαϕu2p−2|∇u|2dvolg +
∫
M

(
α− 1

2
− p)e(1−α)F−αλϕu2p|∇F |2dvolg

+

∫
M

e−(α−n−2
n−1 )F−αλϕ(

λα

2
− C3.1)(n+Δϕ)1+

1
n−1u2pdvolg

≤
∫
M

αe(1−α)F−αλϕ(λn+ ||f ||0)(n+Δϕ)u2pdvolg

+ C2.3
α2λ2

2(α− 1)

∫
M

e(2−α)F−λαϕu2pdvolg

+

∫
M

e(1−α)F−λαϕR(g)u2pdvolg.

(3.14)

Now let α > 2p+1 and λα ≥ 2C3.1+1, note that n+Δϕ ≥ ne
F
n and F has positive

lower bound, according to Proposition 2.1, then we find from above:

∫
M

e−(α−n−2
n−1 )F−αλϕ(n+Δϕ)1+

1
n−1u2pdvolg

≤C3.2α

∫
M

e(1−α)F−αλϕ(n+Δϕ)u2pdvolg+C3.2
α2

α− 1

∫
M

e(2−α)F−λαϕu2pdvolg.

(3.15)

Recall the definition of u, this means for any p ≥ 0, α ≥ 2p+ 2:∫
M

exp(−(2p+ 1)αF +
n− 2

n− 1
F − λα(2p+ 1)ϕ)(n+Δϕ)2p+1+ 1

n−1 dvolg

≤ C3.2α

∫
M

exp(−(2p+ 1)αF + F − (2p+ 1)αλϕ)(n+Δϕ)2p+1dvolg

+ C3.2
α2

α− 1

∫
M

exp(−(2p+ 1)αF + 2F − (2p+ 1)αλϕ)(n+Δϕ)2pdvolg .

(3.16)

Hence for some constant C3.3 which depends on ||ϕ||0, α, and p, we get:∫
M

exp(−(2p+ 1)αF +
n− 2

n− 1
F )(n+Δϕ)2p+1+ 1

n−1 dvolg

≤ C3.3

( ∫
M

exp(−(2p+ 1)αF + F )(n+Δϕ)2p+1dvolg

+

∫
M

exp(−(2p+ 1)αF + 2F )(n+Δϕ)2pdvolg

)
.

(3.17)

Take p = 0, and α = 2 in (3.17), one obtains from (3.17) that:∫
M

e−
n

n−1F (n+Δϕ)
n

n−1 dvolg ≤ C3.3

( ∫
M

e−F (n+Δϕ)dvolg +

∫
M

dvolg
)

≤ C3.3

(
n||e−F ||0vol(M) + vol(M)

)
.

(3.18)

Since we obtained in Proposition 2.1 a bound for e−F depending only on ||ϕ||0,
||f ||0, maxM |η|ω0

, and curvature bound of g. Hence we get a bound for∫
M

e−
n

n−1F (n+Δϕ)
n

n−1 dvolg .
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We now claim that there exists a sequence of pair of positive numbers (pk, γk)
where pk → ∞ such that∫

M

e−γkF (n+Δϕ)2pk+1 dvolg < ∞

for all k = 1, 2 · · · . Now we explain how we choose this sequence of pairs of positive
numbers successively: In general, suppose we already choose (pk, γk) such that the
preceding inequality holds. Choose αk+1 sufficiently large such that

αk+1 ≥ 2pk + 2, and − (2pk + 1)αk+1 + 2 ≤ −γk.

Set α = αk+1, p = pk in (3.17), we obtain∫
M

exp(−(2pk + 1)αk+1F +
n− 2

n− 1
F )(n+Δϕ)2pk+1+ 1

n−1 dvolg

≤ C3.31

(∫
M

e−γkF (n+Δϕ)2pk+1dvolg +

∫
M

e−γkF (n+Δϕ)2pkdvolg

)

≤ C3.32

∫
M

e−γkF (n+Δϕ)2pk+1dvolg.

(3.19)

In the second inequality above, we again used the fact that n+Δϕ ≥ ne
F
n , and

eF is bounded from below. Set

γk+1 = (2pk + 1)αk+1 −
n− 2

n− 1
and pk+1 = pk +

1

2(n− 1)
.

Then ∫
M

e−γk+1F (n+Δϕ)2pk+1+1dvolg ≤ C

∫
M

e−γkF (n+Δϕ)2pk+1,

where the constant depends on ||ϕ||0 and the background metric g. Our claim is
then verified.

By induction, we then get a bound for
∫
M

e−γpF (n + Δϕ)pdvolg for any p > 0

and some constant γp > 0. Here γp grows like p2 as p → ∞. �

Remark 3.1. By a more careful inspection of above argument, one sees that it is
possible to choose γp = max((p+ 1)(p+ 2), np), but this is probably not sharp.

As an immediate consequence, we have the following W 2,p estimate of ϕ in terms
of ||F ||0.

Corollary 3.1. For any 1 < p < ∞, there exist constants C̃(p) > 0, depending
on ||ϕ||0, ||F ||0, the background metric g, ||f ||0, maxM |η|ω0

and p, such that ||n+

Δϕ||Lp ≤ C̃(p).

