JOURNAL OF THE

AMERICAN MATHEMATICAL SOCIETY.

Volume 34, Number 4, October 2021, Pages 909-936
https://doi.org/10.1090/jams/967

Article electronically published on June 7, 2021

ON THE CONSTANT SCALAR CURVATURE KAHLER
METRICS (I)—A PRIORI ESTIMATES

XIUXIONG CHEN AND JINGRUI CHENG
Dedicated to Sir Simon Donaldson for his 60th birthday

1. INTRODUCTION

This is the first of two papers in the study of constant scalar curvature Kahler
metrics (cscK metrics), following a program outlined in [I4]. In this paper, we focus
on establishing a priori estimates for cscK metrics on compact Kéahler manifolds
without boundary. Our estimates can be easily adapted to extremal K&hler metrics
and for simplicity of presentations, we leave such an extension to the interested
readers except to note that for extremal Kahler metrics, its scalar curvature is
apriori bounded depending on Kahler class. In the subsequent two papers, we
will use these estimates (and their generalizations) to study the Calabi-Donaldson
theory on the geometry of extremal Kahler metrics, and in particular, to establish
the celebrated conjecture of Donaldson on geodesic stability (the L! version) as
well as the well known properness conjecture relating the existence of cscK metrics
with the properness of K-energy functional.

Let us recall a conjecture made earlier by the first named author (c.f. [20]).

Conjecture 1.1. Let (M, [wo]) be any compact Kdhler manifold without boundary.
Suppose w,, is a constant scalar curvature Kdahler metric. If  is uniformly bounded,
then any higher derivatives of ¢ are also uniformly bounded.

It is worthwhile to give a brief review of the history of this subject and hopefully,
this will make it self-evident why this conjecture is interesting. A special case of
constant scalar curvature Kéahler metric is the well known KE metric which has
been the main focus of Kihler geometry since the inception of the celebrated Calabi
conjecture [7] on Kéhler Einstein metrics in 1950s. In 1958, E. Calabi published
the fundamental C* estimate for Monge-Ampere equations [8] which later played
a crucial role in Yau’s seminal resolution of Calabi conjecture [48] in 1976 when
the first Chern class is either negative or zero (In negative case, T. Aubin [I] has
an independent proof) . This work of Yau is so influential that generations of
experts in K&hler geometry afterwards largely followed the same route: Securing
a C° estimate first, then move on to obtain C2?, C? estimates etc. In the case
of positive first Chern class, G. Tian proved Calabi conjecture in 1989 [44] for
Fano surfaces when the automorphism group is reductive. It is well known that
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there are obstructions to the existence of KE metrics in Fano manifolds; around
1980s, Yau proposed a conjecture which relates the existence of Kéahler Einstein
metrics to the stability of underlying tangent bundles. This conjecture was settled
in 2012 through a series of work CDS [16] [I7] [I8] and we refer interested readers
to this set of papers for further references in the subject of KE metrics. The
proof of CDS’s work is itself quite involved as it sits at the intersection of several
different subjects: algebraic geometry, several complex variables, geometry analysis
and metric differential geometry etc.

To move beyond CDS’s work on Kéhler Einstein metrics, one direction is the
study of the existence problem of cscK metrics which satisfy a 4th order PDE. The
following is a conjecture which is a refinement of Calabi’s original idea that every
Kahler class must have its own best, canonical representatives.

Conjecture 1.2 (Yau-Tian-Donaldson). conjl.2 Let [wo] be an integral class in-
duced by a line bundle L — M. There exists a cscK metric in [wo] if and only if
(L, M) is K-stable.

One conspicuous and memorable feature of CDS’s proof is the heavy use of
Cheeger-Colding theory on manifolds with Ricci curvature bounded from below.
The apriori bound on Ricci curvature for KE metrics makes such an application of
Cheeger-Colding theory seamlessly smooth and effective. However, if we want to
attack this general conjecture, there will be a dauntingly high wall to climb since
there is no apriori bound on Ricci curvature. Therefore, the entire Cheeger-Colding
theory needs to be re-developed if it is at all feasible. On the other hand, there is a
second, less visible but perhaps even more significant feature of CDS’s proof is: The
whole proof is designed for constant scalar curvature Kéahler metrics and the use of
algebraic criteria and Cheeger-Colding theory is to conclude that the a C° bound
holds for Kéhler potential so that we can apply the apriori estimates for complex
KE metrics developed by Calabi, Yau and others. Indeed, this is exactly how we
make use of Cheeger-Colding theory and stability condition in CDS’s proof to nail
down a CO© estimate on potential. Unfortunately, such an estimate is missing in
this generality for a 4th order fully nonlinear equation. Indeed, as noted by other
famous authors in the subject as well, the difficulties permeating the cscK theory
are two folds: one cannot use maximal principle from PDE point of view and one
cannot have much control of metric from the bound of the scalar curvature.

In this paper, we want to tackle this challenge and we prove:

Theorem 1.1. If (M,wq) be a Kdihler manifold such that the class [wo] admits a
cscK metric w, = wo++/—100¢. Let ¢ be normalized so that sup,; ¢ = 0, then all
derivatives of the Kdhler potential ¢ can be estimated in terms of an upper bound

wn
of [y, log (ﬁ)wg
Conjecture [[.T] follows from this theorem. To see this, note that any cscK met-
ric minimizes K-energy. This combined with a bound for ||¢||o implies an upper

n

bound for the entropy functional || W log ( )wg. Hence Conjecture [Tl follows from

Yo
wd
Theorem [Tl This is explained in more detail in section [l

With later applications in mind, we study equation of general type:

R,=f+Ayn.

In the above, f is a given smooth function and 7 is a given smooth real (1,1)
form. In local coordinates, n = /—1n;;dz; A dz;. We remark that when n = Ric,
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and f = E this gives rise to the well known constant scalar curvature Kahler
metric equation. We can re-write this 4th order equation in a coupled second order

equations:
(1.1) log det(gq5 + Pap) = F +logdet(g,p),
(1.2) ALF = —f +trym.

Theorem [[.I] can be extended to a more general version.

Theorem 1.2. Suppose (M,w,) satisfy the coupled equations (LI), (L2). Let ¢
be normalized so that sup,; ¢ = 0, then all derivatives of the Kdihler potential ¢

we n d
wg)ka an |f|L°°> |n‘wo-

can be estimated in terms of an upper bound of fM log (

Now we present technical theorems which lead to this main theorem. Indeed,
these technical theorems are interesting in its own right and may be used in other
applications.

Theorem 1.3 (Corollary B.1l). Let ¢ be a smooth solution to (LI, (L2, then
for any 1 < p < oo, there exists a constant C, depending only on the background
Kdhler metric (M, g), an upper bound of fM eFdeolg, and p, such that

(13) ||6F||L1"(dvolg) < 07 ||90H0 <C.

The constants C' in the theorems below can change from line to line. More
generally, throughout this paper, the “C” without subscript may change from line
to line, while if there is subscript, then it is some fixed constant.

Theorem 1.4 (Corollary B.2)). Let ¢ be a smooth solution to (L)), (L2, then
there exists a constant C, depending only on the background metric (M, g) and an
upper bound for fM eFdeolg, such that

(1.4) el <.

Theorem 1.5 (Theorem 2T)). Let ¢ be a smooth solution to (LI)) and ([L2), then
there exists a constant C, depending only on ||pllo, and the background metric g,
such that

F
. "< 2.
(1.5) maxe < C’m]\%x|Vgo\

For the second order estimate, Chen-He[20] established an apriori bound on
n + Agp in terms of |VF|rr (p > 2n) via integral estimates, in the absence of (L2).
Inspired by this paper [20] and utilizing the additional equation (1.2), we are able
to obtain a W?2P estimate for any p > 0, using only ||F||o. Theorem [[Jl is used
essentially in this estimate.

