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Abstract
This is our third paper in a series on the gravitational instantons. In this paper, we
classify ALG and ALH gravitational instantons. In ALG case, we extend Tian–Yau–
Hein’s construction slightly and show that it is the only ALG gravitational instanton.
In ALH case, we prove a Torelli-type theorem.
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1 Introduction

There are lots of different definitions of gravitational instantons. The broader defi-
nition of gravitational instanton means a four dimensional Einstein manifold. In this
paper, as in our previous work [12,13], we choose the following narrower definition:
A noncompact complete hyperkähler manifold M of real dimension 4 is called a grav-
itational instanton if the curvature at x satisfies |Rm(x)| = O(r(x)−2−τ ), where r(x)
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688 G. Chen, X. Chen

denotes the distance to a fixed point in M , τ is any small positive number. It is worth-
while to notice that in real dimension 4, the hyperkähler condition hol ⊂ Sp(1) is
equivalent to the Calabi–Yau condition hol ⊂ SU(2).

It is quite easy to prove the following theorem:

Theorem 1.1 For gravitational instanton M, the following conditions are equivalent:

(1) M is flat;
(2) M has trivial holonomy;
(3) M splits as R

4−k × T
k , k = 0, 1, 2, 3.

It will be proved in Sect. 3. For simplicity, in this paper, we will exclude the flat
gravitational instantons.

In our first paper [12], according to different kinds of asymptotic geometries, we
classified gravitational instantons into the following categories: ALE (Asymptotically
Locally Euclidean), ALF-Ak , ALF-Dk (Asymptotically Locally Flat), ALG and ALH
(“G” and “H” are the letters after “E” and “F”). Its unique tangent cone at infinity is
C
2/�, R

3, R
3/Z2, a flat cone with cone angle 2πβ or R

+, respectively.
In the ALE case, after Bando–Kasue–Nakajima’s work [4] about the improvement

of asymptotic rate, Kronheimer [32,33] proved that any ALE gravitational instanton

must be diffeomorphic to the minimal resolution C̃2/� of the quotient singularity
C
2/�, where � is a finite subgroup of SU(2). Moreover, the Torelli theorem holds for

ALE gravitational instantons.

H2(C̃2/�, Z) is generated by holomorphic curves with self intersection number
−2. Let k be the number of generators. Then, their intersection patterns can be classi-
fied into Ak(k ≥ 1), Dk(k ≥ 4), Ek(k = 6, 7, 8) Dynkin diagrams. They correspond
to different types of �.

Later, Minerbe [38] proved that the multi-Taub-NUT metric is the only ALF-Ak

gravitational instanton.When k = 0, it is called the Taub-NUTmetric. The Taub-NUT
metric is diffeomorphic to C

2. When k ≥ 1, the ALF-Ak gravitational instanton is
diffeomorphic to the ALE-Ak gravitational instanton.

In ALF-Dk case, Biquard and Minerbe [7] proved that k must be nonnegative.
Ivanov and Roček [27] conjectured a formula using generalized Legendre transform
developed by Lindström and Roček [36]. This conjecture was proved by Cherkis and
Kapustin [16]. A more explicit formula was computed by Cherkis and Hitchin [15].
In our second paper [13], we proved that it is the only possible ALF-Dk gravitational
instanton. When k = 0, it is called the Atiyah-Hitchin metric [3]. When k = 2, it
is called the Page-Hitchin metric [25,45]. When k ≥ 4, the ALF-Dk gravitational
instanton is diffeomorphic to the ALE-Dk gravitational instanton. As a corollary of
the classification result in ALF case, the Torelli theorem holds for ALF gravitational
instantons [13].

In the ALG and ALH cases, we [12] proved a compactification result and thus
confirmed a conjecture of Yau [56]:

Theorem 1.2 [12] For any ALG or ALH gravitational instanton M, there exists a
compact elliptic surface M̄ with a meromorphic function z : M̄ → CP

1 whose
generic fiber has genus 1. The fiber D = {z = ∞} is regular if M is ALH, while it
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Gravitational instantons with faster than quadratic curvature decay (III) 689

is either regular or of type I∗0, II, II∗, III, III∗, IV, IV∗ if M is ALG. There exists an
(a1, a2, a3) in S

2 such that when we use a1 I + a2 J + a3K as the complex structure,
M is biholomorphic to M̄\D.

Remark The type of D is related to the tangent cone at infinity of M . See the table in
Definition 2.3.

In this paper, we will start from an improvement of the above theorem:

Theorem 1.3 The (M̄, z) in the above theorem must be a rational elliptic surface (see
Definition 2.7). Moreover, in the ALG case, D can not be regular.

In [54], Tian–Yau proved that there exists a non-compact complete Calabi–Yau
metric if there exists a good background metric. Moreover, they found two ways
of constructing good background metrics to produce complete Calabi–Yau metrics
with volume growth rate 1 or 2n

n+1 on the complement of anti-canonical divisors to
n-dimensional manifolds.

Besides Tian–Yau’s Kähler geometry method, hyperKähler 4-manifolds can also
be constructed using gauge theory. In [17], Cherkis and Kapustin predicted complete
hyperkähler metrics on the moduli space of periodic monopoles, which is a rational
elliptic surface minus a fiber of type I∗0, I∗1, I∗2, I∗3, I∗4. In [6], Biquard and Boalch
constructed complete hyperkähler manifolds using wild non-abelian Hodge theory on
curves.1

In [7], Biquard and Minerbe constructed ALF-Dk(k ≥ 4), ALG and ALH gravita-
tional instantons on the minimal resolutions of the quotient of Taub-NUT metric by
the binary dihedral group, (R2×T

2)/Zk(k = 2, 6, 4, 3) or (R×T
3)/Z2, respectively.

In [24], Hein chose many background metrics, used Tian–Yau’s result [54] to get
more complete hyperkähler manifolds on the complement of a fiber D (the anti-
canonical divisor in this case) to a rational elliptic surface M̄ . Moreover, Hein [24]
proved the asymptotic geometry of such construction. When D is regular, the metric
is ALH. When D has type I∗0, II, II∗, III, III∗, IV, or IV∗, the metric is ALG. When
D has type I∗b, b = 1, 2, . . . , 4, the volume growth, injectivity radius decay, curvature
decay rates and tangent cone at infinity are r2, (log r)−1/2, r−2(log r)−1 and R

2/Z2.

1 We are grateful for the anonymous referee who kindly pointed out to us that “Biquard and Boalch [6]
proved that the many moduli spaces of solutions to Hitchin’s equations on a non-compact curve (with wild
boundary conditions) form complete hyperkähler manifolds. In one complex structure in the hyperkähler
family they aremoduli spaces of meromorphic connections and in another complex structure they aremoduli
spaces of meromorphic Higgs bundles (and so are algebraic integrable systems). The examples of complex
dimension two are thus the complement of the anticanonical divisor D to the rational elliptic surface M̄ (the
meromorphic Hitchin systems of complex dimension two). Moreover, there is a nice relationship between
the type of D and Dynkin diagrams extending that of Kronheimer commonly used in the ALE case:

I∗0 I∗1 I∗2 I∗3 I∗4 II II∗ III III∗ IV IV∗
D4 D3 D2 D1 D0 E8 A0 E7 A1 E6 A2

See [8] for the relationship between Biquard–Boalch metric and Painlevé equations. See [48] for the
relationship between Painlevé equations and rational elliptic surfaces following the works in [41–44]. The
readers may also read [9] and the references therein for the survey about Biquard–Boalch metric. See also
[55] as well as the talk ‘Some geometry of irregular connections on curves’ given by Boalch at the workshop
on ‘Gauge Theory and Representation Theory’ at Institute for Advanced Study in 2007.”
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690 G. Chen, X. Chen

It was called ALG by some authors but a more appropriate terminology would be
ALG∗ because the curvature decay is too slow and the fibers have no limit at infinity.
When D has type Ib, b = 1, 2, . . . , 9, the volume growth, injectivity radius decay,
curvature decay rates and tangent cone at infinity are r4/3, r−1/3, r−2 and [0,∞). An
appropriate terminology for this kind of asymptotic geometry would be ALH∗.

The background metrics constructed in [54] provide ALH and ALH∗ examples
using their existence result. In [20,21], Cherkis-Kapustin’s prediction [17] was par-
tially verified. It was proved that the moduli space of periodic monopoles is a
non-empty hyperkähler manifold. However, it is still unknown whether this metric
is complete or whether it is an elliptic surface. It is conjectured to be ALG or ALG∗
but this conjecture has not been proved yet. The Biquard–Boalch’s construction [6] is
also conjectured to be ALG or ALG∗, but this conjecture has not been proved, too.

In this paper, we will slightly modify Tian–Yau–Hein’s construction [24,54] and
then prove that any ALG gravitational instanton must be obtained by this modified
construction:

Theorem 1.4 (1) Let (M̄, z) be a rational elliptic surface with D = {z = ∞} of
type I∗0, II, II∗, III, III∗, IV, or IV∗. Let ω+ = ω2 + iω3 be a rational 2-form
on M̄ with [D] = {ω+ = ∞}. For any Kähler form ω on M̄, there exists a
real smooth polynomial growth function φ on M = M̄\D such that (M, ω1 =
ω + i∂∂̄φ, ω2, ω3) is an ALG gravitational instanton.

(2) The form ω + i∂∂̄φ in the first part is uniquely determined by its asymptotic
geometry.

(3) Given any ALG gravitational instanton, after a hyperkähler rotation, we can
assume that a1 I + a2 J + a3K in Theorem 1.2 is in fact I . Then ω+ = ω2 + iω3

is a rational 2-form on M̄ with [D] = {ω+ = ∞}. There exist a Kähler form ω

on M̄ and a real smooth polynomial growth function φ on M = M̄\D such that
ω1 = ω + i∂∂̄φ. When D is of type II∗, III∗, or IV∗, we may need a new choice
of M̄ to achieve this.