4. C1,1
bound of the Kähler potential in terms of its W 2,p

bound

In this section, we want to prove

Theorem 4.1. There exists a constant C4, depending only on ||ϕ||0, ||F ||0, ||f ||0,
maxM |η|ω0

, and the background metric g, such that n+Δϕ ≤ C4.

Note that this theorem is trivial when n = 1, since 1 + Δϕ = eF when n = 1.
Hence we can assume n ≥ 2 throughout this section. In view of Theorem 2.1, we
have the following immediate consequence:
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Corollary 4.1. There exists a constant C4.1, depending only on ||ϕ||0, ||∇ϕ||0,
||f ||0, maxM |η|ω0

and the background metric g, such that n+Δϕ ≤ C4.1.

With this assumption, we know from Corollary 3.1 that for any p > 0, there
exists constants Cp, depending on ||ϕ||0, ||F ||0, and the background metric g, such
that

(4.1) ||n+Δϕ||Lp(M) ≤ C̃(p).

Hence it suffices to prove the following statement:

Proposition 4.1. Let (ϕ, F ) be a smooth solution (1.1), (1.2), then there exists
pn > 0, depending only on n, such that

(4.2) max
M

|∇ϕF |ϕ +max
M

(n+Δϕ) ≤ C4.2.

Here C4 depends only on ||F ||0, ||n+Δϕ||Lpn (M), and metric g(in the way described
in Theorem 4.1).

Remark 4.1. From the argument below, one can explicitly get an upper bound for

pn ≤ (2n− 2)(4n+ 1).

This upper bound is probably not sharp.

Proof. Let us first calculate Δϕ(|∇ϕf |2ϕ) for any smooth function f in M. First we
do the calculation under an orthonormal frame gϕ.

Δϕ|∇ϕf |2 = (fifī),jj̄
= f,ijj̄fī + fif,̄ijj̄ + |f,ij |2ϕ + |f,ij̄ |2ϕ
= f,jij̄fī + fif,jīj̄ + |f,ij |2ϕ + |f,ij̄ |2ϕ
= (Δϕf)ifī + fi(Δϕf)ī + Ricϕ,ij̄fjfī + |f,ij |2ϕ + |f,ij̄ |2ϕ.

In the above, f,ij··· denote covariant derivatives under the metric gϕ. Let B(λ) :

R → R be a smooth function, now we calculate Δϕ(e
B(f)|∇ϕf |2ϕ).

e−B(f) ·Δϕ(e
B(f)|∇ϕf |2ϕ)

= Δϕ(|∇ϕf |2ϕ) + B′(fi(|∇ϕf |2ϕ)ī + fī(|∇ϕf |2ϕ)i)
+

(
(B′2 +B′′)|∇ϕf |2 +B′Δϕf

)
|∇ϕf |2ϕ

= (Δϕf)ifī + fi(Δϕf)ī +Ricϕ,ij̄fjfī + |f,ij |2ϕ + |f,ij̄ |2ϕ
+B′ (fifjf,j̄ī + fif,jīfj̄ + fīfjf,j̄i + fīf,jifj̄

)
+

(
(B′2 +B′′)|∇ϕf |2ϕ +B′Δϕf

)
|∇ϕf |2ϕ

≥ (Δϕf)ifī + fi(Δϕf)ī +Ricϕ,ij̄fjfī + |f,ij̄ |2ϕ
+B′ (fif,jīfj̄ + fīfjf,j̄i

)
+

(
B′′|∇ϕf |2ϕ +B′Δϕf

)
|∇ϕf |2ϕ.

(4.3)

In the inequality above, we noticed and dropped the following complete square:

B′2|∇ϕf |4ϕ +B′fifjf,j̄ī +B′fīfj̄f,ij + |f,ij |2ϕ = |f,ij +B′fifj |2ϕ.
We apply above calculation to F . Notice that

Ricϕ,ij̄ = Rij̄ − Fij̄ .

Set B′ = 1
2 , and we switch to normal coordinate of g (c.f. (2.1)), then we have
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e−
F
2 Δϕ(e

F
2 |∇ϕF |2) ≥ 2∇ϕF ·ϕ ∇ϕΔϕF +

RjīFiFj̄

(1 + ϕīi)(1 + ϕjj̄)

+
|Fiᾱ|2

(1 + ϕīi)(1 + ϕαᾱ)
+

1

2
ΔϕF |∇ϕF |2ϕ.

(4.4)

Notice that there will be no more terms like
FjīFiFj̄

(1+ϕiī)(1+ϕjj̄)
, because the choice

B′ ≡ 1
2 makes such terms exactly cancel out. Next we wish to use the equation

satisfied by F :

ΔϕF = −f + trϕη.

Hence in (4.4), the last term satisfies:

(4.5)
1

2
ΔϕF |∇ϕF |2ϕ ≥ −1

2
(||f ||0 +max

M
|η|ω0

trϕg)|∇ϕF |2ϕ.