Theorem 1.6 (Theorem Bl Corollary Bl). Let ¢ be a smooth solution to (L),
(T2, then for any 1 < p < oo, there exists a constant a(p) > 0, depending only on
p, and another constant C, depending only on |||, the background metric g, and
p, such that

(1.6) / e P (n 4+ Ap)P < C.
M

In particular, [|n + A@||Lr(avor,) < C', where C" has the same dependence as C' in
this theorem, but additionally on ||F||o.

1Here Ricy is the Ricci curvature of background metric g and R is the average scalar curvature
in Ké&hler class [w].
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If we can prove an upper bound for F', then the following theorem becomes very
interesting.

Theorem 1.7 (Proposition d1]). Let ¢ be a smooth solution to (L), (L2)). Then
there exists p, > 1, depending only on n, and a constant C, depending on ||¢||o,
[[F]lo, [In + Ap||Lon (dvot,), and the background metric g, such that

(1.7) n+Ap < C.

We now discuss a direct application in Kédhler geometry from Theorem [Tl and
delay more applications to our second and third paper.

Theorem 1.8. The Calabi flow can be extended as long as the scalar curvature is
uniformly bounded.

Remark 1.1. This is a surprising development. With completely different moti-
vations in geometry, the first named author has a similar conjecture on Ricci flow
which states that the only obstruction to the long time existence of Ricci flow is the
L bound of scalar curvature. There has been significant progress in this problem,
first by a series of works of B. Wang (c.f. [46], [23]) and more recently by the inter-
esting and important work of Bamler-Zhang [2] and M. Simons [42] in dimension
4.

Theorem [[.§ is a direct consequence of Theorem [[.J] and Chen-He short time
existence theorem (c.f. Theorem 3.2 in [19]), where the authors proved the life
span of the short time solution depends only on C*“ norm of the initial Kéhler
potential and lower bound of the initial metric. By assumption, we know that 0;¢
remains uniformly bounded, hence ¢ is bounded on every finite time interval. On
the other hand, since K-energy is decreasing along the flow, in particular K-energy
is bounded from above along the flow. Due to a K-energy function decomposition
formula in [12] and that ¢ is bounded, we see that the entropy is bounded as well.
Following Theorem with n = 0 and f bounded, the flow remains in a pre-
compact subset of C%%(M) on every finite time interval, hence can be extended.

In light of Theorem [5.3] and a compactness theorem of Chen-Darvas-He [21],
a natural question is if one can extend the Calabi flow assuming only an upper
bound on Ricci curvature. A more difficult question is whether one-sided bound of
the scalar curvature is sufficient for the extension of Calabi flow. Ultimately, the
remaining fundamental question is

Conjecture 1.3 (Calabi, Chen). Initiating from any smooth Kdhler potential, the
Calabi flow always exists globally.

Given the recent work by J. Streets [43], Berman-Darvas-Lu[4], the weak Calabi
flow always exists globally. Perhaps one can prove this conjecture via improving
regularity of weak Calabi flow. On the other hand, one may hope to prove this
conjecture on Kahler classes which already admit constant scalar curvature Kéahler
metrics and prove the flow will converges to such a metric as ¢ — co. An important
and deep result in this direction is Li-Wang-Zheng’s work [35].

We also show that one can estimate the upper bound of F' directly in terms of
gradient bound of potential ¢. This result is not directly needed for our main result,
but we believe it is important for follow-up problems in more general settings where
full C? estimate is not feasible.
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Proposition 1.1 (Proposition 2.1]). Let ¢ be a smooth solution to (L)), (L2), then
there exists a constant C, depending only on ||¢l||o, such that

(1.8) F>-C.

Theorem 1.9 (Theorem 22)). Let ¢ be a smooth solution to (1)), (L2), then there
exists a constant C, depending only on ||¢||o and the background metric g, such that

2
IV;{\ <c

(1.9) c

Finally we would like to explain the organization of this paper:

In section 2] we prove Proposition [I.1, Theorem and Theorem

In section Bl we prove Theorem by iteration, which is a crucial step towards
the main result.

In section [4] we use iteration again to improve LP bound of n + Ay for p < oo
to an L bound of n + Ay, proving Theorem [[7} This estimate requires a bound
for ||n + Ag||L» for some p > p,, 4 depending on ||F||p. The key ingredient is a
calculation for A, (|V,F|?). We also explains how the L> bound of n + Ay gives
estimates for higher derivatives. This is not new and has been observed in [14].

In section Bl we prove Theorem [[.3] and Theorem [[L4l From these two results,
we get estimate for ||F||o and ||i||o depending only on an upper bound of entropy

of F defined as |’ Y 1og(:—i)w$. The key ingredient is the use of a-invariant and the
0
construction of a new test function. On the other hand, if we start with a bound for

l|]lo, and use the convexity of K-energy along C1'! geodesics, it is relatively easy
to get an upper bound of entropy bound of F', hence all higher estimates follow.

n

2. THE VOLUME RATIO Z—:‘i AND C'!' BOUND ON KAHLER POTENTIAL

The main theorem in this section is to prove that the first derivative of ¢ is
pointwisely controlled by volume ratio ef’ from above, assuming a bound for ||||.
Conversely, the bound for ||V¢||o can in turn control ef’. However, this control is
much weaker since it is of global nature.

First we show that a C° bound for ¢ implies a lower bound for F.

Proposition 2.1. Let (p, F') be a smooth solution to (IL1l), (L2), then there exists
a positive constant Co depending only on ||¢llo, ||f|lo, maxas |9|w,, such that F >
—Cy.

This proposition first appeared in [33]. However, for the convenience of the
reader, we include a proof here.

Proof. This step is relatively easy. Let p € M, we may choose a local normal
coordinate in a neighborhood of p, such that

(2.1) 9i;(p) = dij, Vgi5(p) =0, and ¢;;(p) = @i (p)ds;-

In this paper, we will always work under this coordinate unless specified otherwise.
Choose the constant Cy1 to be Cy1 = 2maxy max; |n;| + % + 1. Under this

2Here pn, < (3n — 3)(4n + 1). But this most likely is not sharp.
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coordinate, we can calculate:

A(F+Cz1<p——f+z i 212 %;
1%
Ca1— um nCey _F
2.2 =—f+4+Coin— R —f4+Coin— e
(2.2) 5.1 Z s 51 5
S 202_171 - nCZlei%.

In the second line above, we used the arithmetic-geometric mean inequality:

1 1 1
- >TL(1+@5) @ =€
LY )

3|

Now let pg be such that the function F' 4 Cs 1 achieves minimum at pg, then from

22), we see

(2.3) 0<2C21n— n022_1 e~ (po)-

This gives a lower bound for F, depending only on C° bound for . ]

Next we move on to estimate the upper bound of F in terms of maxys [Ve|.
Here and in the following, we denote Vf - Vh = Re(gijfl-hj), and Vg, -, Vo f =

Re(g fz )

Theorem 2.1. Let (¢, F) be smooth solutions to cscK, then there exists a constant
Cs.2, depending only on ||[Vollo, ||fllo, maxas 0w, and lower bound of bisectional
curvature of the background metric g, such that FF < Cs 5.

Proof. The argument uses maximum principle again. This time we will calculate
A, (e 72 (K +|Vp|?)) where A\, K > 0 are constants to be determined later. We
choose a normal coordinate (equation (ZI])) and do the following calculations. We
have
(2.4)

Ap(" (K +[Vpl2) = Ap(eF ) (K + [Vpl?) + e AL (K + [Vi]?)