In the ALH case, as a corollary of Theorems 1.2 and 1.3, any ALH gravitational
instantons are diffeomorphic to each other. In particular, they are diffeomorphic to the
minimal resolution of (R × T

3)/Z2 by [7]. The torus T
3 = R

3/	 is determined by

the lattice 	 = Zv1 ⊕Zv2 ⊕Zv3. It is easy to see that H2(
˜(R × T3)/Z2, R) = R

11 is
generated by three faces Fjk spanned by v j and vk and eight rational curves
 j coming
from the resolution of eight orbifold points in (R × T

3)/Z2. Using those notations,
we will prove the following classification result of ALH gravitational instantons:

Theorem 1.5 (Torelli theorem for ALH gravitational instantons) Let M be the
smooth 4-manifold which underlies the minimal resolution of (R × T

3)/Z2. Let
[α1], [α2], [α3] ∈ H2(M, R) be three cohomology classes which satisfy the non-
degeneracy conditions:

(1) The integrals fi jk of αi on the three faces Fjk satisfy

∣
∣
∣
∣
∣
∣

f123 f131 f112
f223 f231 f212
f323 f331 f312

∣
∣
∣
∣
∣
∣

> 0;
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Gravitational instantons with faster than quadratic curvature decay (III) 691

(2) For each [
] ∈ H2(M, Z) with [
]2 = −2, there exists i ∈ {1, 2, 3} with
[αi ][
] 	= 0.
Then there exists on M an ALH hyperkähler structure such that� in Definition 2.6
can be chosen to be the identity map and the cohomology classes of the Kähler
forms [ωi ] are the given [αi ]. It is unique up to tri-holomorphic isometries which
induce identity on H2(M, Z).
Moreover, any ALH gravitational instanton must be constructed by this way.

Remark Recently, Haskins, Hein and Nordström [23] classified asymptotically cylin-
drical Calabi–Yau manifolds of complex dimension at least 3. In dimension 2, their
analytic existence theorem (Theorem 4.1 of [23]) still holds. However, when T

3 does
not split isometrically as S

1 × T
2, their geometric existence theorem (Theorem D of

[23]) fails due to the lack of background Kähler form in the cohomology class.

Remark In [24], Hein proved that the space of ALH gravitational instantons module
isometries is 30 dimensional. After adding 3 parameters of hyperkähler rotations,
the space of ALH gravitational instantons module tri-holomorphic isometries which
induce identity on H2(M, Z) is 33 dimensional. Our Theorem 1.5 is consistence with
Hein’s computation. Remark that by Theorem 1.10 of [24], the number of parameters
of Tian–Yau’s ALH construction is smaller than the dimension of moduli space of
ALH gravitational instantons. So Theorem 1.5 indeed provides ALH metrics which
can not be constructed by Tian–Yau’s ALH method.

It is interesting to compare Theorem 1.5 with the Torelli theorem for ALE gravi-
tational instantons [32,33], ALF gravitational instantons [13] as well as K3 surfaces,
which was proved by Burns–Rapoport [10], Todorov [52], Looijenga–Peters [35] and
Siu [51]. It was reformulated byBesse in Section 12.K of [5]. Anderson [2] also proved
a version of Torelli theorem for K3 surfaces which allows orbifold singularities.

Theorem 1.6 ([5], Torelli theorem for K3 surfaces) Let M be the smooth 4-manifold
which underlies the minimal resolution of T

4/Z2. Let 
 be the space of three coho-
mology classes [α1], [α2], [α3] ∈ H2(M, R) which satisfy the following conditions:

(1) (Integrability)

∫

M
αi ∧ α j = 2δi j V .

(2) (Nondegeneracy) For any [
] ∈ H2(M, Z) with [
]2 = −2, there exists i ∈
{1, 2, 3} with [αi ][
] 	= 0.

 has two components 
+ and 
−. For any ([α1], [α2], [α3]) ∈ 
+, there exists
on M a hyperkähler structure for which the cohomology classes of the Kähler
forms [ωi ] are the given [αi ]. It is unique up to tri-holomorphic isometries which
induce identity on H2(M, Z).
Moreover, any hyperkähler structure on K3 surface must be constructed by this
way.
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692 G. Chen, X. Chen

One may ask whether Torelli theorem holds for ALG gravitational instantons. This
is not a easy problem. First of all, one may ask whether all ALG gravitational instan-
tons are diffeomorphic to each other if they have same type of D. It involves deep
understandings of the moduli space of rational elliptic surfaces and is hard partially
because it may be GIT unstable [39]. Even if it is true, the uniqueness part fails at least
when D is of type II∗, III∗, or IV∗.

Theorem 1.7 When D is of type II∗, III∗, or IV∗, there exist two different ALG gravi-
tational instantons with same [ωi ].

Roughly speaking, the failure of the uniqueness part of ALG Torelli theorem in
such case is due to the existence of an exact anti-self-dual form with decay rate less
than 1. So in order to describe the moduli space of ALG gravitational instantons,
one may need additional parameters corresponding to such exact anti-self-dual forms.
However, suchmodified version is still very hard at current stage. Since the uniqueness
part of ALH Torelli Theorem used the gluing of ALH gravitational instantons into K3
surfaces, one may need to do the similar thing in ALG case which is much harder
then the ALH case. As for the existence part, it seems that our proof of ALH Torelli

theorem is helpless for ALG manifolds because the total energy
∫

M (trωi ω0 − 2)
ω2
i
2

used in Theorem 7.2 is infinity if the decay rate ofωi −ω0 is 2. However, recall that the
ALF Torelli theoremwas proved using gauge theory. So it might be very helpful if one
can prove that the Biquard–Boalch metric [6] or probably its generalization is ALG
and is general enough so that any classes of [ωi ] as well as the additional parameters
corresponding to the exact anti-self-dual forms can be achieved.

In Sect. 3, we will study the topology of ALG and ALH gravitational instantons.
In Sect. 4, we will prove Theorem 1.4. In Sect. 5, we will prove Theorem 1.7 and the
theorem that the gluing of any ALH gravitational instanton with itself is a K3 surface.
In Sect. 6, we will use the gluing construction in Sect. 5 and the Torelli theorem for
K3 surfaces to prove the uniqueness part of Theorem 1.5. In Sect. 7, we will prove the
existence part of Theorem 1.5.

2 Definitions

Definition 2.1 (Hyperkähler manifold) A manifold (M, g, I , J , K ) is called a hyper-
kähler manifold if I , J , K are three parallel complex structures on M which are
compatible with g and satisfy the quaternion relationships. Any map between two
hyperkähler manifolds is called tri-holomorphic if it preserves I ,J and K .

It is well known that I , J , K are all Kähler structures. They determine three Kähler
forms ω1, ω2, ω3. The I -holomorphic 2-form ω+ = ω2 + iω3 is called the holo-
morphic symplectic form. Conversely, it is well known that three closed forms ωi

satisfying ωi ∧ω j = 2δi j V for some nowhere vanishing 4-form V determine a hyper-
kähler structure on M . In fact, given three such 2-forms, we can call the linear span
of them the “self-dual” space. The orthogonal complement of the “self-dual” space
under wedge product is called the “anti-self-dual” space. These two spaces determine
a star operator. It is well known that the star operator determines a conformal class
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Gravitational instantons with faster than quadratic curvature decay (III) 693

of metrics. The conformal factor can be determined by requiring V to be the volume
form.Using thismetric and the three formsωi , we can determine three almost complex
structures I , J and K . It is easy to see that I J = K or I J = −K . In the K3 case, the
former happens on 
+ (the latter happens on 
−). In noncompact case, the former
always happens if it happens on the end. By Lemma 6.8 of [26], I , J , K are parallel.

Definition 2.2 (Hyperkähler rotation) For any matrix

⎛

⎝

a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞

⎠ ∈ SO(3),

(M, g, a1 I + a2 J + a3K , b1 I + b2 J + b3K , c1 I + c2 J + c3K ) defines another
hyperkähler structure on M . It is called the hyperkähler rotation of (M, g, I , J , K ).
After hyperkähler rotation, we can with out loss of generality, assume that the complex
structure a1 I + a2 J + a3K in Theorem 1.2 is actually I .

Definition 2.3 (ALG model) Suppose β ∈ (0, 1] and τ ∈ H = {τ |Imτ > 0} are
parameters in the following table:

D Regular I∗0 II II∗ III III∗ IV IV∗
β 1 1

2
1
6

5
6

1
4

3
4

1
3

2
3

τ ∈ H ∈ H e2π i/3 e2π i/3 i i e2π i/3 e2π i/3

Suppose l > 0 is any scaling parameter. Let E be the manifold obtained by identifying
(u, v) with (e2π iβu, e−2π iβv) in the space

{(u, v)|argu ∈ [0, 2πβ], |u| ≥ R} ⊂ (C − BR) × C/(Zl ⊕ Zτ l).

Then there is a flat hyperkähler metric h on E such that ω1 = i
2 (du ∧ dū + dv ∧ d v̄)

and ω+ = ω2 + iω3 = du ∧ dv. It is called the standard ALG model.

Definition 2.4 (ALG) (M, g) is called ALG of order δ if there exist a bounded domain
K ⊂ M , and a diffeomorphism � : E → M\K such that

|∇m(�∗g − h)| = O(|u|−m−δ)

for some δ > 0 and any m ≥ 0.

Definition 2.5 (ALH model) Let (E, h) be flat product of [R,∞) × T
3. Let r be the

coordinate of [R,∞). Let (θ1, θ2, θ3) be the coordinates of T
3 = R

3/	. Then there
exists a hyperkḧaler structure on it defined by

dr = I ∗dθ1 = J ∗dθ2 = K ∗dθ3.

It is called the standard ALH model.
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694 G. Chen, X. Chen

Definition 2.6 (ALH) (M, g) is called ALH of order τ if there exist a bounded domain
K ⊂ M , and a diffeomorphism � : E → M\K such that

|∇m(�∗g − h)| = O(e−τr ), |∇m(�∗ I − I )| = O(e−τr ),

|∇m(�∗ J − J )| = O(e−τr ), |∇m(�∗K − K )| = O(e−τr )

for some τ > 0 and any m ≥ 0.

Remark We [12,13] proved that the order of any ALH gravitational instanton is at
least λ1 = 2π minλ∈	∗\{0} |λ|, where 	∗ = {λ ∈ R

3| < λ, θ >∈ Z,∀θ ∈ 	}. Later,
in Sects. 5, 6, 7, we will choose a positive number δ < λ1/100 and use eδr as the
weight function.