Also
(4.6)

|Rij̄FīFj |
(1+ϕīi)(1+ϕjj̄)

≤max
M

|Ric(ω0)|ω0

|FiFj̄ |
(1+ϕīi)(1+ϕjj̄)

≤max
M

|Ric(ω0)||∇ϕF |2ϕtrϕg.

Also we observe that

(4.7) trϕg =
∑
i

1

1 + ϕīi

≤ ne−F (n+Δϕ)n−1 ≤ C4.6(1 + Δϕ)n−1.

Hence we conclude, after combining (4.4)–(4.7):

Δϕ(e
1
2F |∇ϕF |2ϕ) ≥ 2e

1
2F∇ϕF ·ϕ ∇ϕΔϕF − C4.7((n+Δϕ)n−1 + 1)|∇ϕF |2ϕ

+
1

C4.7

|Fiᾱ|2
(1 + ϕīi)(1 + ϕαᾱ)

.
(4.8)

Using (3.6) and (4.7), we find

(4.9) Δϕ(n+Δϕ) ≥ −C4.9(n+Δϕ)n +ΔF − C4.8.

We combine (4.8), (4.9), and conclude:

Δϕ(e
1
2F |∇ϕF |2ϕ+(n+Δϕ))≥−C4.7

(
(n+Δϕ)n−1+1

)
|∇ϕF |2ϕ+2e

1
2F∇ϕF ·ϕ∇ϕΔϕF

+
1

C4.7

|Fiᾱ|2
(1 + ϕīi)(1 + ϕαᾱ)

+ ΔF − C4.8 − C4.9(n+Δϕ)n.

(4.10)

To estimate ΔF , we may calculate:
(4.11)

|ΔF | ≤ 1

2C4.7

|Fīi|2
(1 + ϕīi)

2
+

C4.7

2
(1 + ϕīi)

2 ≤ 1

2C4.7

|Fīi|2
(1 + ϕīi)

2
+

nC4.7

2
(n+Δϕ)2.

Combining (4.10), (4.11), we conclude that there exists a constant C4.91, with the
same dependence as said above, such that

Δϕ(e
1
2F |∇ϕF |2ϕ + (n+Δϕ)) ≥ −C4.91e

− 1
2F (n+Δϕ)n−1

(
e

1
2F |∇ϕF |2ϕ

+ (n+Δϕ)
)
+ 2e

1
2F∇ϕF ·ϕ ∇ϕΔϕF − C4.91.

(4.12)

Set

u = e
1
2F |∇ϕF |2ϕ + (n+Δϕ) + 1,
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we obtain the key estimate from here:

(4.13) Δϕu ≥ −C4.92(n+Δϕ)n−1u+ 2e
1
2F∇ϕF ·ϕ ∇ϕΔϕF.

Next we plan to do iteration, using (4.13). Notice that for any p > 0:

(4.14)
1

2p+ 1
Δϕ(u

2p+1) = u2pΔϕu+ 2pu2p−1|∇ϕu|2ϕ.

Integrate over M , we obtain:

∫
M

2pu2p−1|∇ϕu|2ϕdvolϕ =

∫
M

u2p(−Δϕu)dvolϕ

≤
∫
M

C4.92(n+Δϕ)n−1u2p+1dvolϕ − 2

∫
M

e
1
2F∇ϕF ·ϕ ∇ϕ(ΔϕF )u2pdvolϕ.

(4.15)

We need to integrate by parts in the last term above, then we have

−
∫
M

2e
1
2F∇ϕF ·ϕ ∇ϕ(ΔϕF )u2pdvolϕ =

∫
M

4pu2p−1e
1
2FΔϕF∇ϕF ·ϕ ∇ϕudvolϕ

+

∫
M

2u2pe
1
2F (ΔϕF )2dvolϕ +

∫
M

u2pe
1
2F |∇ϕF |2ϕΔϕFdvolϕ.

(4.16)

We wish to estimate the three terms on the right hand side of (4.16) from above.
First, ∫

M

4pu2p−1e
1
2FΔϕF∇ϕF ·ϕ ∇ϕudvolϕ ≤

∫
M

pu2p−1|∇ϕu|2ϕdvolϕ

+ 4

∫
M

pu2p−1eF (ΔϕF )2|∇ϕF |2ϕdvolϕ

≤
∫
M

pu2p−1|∇ϕu|2ϕdvolϕ + 4

∫
M

pu2pe
1
2F (ΔϕF )2dvolϕ.

(4.17)

Also it is clear that

(4.18)

∫
M

u2pe
1
2F |∇ϕF |2ϕΔϕFdvolϕ ≤

∫
M

u2p+1|ΔϕF |dvolϕ.

Combining (4.16), (4.17) and (4.18), we see

−
∫
M

2e
1
2F∇ϕF ·ϕ ∇ϕ(ΔϕF )u2pdvolϕ ≤

∫
M

pu2p−1|∇ϕu|2ϕdvolϕ

+

∫
M

(4p+ 2)u2pe
1
2F (ΔϕF )2dvolϕ +

∫
M

u2p+1|ΔϕF |dvolϕ.
(4.19)

Combined with (4.15), we obtain

∫
M

pu2p−1|∇ϕu|2ϕdvolϕ ≤
∫
M

C4.93(n+Δϕ)n−1u2p+1dvolϕ

+

∫
M

u2p+1|ΔϕF |dvolϕ +

∫
M

(4p+ 2)u2pe
1
2F (ΔϕF )2dvolϕ.