L oFre, B M) (Vel)i + (B = Aps) ([Vel)s
1+ ¢5 -

We can first calculate:

F, — \pi?
ALP(GF_MD):(?F_NP‘ ? /\901‘ +eF—Aga(ALpF_ A(,O” )

L+ 1+ ¢
29 FoxplFi = Xoil® | gy A+
=7t TV LAY A+ 1)),
I+; =/ 1"‘%‘2)

By differentiating equation () in z, direction, we obtain

Piia Piia
2.6 =F, and =
( ) 1+ Pii Z 1+ Pii
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KAHLER METRICS (I) 915
Then we calculate

Ro3iPaPs | @ial? 0% | PaPaii t PaPaii
2.7 A (IV 2y _ afii B + 1] + i ¥ ail X an
@7 oVel) L+p;  1+eg l+e; L+ i
_02.21|V90\2 |Pial? v
1+ i I+pi; 143
Ca21IVo* | |pial? ©%
=—— + + —"— + pa(Fa — Apa
1+ ;3 I+pi; 143 Pal #a)
+ ‘P@(Fa - /\9004) + 2/\‘900t|2
< ~Coan|VeP | pial® n %
B 1+ I1+pi 14+
‘Foz_/\@oz|2|</7a|2

— + 2\ oo %
5(1+<Paa) “pa|

Y

+50aF61+()06¢Fa

—e(n+ Agp)

Here C5 .51 depends only on lower bound of bisectional curvature of g.
For the last term in (2.4)), we estimate in the following way:

[(F; = A7) (IV]?)d]

(2.8) el
_ |(F; — Xp3) (Patpai + PaPai)l
L+
|(F5 = Ap)pivia| | |(Fi — Api) patail
a L+ 1+ ¢
|Fi = ApilPloil® | [ = Apil*lpal® ep% elpial®
2¢(1+ v33) 2e(1+ ¢43) 20+ i) 2(1+w5)

The other conjugate term satisfies the same estimate as above. Combining above
calculations, we obtain:

Ay (e (K +|Vol?))

(2.9) Y
- |Fi = Apil?
> (K +|Vp|> =37 Vp|?) -
(K + ¥l — 37 7 =2
A1) (K + |[Vo|?) — Coo1|[Ve? (1 —e)p2
SO+ Vo) = ComlVoP | (1=ceh
L+¢s; L+ ¢
“Pia‘z(l —e) 2
+——— 4+ (—R—n)(K + |Vp|7).
L R (K £ |VeP)
Now it’s time to choose the constants €, A, and K appearing above.
First we choose ¢ = i. With this choice, we have
(2.10)
(1—¢e)p% 3 3n 3 1
i A - = A _ e — A
Zi:ilﬂ% et Ap) =70+ A0) =T+ 7D 7= (n+A9)
1 3n
> - Ap) — —.
> 2(n+ ©) 5
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916 XIUXIONG CHEN AND JINGRUI CHENG

Then we choose A so large that A — max; max; |n;;| > 1. Finally, we choose K so

large that

(2.11) K > Cp.21 max [Vl

(2.12) K>3t mI\%X|V<p|2 =12 max IVl|?.

With above choices for A and K, we have

(2.13) A +0:72) (K +[Vel*) = Co01|Ve* > K — Con|[Ve|* > 0,

and also

(2.14) K — 37 Vy|? > 0.

Hence we conclude from ([Z9)) that

(2.15)

Bple" N (KA (TRP)) 2 o (~(||fllort An) K +max [Vgl?)~Ca o b (n+Ap)).

Denote v = e "2 (K +|Vp|?), it is enough to show v has an upper bound. We
see from (Z.TH]) that there exists constants Co 03 > 0, Co.24 > 0, possibly depending
on max s |Vl|?, such that

1
(2.16) Ap(v) 2 0(=Cra3 + Z—(n+ Ap)).
2.24
Here we notice that n + A¢ > new. Hence we obtain from (ZI6) that
1
(2.17) Ap(v) 2 0(~Cos + 5 —e™).
2.24

. . . Ew

Let the maximum of v be achieved at point p, then we know —C5 03 + 6C2 :4 < 0.
This gives an upper bound of F' at p, hence an upper bound for v, where this
bound depends on max,s |V|. Here we noted that ||¢||o can be bounded in terms

of sup,, [|Vello as long as sup,; ¢ = 0 and that M is compact. O

Conversely, we have the following key estimate, which will be needed when we
do the W?2? estimates of ¢.

Theorem 2.2. There exists a constant Co 3, depending only on |||, lower bound
of bisectional curvature, ||f|lo, maxas |N|w,, such that
Vel
oF
Proof. We will consider A, (e~ (FH)+29% (V|2 + K)). Here A > 0, K > 0 are
constants to be determlned below. Then we have

< Cys.

(2.18) Ay (e F+3¢° (V2 + K))
= Ay(e o+ )(\WI2+K) +emTRATIEA(1Vp]?)
2¢— (F+Ap)+3¢°

T o , 2y
1+ ¢y Re(( Fy — Xpi + 0pi) (Vo )z)

For simplicity of notation, set

1
A(F,p) = —(F + Xp) + §w2~
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Similar as before, we may calculate:

(219) Ay (A7)

| = Fi = Api + i lpi|?

= A 1—’—@ +6A(—A¢(F+A§0)+§0A¢§0) +€ATS0:
Al —A%ﬂwzl -\ | ol
= )\ .
1+ s - n+nnp+z 1+<Pu +1+<Pﬁ

Recall the calculation in (2.7):

Riappaps | loil* | #5
A \v4 2y _ a3 B8 e + i +F& N +Fa .
oVel) 1+¢s; 1‘1‘901'2 L+¢s v v
o2 2
(2.20) > oo |Vil? Z L Jpial® e

1+90” I+ei 1+ea
+ (=22 + 2¢)|V<p|2 + 2Re((Fa + Apa — $9a)¥a)-

Again Cs 51 depends only on curvature bound of g. Also
(IVe*); = papai + vivin: (V)i = paai + vipi-
Hence if we plug in (ZI9) and (220) back to ([2I]), we obtain:

(2.21)
Ay (e?(|Vel* + K))e *
> Vo (F 4+ Ap) — oVool(IVe|* + K) + [Vep* (Ve + K)
—Co.91 V@I + [pial® + ¢7;
1+ @i

\— 1 —
+(f=In+np+ o ZZ;:@)(W@F—FK)—F
i K3

+ (—2X +29)|Vo|? + 2Re((Fo + Ao — 990)¥a)

N 2Re((—F; — A@; + 09i) (Papai + 0iii))
1+ s .

We notice the following complete square in the above sum:

(2.22)
1
_eial? | 2Re((=F = Mpi + vpi)paai) | | = Fi — dpi + poil*| V|2
= + + .
1+ ¢i 1+ ¢5 L+ v5

We will drop this complete square in the following. Next we observe a crucial
cancellation, which is the key point of this argument. We look at the last two
terms in (221)) and observe:

(=F; = Xpi + opi)pii  (Fi 4+ Api — 0pi)e;
2.23 Fo+ oo — ppa)vs + = .
( ) ( ) 1+ 1+
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918 XIUXIONG CHEN AND JINGRUI CHENG

Hence we have

(2.24)
~ —F = Xpi + ooil® | leil?(IVel? + K)
A A 2 K A>K|
AT (0 4 1)+ (£ = dn g )Vl + K)
- 1+ ¢
2
o (Fi+ i — 00i)p;
— Co0n |V — 4Tt 2042 V2+2R< ‘.
21|Vl Zi:H Trpg ATV 1+¢;;

Now we make the choices of A, K. We choose A = 10(maxys max; |n;;] + |l¢llo +
Cy21+1) and K = 10. With this choice, we now estimate the terms in (Z24]), with
various constants C; which depends only on the curvature bound of g and ||¢|o.