Definition 2.7 (Rational elliptic surface) Let F , G be two linearly independent cubic
homogenous polynomials on CP

2. {F = 0} and {G = 0} intersect at 9 points with
multiplicity. Let M̄ be the blow up ofCP

2 on these 9 points, if needed repeatedly. Then
z = F/G is a well-definedmeromorphic function on M̄ whose generic fiber has genus
1. (M̄, z) is called the rational elliptic surface. It is well known that it has a global
section σ corresponding to any exceptional curve in the blowing up construction.

Definition 2.8 (Holomorphic radius) The largest γ satisfying the following conditions
is called the C1,α-holomorphic radius at p:

There exist holomorphic coordinates z j on B(p, γ ) such that

1

2
δi j̄ ≤ gi j̄ ≤ 2δi j̄

and

γ 1+α||gi j̄ ||C1,α ≤ 1.

Definition 2.9 χ is a smooth cut-off function from (−∞,+∞) to [0, 1] such that
χ ≡ 1 on (−∞,− 1

2 ], χ ≡ 0 on [ 12 ,∞) and −2 < χ ′ ≤ 0.

Definition 2.10 In the ALG case, by Theorem 1.2, (after hyperkähler rotation) there
exists an I -holomorphic function z on M asymptotic to u1/β . The letter z in this paper
will always mean this function. r will always mean the function |z|β(1 − χ(|z|β −
1)) + χ(|z|β − 1). In the ALH case, the function r(1 − χ(r − R − 1)) can be well
defined on M . It is still denoted by r .

3 The topology of ALG and ALH gravitational instantons

In this section, we will study the topology of ALG and ALH gravitational instantons.
We start from the study of flat gravitational instantons:

Theorem 3.1 For gravitational instanton M, the following conditions are equivalent:
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Gravitational instantons with faster than quadratic curvature decay (III) 695

(1) M is flat;
(2) M has trivial holonomy;
(3) M splits as R

4−k × T
k , k = 0, 1, 2, 3.

Proof By the arguments in the proof of Theorem 3.4 in our first paper [12], it is easy to
see that any flat gravitational instanton M must have trivial holonomy. It is well known
that M is isometric to the Euclidean space quotient by covering transforms. However,
since the holonomy is trivial, any covering transform must be a pure translation.
Therefore, M is isometric to the product of the Euclidean space with a flat torus.
Conversely, it is trivial that (2) or (3) implies (1). ��

Therefore, as mentioned in the introduction, we will assume that any gravitational
instanton is non-flat.

Theorem 3.2 The first betti number of any ALG or ALH gravitational instanton must
be 0. Moreover, in the ALG case, D can not be regular.

Proof In the ALH case, Melrose’s theory [37] works. In particular, the first coho-
mology group H1(M, R) is a subspace of the space of bounded harmonic 1-forms
[37]. By Weitzenböck formula, any bounded (d∗d + dd∗)-harmonic 1-form φ is also
∇∗∇-harmonic. By Melrose’s theory, ∇φ decays exponentially. After integration by
parts,

∫

M
|∇φ|2χ(r − R) ≤

∫

M
|∇φ||∇χ(r − R)| → 0,

as R → ∞. Therefore, φ is a parallel 1-form. If it is nonzero, the holonomy group
must be trivial since the action of Sp(1) is free on R

4\{0}. It contradicts the non-flat
assumption.

In the ALG case, (after hyperkähler rotation) if D is regular, i.e. if β = 1, the
I -holomorphic function z on M is asymptotic to the function u on E . ∇du = 0 on E ,
so when we go through the construction of z in our first paper [12], it is easy to see
that |∇dz| = O(r−1−ε) for any small enough ε. So

∫

M
|∇dz|2χ

( r

2R
− 1

)

≤
∫

M
|∇dz||∇χ

( r

2R
− 1

)

| → 0,

as R → ∞. As before, it contradicts the non-flat assumption.
Therefore β < 1. Inspired by Lemma 6.11 of [37] ,we define

f (r) =
(
1

r
+ 1

4R
χ

(
2R

r
− 3

2

))−1

.

Then f is increasing. f (r) = r when r ≤ R and limr→∞ f (r) = 4R. Let u = reiθ .
The map F(reiθ , v) = ( f (r)eiθ , v) on M is homotopic to the identity. Therefore, any
smooth closed 1-form φ is cohomologous to F∗φ. It is easy to see that F∗φ = O(r).
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By Theorem 4.12 of [12], for any small positive ε, there exists a smooth 1-form ψ

such that
∫

M
|ψ |2r−8−ε + |∇ψ |2r−6−ε + |∇2ψ |2r−4−ε < ∞

and

F∗φ = dd∗ψ + d∗dψ.

Since F∗φ is closed, it is easy to see that d∗dψ is a closed harmonic 1-form.
Similar to Theorem 4.6 of [13], the leading term of d∗dψ can be written as auδdu+

būδdū for some δ ≤ 1. To make it well-defined, (δ + 1)β must be an integer. The first
available choice is δ = 1/β − 1 if β ≥ 1/2 or δ = −1 if β < 1/2. In the first case,
d∗dψ − aβdz − bβdz̄ is a much smaller closed harmonic 1-form on M . Its order is
also at most r−1. However, by maximal principle and the Ricci flatness, any decaying
harmonic 1-form on M must be 0. In conclusion, φ must be exact. In other words,
H1(M) = 0 for any ALG gravitational instanton. ��
Theorem 3.3 M̄ is a rational elliptic surface.

Proof Choose a tubular neighborhood T of D. Then M̄ = M∪T . TheMayer-Vietoris
sequence is

H0(M) ⊕ H0(T ) → H0(M ∩ T ) → H1(M̄) → H1(M) ⊕ H1(T ).

The first map is surjective, so the second map is 0. So the third map is injective.
Notice that H1(T ) = H1(D) = 0 because D is of type I∗0, II, II∗, III, III∗, IV, or IV∗.
H1(M) also vanishes by Theorem 3.2. So H1(M̄) = 0.

A careful examination of our construction of M̄ in [12] and Kodaira’s paper [28,29]
yields that ω+ can be extended to a meromorphic 2-form on M̄ with a pole D. In other
words, D is the anti-canonical divisor of M̄ . Since D is homologous to another fiber of
z, the self intersection number of D is 0. In otherwords c21(M̄) = c21(−K ) = [D]2 = 0.
It is also very easy to see that H0(M̄,mK ) = 0 for any m > 0. In particular the
geometric genus pg = dimH0(M̄, K ) = 0.

By Kodaira’s classification of complex surfaces [30], since the first betti number
of M̄ is even and pg = 0, M̄ must be algebraic. By Castelnuovo theorem, M̄ must
be rational because H0,1(M̄) = H0(M̄, 2K ) = 0. By Kodaira’s Equation 13 in [30],
c21+dimH0,1+b− = 10pg+9. So b− = 9. By Theorem 3 of [30], b+ = 1+2pg = 1.
Therefore the second betti number b2 of M̄ equals to 10. It is standard [40] to prove
that (M̄, z) is a rational elliptic surface defined in Definition 2.7. ��
Theorem 3.4 Given any ALH gravitational instantons M, there exists a diffeomor-
phism from the minimal resolution of (R × T

3)/Z2 to M whose restriction on
[R,∞) × T

3 is � in Definition 2.6.

Proof The divisor D is smooth by our construction of the compactification. So for
any small enough deformation in the coefficients of F and G, the diffeomorphism
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type of M = M̄\D is invariant. For generic choice of coefficients of F and G,
{G = 0} is smooth and {F = 0} intersects {G = 0} in distinct points. Since the non-
generic parameters have real codimension 2, generic points can be connected by paths
inside the set of generic points. Therefore, it is easy to see that any ALH gravitational
instantons are diffeomorphic to each other. In particular, they are diffeomorphic to the
specific example ofBiquard andMinerbe [7] on theminimal resolution of (R×T

3)/Z2.
��

4 Classification of ALG gravitational instantons

In this section, we will slightly modify Hein’s result in [24] to get Theorem 1.4.
Let ω be any Kähler form on M̄ . Let a be the area of each regular fiber with respect

to ω. Recall that for any section σ ′ of z on �∗ = {|z|β ≥ R}, Hein [24] wrote down
some explicit formula of the semi-flat Calabi–Yau metric ωsf,a[σ ′] on M |�∗ whose
area of each regular fiber is also a:

Definition 4.1 [24] Using σ ′ as the zero section, M |�∗ is locally biholomorphic to

M |U = (U × C)/(z, v) ∼ (z, v + mτ1(z) + nτ2(z))

for some holomorphic functions τ1 and τ2. So locally, ω+ = g(z)dz ∧ dv for some
holomorphic function g : U → C. Then locally

ωsf,a[σ ′] = i |g|2 Im(τ̄1τ2)

a
dz ∧ dz̄ + i

2

a

Im(τ̄1τ2)
(dv − �dz)(dv̄ − �̄dz̄),

where

�(z, v) = 1

Im(τ̄1τ2)
(Im(τ̄1v)

dτ2
dz

− Im(τ̄2v)
dτ1
dz

).

It is easy to check that ωsf,a[σ ′] is actually a globally well-defined form.

After that, the following theorem is essential:

Theorem 4.2 There exist a real smooth polynomial growth function φ1 on M |�∗ and
a polynomial growth holomorphic section σ ′ of z over �∗ such that ωsf,a[σ ′] =
ω + i∂∂̄φ1.

Remark Compared to Hein’s Claim 1 in page 382 of [24], the key improvement in our
paper is that both σ ′ and φ1 grow at most polynomially.

Proof As Hein did in [24], there exists a real 1-form ζ on M |�∗ such that dζ =
ωsf,a[σ ]−ω. Choose themap F as in Theorem3.2. ByCartan’s formula, the homotopy
between F and the identity map implies that F∗ω − ω = dζ1 and F∗ωsf,a[σ ] −
ωsf,a[σ ] = dζ2 for some real polynomial growth 1-forms ζ1 and ζ2. However, dF∗ζ =

123



698 G. Chen, X. Chen

F∗ωsf,a[σ ] − F∗ω for some polynomial growth 1-form F∗ζ . In conclusion, we can
without loss of generality assume that ζ grows polynomially.

Using σ as the zero section, any section σ ′ of z can be written as v = σ ′(z) in local
coordinates. Hein calculated that there exists a real 1-form ζ̃ such that ωsf,a[σ ′] −
ωsf,a[σ ] = dζ̃ and the (0,1)-part ξ̃ of ζ̃ can be written as

ξ̃ = − i

2

a

Im(τ̄1τ2)

[

σ ′(z)(dv̄ − �̄(z, v)dz̄) − 1

2
�̄(z, σ ′(z))dz̄

]

.