(4.20)

In the above, we can estimate

|ΔϕF | ≤ |f |+ |trϕη| ≤ (||f ||0 +max
M

|η|ω0
)(1 + trϕg)

≤ C4.935(1 + ne−F (n+Δϕ)n−1).
(4.21)
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Recall that n + Δϕ is bounded from below in terms of ||F ||0 and u is bounded
below by 1, we obtain from (4.20) that

(4.22)

∫
M

pu2p−1|∇ϕu|2ϕdvolϕ ≤
∫
M

C4.94(p+ 1)(n+Δϕ)2n−2u2p+1dvolϕ.

Here C4.94 depends only on ||F ||0, the background metric (M, g), ||f ||0, and
maxM |η|ω0

. Above implies
(4.23)∫

M

|∇ϕ(u
p+ 1

2 )|2ϕdvolg ≤
C4.94(p+

1
2 )

2(p+ 1)

p

∫
M

C4.94(n+Δϕ)2n−2u2p+1dvolg.

Here we used that dvolϕ = eFdvolg and that F is bounded. Fix 0 < ε < 2 to be
determined, we estimate the right hand side of (4.23):∫

M

(n+Δϕ)2n−2u2p+1dvolg(4.24)

≤
( ∫

M

u(p+ 1
2 )(2+ε)dvolg

) 2
2+ε

( ∫
M

(n+Δϕ)
(2n−2)(2+ε)

ε dvolg

)
ε

2+ε .

Denote v = up+ 1
2 , then (4.23) implies

(4.25)∫
M

|∇ϕv|2ϕdvolg≤
C4.94(p+

1
2 )

2

2p

(∫
M

(n+Δϕ)
(2n−2)(2+ε)

ε dvolg

) ε
2+ε

(∫
M

v2+εdvolg

)
2

2+ε .

Next we wish to estimate the left hand side of (4.25) from below:

|∇v|2−ε ≤
∑
i

|vi|2−ε =
∑
i

|vi|2−ε

(1 + ϕīi)
2−ε
2

· (1 + ϕīi)
2−ε
2

≤
( ∑

i

|vi|2
1 + ϕīi

) 2−ε
2

(
∑
i

(1 + ϕīi)
2−ε
ε

) ε
2

≤ |∇ϕv|2−ε
ϕ n

ε
2 (n+Δϕ)

2−ε
2 .

(4.26)

In the last inequality above, we estimated each 1 + ϕīi from above by n+Δϕ and
there are n terms in

∑
i. Integrate and use Hölder inequality, we get:∫

M

|∇v|2−εdvolg ≤ n
ε
2

∫
M

|∇ϕv|2−ε
ϕ (n+Δϕ)

2−ε
2 dvolg

≤ n
ε
2

( ∫
M

|∇ϕv|2ϕ
) 2−ε

2
( ∫

M

(n+Δϕ)
2−ε
ε dvolg

) ε
2

.

(4.27)

Combining (4.26) and (4.27), we see:

( ∫
M

|∇v|2−εdvolg

) 2
2−ε

≤ n
ε

2−ε

( ∫
M

(n+Δϕ)
2−ε
ε dvolg

) ε
2−ε

∫
M

|∇ϕv|2ϕdvolg

≤ C4.95pKε

( ∫
M

v2+εdvolg

) 2
2+ε

.

(4.28)

Here

(4.29) Kε = n
ε

2−ε ·
( ∫

M

(n+Δϕ)
2−ε
ε dvolg

) ε
2−ε

·
( ∫

M

(n+Δϕ)
(2n−2)(2+ε)

ε

) ε
2+ε

.
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Apply the Sobolev embedding with exponent 2 − ε, and denote θ = 2n(2−ε)
2n−2+ε to be

the improved integrability, we get

||v||Lθ(dvolg) ≤ Csob(||∇v||L2−ε(dvolg) + ||v||L2−ε(dvolg)).

Recall that v = up+ 1
2 , this means:

( ∫
M

u(p+ 1
2 )θdvolg

) 2
θ

≤ Csob

((∫
M

|∇(up+ 1
2 )|2−εdvolg

) 2
2−ε(4.30)

+
( ∫

M

u(p+ 1
2 )(2−ε)dvolg

) 2
2−ε

)

≤ Csob

(
C4.95pKε

( ∫
M

u(p+ 1
2 )(2+ε)dvolg

) 2
2+ε

+
( ∫

M

u(p+ 1
2 )(2−ε)dvolg

) 2
2−ε

)

≤ C4.96,εp
( ∫

M

u(p+ 1
2 )(2+ε)dvolg

) 2
2+ε .

Here C4.96,ε has the same dependence as Ci’s above, but with additional dependence
on ε. From the 1st line to 2nd line, we used (4.28). Now choose ε > 0 small so that
θ > 2 + ε, then above estimate indeed improves integrability, namely we need

(4.31)
2n(2− ε)

2n− 2 + ε
> 2 + ε.