(2.25) (R—An+ne) (Ve + K) > —Ca31(|Ve]* + 1).
(2.26) (—2X 4 2¢)|Vo|* > —Cy.52| Vo],
|(Fi + Mpi — ppi)s] _ 1IEi + dpi — il 41 |pil®
(2.27) L+vs —2 L+¢s; 21+
’ L|E + dpi —ppi* 1 1
<l L
2 L+ @5 2 —~ 1+

A—niz— 1 1
(2.28) Z TW(W%OPﬂLK)—szW%?F Z T+ oo > 1O|V<P|2Z oo

7

2
QO:
2.29 =
(2:29) L4+ —
Combining all these estimates, we obtain from (Z24)) that
(2.30)
A (e (V| + K)) > eA(W +9[Ve2 Y — Coa3(|Ve|? +1)).
- L+ —~ 1+; '

Here Cs 33 depends only on curvature bound of g and ||¢]lp. Using Young’s in-
equality, we have, if n > 2,

3|

|<P|7 1
|V(p|”€ " <Z 1+;“ % +50u)"

‘(,01| n—1 1 __F
< — _t 1+ G)nie n-1
R BT

i

il 1 . F
< (- D2 4 2S04 g e )
kX3 i

12
<(n- 1)(13'0: T (n+ Ap)Te )

B L+p; “—~14+ez"
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KAHLER METRICS (I) 919

Thus, for n > 2,

|%‘|2‘ | Z |V |2+n -
1+g0 1+ 4 '
Whereas if n = 1, |V<p|2+%e_§ = |V<p|4e_F = %. In any case, we have
“P{LWSO‘ SO\QZ o %|V<p|2+%e_%-
Hence we get from ([230) that

(2.31)
A (A (Vg + K)) > e A9+ 59" (emUE0F |92+ 5 — Cog3e T |[V]? — Caze ™)
_ e—/\<p+%¢2 ((6_F|v¢|2)1+% _ 02,336_F‘vg0|2 _ Cg,gge_F).

Suppose that the function e~ (F+C9)+3¢"(|Vp|? + K) achieves maximum at p.
Then at point p, we have

(2.32) 0> (e FIVe)'ts — Cosse F|Vp|2 = Cogze T

Recall Proposition 1] gives an estimate for e~ which depends only on ||¢||o and
the curvature bound of g. Therefore, we get a bound for e~ ¥|Vy|?(p) with the
same dependence. Hence we have a bound for e~ (FH32)+3¢°(|V |2 + K)(p), with
the dependence as stated in the theorem.

But this function achieves maximum at p, so we are done. (]

3. THE VOLUME RATIO —£ AND W?2P BOUND ON KAHLER POTENTIAL

In this section, we prove

Theorem 3.1. For any p > 0, there exist constants a(p) > 0, C(p) > 0, so that
(3.1) / e @F (n 4 Ap)Pduol, < C(p).
M

Here a(p) depends only on p(can be explicitly calculated). The constant C,, depends
only on p, ||¢llo, maxas [|we, || fllo, lower bound of the bisectional curvature of g,
and the volume of g.
Proof. One starts by calculating:
(3.2)
A (e I (np Ap)) = A, (e T (n + Ap) + e “FFTAIA (0 + Ag)
+ e—a(F+)\ga)(_a) (FZ + Awl)(A@); + (FE + AQP;)(A@)Z )
L+ @i

If we choose A > 2max ), max; |n;], then
(3.3)

2 _
A, (e — o |fi++ Agi|? e~ FHND) | e o(FEX0) (f _ \p Z - )
Pii Pii

> A?|F; + Ap;?

Aa 1
—a(F+Ap) —a(FHAe) () 2 —a(F+Xe)
> T+ o e + ae (f n) + 26 Zl-i—soﬁ'
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920 XIUXIONG CHEN AND JINGRUI CHENG

For the term A, (n+ Agp), we choose a normal coordinate (c.f. equation ([2Z1))) and
then follow Yau’s calculation [48]. First, note that

ij Ripreii Prkii
gZJ<p__> _ Tl + )
1+<P;Jc< Y 1tew 1+em

We wish to represent the 4th derivative of ¢ in terms of F'. For this we take equation
(L) and differentiate it twice in z;, z; and then sum over ¢ = 1,2---n. We obtain:

(3.4) Ap(n+ Ap) =

(3.5) Crkii Thra |orail” — F-— R-.

L+opr 1+ A+ep) A4+ " "
Hence

R,-(1 z 7il?
AW(N+A@) _ kkzz( +(Pkk) + |(qu | +AF — R(g)
(3.6) 1+ (1+ Sﬁpﬁ)(l + 901117)
) ) 2
> i+ Ap) Y ol Ap R,

L+z (14 @pp)(1+ ¢gq)

Here C5.; depends only on curvature bound of g and R is the scalar curvature of
the background metric g. Plug in to equation (2] and we get

%

Ao 1
Ay (e F ) (0 + Ap)) > e *FTX)N (= — O3 1) (n+ Ap)
X 2 Z 1+ ¢

+ aeiO‘(FJr)‘“")(f —An)(n+ Ap) + efo‘(F‘LA‘p)(AF — R(g)).
Here we already drop the term:
2|F; + Api|? Fi + 2pi) (Ap); + (F; + M) (Ap);
o wl(n+A¢)+(_a)( ©i) (Ap)i + ( ©i)(Ap)
“dei‘z
(14 ©pp) (1 + ©qq)
S @I + gl (n+A¢)_2aRe<( + i) ( @)z) [(Ap)il
L+ ¢ 1+ @5 (n+ Ap)(1+ ;)
n+ Ay (Ap)i 12
= F, 4+ Ap;)) — ———|* > 0.
1+ i lolFi + A n—l—Ag&‘
From the first line to second line in the above, we observed that
(Al _ 1, eomil® _ om0+ 80) _ lopsil*(n+ Ap)

1+ s Tty — M4+ ea) 1+ 9pp) — (14 @pp) (1 + 04gq)

Set
u=e *FH) (n 4 Ay)
and note that

> e mt (n o+ Ap)' T

(n—l—Agﬁ)Zl_Hp:

K2

then we know from equation (B.1):

(3.8)
Apuz e @EIPaN (3 ) (4 D) TR —ae ) (n— f)(n+ A)

+e ") (AF — R(g)).
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KAHLER METRICS (I) 921
We use the following equality, which holds for any p > 0:
Ap(w?th) = 2pu® [ Voul? + v Ayu

= 2puP e PR (4 A@)|V¢,u\i +u* A u
> 2pu?P 72| Vul2em @A) 4y 2P A u.

_1
2p+1

Integrate with respect to dvol, = ef’ dvol, and plug inequality ([B.8) to get:
(3.9)

/ 2puP 2| Vu|2 et = F X2 gy,

M

n—2

A
+/ e*(a*ﬁ)Ffaw(Ta — C3.0)(n + Ap)"t T U dvol,
M

+ / e(lfo‘)Ffo‘)“Puszdeolg < / ae(lfa)F*aNP()\n - Nn+ A(p)uzpdvolg
M M

+/ e(l—a)F—)\ach(g)UQPd,Uolg'
M

We need to handle the term involving AF, which is done by integrating by parts:

(3.10)

/ e(l_a)F_a’\“"uszdeolg = / (a— l)e(l_a)F_O"\“’u%|VF|2dv0lg
M M

—|—/ are(l= 0 F=rae, 20, . V Edvol, — / opell = F Ao, 2p=1g,, . V EFdvol,.
M M
Also we can estimate the last term of (BI0)
2p—1 L oop2 2 1o 2
(3.11) WPV VE < Su 7 Val? + Cu| VP
Then we estimate the second to last term of ([BI0) and obtain:

are(lma)F=ree, 207, G B
242

a—1 o
< (1—a)F—Xayp, 2p VF 2 2p \V/ 2 (1—a)F—Aayp
(3.12) S WHVER 4 gy Vel
a—1 a?\?
< (1—a)F—Xayp, 2p VF 2 C 2p (27(1)F7)\agp'
<—5—e uP|VF|* + 2_3—2(a_1)u e

When estimating |V¢|? above, we used Theorem 2.2l and C, 3 is the constant given
by that theorem. Plug [B.I1)), (312) back into ([B.I0]), we obtain

(3.13)
—1
/ e(lfa)Ffa)“pu%’Adeolg > / (a — p)e(lfo‘)F*a/\“’uh’|VF|2dvolg
M M 2

242
—/ 02,3&6(2_°‘)F_M4’u2pdvolq—/ pell = F=2aey 2p=27y 12 dyol .
M 2(0& — 1) : M E
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922 XTUXIONG CHEN AND JINGRUI CHENG
Plug (313) back to [B.3), we see
(3.14)
-1
/ pell=eF=rawy 20=21G412 gy, —I—/ (a 5 — p)ell = F=arey 2|7 )2 dyol,
M M

ne A
+ / ef(af"*f)Ffaw(; — C3.1)(n + Ap) T U dvol,
M

< / ae1=F =X (\p || £]]0) (n + Ap)u®Pdvol,
M

a?\?
2(a—1)

+/ eI=F=22¢ p(g)u dvol,.
M

+Ca3 / 6(270‘)F7)‘a“”u2pdvolg
M

Now let a > 2p+1 and Aa > 2C51 41, note that n+ Ayp > new and F has positive
lower bound, according to Proposition 2], then we find from above:

(3.15)
/ e~ (omREDF—ade (4 Ap)" T 0P duol,
M

2
§C3_2a/ e(lfa)F*a)“P(n—i—A(p)uQ”dvolg+Cg,2 a 1/ e(zfa)F*Aa‘Pum’dvolg.
M - M

«

Recall the definition of w, this means for any p > 0, a > 2p + 2:
-2
/ exp(—(?p + 1)aF + n—lF - )\04(2]) + ].)QO)(TL + A@)2p+1+n11 d’UOlg
M n—

(3.16) < Cg_ga/ exp(—(2p + 1)aF + F — (2p + 1)adp)(n + Ap)*dvol,
M

2
+C3.