Choose σ ′ so that i
2

a
Im(τ̄1τ2)

σ ′ equals to the average of the coefficient of dv̄ term of

the (0,1)-part ξ of ζ on each fiber. Then σ ′ and ξ̃ grow polynomially. Moreover, the
average of the coefficient of dv̄ term of ξ + ξ̃ on each fiber vanishes. So on each fiber,
ξ + ξ̃ can be written as i ∂̄φ2 by solving the ∂̄-equation on each fiber. It is easy to see
that φ2 also grows polynomially. So the (0,1)-form ξ + ξ̃ − i ∂̄φ2 can be written as
f (z, v)dz̄. However, it is ∂̄-closed, so f (z, v) = f (z). By solving the ∂̄-equation on
�∗, ξ + ξ̃ − i ∂̄φ2 = i ∂̄φ3 for some polynomial growth function φ3(z). In conclusion

ωsf,a[σ ′] − ω = d[i ∂̄(φ2 + φ3) − i∂(φ̄2 + φ̄3)] = i∂∂̄(φ2 + φ̄2 + φ3 + φ̄3).

��
Theorem 4.3 There exists a real smooth polynomial growth function φ4 such that
ω + i∂∂̄φ4 is ALG and

(ω + i∂∂̄φ4)
2 = 1

2
ω+ ∧ ω̄+

Remark Compared to Hein’s Theorem 1.3 of [24], the key improvements in our paper
are that φ4 grows polynomially and that we obtain 1

2ω
+ ∧ ω̄+ instead of α

2ω+ ∧ ω̄+
for large enough α.

Proof To achieve this, we still introduce a real positive bump function b onC supported
in {R ≤ |z|β ≤ 4R} such that b = 1 on {2R ≤ |z|β ≤ 3R}. The involution with the
Green function provides a real at most polynomial growth function φ5 on C such that
i∂∂̄φ5 = ib(z)dz ∧ dz̄.

Now let us look at the form ω + i∂∂̄((1 − χ( r
R − 5

2 ))φ1). It equals to ω when
r ≤ 2R and ωsf,a[σ ′] when r ≥ 3R. On the part 2R ≤ r ≤ 3R, this form may not be
positive. However, as Hein did in Claim 3 of [24],

ωt = ω + i∂∂̄

((

1 − χ

(
r

R
− 5

2

))

φ1 + tφ5

)

is positive for large enough t .
To achieve the integrability condition

∫

M (ω2
1 − 1

2ω
+ ∧ ω̄+) = 0, we start from

choosing large enough R and t such thatωsf,a[σ ′] is close enough to the standard ALG
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model i
2

a
Imτ

(dzβ ∧ dz̄β + dv ∧ dv̄) and
∫

M (ω2
t − 1

2ω
+ ∧ ω̄+) > 0. Then we consider

ωs,t = ωt − i

4

a

Imτ

(

1 − χ
( r

R
− 6

))

χ
( r

R
− s

)

β2|z|2β−2dz ∧ dz̄.

It is easy to see that for any s ≥ 5,ωs,t must be positive.What is more, since
∫

M (ω2
s,t −

1
2ω

+ ∧ ω̄+) decreases to negative infinity when s goes to infinity, by intermediate
value theorem, there exists s such that the integrability condition is achieved. By the
work of Tian–Yau [54], there exists a real smooth bounded function φ6 such that
(ωs,t + i∂∂̄φ6)

2 = 1
2ω

+ ∧ ω̄+. By Proposition 2.9 of [24], the solution ωs,t + i∂∂̄φ6
is actually ALG. ��

Thus, the first part of Theorem 1.4 has been proved. The second part is quite simple:

Theorem 4.4 Suppose there exist two ALG metrics ω j = ω + i∂∂̄φ j , j = 7, 8, satis-
fying ω2

7 = ω2
8 = 1

2ω
+ ∧ ω̄+, |∇m(ω7 − ω8)| = O(r−m−δ) and |φ j | = O(r N ) for all

j = 7, 8,m ≥ 0 and some δ, N > 0. Then ω7 = ω8.

Proof It is easy to see that ω̃ = ω+ i∂∂̄(φ7+φ8)/2 also defines a Kähler metric which
is asymptotic to the standard ALG model. Since ω̃ ∧ i∂∂̄(φ7 − φ8) = 0, φ7 − φ8 is
harmonic with respect to ω̃. By Theorem 4.13 of [12], it is asymptotic to anzn + bn z̄n

for some constants an and bn . The difference has smaller order. Repeat the procedure
until the order is smaller than 0. The maximal principle implies that the difference is
0. In other words,

φ7 − φ8 =
n

∑

k=0

akz
k + bk z̄

k .

��
Theorem 4.5 The third part of Theorem 1.4 holds.

Proof Let (M, ωALG, ω2, ω3) be the ALG gravitational instanton in the third part
of Theorem 1.4. Let a be the area of each regular fiber with respect to ωALG. Now
pick a Kähler metric ω0 on M̄ whose area of each regular fiber is a. Then ωsf,a[σ ′] =
ω0+ i∂∂̄φ9 for some holomorphic section σ ′ on {|z|β ≥ R} and some real function φ9.
It is easy to see that Theorem 4.2 also holds forωALG, i.e.ωsf,a[σ ′′] = ωALG+ i∂∂̄φ10
for some holomorphic section σ ′′ on {|z|β ≥ R}.

When D is of type I∗0, II, III, or IV, i.e. β ≤ 1/2, our goal is to show that the action
T (z, v) = (z, v + σ ′′(z) − σ ′(z)) as well as its inverse can be extended across D. If
it is true, then

ωALG = ωsf,a[σ ′′] − i∂∂̄φ10 = (T−1)∗ωsf,a[σ ′] − i∂∂̄φ10 = (T−1)∗ω0 − i∂∂̄φ11.

So ω = ωALG + i∂∂̄((1 − χ( r
R − 5

2 ))φ11 + tφ5) will be the required Kähler form on
M̄ for large enough t .
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To understand the structure near D, we start from the elliptic surface over � =
{|ũ| ≤ R−1} constructed by (� × C)/(ũ, v) ∼ (ũ, v + mτ1(ũ) + nτ2(ũ)). Take the
quotient by (ũ, v) ∼ (e2π iβ ũ, e2π iβv), then there are several orbifold points in the
central fiber. AsKodaira did in [28,29], those orbifold points can be resolved by replac-
ing the neighborhoods by the non-singular models N+m constructed in page 583 of
[28,29]. Then blow down exceptional curves if they exist. M |�∗ ∪D is biholomorphic
to such model by the relationship z = u1/β = z̃−1 = ũ−1/β .

In those coordinates, if T is given by T (ũ, v) = (ũ, v + f (ũ)ũ), then by the
proof of Theorem 4.2, i

2
a f (ũ)ũ
Im(τ̄1τ2)

will be the average of the coefficient of dv̄ term of
the (0,1)-part ξ of ζ on each fiber, where ζ is a real smooth polynomial growth 1-
form satisfying dζ = ωsf,a[σ ′] − ωALG. By Main Theorem 1 of [13], the difference
between the two ALG metrics ωALG and ωsf,a[σ ′] is bounded by |u|−2. By Theorem
4.4 of [13], ζ = (d∗d + dd∗)ψ1 and ωsf,a[σ ′] − ωALG = (d∗d + dd∗)ψ2 for some
ψ1 and ψ2 on M |�∗ . So (d∗d + dd∗)(d∗dψ1 − d∗ψ2) = 0. Therefore, the leading
term of d∗dψ1 − d∗ψ2 must be the linear combinations of uδdu, ūδdu, uδdv, ūδdv
and their conjugates. However, d(d∗dψ1 − d∗ψ2) = d∗dψ2 has small order. So if
δ is large, the leading term of d∗dψ1 − d∗ψ2 must be the linear combinations of
uδdu and its conjugate. However, such kind of term can be written as the linear
combinations of dzm and its conjugate for some integer m. We can then subtract the
leading term from d∗dψ1 − d∗ψ2 and repeat the process. Finally, it is easy to see that
f (z̃) = f (ũ) is bounded by |z̃|−ε for any small positive ε. By removal of singularity
theorem of holomorphic functions on the punctured disc �∗, f (z̃) can be extended to
a holomorphic function on �.

Therefore, the inducedmap of T on the resolution is holomorphic outside the central
curves in N+m and continuous across those curves. By removal of singularity theorem,
it can be extended holomorphically. Then, in the blow down procedure, the induced
map is holomorphic outside the blow down of the exceptional curves. By Hartog’s
theorem, it can be extended on M̄|�. Similarly, T−1 can also be extended.

When D is of type II∗, III∗, IV∗, i.e. 1/2 < β < 1, the arguments above fail
because the meromorphic function f may have a pole at {z̃ = 0} corresponding to the
term u1/β−2du ∧ dv̄ in the difference ωsf,a[σ ′] − ωALG. However, recall that in [12],
we used the section σ as zero section to compactify M into M̄ . If we use the section
σ +σ ′′−σ ′ instead, then wemay get a different M̄ . For this new choice of M̄ , the form
ωsf,a[σ ′′]+ i∂∂̄φ12 = ωALG + i∂∂̄φ13 is a smooth Kähler form on M̄ ∩{|z̃| ≤ R−1/β}
for some real smooth polynomial growth functions φ12, φ13 on M ∩ {|z̃| ≤ R−1/β}.
So ω = ωALG + i∂∂̄((1 − χ( r

R − 5
2 ))φ13 + tφ5) will be the required Kähler form on

the new choice of M̄ for large enough t . ��

5 Gluing of ALH gravitational instantons

In this section, we will prove that the gluing of any ALH gravitational instanton with
itself is a K3 surface. We learned this idea as well as some initial set-ups of the gluing
construction [19] from the lecture of Sir Simon Donaldson in the spring of 2015 at
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Stony Brook University. We will also construct a counterexample of ALG Torelli
Theorem when D is of type II∗, III∗, or IV∗.