We fix ε and (4.30) gives for p ≥ 1
2 :

(4.32) ||u||
L(p+1

2
)θ ≤

(
C4.97p

) 1
2p+1 ||u||

L(p+1
2
)(2+ε) .

Denote χ = θ
2+ε > 1, and choose p+ 1

2 = χi, for i ≥ 0. Then we obtain:

(4.33) ||u||L(2+ε)χi+1 ≤
(
C4.97χ

i
) 1

2χi ||u||L(2+ε)χi .

It follows that
(4.34)

||u||L∞ ≤ C

∑
i≥0

1

2χi

4.97 · χ
∑

i≥0
i

2χi ||u||L2+ε ≤ C

∑
i≥0

1

2χi

4.97 · χ
∑

i≥0
i

2χi ||u||
1

2+ε

L1 ||u||
1+ε
2+ε

L∞ .

From above we get estimate of ||u||L∞ in terms of ||u||L1 . But recall u =

e
1
2F |∇ϕF |2 + (n+Δϕ) + 1, so L1 estimate is available.

Indeed, it is clear that n +Δϕ ∈ L1. To see e
1
2F |∇ϕF |2ϕ ∈ L1, we just need to

show |∇ϕF |2ϕ ∈ L1 since F is now assumed to be bounded. Then we can calculate:

(4.35) Δϕ(F
2) = 2|∇ϕF |2ϕ + 2FΔϕF = 2|∇ϕF |2ϕ + 2F (−f + trϕη).

Integrate with respect to dvolϕ = eF dvolg, we see∫
M

eF |∇ϕF |2ϕdvolg =

∫
M

eFF (f − trϕη)dvolg

≤ C4.98

∫
M

(1 + trϕgmax
M

|η|ω0
)dvolϕ ≤ C4.99vol(M).

(4.36)

Here C4.98, C4.99 may depend on ||F ||0. To see the range of pn asserted in the
Remark 4.1, we notice the choice of ε = 1

2n verifies the requirement in (4.31). With
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this choice, the highest power of n+Δϕ appearing in (4.29) is exactly (2n−2)(4n+
1). Once we have control over Kε, the rest of the proof goes through. �

For completeness, we present Proposition 4.2 which might be well known to
experts (c.f. [14]).

Proposition 4.2. If 1
Cω0 ≤ ωϕ ≤ Cω0, for some constant C > 0, then all higher

derivatives can be estimated in terms of C.

Proof. The proof of this corollary is essentially the combination of several classical
elliptic estimates, as we explain below. The assumption that 1

C0
ω0 ≤ ωϕ ≤ C0ω0

implies (1.2) is now uniformly elliptic with bounded right hand side. Moreover, we
see that (1.2) can be put in the divergence form:

(4.37) Re
(
∂i(det(gαβ̄ + ϕαβ̄)g

ij̄
ϕ Fj̄)

)
= (−f + trϕη) det(gαβ̄ + ϕαβ̄).

From this we immediately know ||F ||α′ ≤ C0.1, where α′ and C0.1 has the said
dependence. Then we go back to (1.1), we can then conclude from Evans-Krylov
theorem that ||ϕ||2,α′′ ≤ C0.2 for any α′′ < α′(see [24], [47] for details on extension
of Evans-Krylov to complex setting). Then we go back to (4.37) and see that the

coefficients on the left hand side are in Cα′′
, while the right hand side is bounded.

Hence we may conclude ||F ||1,α′′ ≤ C0.3, from [30], Theorem 8.32.
Then from (1.1), by differentiating both sides of the equation, we see that the first

derivatives of ϕ solve a linear elliptic equation with Cα′′
coefficient and right hand

side, hence Schauder estimate applies and we conclude ϕ ∈ C3,α′′
([30], Theorem

6.2). But then we go back to (4.37) one more time, the coefficients are in Cα for
any 0 < α < 1 with bounded right hand side, hence we conclude F ∈ C1,α for
any 0 < α < 1. Now the equation solved by the first derivatives of ϕ will have
coefficients on the right hand side in Cα for any 0 < α < 1. Therefore ϕ ∈ C3,α for
any 0 < α < 1.

The second equation (1.2) now has C1,α coefficient with bounded right hand
side, then the classical Lp estimate gives F ∈ W 2,p for any finite p([30], Theorem
9.11). Then differentiating the first equation (1.1) twice, we get a linear elliptic
equation in terms of second derivatives of ϕ, which has Cα coefficients and Lp right
hand side(we already have F ∈ W 2,p), it follows that ϕ ∈ W 4,p. �

5. Entropy bound of the volume ratio and C0
bound of Kähler

potential

The main goal of this section is to show the C0 bound of ϕ implies a bound for∫
M

eFFdvolg and vice versa:

Theorem 5.1. Let (ϕ, F ) be a smooth solution to (1.1), (1.2), then ||ϕ||0 and ||F ||0
can be bounded in terms of an upper bound for

∫
M

FeFdvolg. Conversely, if ωϕ is

a cscK metric, then a bound for ||ϕ||0 implies an upper bound for
∫
M

eFFdvolg.