1 / exp(—(2p + 1)aF + 2F — (2p + 1)ap)(n + Ap)?Pdvol,,.
a—1Jm

Hence for some constant C5 3 which depends on ||¢||o, «, and p, we get:
-2
/ exp(—(2p + 1)aF + n—lF)(n + Aap)2p+1+ﬁdvolg
M n—=
(3.17) <Cs3 </ exp(—(2p + 1)aF + F)(n+ Ap)*Pdvol,
M

+ /M exp(—(2p + D)aF 4+ 2F)(n + A@)Zpdvolg> .

Take p = 0, and o = 2 in (BI7), one obtains from BI7) that:

/ e 1 (n + Ap) T dvol, < 03,3(/ e F'(n+ Ap)dvol, —|—/ dvoly)
M M M

< Cs.3(nlleF||ovol (M) + vol (M)).

(3.18)

Since we obtained in Proposition 21l a bound for e~% depending only on ||¢]]o,
[1fllo, maxas|n|w,, and curvature bound of g. Hence we get a bound for
[ure 71 E (0 + Ap) 7= dvol.
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KAHLER METRICS (I) 923

We now claim that there exists a sequence of pair of positive numbers (pg, i)
where pi, — oo such that

/ e (n + Ap)?PET dvol, < 00
M

forall k =1,2--- . Now we explain how we choose this sequence of pairs of positive
numbers successively: In general, suppose we already choose (pk,7x) such that the
preceding inequality holds. Choose ay41 sufficiently large such that

Q41 2> 2pg + 2, and - 2pp + Dagpy1 +2 < =y
Set @ = agy1, p = pi in BI7), we obtain

n—2 1
/ exp(—(2pg + Dag 1 F + ﬁF)(n + A(p)2p’“+1+"—1 dvol,
" _

(3.19) < Csa (/ e (n + Ap)?PE T dvol, —|—/
M

e (n + Ap)?P dvolg>
M

< 03.32/ e (n 4+ Ap)2PE L dvol,,.
M

In the second inequality above, we again used the fact that n + Ay > ne%, and
ef" is bounded from below. Set
n—2
Vet1 = (2pk + Do —
n—1

and = _
DPk+1 = Dk + 2(n—1)

Then

/ e_'y’““F(n—I—Anp)Qp’““Hdvolg < C’/ e‘”’“F(n—l— Ap)?Petl
M M

where the constant depends on ||¢||o and the background metric g. Our claim is
then verified.

By induction, we then get a bound for fM e (n 4+ Ap)Pdvol, for any p > 0
and some constant 7, > 0. Here v, grows like p? as p — oo. |

Remark 3.1. By a more careful inspection of above argument, one sees that it is
possible to choose v, = max((p + 1)(p + 2), np), but this is probably not sharp.

As an immediate consequence, we have the following W2 estimate of ¢ in terms
of ||F|o-

Corollary 3.1. For any 1 < p < oo, there exist constants C’(p) > 0, depending
on ||¢llo, [|Fllo, the background metric g, || f|lo, maxas |1|w, and p, such that ||n +
Agl|» < C(p).

4. CY! BOUND OF THE KAHLER POTENTIAL IN TERMS OF ITS W?2P BOUND

In this section, we want to prove

Theorem 4.1. There exists a constant Cy, depending only on ||¢llo, ||Flo, ||f]lo,
max s [N|w,, and the background metric g, such that n + Ap < Cy.

Note that this theorem is trivial when n = 1, since 1 + Ap = ef’ when n = 1.
Hence we can assume n > 2 throughout this section. In view of Theorem 2], we
have the following immediate consequence:
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924 XIUXIONG CHEN AND JINGRUI CHENG

Corollary 4.1. There exists a constant Cy.1, depending only on ||¢llo, |IVello,
[ fllo, maxas |n|w, and the background metric g, such that n+ Ap < Cy .

With this assumption, we know from Corollary B] that for any p > 0, there
exists constants C,, depending on ||¢||o, ||F |0, and the background metric g, such
that

(4.1) lIn+ Alleany < Cp).
Hence it suffices to prove the following statement:

Proposition 4.1. Let (¢, F) be a smooth solution (ILIl), (L2)), then there exists
pn, > 0, depending only on n, such that

(4.2) max IV, F|, + mﬁx(n + Ap) < Cyo.

Here Cy depends only on ||F||o, |[n4+Ap||Len (ary, and metric g(in the way described
in Theorem [A.T]).

Remark 4.1. From the argument below, one can explicitly get an upper bound for
pn < (2n—2)(4n + 1).

This upper bound is probably not sharp.

Proof. Let us first calculate A, (|V, f|%) for any smooth function f in M. First we

do the calculation under an orthonormal frame g..

DplVofl? = (fifi) s , ,

= fugfit fifis+ |.fﬂ'j|g + 143 ¢
= fgiali+ fif g +1Lasle + 115505 , ,
= (Apf)ifi + fi(Apf)i + Ricy 5 fi fi + | f.iil5 + 1 £ 505

In the above, f;;... denote covariant derivatives under the metric g,. Let B(\) :

R — R be a smooth function, now we calculate A, (eB(f)|V¢f|30).

e~ B . A«P(eB(f)Wgof‘i)
= A«p(‘vwﬂi) + B/(fi(‘vwﬂi)i + fi(|v¢f|i)z)
+ ((B?+B")|VofP + B'Af) IV fI2

= (Apf)ifi + [i(Dp f)i + Ricy i fifi + 1 f.ii % + | f 515
+ B (fififzi+ fif jif; + fifif 5+ fif i f5)

+ ((B?+ B")|VofI2 + B'Af) Vo fI2,
> (Ao f)ifi + [i(Apf)i + Ricy 5 fi s + 1 f 515
+ B (fif jif5 + fifif 1) + (B |V fl2 + B'Af) Vo fI2.
In the inequality above, we noticed and dropped the following complete square:

BNy flo+ B fifif5i+ B fiffij + 1 f.6515 = | f.i5 + B fif51%
We apply above calculation to F. Notice that
RiC 5 :R'LE _F,LE.

(=R

(4.3)

Set B’ = 1, and we switch to normal coordinate of g (c.f. 21])), then we have
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KAHLER METRICS (I) 925

F F R’F,LF‘
e 2A,(e2 |V, F[?) > 2V, F -, V,AF + A
v ‘ I (T4 en) 1+ ej5)
(4.4) Fia? )
+ = + ALV, F2.
1+ ¢7)(1+paa) 27 Vel
Notice that there will be no more terms like %, because the choice

B = % makes such terms exactly cancel out. Next we wish to use the equation
satisfied by F:

AL F = —f +trym.
Hence in ([{4), the last term satisfies:

1 1
(45) LAGFIVAFL > = Lo + mise il o) |9 P2
Also
(4.6)
|Rij i Fj | . | FiF5 , 2
2 <max|Ric(wp)|w, 2 <max | Ric(wo)||V, F|2tr,g.
Trea) (o5 oo Trpa gy = FeleolVeFlotre

Also we observe that

4.7 t =
) e zz: L+ ¢

Hence we conclude, after combining (4)—(E.1):
Ay(e3F |V FI2) > 2e3 TV F o Vo ALF — Cuql((n+ Ap)" L + 1)V, F[2
(4.8) 1 |Fia)?
Car (14 9i)(L+ ¢as)
Using 3.8) and (1), we find

<ne F(n+ Ap)" 1 <Cup(l+Ap)" L.