We will use the notations of Kovalev and Singer [31] in order to apply their results.
Pick two copies of M . Define t1 = r on the first copy M1. Define t2 = −r on the
second copy M2. For any gluing parameters (ρ,�) ∈ [R + 8,∞) × T

3, the gluing
manifold Mρ,� is defined by truncating the two manifolds at t j = ±ρ and identifying
the boundary points (ρ, θ) ∈ M1 with the points (−ρ,� − θ) ∈ M2. On Mρ,�, the
function t is defined by t = t1 − ρ = t2 + ρ. The picture can be found in page 10 of
[31].

Our metric on Mρ,� is slightly different from [31]. In fact, there are three Kähler
forms ω1, ω2 and ω3 on M . The closed forms

ωi − ωi
flat = aij (r , θ)dr ∧ dθ j + bijk(r , θ)dθ j ∧ dθk

are very small on {ρ − 1 ≤ r ≤ ρ + 1} by Definition 2.6. Now define

φi =
[∫ r

ρ

aij (s, θ)ds

]

dθ j .

Then

dφi = aij (r , θ)dr ∧ dθ j +
[∫ r

ρ

∂

∂θk
aij (s, θ)ds

]

dθk ∧ dθ j

= aij (r , θ)dr ∧ dθ j +
[∫ r

ρ

∂

∂r
bijk(s, θ)ds

]

dθ j ∧ dθk

= aij (r , θ)dr ∧ dθ j + bijk(r , θ)dθ j ∧ dθk − bijk(ρ, θ)dθ j ∧ dθk .

Therefore

ωi − ωi
flat = dφi + bijk(ρ, θ)dθ j ∧ dθk

are cohomologous to the forms bijk(ρ, θ)dθ j ∧ dθk on T
3.

Notice that any closed form on T
3 can be cohomologous to a form with constant

coefficients and any 2-form with constant coefficients is invariant under the map θ →
� − θ . Therefore, when we glue the part {ρ − 1 ≤ t1 ≤ ρ + 1} on M1 with the part
{ρ − 1 ≤ −t2 ≤ ρ + 1} on M2, the difference ωi

M2
− ωi

M1
= dψ i for some small ψ i .

Now define the forms ωi
ρ,� on Mρ,� by

ωi
ρ,� = ωi

M1
+ d((1 − χ(t))ψ i ) = ωi

M2
− d(χ(t)ψ i ).

Then ωi
ρ,� are three closed forms and |∇m(ωi

ρ,� − ωi
M j

)| = O(e−λ1ρ) for all m ≥ 0.

Now we can call the linear span of ωi
ρ,� the “self-dual” space. The orthogonal

complement of the “self-dual” space under wedge product is called the “anti-self-
dual” space. These two spaces determine a star operator. It is well known that the
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star operator determines a conformal class of metrics. The the conformal factor is
determined by requiring the volume form to be 1

2 (det(ω
i
ρ,� ∧ω

j
ρ,�))1/3. The resulting

metric is called gρ,�. It is slightly different from [31], but it satisfies all the properties
needed in [31].

Now we define three operators on the space of self-dual 2-forms by

P1φ = e−δt1(d∗d + dd∗)(eδt1φ),

P2φ = e−δt2(d∗d + dd∗)(eδt2φ),

and

Pρ,�φ = e−δt (d∗d + dd∗)(eδtφ),

where δ < λ1/100 is a small positive number. It is easy to prove the following theorem:

Theorem 5.1 (1) P1, P2, Pρ,� are Fredholm operators from Wk+2,2 to Wk,2 for any
k ≥ 0. In other words, the kernels are finite dimensional and the cokernels, i.e. the
kernels of P∗

1 , P∗
2 , P∗

ρ,� arealsofinite dimensional. The range is the L2-orthogonal

complement of the cokernel. The operator from the L2-orthogonal complement of
the kernel to the range is an isomorphism.

(2) ker P1 = span{e−δt1ωi }, cokerP1 = {0},
ker P2 = {0}, cokerP1 = span{eδt2ωi },
span{e−δtωi

ρ,�} ⊂ ker Pρ,�, span{eδtωi
ρ,�} ⊂ cokerPρ,�.

Proof The first part was proved by Lockhart and McOwen in [34]. As for the second
part, on anyKählermanifoldwithKähler formω, define the operator L by Lφ = φ∧ω.
Then by Kähler identities, [L, ∂̄] = 0 and [L, ∂̄∗] = −i∂ . Therefore

[L, d∗d + dd∗] = 2[L, ∂̄∗∂̄ + ∂̄ ∂̄∗] = 2[L, ∂̄∗]∂̄ + 2∂̄[L, ∂̄∗] = −2i(∂∂̄ + ∂̄∂) = 0.

In particular for any function f ,

(d∗d + dd∗)( f ω) = (−� f )ω,

where � f = −(d∗d + dd∗) f is the ordinary Laplacian operator on functions. On
hyperkähler manifolds M1 and M2, there are three Kähler structures I , J and K .
Therefore,

3
∑

i=1

(d∗d + dd∗)( fiωi ) = −
3

∑

i=1

(� fi )ω
i .

In other words, the Laplacian on the self-dual forms is exactly the Laplacian on the
coefficients. On Mρ,�, even though the metric is not hyperkähler, ωi

ρ,� are still har-
monic since they are closed self-dual forms. The second part follows directly from the
two facts above. ��
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The most important result of [31] is the following theorem: (Proposition 4.2 in their
paper)

Theorem 5.2 There exists ρ∗ > 0 such that for all ρ ≥ ρ∗, the induced map P ′′
ρ,� from

the L2-orthogonal complement of span{χ(t1 − ρ/2)e−δt1ωi
ρ,�} in Wk+2,2 to the L2-

orthogonal complement of span{χ(−t2 − ρ/2)eδt2ωi
ρ,�} in Wk,2 is an isomorphism

and the operator norm of [P ′′
ρ,�]−1 is bounded independent of ρ and �.

It is easy to prove the following lemmas in functional analysis:

Lemma 5.3 (1) Suppose V = span{v1, . . . , vm} is a finite dimensional subspace in
Wk,2 for some k ≥ 0. Let V⊥ be the L2-orthogonal complement of V in Wk,2,
then Wk,2 = V ⊕ V⊥ and

|| f + g||Wk,2 ≤ || f ||Wk,2 + ||g||Wk,2 ≤ (1 + 2C1)|| f + g||Wk,2

for all f ∈ V and g ∈ V⊥, where C1 = sup f ∈V \{0}
|| f ||Wk,2

|| f ||L2 .

(2) Suppose W = span{w1, . . . , wm} is another subspace. Let ai j = (wi , v j )L2 .
If the matrix A = {ai j } is invertible with A−1 = {ai j }, then the composition
of the inclusion and the projection maps P = ProjW⊥ ◦ i : V⊥ → W⊥ is an
isomorphism. What is more

(1 + C2)
−1||P f ||Wk,2 ≤ || f ||Wk,2 ≤ C3||P f ||Wk,2 ,

where

C2 = sup
f ∈W\{0}

|| f ||Wk,2

|| f ||L2
,C3 = 1 + C(m)||A−1||max ||vi ||L2 max ||w j ||Wk,2 .

Proof The proof is quite obvious. The only thing to notice is that

P−1 f = f −
m

∑

i, j=1

ai j ( f , vi )L2w j .

��
The following corollary of Theorem 5.2 and Lemma 5.3 provides the main estimate

of this section:

Corollary 5.4 There exists ρ∗ > 0 such that for all ρ ≥ ρ∗, the space of harmonic
self-dual 2-forms on Mρ,� equals to H+ = span{ωi

ρ,�}. The Laplacian operator

�ρ,θ = d∗d + dd∗ from the L2-orthogonal complement ofH+ in Wk+2,2(	+) to the
L2-orthogonal complement of H+ in Wk,2(	+) is an isomorphism and the operator
norm of Gρ,θ = �−1

ρ,θ is bounded by Ce2δρ for some constant C independent of ρ and
�.
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Proof The isomorphismmap in Theorem 5.2 can be decomposed into the composition
of following maps:

(χ(t1 − ρ/2)e−δt1ωi
ρ,�)⊥ → (e−δtωi

ρ,�)⊥ → (ker Pρ,�)⊥

→ (cokerPρ,�)⊥ → (eδtωi
ρ,�)⊥ → (χ(−t2 − ρ/2)eδt2ωi

ρ,�)⊥.

The first and the fifth maps are isomorphisms by Lemma 5.3. Therefore, the sec-
ond map must be injective and the fourth map must be surjective. In other words,
ker Pρ,� = span{e−δtωi

ρ,�} and cokerPρ,� = span{eδtωi
ρ,�}. So all the maps are

actually isomorphisms. By Theorem 5.2 and Lemma 5.3, the operator norm of the
inverse of the map Pρ,� : (ker Pρ,�)⊥ → (cokerPρ,�)⊥ is bounded. It is straight
forward to switch this estimate into the estimate of the Laplacian operator. ��

We are ready for the main theorem of this section:

Theorem 5.5 Fix k ≥ 3. For large enough ρ∗ and any ρ ≥ ρ∗, there exists a hyperkäh-
ler structure ω̃i

ρ,� on Mρ,� such that ||ω̃i
ρ,� − ωi

ρ,�||Wk,2 ≤ Ce(−λ1+2δ)ρ for some
constant C independent of ρ and �.

Proof Fix the volume form V = 1
2 det(ω

i
ρ,� ∧ω

j
ρ,�)1/3 on Mρ,�. When two symmet-

ric matrices A = ωi
ρ,�∧ω

j
ρ,�

2V and B are close enough to the identity matrix, the equation

CACT = B has a solution C = B1/2A−1/2. Define Fi (B) by Fi (B) = Ci jω
j
ρ,�.

Then Fi (B) ∧ F j (B) = 2bi j V .
Recall that the map Gρ,� on (H+)⊥ ⊂ 	+ satisfies

ψ = (d∗d + dd∗)Gρ,�ψ = −(∗d ∗ d + d ∗ d∗)Gρ,�ψ

= −(∗ + Id)d ∗ dGρ,�ψ = d+(−2 ∗ dGρ,�ψ).

So if φi ∈ 	1 satisfy the equation

φi = −2 ∗ dGρ,�Proj(H+)⊥F
i
(

δαβ − d−φα ∧ d−φβ

2V

)

,

then the closed forms ω̃i
ρ,� = dφi + ProjH+Fi (δαβ − d−φα∧d−φβ

2V ) will satisfy the

required equation ω̃i
ρ,� ∧ ω̃

j
ρ,� = 2δi j V .