The most difficult part of above theorem is to show that an upper bound for∫
M

eFFdvolg implies a bound on ||ϕ||0 and ||F ||0, which is the main focus of this

section. That ||ϕ||0 implies a bound for
∫
M

eFFdvolg when ωϕ is a cscK metric
essentially follows from the fact that cscK are minimizers ofK-energy. In particular,
having a bound on ||ϕ||0 is enough to control ||F ||0, hence estimates up to C1,1,
thanks to the results obtained in previous sections.
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Actually we will see that in order to bound ||ϕ||0, ||F ||0, it is enough to have a
bound for

∫
M

eFΦ(F )dvolg, where Φ(F ) > 0 is coercive in F in the sense that

(1) limt→−∞ et · Φ(t) = 0 and limt→∞ Φ(t) = ∞
(2) limt→∞

Φ(t)
t < ∞.

We want to show that, under these conditions, an upper bound for∫
M

eFΦ(F )dvolg will imply a bound for
∫
M

eqF dvolg for any q < ∞. This bound
can then imply a bound for ||ϕ||0, due to the deep result by Ko�lodziej, [34], but an
elementary argument which only uses Alexandrov maximum principle (Lemma 5.2)
and avoids pluri-potential theory is also possible. This argument is due to Blocki
(c.f. [5]). From Corollary 5.2, we obtain a bound for ||eF ||0. We have also shown
in Proposition 2.1 that a C0 bound of ϕ will imply a lower bound for F . Hence a
bound for ||F ||0 can be obtained this way. Then estimates in previous sections can
be applied to obtain higher derivatives bound.

Define

(5.1) P (M, g) = {φ ∈ C2(M,R) : gij̄ +
∂2φ

∂zi∂z̄j
≥ 0, sup

M
φ = 0}.

The following result of Tian is well known, whose proof may be found in [44],
Proposition 2.1:

Proposition 5.1. There exists two positive constant α, C5, depending only on
(M, g), such that

(5.2)

∫
M

e−αφdvolg ≤ C5, for any φ ∈ P (M, g).

Here α = α(M, [ω]) is the so called α-invariant. To start, we normalize ϕ so that
supM ϕ = 0. We also need to consider the auxiliary Kähler potential ψ ∈ H, which
solves the following problem:

det(gij̄ + ψij̄) =
eFΦ(F ) det(gij̄)∫
M

eFΦ(F )dvolg
,(5.3)

sup
M

ψ = 0.(5.4)

The existence of such ψ follows from Yau’s celebrated theorem on Calabi’s volume
conjecture (c.f. [48], Theorem 2) . Because of Proposition 5.1, we know that∫

M

e−αϕdvolg ≤ C5,

∫
M

e−αψdvolg ≤ C5.

We will show that the following estimate holds:

Theorem 5.2. Given any 0 < ε < 1, there exists a constant C5.1, depending on ε,
the background metric g, ||f ||0, maxM |η|ω0

, the choice of Φ, and the upper bound
of

∫
M

eFΦ(F )dvolg, such that

(5.5) F + εψ − 2(1 + max
M

|η|ω0
)ϕ ≤ C5.1.

Corollary 5.1. For any 0 < q < ∞, there exists a constant C5.2, with the same
dependence as C5.1 above but additionally on q, such that

(5.6)

∫
M

eqF dvolg ≤ C5.2, ||ϕ||0 ≤ C5.2, ||ψ||0 ≤ C5.2.

We will show this important corollary first.
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Proof. First we derive the estimate for
∫
M

eqF dvolg with q > 1.
From Theorem 5.2, we know

(5.7) −αψ ≥ α

ε

(
F − 2(1 + max

M
|η|ω0

)ϕ− C5.1

)
.

Hence

C5 ≥
∫
M

e−αψdvolg ≥
∫
M

exp
(α
ε
(F − 2(1 + max

M
|η|ω0

)ϕ− C5.1)
)
dvolg

≥
∫
M

exp
(α
ε
(F − C5.1)

)
dvolg.

(5.8)

The last inequality holds because we normalized ϕ so that ϕ ≤ 0. Choose ε =
α
q , then we immediately get the desired estimate for

∫
M

eqFdvolg . The claimed

estimate for ϕ immediately follows from the estimate for ||eF ||Lq (q > 2), given in
Lemma 5.1. The bound for ψ follows in a similar way, using (5.3). �

Lemma 5.1. Let φ ∈ P (M, g) be such that eF =
ωn

φ

ωn
0

with eF ∈ L2+s(M,ω0), for

some s > 0. Then ||φ||0 ≤ C5.21, with C5.21 depending only on the metric ω0, s > 0
and ||eF ||L2+s(M,ω0).

Note that this is a weaker result compared to the deep theorem of Ko�lodziej [34],
which shows eF ∈ L1+s(M,ω0) is already sufficient. However, the weaker result as
stated above can be proved in an elementary way using Alexandrov maximum
principle, discovered by Blocki [5], [6].