(4.9) Agy(n+Ap) > —Cug(n+ Ap)" + AF — Cys.
We combine (L), [@3), and conclude:
(4.10)
Ay (e2F |V P2+ (n+Ap)) > ~Cur(n+Ap)" 1 41) [V, F242e3 TV F - VA F
1 |Fia|®

AF - C - C A",
- Ci7 (14 ¢i) 1+ @aa) + 18 — Cro(n+ Agp)

To estimate AF', we may calculate:

(4.11)
1 |Fy7]? Cuz

Faf? c
|AF| < e | 7.z| nlyq. 7
4.7

1
14+0-)2 < Ayp)2.
T+en)? | 2 e < 50, T+en? | 2 (n+ A¢)
Combining ([@I0Q), (@I1l), we conclude that there exists a constant Cy.91, with the
same dependence as said above, such that

Ap(e2 PV FI2 + (n+ Ap)) > —Crgre™ 2T (n+ Ap)" 1 (e3 T |V, FI2
+ (n+ Ap)) +2e2TV F -, VoALF — Cur.

(4.12)
Set

u= e%F|V¢F\i + (n+ Ap) + 1,
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926 XIUXIONG CHEN AND JINGRUI CHENG

we obtain the key estimate from here:
(4.13) Apu > —Cyoo(n+ Ap)" tu+ 2037V, F . V,ALF.
Next we plan to do iteration, using ([@I3]). Notice that for any p > 0:

1
T 1A%,(u2p+l) = uAgu+ 2pu* Vo ul2.
Integrate over M, we obtain:

(4.15)
/2pu2p_1|V¢u\idvol¢:/ u?(—Agyu)dvol,
M M

(4.14)

< / Cyo2(n+ A(p)”_luzz’ﬂdvolg, — 2/ e%FVg,F ‘v Vg,(Ag,F)uzz’dvolg,.
M M

We need to integrate by parts in the last term above, then we have
(4.16)

- /M Qe%FVg,F o Vo (A F)u*dvol, = /M 4pu2p_1e%FA¢FV¢F “» Vudvol,

+ /M QUQPG%F(ALPF)QdUOZS(; + /M uzpe%F|V¢F|iA¥,deol¥,.

We wish to estimate the three terms on the right hand side of (ZI8) from above.
First,

/M 4pu2pfle%FA¢FV¢F o Vudvol, < /M pu2p71|V¢,u\?advol¥7
(4.17) +4 /M pu? el (A F)? IV, F 2 dvol,

§/ pu2p71|V¢u|idvol@+4/ puzpe%F(AwF)zdvolw
M M

Also it is clear that

(4.18) /M uerF |V, F2A, Fdvol, < /M u?P A, F|dvol,,.
Combining [@I6), (ZI17) and (I]), we see

—/ Ze%FV@F@ Vo (A, F)u*dvol, §/ pu2p71|V¢u|idvol@

(4.19) M M

—|—/ (4p+2)u2pe%F(A@F)2dvol¢+/ u*P AL F|dvol,.
M M

Combined with ([@TH]), we obtain
(4.20)

/pu2p—1|V¢u\idvol¢§/ Cuo3(n+ Ap)" 'u?Tdvol,,
M M

+ /M u?P A, F|dvol, + /M(4p + 2)u2pe%F(A¢F)2dvol¢.

In the above, we can estimate

(@21) (A F| < [f1+ [trenl < (11 f[lo + max |nlw,) (1 + trog)
21
S 04_935(1 —|— 7’L€7F(7’L —|— A(p)nil)
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KAHLER METRICS (I) 927

Recall that n + Ay is bounded from below in terms of ||F||o and u is bounded
below by 1, we obtain from (£20) that

(4.22) / pu? | Vul2dvol, < / Cuoa(p+ 1) (n+ Ap)*2u*Tdvol,,.
M M

Here Cy4.94 depends only on ||F||p, the background metric (M,g), ||f|lo, and
maxps [7]w,- Above implies

(4.23)

1 C 1
[ 19t uer, < S22
M p

Here we used that dvol, = edeolg and that F' is bounded. Fix 0 < ¢ < 2 to be
determined, we estimate the right hand side of (23]

2
+1
(p ) /M 04.94 (n + A(p)Qn_QuQIH_ld?)Olg.

(4.24) /M(n + Ap)?" 2 quol,

2

2+e n— e e
< </ u(p+§)(2+6)dvolg) (/ (n+ Ay) (n-2)@+ )dvolg>2+€.
M M

Denote v = uP* 2, then [EZ3) implies
(4.25)

C +1)2 n2)(@te P

/M|thv|id”0l9 < %;2) (/M(n—i_ASD)%dUOlg) (/MUQ"’Edvolg)QiE )
Next we wish to estimate the left hand side of (£25]) from below:

(4.26)

— - "Ui|276 2-—¢
Vo2 <Y oo =) ————(1+¢5) 2
zi: ZZ: (1+%Z)22

2—¢

|Ui‘2 oz == 2 2—e, £ 2—¢
< (Z 1+ o5 (Z(l‘f'%'z‘) : < Vvl nz(n+ Ap) = .

i i

In the last inequality above, we estimated each 1 4 ¢;; from above by n + Ap and
there are n terms in ) ,. Integrate and use Holder inequality, we get:

/ V|2~ ¢dvol, < n? / |V¢v|$5(n + A(p)Q_EEdvolg
M M
(4.27) s .
<n? (/ |V¢v|i) (/ (n+ A@)Qs;sdvolg)
M M

Combining ([A26) and [@27), we see:
(4.28

)
</ VU|2€dvolg> h Snﬁ</ (n—l—A(p)%dvolg) _E/ |V¢U\idvolg
M M M

2

2+4e
< C’4,95pK€(/ v2+5dv0l9) .
M

e 2—c p=r 2n—2)(24¢ 2+4e
(429) K.=n?-". (/ (n—f—Agp)Tdvolg) : (/ (n—l—Agp)( 3(+)> .
M M
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928 XIUXIONG CHEN AND JINGRUI CHENG

2n(2—¢)

o7 O be

Apply the Sobolev embedding with exponent 2 — ¢, and denote 6§ =
the improved integrability, we get

ol 2o (avot,) < Csob([|V V122 (avor,) + [[V]]22-< (@voly))-

Recall that v = uPT2, this means:
2
7
(4.30) (/ “(p+5)9dvolg) < csob<( [ 19 s, =
M M
+(/ u<p+%>(z—e>dvozq)ﬁ)
» :
< Ciop (C4,95pK€(/ u(P+%)(2+a)dvolg) 7=
M

+ (/ u(p+%)(25)dvolg)225>
M

_2
< C4.96,€p(/ U(p+%)(2+€)d1’019)2+5-
M

Here C4.96,- has the same dependence as C;’s above, but with additional dependence
on €. From the 1st line to 2nd line, we used ([@.28]). Now choose £ > 0 small so that
0 > 2 + ¢, then above estimate indeed improves integrability, namely we need
2n(2 —¢)
2n—2+4¢
We fix  and (£30) gives for p > 1:

(4.31) >2+e.

—1
(4.32) ||UHL<P+%>9 = (04.9710) v ‘|U||L<p+%>(2+s>~

Denote y = 2;3_5 > 1, and choose p + % = x!, for i > 0. Then we obtain:

L
(4.33) Hu||L(2+5)Xi+l < (04'97)(1) 2x7 Hu||L(2+5)Xi.
It follows that
(4.34)
llull e < Cror 2 - x>0 5 [Jul| g2 < Chgrs 2 - X120 5 |u]| 237 |[ul | 255 .