We will solve the equation by iterations

φi
0 = 0,

φi
n+1 = −2 ∗ dGρ,�Proj(H+)⊥F

i

(

δαβ − d−φα
n ∧ d−φ

β
n

2V

)

.
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Since Wk,2 embeds into C0, if ||φi
n||Wk+1,2 ≤ e−λ1ρ/2 and ρ ≥ ρ∗, then

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

ωi
ρ,� ∧ ω

j
ρ,�

2V
− δi j

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
C0

+
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

d−φi
n ∧ d−φ

j
n

2V

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
C0

≤ Ce−λ1ρ

can be arbitrarily small if ρ∗ is large. So

||φi
n+1||Wk+1,2 ≤ Ce2δρ

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Proj(H+)⊥F

i

(

δαβ − d−φα
n ∧ d−φ

β
n

2V

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Wk,2

≤ Ce(−λ1+2δ)ρ .

As long as ρ∗ is large enough, the above estimate holds by induction. It follows that

||φi
n+2 − φi

n+1||Wk+1,2 ≤ Ce(−λ1+4δ)ρ ||φi
n+1 − φi

n||Wk+1,2 .

As long as ρ∗ is large enough, φi = limn→∞ φi
n will be the solution. ��

Corollary 5.6 For any ALH gravitational instanton M,
∫

M |Rm|2 = 96π2.

Proof It is easy to deduce this conclusion from the well known fact that for K3 surface
Mρ,�,

∫

Mρ,�
|Rm(ω̃i

ρ,�)|2 = 8π2χ(Mρ,�) = 192π2. ��
Theorem 5.7 Suppose αi are three 2-forms satisfying the following conditions:

(1)

∫

Mρ,�

α2 ∧ α3 =
∫

Mρ,�

α3 ∧ α1 =
∫

Mρ,�

α1 ∧ α2 = 0,

∫

Mρ,�

α1 ∧ α1 =
∫

Mρ,�

α2 ∧ α2 =
∫

Mρ,�

α3 ∧ α3;

(2)

||αi − ω̃i
ρ,�||L2 ≤ e−3λ1ρ/4.

Then there exists a hyperkähler structure ωi on Mρ,� such that ωi ∈ [αi ] and
||ωi − ω̃i

ρ,�||Wk,2 ≤ Ce2δρ ||αi − ω̃i
ρ,�||L2 .

Proof Using ω̃i
ρ,� as the background hyperkähler structure, we can choose harmonic

representatives β i from the cohomology classes [αi ]. Therefore,

C−1||β i − ω̃i
ρ,�||Wk,2 ≤ ||β i − ω̃i

ρ,�||L2 ≤ ||αi − ω̃i
ρ,�||L2 ≤ e−3λ1ρ/4.

After replacing ωi
ρ,� by β i in the proof of Theorem 5.5, we can find a hyperkähler

structure ωi
0 such that span{[ωi

0]} = span{[αi ]}. By the condition (1) of αi , the hyper-
kähler structure ωi can be chosen to be some rescaling and hyperkähler rotation of
ωi
0. ��
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Nowwe will use the method in this section to construct a counterexample of Torelli
Theorem in ALG case:

Theorem 5.8 When D is of type II∗, III∗, or IV∗, there exist two different ALG gravi-
tational instantons with same [ωi ].
Proof In Example 3.1 of [24], Hein explains how the pairs (IV, IV∗) occur in rational
elliptic surfaces M̄ birational to (P1 × T

2)/� with � = Z3. Let D be the fiber of type
IV∗. Then, the construction in [24] provides an ALG gravitational instanton ωi on

M = M̄\D. Moreover, the asymptotic rate is 2+ 1
β
. In particular, |Rm| = O(r− 1

β
−4

).
There is a similar example when D is of type II∗ or III∗.

By Theorem 4.12 of [12], there exists a harmonic (0,1) form h on M asymptotic to
1

1
β
−1

u1/β−1dv̄. So d(Reh) is an exact harmonic form asymptotic toRe(u1/β−2du∧dv̄).

Moreover, it is anti-self-dual because the coefficients of its self-dual part are decaying
harmonic and thus 0.

Let us use the notations in [12]. For example,

||φ||H2
δ

=
√

∫

M
|φ|2r δdVol +

∫

M
|∇φ|2r δ+2dVol +

∫

M
|∇2φ|2r δ+4dVol.

Then by Theorem 4.12 of [12], for k ≥ 5 and small positive ε, there exists a map
G : Hk

6− 4
β
−ε

(	+) → Hk+2
2− 4

β
−ε

(	+) such that ψ = (d∗d + dd∗)Gψ . We still define

Fi : �(R3×3) → 	+ as in Theorem 5.5 so that Fi (B) ∧ F j (B) = 2bi j V . Then we
do the iteration

φ1
0 = φ3

0 = 0, φ2
0 = tReh,

φi
n+1 = −2 ∗ dG

(

Fi

(

δαβ − d−φα
n ∧ d−φ

β
n

2V

)

− ωi

)

+ δi2tReh

When t is small enough, (φ1
n , φ

2
n − tReh, φ3

n) → (φ1, φ2 − tReh, φ3) ∈ Hk+1
4− 4

β
−ε

.

Then ωi + dφi will be an ALG gravitational instanton. By direct computation, the

curvature of the metric corresponding to (J , ω2 + td(Reh)) is proportional to r
1
β
−4.

It is also true for the metric corresponding to ωi + dφi because their difference is in
Hk
6− 4

β
−ε

. In particular, the metric corresponding to ωi + dφi is not isometric to the

metric corresponding to ωi . ��

6 Uniqueness of ALH gravitational instantons

In this section, we will prove the uniqueness part of Theorem 1.5. We start from the
understanding of the cross section:

Theorem 6.1 The integrals of ωi on the three faces determine the torus T
3.
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Proof On the flat model, recall that

dr = I ∗dθ1 = J ∗dθ2 = K ∗dθ3.

So

ω1 = dr ∧ dθ1 + dθ2 ∧ dθ3,

ω2 = dr ∧ dθ2 + dθ3 ∧ dθ1,

ω3 = dr ∧ dθ3 + dθ1 ∧ dθ2.

The torus T
3 = R

3/	 is determined by the lattice 	 = Zv1 ⊕ Zv2 ⊕ Zv3. Let vi j be
the ∂

∂θ j components of vi . Then

⎛

⎝

f123 f131 f112
f223 f231 f212
f323 f331 f312

⎞

⎠

equals to

⎛

⎝

v22v33 − v23v32 v32v13 − v33v12 v12v23 − v13v22
v23v31 − v21v33 v33v11 − v31v13 v13v21 − v11v23
v21v32 − v22v31 v31v12 − v32v11 v11v22 − v12v21

⎞

⎠ .

It is exactly the adjunct matrix adj(A) of

A =
⎛

⎝

v11 v12 v13
v21 v22 v23
v31 v32 v33

⎞

⎠ .

Since adj(A)A = det(A)I , it is easy to see that det(adj(A)) = (det(A))2. Thus,
A = (det(adj(A)))−1/2adj(adj(A)) is determined by adj(A). On M , the hyperkähler
structure is asymptotic to the flat model. So we can get the same conclusion. ��
Theorem 6.2 ALH gravitational instantons are uniquely determined by their three
Kähler classes [ωi ] up to tri-holomorphic isometry which induces identity on
H2(M, Z).

Proof Suppose two ALH hyperkähler structures ωk,i , k = 1, 2 on M satisfy [ω1,i ] =
[ω2,i ]. By the results in the previous section, we have two families of K3 surfaces
(Mρk ,�k , ω̃

k,i
ρk ,�k

). To understand the relationship between M and Mρk ,�k , let us start

from the flat orbifold (R × T
3)/Z2. Take two copies of it. On the first copy, define

t1 = r . On the second copy, define t2 = −r . Now we glue them by truncating the
two manifolds at t j = ±ρ and identifying the boundary points (ρ, θ) with the points
(−ρ,� − θ). An alternating way to describe the gluing is to start from [0, 2ρ] × T

3,
and then identify (0, θ) with (0,−θ) and identify (2ρ, θ) with (2ρ, 2� − θ). Let
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708 G. Chen, X. Chen

T
4 = (R × T

3)/Z(4ρ, 2�). Then it is easy to see that the gluing is actually the
orbifold T

4/Z2.
The resolution of this picture provides the topological picture of the construction

of Mρk ,�k . The second homology group H2(Mρk ,�k , R) = R
22 is generated by 16

curves 
α corresponding to 16 orbifold points, 3 faces Fαβ spanned by vα and vβ and
3 faces Fα spanned by (4ρ, 2�) and (0, vα). Any hyperkähler structure ωi on the K3
surface determines 48 integrals ciα on 
α , 9 integrals fiαβ on Fαβ and 9 integrals fiα
on Fα . The integrability condition

∫

M ωi ∧ ω j = 2δi j V is equivalent to

−1

2

16
∑

α=1

ciαc jα + 1

2

∑

(α,β,γ )=(1,2,3),(2,3,1),(3,1,2)

fiα f jβγ + f jα fiβγ = 2δi j V .

If ciα , fiαβ are given, it is a rank 5 linear system in 9 variables fiα .

By the construction of ω̃
k,i
ρk ,�k

on Mρk ,�k , the differences c
1,ρ1,�1
iα − c2,ρ2,�2

iα and

f 1,ρ1,�1
iαβ − f 2,ρ2,�2

iαβ are all bounded by Ce(−λ1+2δ)ρ1 +Ce(−λ1+2δ)ρ2 for large enough

ρk . However f
1,ρ1,�1
iα − f 2,ρ2,�2

iα may be very large. Fortunately, we are free to change
the 8 parameters ρk,�k . When ρk and �k are changed by adding δρk and δ�k ,
the integrals f k,ρk ,�k

iα are changed by adding the almost linear terms L(δρk, δ�k) +
O(e(−λ1+3δ)ρ1 + e(−λ1+3δ)ρ2), where

L(δρk, δ�k) = 4δρk

(

vα,
∂

∂θ i

)

+ 2

(

δ�k × vα,
∂

∂θ i

)

are determined by the cross section R
3/(Zv1 ⊕ Zv2 ⊕ Zv3), δρk and δ�k . The image

of L is exactly the linear space

⎧

⎨

⎩
( fiα)|∃Cs.t.