Combining Theorem 5.2 and Corollary 5.1, we immediately conclude:

Corollary 5.2. There exists a constant C5.2, depending only on the background
metric g, the upper bound of

∫
M

eFFdvolg, such that

F ≤ C5.2.

Proof. Choose Φ(t) =
√
t2 + 1 and observe that

∫
M

eF
√
F 2 + 1dvolg is controlled

in terms of an upper bound of
∫
M

eFFdvolg. Then the result follows from Theorem
5.2 and Corollary 5.1. �

Now let’s prove Theorem 5.2.

Proof of Theorem 5.2. Let 0 < ε < 1 be given and fixed. Let d0 be chosen so
that for any p ∈ M , the geodesic ball Bd0

(p) is contained in a single coordinate
neighborhood, and under this coordinate, 1

2δij ≤ gij̄ ≤ 2δij . For any p ∈ M , let
ηp : M → R+ be a cut-off function such that ηp(p) = 1, ηp ≡ 1 − θ outside the

ball B d0
2
(p), with the estimate |∇ηp|2 ≤ 4θ2

d2
0
, |∇2ηp| ≤ 4θ

d2
0
. Here 0 < θ < 1 is to be

determined later. Let 0 < δ < 1, λ > 0 be constants to be determined. Assume the
function eδ(F+εψ−λϕ) achieves maximum at p0 ∈ M . We now compute

Δϕ

(
eδ(F+εψ−λϕ)ηp0

)
= Δϕ(e

δ(F+εψ−λϕ))ηp0

+ eδ(F+εψ−λϕ)Δϕ(ηp0
) + eδ(F+εψ−λϕ)2δ∇ϕ(F + εψ − λϕ) ·ϕ ∇ϕηp0

= eδ(F+εψ−λϕ)ηp0

(
δ2|∇ϕ(F + εψ − λϕ)|2ϕ + δΔϕ(F + εψ − λϕ)

)
+ eδ(F+εψ−λϕ)Δϕ(ηp0

) + eδ(F+εψ−λϕ)2δ∇ϕ(F + εψ − λϕ) · ∇ϕηp0
.

(5.9)
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First we can estimate

eδ(F+εψ−λϕ)Δϕηp0
≥ −eδ(F+εψ−λϕ)|∇2ηp0

|trϕg

≥ −eδ(F+εψ−λϕ) 4θ

d20(1− θ)
ηp0

trϕg
(5.10)

2δ∇ϕ(F + εψ − λϕ) · ∇ϕηp0
≥ −δ2ηp0

|∇ϕ(F + εψ − λϕ)|2ϕ −
|∇ϕηp0

|2ϕ
ηp0

≥ −δ2ηp0
|∇ϕ(F + εψ − λϕ)|2ϕ − |∇ηp0

|2trϕg
ηp0

≥ −δ2ηp0
|∇ϕ(F + εψ − λϕ)|2ϕ − 4θ2trϕg

d20(1− θ)
.

(5.11)

Finally we compute

Δϕ(F + εψ − λϕ) = −(f + λn) + trϕη + λtrϕg + εΔϕψ

≥ (−f − λn+ εnA
− 1

n

Φ Φ
1
n (F )) + (λ− ε−max

M
|η|ω0

)trϕg.
(5.12)

Here AΦ =
∫
M

eFΦ(F )dvolg. In the above calculation, we noticed that, using (5.3):

Δϕψ = gij̄ϕ (gij̄ + ψij̄)− trϕg ≥ n
(
det(gij̄ϕ ) det(gij̄ + ψij̄)

) 1
n − trϕg

= n(e−F eFΦ(F )A−1
Φ )

1
n − trϕg.

Plug (5.10), (5.11), (5.12) back into (5.9), we see

Δϕ

(
eδ(F+εψ−λϕ)ηp0

)
≥ δηp0

eδ(F+εψ−λϕ)(f − λn+ εnA
− 1

n

Φ Φ
1
n (F ))

+ eδ(F+εψ−λϕ)
(
δηp0

(λ− ε−max
M

|η|ω0
)− 4θ

d20(1− θ)
ηp0

− 4θ2

d20(1− θ)

)
trϕg.

(5.13)

Now we choose various constants δ, λ and θ appearing above.
Since 0 < ε < 1, first we choose λ = 2(1 + maxM |η|ω0

). Then we fix λ, and
choose δ to be 2nδλ = α. We need to make sure the coefficient in front of trϕg to
be positive. This can be achieved by choosing θ to be sufficiently small. Indeed,
with above choice of δ and λ, we may calculate:

δηp0
(λ− ε−max

M
|η|ω0

)− 4θηp0

d20(1− θ)
− 4θ2

d20(1− θ)2

≥ 1

2
δ(1− θ)λ− 4θηp0

d20(1− θ)
− 4θ2

d20(1− θ)2
≥ (1− θ)α

4n
− 4θ

d20(1− θ)
− 4θ2

d20(1− θ)
.