From above we get estimate of ||u||f~ in terms of ||u||p:. But recall u =
e%F\VWFF + (n+ Ap) + 1, so L! estimate is available.

Indeed, it is clear that n + Ay € L. To see e%F|V¢F\i € L', we just need to
show |V, F|2 € L' since F is now assumed to be bounded. Then we can calculate:

(4.35) A, (F?) =2|V F|% + 2FA,F = 2|V F|2 + 2F(—f + tryn).
Integrate with respect to dvol, = ef’ dvolg, we see
/ 6F|V¢,F\idv0lg = / e F(f — tryn)dvol,

M M

(4.36)
< C4_98/ (1+tryg mj&xm\wo)dvol(p < Cy.99v0l(M).
M

Here Cy9s, C4.99 may depend on |[|F||o. To see the range of p,, asserted in the
Remark ] we notice the choice of ¢ = 5 verifies the requirement in (@31)). With
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this choice, the highest power of n+ Ay appearing in ([£.29) is exactly (2n—2)(4n+
1). Once we have control over K., the rest of the proof goes through. O

For completeness, we present Proposition which might be well known to
experts (c.f. [14]).

Proposition 4.2. If %wo < wy, < Cuwy, for some constant C > 0, then all higher
derivatives can be estimated in terms of C.

Proof. The proof of this corollary is essentially the combination of several classical
elliptic estimates, as we explain below. The assumption that CLOMO < w, < Cowp
implies (L2)) is now uniformly elliptic with bounded right hand side. Moreover, we
see that (L2]) can be put in the divergence form:

(4.37) Re(0i(det(gnp + 0ap)gd F5)) = (= f + tron) det(gos + 9op)-

From this we immediately know ||F||os < Cop.1, where o and Cp 1 has the said
dependence. Then we go back to (1), we can then conclude from Evans-Krylov
theorem that ||¢||2,a < Co.2 for any o’ < o (see [24], [47] for details on extension
of Evans-Krylov to complex setting). Then we go back to [@37) and see that the
coefficients on the left hand side are in C*", while the right hand side is bounded.
Hence we may conclude ||F||1,o» < Co.3, from [30], Theorem 8.32.

Then from ([I.T]), by differentiating both sides of the equation, we see that the first
derivatives of ¢ solve a linear elliptic equation with C*" coefficient and right hand
side, hence Schauder estimate applies and we conclude ¢ € C**”([30], Theorem
6.2). But then we go back to ([L37) one more time, the coefficients are in C* for
any 0 < o < 1 with bounded right hand side, hence we conclude F € O for
any 0 < a < 1. Now the equation solved by the first derivatives of ¢ will have
coefficients on the right hand side in C® for any 0 < o < 1. Therefore p € C3 for
any 0 < a < 1.

The second equation ([[2) now has C1* coefficient with bounded right hand
side, then the classical LP estimate gives F' € W2P for any finite p([30], Theorem
9.11). Then differentiating the first equation (1) twice, we get a linear elliptic
equation in terms of second derivatives of ¢, which has C* coefficients and LP right
hand side(we already have F' € W2P), it follows that ¢ € W4P. ]

5. ENTROPY BOUND OF THE VOLUME RATIO AND C° BOUND OF KAHLER
POTENTIAL

The main goal of this section is to show the C° bound of ¢ implies a bound for
[y €F Fdvoly and vice versa:

Theorem 5.1. Let (¢, F) be a smooth solution to (L)), (L2)), then ||¢|lo and ||F||o
can be bounded in terms of an upper bound for fM FeF'dvol,. Conversely, if Wy 18
a cscK metric, then a bound for ||p|lo implies an upper bound for fM el Fdvol,,.

The most difficult part of above theorem is to show that an upper bound for
[5s €F Fdvoly implies a bound on [|¢||o and ||F||o, which is the main focus of this
section. That ||¢||o implies a bound for [, e Fdvol, when w, is a cscK metric
essentially follows from the fact that cscK are minimizers of K-energy. In particular,
having a bound on ||p||o is enough to control ||F||o, hence estimates up to C11,
thanks to the results obtained in previous sections.
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Actually we will see that in order to bound ||pl|g, ||F]|o, it is enough to have a

bound for fM el"®(F)dvol,, where ®(F) > 0 is coercive in F in the sense that
(1) limyy oo € - ®(¢) =0 and limy_,o, P(t) = 0
(2) limyee 22 < 0.

We want to show that, under these conditions, an upper bound for
Joy €5 ®(F)dvol, will imply a bound for [, e?¥dvol, for any ¢ < oo. This bound
can then imply a bound for ||¢||o, due to the deep result by Kolodziej, [34], but an
elementary argument which only uses Alexandrov maximum principle (Lemma [5.2))
and avoids pluri-potential theory is also possible. This argument is due to Blocki
(c.f. [5]). From Corollary 5.2l we obtain a bound for ||ef||o. We have also shown
in Proposition [Z] that a C° bound of ¢ will imply a lower bound for F. Hence a
bound for ||F||p can be obtained this way. Then estimates in previous sections can

be applied to obtain higher derivatives bound.

Define
2

¢
821‘82]'

The following result of Tian is well known, whose proof may be found in [44],
Proposition 2.1:

(5.1) P(M,g) = {¢ € C*(M,R) : 95 + >0, S}\14p¢ = 0}.

Proposition 5.1. There exists two positive constant a, Cs, depending only on
(M, g), such that

(5.2) / e~ “dvol, < Cs, for any ¢ € P(M, g).
M

Here o = a(M, [w]) is the so called a-invariant. To start, we normalize ¢ so that
sup,s ¢ = 0. We also need to consider the auxiliary Kahler potential ¢y € H, which
solves the following problem:

. N eF(I>(F) det(g;)
(5.3) det(g;5 + ;) = Tu qu)(F)dvojlg’
(5.4) supy = 0.
M

The existence of such v follows from Yau’s celebrated theorem on Calabi’s volume
conjecture (c.f. [48], Theorem 2) . Because of Proposition £l we know that

/ e *dvoly < Cs, / e_‘wdvolg < (5.
M M
We will show that the following estimate holds:

Theorem 5.2. Given any 0 < € < 1, there exists a constant Cs5.1, depending on €,
the background metric g, ||f|lo, maxas |1|w,, the choice of ®, and the upper bound
of [y €F ®(F)dvoly, such that

(5.5) FHep—2(1+ max [Mwo ) < Cs.1.

Corollary 5.1. For any 0 < g < oo, there exists a constant Cs.o, with the same
dependence as Cs.1 above but additionally on q, such that

(5.6) / e dvol, < Cs.a, |l¢llo < oz |[¥llo < Cs .
M

We will show this important corollary first.

Licensed to Stony Brook Univ. Prepared on Fri Oct 14 14:01:24 EDT 2022 for download from IP 129.49.89.105.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



KAHLER METRICS (I) 931

Proof. First we derive the estimate for [ M e? dvol, with ¢ > 1.
From Theorem [5.2] we know

«
(5.7) —ap > g(F —2(1+ max Nwe) e — Cs.1).
Hence

Cs > / e~V dvol,, 2/ exp (g(F —2(1 + max |n]w, )¢ — Cs.1))dvoly

(5.8) M B M ‘

Z/ exp (g(F—C’5_1))dv0l9.
M g

The last inequality holds because we normalized ¢ so that ¢ < 0. Choose € =
%, then we immediately get the desired estimate for [ o et dvol,. The claimed

estimate for ¢ immediately follows from the estimate for ||ef'||za(q > 2), given in
Lemma [5Il The bound for ¢ follows in a similar way, using (B.3]). O

Lemma 5.1. Let ¢ € P(M,g) be such that ef' = :—‘2 with ef" € L?>T5(M,wy), for
0

some s > 0. Then ||¢||o < Cs.21, with Cs.91 depending only on the metric wy, s > 0

and |[€"[] L2+o (0 0) -

Note that this is a weaker result compared to the deep theorem of Kolodziej [34],
which shows ef” € L1+9(M,wy) is already sufficient. However, the weaker result as
stated above can be proved in an elementary way using Alexandrov maximum
principle, discovered by Blocki [5], [6].