∑

(α,β,γ )=(1,2,3),(2,3,1),(3,1,2)

fiα f jβγ + f jα fiβγ = 2δi jC

⎫

⎬

⎭
,

where fiαβ = (vα × vβ, ∂
∂θ i

). Therefore, after increasing the gluing parameters ρ1 or
ρ2 and changing the parameters �k ,

min
φ∈

[

ω̃
1,i
ρ1,�1

−ω̃
2,i
ρ2,�2

] ||φ||L2 ≤ Ce(−λ1+4δ)ρ1 + Ce(−λ1+4δ)ρ2 .

By Theorem 5.7, there exists a hyperkähler structureωi on Mρ2,�2 such that [ωi ] =
[ω̃1,i

ρ1,�1
] and ||ωi − ω̃

2,i
ρ2,�2

||Wk,2 ≤ Ce(−λ1+6δ)ρ1 + Ce(−λ1+6δ)ρ2 . By Theorem 1.6,

ωi and ω̃
1,i
ρ1,�1

are tri-holomorphically isometric to each other. Moreover the isometry
induces identity on H2(Mρk ,�k , Z). Notice that the long neck regions are almost flat
but by Corollary 5.6, the compact parts are not flat. So all the isometrics must map
compact parts to compact parts. In particular, we can apply the Arzela–Ascoli theorem
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and the diagonal argument to get a limiting tri-holomorphic isometry on the original
manifold M which induces identity on H2(M, Z) when ρk go to infinity. ��
Theorem 6.3 The Kähler classes [ωi ] satisfy the two conditions in Theorem 1.5.

Proof The first condition is a trivial consequence of det(adj(A)) = (det(A))2 and
det(A) 	= 0 in the proof of Theorem 6.1. As for the second condition, any ALH gravi-
tational instanton M can be glued with itself to obtain a K3 surface. By Theorem 5.7,
we can modify the hyperkähler metric on the K3 surface so that the integrals of ωi on
the 11 cycles are unchanged in the gluing process. For any [
] ∈ H2(M, Z) such that
[
]2 = −2, we can find a corresponding element in the second homology group of the
K3 surface. By Theorem 1.6, there exists i such that [ωi ][
] 	= 0. Since the integrals
of ωi on the K3 surface are the same as the integrals on M , the second condition must
be satisfied. ��

7 Existence of ALH gravitational instantons

In this section, we will use the continuity method to prove the existence part of The-
orem 1.5. Given any three classes [αi

1] satisfying two conditions in Theorem 1.5, the
cross section T

3 is determined by Theorem 6.1. By the work of Biquard and Minerbe

[7], there exists an ALH hyperkähler structure ωi
0 on

˜(R × T3)/Z2. Now we are going
to connect [αi

1] with [αi
0] = [ωi

0]. We require that along the path, the cross section T
3,

i.e. the integrals on the faces Fjk are invariant.
We already know that for any k = 0, 1, any [
] ∈ H2(M, Z) with [
]2 = −2,

there exists i ∈ {1, 2, 3} with [αi
k][
] 	= 0. After a hyperkähler rotation, we can

assume that [αi
k][
] 	= 0 for any k = 0, 1, any i = 1, 2, 3 and any [
] ∈ H2(M, Z)

with [
]2 = −2.
Now we can connect [αi

0] with [αi
1] by several pieces of segments. Along each

segment, two of [αi ] are fixed while the remaining one is varying. We require that the
actions of the two fixed [αi ] on any [
] ∈ H2(M, Z) with [
]2 = −2 are nonzero.
Therefore along the path, the two conditions of Theorem 1.5 are always satisfied.

So we only need to consider each segment. Without loss of generality, we can
assume that there is only one segment and [α2], [α3] are fixed along the segment.
Actually, we can assume that I , ω2 and ω3 are invariant along the continuity path.
Only [α1], i.e. the I - Kähler class is varying. We denote the original ω1

0 ∈ [α1
0] by ω0.

We will use it as the background metric.
By Proposition 6.16 of [37], for ω0, the second cohomology group H2(M, R) is

naturally isomorphic to the space of bounded harmonic forms which are asymptotic
to the linear combinations of dθ2 ∧dθ3, dθ3 ∧dθ1 and dθ1 ∧dθ2. We only care about
the forms whose integrals on Fjk are 0. Such kind of forms must decay exponentially.
By the calculation in Theorem 5.1 and the maximal principle, the self-dual part of any
decaying harmonic form vanishes. It is well known that any anti-self-dual form must
be (1,1).

Thus, we can add linear combinations of those exponential decay anti-self-dual
harmonic forms to change the Kähler class. However, the integrability condition

123



710 G. Chen, X. Chen

∫

M ((α1)2 − (ω2)2) = 0 may not be satisfied. Fortunately, there is an exponential
decay exact form d((1−χ(r − R−2))I ∗dr) on M . Moreover, it is (1,1) since in local
coordinates

d((1 − χ(r − R − 2))I ∗dr) = d
(

(1 − χ(r − R − 2))
(

ir jdz
j − ir j̄dz̄

j
))

= −2i(1 − χ(r − R − 2))r j k̄dz
j ∧ dz̄k + 2iχ ′(r − R − 2)r jrk̄dz

j ∧ dz̄k .

If we add this term with α1, then

∫

M
(α1 + ad((1 − χ(r − R − 2))I ∗dr))2 − (α1)2 = 2a lim

R→∞

∫

r=R
I ∗dr ∧ α1.

The integral
∫

r=R I ∗dr ∧α1 on M converges to the term
∫

T3 −dθ1 ∧dθ2 ∧dθ3 on the
flatmodel, which is non-zero. Sowe can choose a suitable a to achieve the integrability
condition. We call the resulting (1,1) form αt . It satisfies the following conditions:

(1) For any m ≥ 0, ||eλ1r∇m
ω0

(αt − αT )||C0 converges to 0 when t goes to T . In
particular, ||eλ1r∇m

ω0
(αt − ω0)||C0 is uniformly bounded.

(2)
∫

M (α2
t − ω2

0) = 0.

Remark αt is positive in far enough region. However, it may not be positive in the
compact part. That is the reason why the geometric existence part of [23] fails.

Now define I as the set
{

t ∈ [0, 1]|∃φt s.t .∀m ≥ 0, |∇m
ω0

φt | = O(e−λ1r ), ωt = αt + i∂∂̄φt > 0, ω2
t = ω2

0

}

.

It is trivial that 0 ∈ I .

Theorem 7.1 I is open

Proof Suppose T ∈ I , then as long as t is close enough to T , αt + i∂∂̄φT is positive.
It satisfies the integrability condition

∫

M
((αt + i∂∂̄φT )2 − ω2

0) =
∫

M
((αt + i∂∂̄φT )2 − α2

t ) +
∫

M
(α2

t − ω2
0) = 0.

By Theorem 4.1 of [23], (αt + i∂∂̄φT + i∂∂̄φ)2 = ω2
0 has a solution φ. So t ∈ I with

φt = φT + φ. ��
Now we are going to show that I is closed. Assume that {ti } ∈ I converge to T . To

make the notation simpler, we will use αi , ωi and φi to denote αti , ωti and φti .
We start from an estimate:

Theorem 7.2

∫

M
(trω0ωi − 2)

ω2
0

2
≤ C .
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Moreover

∫

M
(trω j ωi − 2)

ω2
j

2
→ 0

as i, j → ∞.

Proof

∫

M
(trω0ωi − 2)

ω2
0

2
=

∫

M
ω0 ∧ ωi − ω2

0 =
∫

M
ω0 ∧ (αi − ω0) ≤ C .

Moreover

∫

M
(trω j ωi − 2)

ω2
j

2
=

∫

M
ω j ∧ ωi − ω2

j =
∫

M
α j ∧ (αi − α j ) → 0

as i, j → ∞. ��
Remark By mean inequality, both trω0ωi − 2 and trω j ωi − 2 are non-negative since
ω2
0 = ω2

i = ω2
j .

Theorem 7.3 Let UN be the sets {N ≤ r ≤ N + 1} in the sense of ω0. Then for all
large enough N, there exist subsets VNi ⊂ UN such that the volume Vol(VNi ) ≥
Vol(UN )/2 ≥ C and for any y1, y2 ∈ VNi , dωi (y1, y2) ≤ C1.

Proof It was proved by Demailly, Peternell and Schneider as Lemma 1.3 of [18] from
the bound in Theorem 7.2. ��

By the volume comparison theorem on Ricci flat manifolds, if we pick any point
pNi ∈ VNi , then the volume of radius R ball centered at pNi in the sense of ωi has a
uniform lower bound depending on R.

Theorem 7.4 For any fixed number R, the ωi -curvature in Bωi (pNi , R) is uniformly
bounded. Moreover, the ωi -holomorphic radius in Bωi (pNi , R) is uniformly bounded
below.

Proof Suppose on the contrary, the ωi -curvature goes to infinity. Then we can rescale
the metric so that the largest curvature equals to 1. By Theorem 4.7 of [11], the
volume lower bound and the curvature bound imply the lower bound on the injectivity
radius. Then, by Lemma 4.3 of [46], the holomorphic radius has a lower bound.
By Page 483 of [1], the bound on the L2-norm of curvature, the lower bound on the
volume and the harmonic radius imply that the rescaledmetric converges to an Einstein
ALE space M∞. Replacing the harmonic radius by the holomorphic radius, we can
show that M∞ is actually Kähler. Moreover, before taking limit, the manifold has a
parallel holomorphic symplectic form ω2 + iω3. Thus, on M∞, there exists a parallel
holomorphic symplectic form, too. In other words, M∞ is actually hyperkähler.
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By Bando–Kasue–Nakajima [4] and Kronheimer [32,33], the (non-flat) ALE-
gravitational instanton M∞ contains a curve 
∞ with self intersection number −2.
Before rescaling, the integrals of ωi , ω2 and ω3 on 
i converge to 0.

Recall that H2(M, R) is generated by 8 curves 
α and 3 faces F23, F31, F12. In
fact, similar to Section B of [50], any element in H2(M, Z) can be represented by half
integral linear combinations of 
α and Fαβ . Let

[
i ] = 1

2

∑

(miα[
α] + miαβ [Fαβ ]).