(5.14)

Hence if we choose θ small enough, above ≥ 0. After we made all the choices of δ,
λ, θ, we obtain from (5.13) that

(5.15) Δϕ

(
eδ(F+εψ−λϕ)ηp0

) ≥ δηp0
eδ(F+εψ−λϕ)(f − λn+ εnA

− 1
n

Φ Φ
1
n (F )).
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Denote u = eδ(F+εψ−λϕ). Now we are ready to apply Alexandrov estimate in
Bd0

(p0):

sup
Bd0

(p0)

uηp0
≤ sup

∂Bd0
(p0)

uηp0

+ Cnd0

( ∫
Bd0

(p0)

u2n
(
(f − λn+ εnA

− 1
n

Φ Φ
1
n (F ))−

)2n
e−2F

dvolg

) 1
2n

.

(5.16)

We want to claim the integral appearing on the right hand side is bounded. Indeed,
the function been integrated is nonzero only if

f − λn+ εnA
− 1

n

Φ Φ
1
n (F ) < 0.

By the coercivity of Φ, this will imply an upper bound for F , say F ≤ C5.3, where
the constant C5.3 depends on ε, the choice of Φ, the integral bound AΦ, and the
background metric g. With this observation, we see

∫
Bd0

(p0)

u2n
(
(f − λn+ εnA

− 1
n

Φ Φ
1
n (F ))−

)2n
e−2F

dvolg

≤
∫
Bd0

(p0)∩{F≤C5.3}
e2nδ(F+εψ−λϕ)e2F (|f |+ λn)2ndvolg

≤ (||f ||0 + λn)2ne(2nδ+2)C5.3

∫
Bd0

(p0)

e2nδεψ−2nδλϕdvolg.

(5.17)

But recall ψ ≤ 0, and 2nδλ = α, we know

(5.18)

∫
Bd0

(p0)

e2nδεψ−2nδλϕdvolg ≤
∫
Bd0

(p0)

e−αϕdvolg ≤ C5.4.

Denote I = (||f ||0+λn)2ne(2nδ+2)C5.3
∫
Bd0

(p0)
e−αϕdvolg. Now we go back to (5.16)

and obtain:

(5.19) u(p0) = sup
M

u ≤ (1− θ) sup
M

u+ Cnd0I
1
2n .

Here we recall that ηp0
≡ 1− θ on ∂Bd0

(p0). This implies supM u ≤ Cnd0I
1
2n

θ . �

Lemma 5.2 (Alexandroff maximum principle (c.f. [30, Lemma 9.3]). Let Ω ⊂ Rd

be a bounded domain. Suppose u ∈ C2(Ω) ∩ C(Ω̄). Denote M = supΩ u− sup∂Ω u.
Define

Γ−(u,Ω) = {x ∈ Ω : u(y) ≤ u(x) +∇u(x) · (y − x),

for any y ∈ Ω and |∇u(x)| ≤ M

3diamΩ
}.

(5.20)

Then for some dimensional constant Cd > 0:

M ≤ Cd

( ∫
Γ−(u,Ω)

det(−D2u)dx

) 1
d

.

In particular, suppose u satisfies aij∂iju ≥ f . Here aij satisfies the ellipticity

condition aijξiξj ≥ 0. Define D∗ = (det aij)
1
d . Then the following estimate holds:

(5.21) M ≤ C ′
d diamΩ||f

−

D∗ ||Ld(Ω).

Here C ′
d is another dimensional constant.
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Remark 5.1. In this section (Proof of Theorem 5.2 and Lemma 5.1), we apply this
estimate with d = 2n to the operator Δϕ. After rewriting Δϕ in terms of real

coefficients, one can find D∗ =
(
det(gϕ)ij̄

)− 1
n = e−

F
n

(
det gij̄

)− 1
n .

Finally, we want to give a proof to Theorem 5.1.

Proof. It is well known that in a given Kähler class, cscK metrics is global minimizer
of the K-energy functional, by the main result of [3]. In particular, it follows that the
K-energy functional of ϕ is apriori bounded from above. Recall the decomposition
formula for K-energy functional E, proved in [12]:

(5.22) K(ϕ) =

∫
M

log
ωn
ϕ

ωn
0

ωn
ϕ

n!
+ J−Ric(ϕ).

In the above, J−Ric is defined in terms of its derivative, namely

dJ−Ric

dt
=

∫
M

∂ϕ

∂t
(−trϕRic+R)

ωn
ϕ

n!
.

It is well known in the literature that J−Ric can be bounded in terms of C0 norm
of the potential function ϕ. A bound for

∫
M

eF |F |dvolg follows from here.
Now we prove the second part of the theorem. First Corollary 5.2 gives a bound

for F from above and Corollary 5.1 gives a bound for ||ϕ||0. Proposition 2.1 gives
a bound for F from below. �

For future reference, we record Theorem 5.3, which follows from combining
Proposition 4.2, Theorem 5.1 and Theorem 4.1.

Theorem 5.3. Let ϕ be a smooth solution to (1.1), (1.2) normalized to be supM ϕ =
0, then for any p < ∞, there exist a constant C0.5, depending only on the background
metric (M, g), ||f ||0, maxM |η|ω0

, p, and the upper bound of
∫
M

eFFdvolg such that
||ϕ||W 4,p ≤ C0.5, ||F ||W 2,p ≤ C0.5.
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