Combining Theorem and Corollary 5.1l we immediately conclude:

Corollary 5.2. There exists a constant Cs.a, depending only on the background
metric g, the upper bound of fM eFdeolg, such that

F < Cso.

Proof. Choose ®(t) = Vt? + 1 and observe that [, e"vF? + Ldvol, is controlled
in terms of an upper bound of [ M e’ Fdvol,,. Then the result follows from Theorem
and Corollary (.11 O

Now let’s prove Theorem

Proof of Theorem 5.2l Let 0 < € < 1 be given and fixed. Let dy be chosen so
that for any p € M, the geodesic ball By, (p) is contained in a single coordinate
neighborhood, and under this coordinate, %515 < g5 < 20;5. For any p € M, let
np : M — R4 be a cut-off function such that n,(p) = 1, n, = 1 — 6 outside the
ball BdTD(p), with the estimate |Vn,|> < %, |V2n,| < %. Here 0 < 6 < 1 is to be
determined later. Let 0 < § < 1, A > 0 be constants to be determined. Assume the
function ed(F+e¥=2¢) achieves maximum at po € M. We now compute

(5.9)

A (HFry, )
=A, (65(F+sw—/\<ﬁ))77po
+ VAN () + XTIV (F + e = Ap) 5 Vi,
= A (I (F + e = Mp)[f, + 68, (F + v = Ap))
+ P ITVAIN () + T2V (F + e) — Ap) - Vo,
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First we can estimate

O (F+ep=Ayp) Asanpo > —ed(Ftev=Ap) |V277po \trwg

40

(5.10) .
-

> _66(F+6¢7)\Lp)

|V oo |2
20V, (F 4 et — Ap) - Vpiipy > =021, |V (F + etp — )xgo)\i _ %
Po
Vo |2tr
(5.11) > =%, |V (F + et — Ap)|2 — [Vt [*treg
Po
46%tr g
> 0%, | Vo (F 4+ e — Ap) |2 — 22

Finally we compute

Ag(F+ep — Ap) = —(f + An) +tron + Mrpg + eAgtp

5.12 1,
( ) >(—f—Mn+enAy" @7 (F)+A—e— max N]wo )t 9.

Here Ag = [,, " ®(F)dvoly. In the above calculation, we noticed that, using (G.3):

~ . 1
Ay = g (9:5 + ij) — treg > ”( det(g;) det(g;; + 7/%‘3)) " —1reg
= n(efFeFCP(F)A;l)% —lryg.

Plug (510), (511), (5I12) back into (B.9), we see

(5.13)
A, (65(F+sw—>\s@)npo) > gnpoe5(F+Ew—>\¢)(f — I+ 5nA;%<I>% (F))
46 462 )t
BI—0)" Z1-09 "

+ SF+ev=2¢) (5%0 AN—e— mﬁX Mwo)

Now we choose various constants §, A and 6 appearing above.

Since 0 < € < 1, first we choose A = 2(1 + maxys |1]w,). Then we fix A, and
choose  to be 2ndA = . We need to make sure the coefficient in front of tr, g to
be positive. This can be achieved by choosing 6 to be sufficiently small. Indeed,
with above choice of § and A\, we may calculate:

(5.14)
40mp, 462
577?0()\ —&- m]\z}x |77|W()) - d%(l _ 9) - d(Q)(l _ 9)2
1 40n,, 462 (1-0)« 46 462
> 5(1— )\ — - > - - .
200 ATy T Ea—er S . @1-0) B(1-90)

Hence if we choose 6 small enough, above > 0. After we made all the choices of §,
A, 0, we obtain from (G.I3) that

(5.15) Ay (XFFTEA ) > Gy @ FHEVTAR) (f A ETLA(;%@% (F)).
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Denote u = e’(FTe¥=2¢)  Now we are ready to apply Alexandrov estimate in

Bdo(po):
SUp Ufp, < SUpP  Ulp,
Bag (po) 0Bag (po)
(5.16) 9 A R _\2n EN
n — +enAgy" ®w (F 2n
—I—Cndo(/ u> ((f — An 5?2;) (F))") dvolg) .
Ba, (o) €

We want to claim the integral appearing on the right hand side is bounded. Indeed,
the function been integrated is nonzero only if

f- )\n+5nA;%<I>%(F) < 0.

By the coercivity of ®, this will imply an upper bound for F, say F < (5.3, where
the constant C5 3 depends on €, the choice of ®, the integral bound Ag, and the
background metric g. With this observation, we see

/ w2 ((f = M+ endy " o (F)7)"
By (po)

p——a dvol
s < GBI H20-N0) BE (£ 4 ) dvol,
Bag (po){F<Cs.3}
< (||f”0 + )\n)2”e(2”5+2)c5-3/ e2n58w—2n6>\gadvolg_
Bay (po)
But recall ¢ < 0, and 2ndA = «, we know
(5.18) / 62"551/’72”5)‘“"611)019 < / e *dvoly < Cs 4.
Bag (po) B, (po)
Denote I = (||f]]o +An)?"e(2nd+2)Cs.s deO (po) € “¥dvoly. Now we go back to ET10)
and obtain:
(5.19) u(po) =supu < (1 —0)supu + Crdol 2.
M M

1
Here we recall that 7,, =1 — 6 on 9By, (po). This implies sup,; u < C"d%. 0

Lemma 5.2 (Alexandroff maximum principle (c.f. [30, Lemma 9.3]). Let Q C R
be a bounded domain. Suppose u € C?(Q) N C(Q). Denote M = supg, u — SUpgg, U.
Define

I (1, 9Q) = {z € Q:uly) < ule) + Vu(z) - (y —2),

(5.20) 2 and M
< — '
for any y € Q and |Vu(z)| < 3diamQ}

Then for some dimensional constant Cy > 0:

M < cd( / det(—D%)dx>
'~ (u,Q)

In particular, suppose u satisfies a;;0;ju > f. Here a;; satisfies the ellipticity
condition a;;€;£; > 0. Define D* = (det aij)é. Then the following estimate holds:

1
d

: f
(5.21) M < C&dlamQHﬁ”Ld(Q).

Here C;l is another dimensional constant.
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Remark 5.1. In this section (Proof of Theorem and Lemma [B.1]), we apply this

estimate with d = 2n to the operator A,. After rewriting A, in terms of real
1 F 1

coefficients, one can find D* = (det(g,);;) " =e = (detg;) .
Finally, we want to give a proof to Theorem [B.11

Proof. 1t is well known that in a given Kahler class, cscK metrics is global minimizer
of the K-energy functional, by the main result of [3]. In particular, it follows that the
K-energy functional of ¢ is apriori bounded from above. Recall the decomposition
formula for K-energy functional F, proved in [12]:

Wi w?
(5.22) K(p) = / log —= —F + J_pic(¢)-
M wn M.
In the above, J_g;. is defined in terms of its derivative, namely

dJ_pi 0 W
—dtR” - /M a—f(—trwRiC +R)—.
It is well known in the literature that J_g;. can be bounded in terms of C° norm
of the potential function ¢. A bound for [, e!'|F|dvol, follows from here.

Now we prove the second part of the theorem. First Corollary gives a bound
for F' from above and Corollary [5.1] gives a bound for ||¢||o. Proposition 2] gives
a bound for F' from below. |

For future reference, we record Theorem [B.3] which follows from combining
Proposition [£.2] Theorem 5.1l and Theorem [£.1}

Theorem 5.3. Let ¢ be a smooth solution to (L), (L2) normalized to be sup,; ¢ =
0, then for any p < oo, there exist a constant Cy 5, depending only on the background
metric (M, g), || fllo, maxas |1|w,, P, and the upper bound of fM ef Fdvol,, such that
lellwar < Cos, |[Fllw2e < Cos.
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