Then [
i ]2 = −2 = −2
4

∑
m2

iα . So there are only finitely many possibilities of miα .
By condition (1) of Theorem 1.5, the actions of limi→∞[ωi ], [ω2] and [ω3] on Fαβ

are linearly independent. Since the integrals of ωi , ω2 and ω3 on 
i converge to 0, we
know that miαβ also has a uniform bound. In other words, the homology class [
i ]
only has finitely many possibilities. Taking a subsequence where the homology class
of 
i are same, we obtain a contradiction to the condition (2) of Theorem 1.5.

We have obtained a bound on the curvature. Theorem 4.7 of [11] and Lemma 4.3
of [46] now provide a lower bound on the holomorphic radius. ��

Let D0 be the upper bound on the diameter of UN with respect to ω0. We are
interested in the function e(ti ) = trωi ω0 = trω0ωi on Bωi (pNi , 10D0). We start from
a theorem:

Theorem 7.5 There exists a constant C2 such that if

γ −2
∫

Bωi (p,γ )

e(ti ) ≤ C2

for some ball Bωi (p, γ ) ⊂ Bωi (pNi , 10D0), then

sup
σ∈[0, 23 γ ]

σ 2 sup
Bωi (p,

2
3 γ−σ)

e(ti ) ≤ 1

C2
γ −2

∫

Bωi (p,γ )

e(ti ) ≤ 1.

Proof It is well known that in theC1,α-holomorphic radius, there are higher derivative
bounds automatically. Thus, the constant in Proposition 2.1 of [46] is uniform. (There
are several errors in [46]. After correcting them, we can only get “ 23γ ” instead of “γ ”
in the statement) ��
Theorem 7.6 For each i , there exists a set Ai ⊂ {0, 1, 2, . . .} such that for all N /∈ Ai ,
supBωi (pNi ,4D0)

e(ti ) ≤ 2.5 and the number of elements in Ai is bounded.

Proof For any point p ∈ M , the number of N such that p ∈ Bωi (pNi , 10D0) is
bounded. Actually, by Theorem 7.3, for all such N , the set VNi is contained in
Bωi (p, 10D0+C1). The volume of Bωi (p, 10D0+C1) has an upper bound by volume
comparison, while the volumes of the disjoint sets VNi have a lower bound.
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Therefore, by Theorem 7.2

∑

N

∫

Bωi (pNi ,10D0)

(e(ti ) − 2) ≤ C .

Let γ be a constant smaller than D0 such that γ 2 ≤ C2
2π2 . Then by the volume

comparison theorem, the volume of B(R) on a Ricci flat 4-manifold is bounded by
π2

2 R4. So

∫

Bωi (p,γ )

2 = 2Vol(Bωi (p, γ )) ≤ C2

2
γ 2.

Therefore, as long as

∫

Bωi (pNi ,10D0)

(e(ti ) − 2) ≤ C2

2
γ 2,

we can get

∫

Bωi (p,γ )

e(ti ) ≤ C2γ
2

for all p ∈ Bωi (pNi , 8D0). So e(ti ) = trωi ω0 ≤ 9
4γ

−2 in Bωi (pNi , 8D0) by Theo-
rem 7.5. In particular, Bωi (pNi , 8D0) ⊂ Bω0(pNi , 18γ −2D0).

For any ε ≤ C2
2 γ 2, let Ai,ε denote the set of N such that the integral

∫

Bωi (pNi ,10D0)
(e(ti )− 2) > ε or supBω0 (pNi ,18γ −2D0)

|Rm(ω0)| > ε. Then the number

of elements in Ai,ε is bounded. For all N /∈ Ai,ε , it is well known [46] that

−�ωi e(ti ) ≤ C |Rm(ω0)|e(ti )2 ≤ C |Rm(ω0)|

in Bωi (pNi , 8D0). So both supBωi (pNi ,8D0)
−�ωi e(ti ) and

∫

Bωi (pNi ,8D0)
(e(ti )−2) are

bounded by Cε. By Theorem 9.20 of [22], supBωi (pNi ,4D0)
(e(ti ) − 2) ≤ Cε for all

N /∈ Ai,ε . After a suitable choice of ε, we can make it smaller than 1/2. ��
Lemma 7.7 There exists a constant R such that M ⊂ ∪N /∈Ai Bωi (pNi , R).

Proof For all N /∈ Ai , 1
2ωi ≤ ω0 ≤ 2ωi in Bωi (pNi , 4D0) by Theorem 7.6. In

particular,

UN ⊂ Bω0(pNi , D0) ⊂ Bωi (pNi , 4D0).

Let UAi = ∪N∈AiUN . Suppose R = supq∈UAi
infN /∈Ai dωi (pNi , q) is achieved by

qi and Ni . Then we will use the argument similar to Theorem 3.1 of [47] and Theorem
3.1 of [53] proved by applying Theorem I.4.1 of [49]. Actually, if R > 10D0, by
Theorem 7.6, it is easy to see that Bωi (qi , R − 10D0) ⊂ UAi andUNi ⊂ Bωi (qi , R +
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10D0)\Bωi (qi , R − 10D0). Since the volume of UAi is bounded from above and
the volume of UNi is bounded from below, it is easy to get a bound on R by the
Bishop-Gromov volume comparison theorem. ��
Theorem 7.8 e(ti ) = trω0ωi = trωi ω0 is uniformly bounded on M.

Proof By Theorem 7.4 and Lemma 7.7, the ωi -holomorphic radius is bounded from
below. So the constant in Theorem 7.5 is uniform if we replace ω0 by ω j in the

statement of Theorem 7.5. By Theorem 7.2,
∫

M (trω j ωi − 2)
ω2
j
2 → 0 as i, j → ∞.

So for large enough i and j , trω j ωi is uniformly bounded on M . Fix j and let i go

to infinity. Since C−1
j ω0 ≤ ω j ≤ C jω0, the bound on trω j ωi automatically implies a

bound on trω0ωi . ��
Now we are ready to use the arguments in [23] to prove Theorem 1.5. Let N be

a large constant such that when r ≥ N , 1
2ω0 ≤ αi ≤ 2ω0. We start from a theorem

which can be easily deduced from Proposition 4.21 of [23]:

Theorem 7.9 Let w = e−δr
∫

M e−δr be a weight function. Define the weighted norm ||u||L p
w

by ||u||L p
w

= (
∫ |u|pw)1/p, then for all u ∈ C∞

0 ,

||u||L4
w({r≥N }) ≤ C ||∇u||L2({r≥N }) + C ||u||L4({N≤r≤N+1}).

It is easy to see that for all 1 ≤ p ≤ q ≤ ∞, ||u||L p
w

≤ ||u||Lq
w
by Hölder’s inequality.

Theorem 7.10 I is closed.

Proof Let φai =
∫

M φi e−2δr
∫

M e−2δr be the weighted average of φi . By the standard Lockhart-

McOwen theory [34], since constant is the only harmonic function less than eδr , we
can obtain a bound on ||e−δr (φi − φai )||W 2,2 from the L2 bound of e−δr�ω0φi =
e−δr (trω0ωi − trω0αi ).

Let ui = φi − φai . We already obtain a bound on ||ui ||W 2,2({r≤N+4}) and
||�ω0ui ||L∞(M). So ||ui ||W 2,p({r≤N+3}) is bounded for any p ∈ (1,∞) by Theorem
9.11 of [22].

The C2,α-estimate for real Monge–Ampère equation was done by Evans–Krylov–
Trudinger. See Section 17.4 of [22] for details. Now we are in the complex case.
However, the arguments in Section 17.4 of [22] still work. An alternative way to
achieve the bound on [∂∂̄ui ]Cα({r≤N+2}) for all 0 < α < 1 was done by Theorem 1.5
of [14] using the rescaling argument. Now it is standard to get a C∞ bound of ui on
{r ≤ N + 1} through Schauder estimates.

As in [23],

∫

r≥N
|∇|ui | p

2 |2α2
i

≤ p2

p − 1

[∫

r≥N
ui |ui |p−2(ω2

i − α2
i ) − 1

2

∫

r=N
ui |ui |p−2dcui ∧ (ωi + αi )

]

.

123



Gravitational instantons with faster than quadratic curvature decay (III) 715

Therefore, for p ≥ 2,

∫

r≥N
|∇|ui | p

2 |2 ≤ Cp

(∫

r≥N
|ui |p−1w + C p−1

3

)

≤ Cp

(

C3

∫

r≥N
|ui |p−1w + C p

3

)

,

where C3 is a bound on sup{r≤N+1} |ui |. By Young’s inequality,
∫

r≥N
|∇|ui | p

2 |2 ≤ Cp2
(

||ui ||p
L p−1

w ({r≥N }) + C p
3

)

≤ Cp2
(

||ui ||pL p
w({r≥N }) + C p

3

)

.

Apply Theorem 7.9 to |ui |p/2. Then

||ui ||2p
L2p

w ({r≥N }) ≤ C4 p
4(||ui ||2pL p

w({r≥N }) + C2p
3 ).

We already know that ||ui ||L2
w({r≥N }) ≤ C5. That is our starting point. We are going

to obtain a bound on ||ui ||L∞({r≥N }) = lim j→∞ ||ui ||L2 j
w ({r≥N }) by Moser iteration.

(1) If ||ui ||L2 j
w ({r≥N }) ≤ C3 for all j ≥ 1, then ||ui ||L∞({r≥N }) ≤ C3.

(2) If ||ui ||L2 j
w ({r≥N }) ≤ C3 for all 1 ≤ j ≤ k but ||ui ||L2 j

w ({r≥N }) > C3 for all

j > k, then

||ui ||L∞({r≥N }) ≤ (2C4)
∑∞

j=k 2
− j−1

2
∑∞

j=k 2
− j+1 jC3 ≤ C

(3) If ||ui ||L2 j
w ({r≥N }) > C3 for all j ≥ 1, then

||ui ||L∞({r≥N }) ≤ (2C4)
∑∞

j=1 2
− j−1

2
∑∞

j=1 2
− j+1 jC5 ≤ C

The L∞ bound on ui = φi − φai implies a bound on φai since φi decay exponen-
tially. Therefore, we actually have a L∞ bound on φi . Then we can obtain a global
C∞ bound as before. Finally, we can go through the Step 3 and Step 4 in [23] to get
the C∞ bound on eλ1rφi . We are done by taking the limit of some subsequence of
{φi }. ��
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