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Abstract

This is our third paper in a series on the gravitational instantons. In this paper, we
classify ALG and ALH gravitational instantons. In ALG case, we extend Tian—Yau—
Hein’s construction slightly and show that it is the only ALG gravitational instanton.
In ALH case, we prove a Torelli-type theorem.
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1 Introduction

There are lots of different definitions of gravitational instantons. The broader defi-
nition of gravitational instanton means a four dimensional Einstein manifold. In this
paper, as in our previous work [12,13], we choose the following narrower definition:
A noncompact complete hyperkédhler manifold M of real dimension 4 is called a grav-
itational instanton if the curvature at x satisfies |[Rm(x)| = O(r (x)_2_f), where r(x)
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denotes the distance to a fixed point in M, t is any small positive number. It is worth-
while to notice that in real dimension 4, the hyperkéhler condition hol C Sp(1) is
equivalent to the Calabi—Yau condition hol C SU(2).

It is quite easy to prove the following theorem:

Theorem 1.1 For gravitational instanton M, the following conditions are equivalent:

(1) M is flat;
(2) M has trivial holonomy;
(3) M splits as R** x T*, k =0, 1,2, 3.

It will be proved in Sect. 3. For simplicity, in this paper, we will exclude the flat
gravitational instantons.

In our first paper [12], according to different kinds of asymptotic geometries, we
classified gravitational instantons into the following categories: ALE (Asymptotically
Locally Euclidean), ALF-A, ALF-Dy (Asymptotically Locally Flat), ALG and ALH
(“G” and “H” are the letters after “E” and “F”). Its unique tangent cone at infinity is
C?/T,R3,R3/7Z,, a flat cone with cone angle 2778 or RT, respectively.

In the ALE case, after Bando—Kasue—Nakajima’s work [4] about the improvement
of asymptotic rate, Kronheimer [32,33] proved that any ALE gravitational instanton

must be diffeomorphic to the minimal resolution C2/T" of the quotient singularity
C? /I, where I is a finite subgroup of SU(2). Moreover, the Torelli theorem holds for
ALE gravitational instantons.

—~—

H,(C2/ T, 7Z) is generated by holomorphic curves with self intersection number
— 2. Let k be the number of generators. Then, their intersection patterns can be classi-
fied into Ax(k > 1), Dy(k > 4), Ex(k = 6,7, 8) Dynkin diagrams. They correspond
to different types of I'.

Later, Minerbe [38] proved that the multi-Taub-NUT metric is the only ALF-A
gravitational instanton. When k = 0, it is called the Taub-NUT metric. The Taub-NUT
metric is diffeomorphic to C2. When k > 1, the ALF-Ay gravitational instanton is
diffeomorphic to the ALE-A gravitational instanton.

In ALF-Dy case, Biquard and Minerbe [7] proved that k must be nonnegative.
Ivanov and Rocek [27] conjectured a formula using generalized Legendre transform
developed by Lindstrom and Rocek [36]. This conjecture was proved by Cherkis and
Kapustin [16]. A more explicit formula was computed by Cherkis and Hitchin [15].
In our second paper [13], we proved that it is the only possible ALF-D; gravitational
instanton. When k = 0, it is called the Atiyah-Hitchin metric [3]. When k = 2, it
is called the Page-Hitchin metric [25,45]. When k > 4, the ALF-Dy gravitational
instanton is diffeomorphic to the ALE-D; gravitational instanton. As a corollary of
the classification result in ALF case, the Torelli theorem holds for ALF gravitational
instantons [13].

In the ALG and ALH cases, we [12] proved a compactification result and thus
confirmed a conjecture of Yau [56]:

Theorem 1.2 [12] For any ALG or ALH gravitational instanton M, there exists a
compact elliptic surface M with a meromorphic function z : M — CP! whose
generic fiber has genus 1. The fiber D = {z = oo} is regular if M is ALH, while it
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is either regular or of type Iy, II, IT*, III, IIT*, IV, IV* if M is ALG. There exists an
(a1, ar, az) in S* such th_at when we use a1l + a>J + a3 K as the complex structure,
M is biholomorphic to M\ D.

Remark The type of D is related to the tangent cone at infinity of M. See the table in
Definition 2.3.

In this paper, we will start from an improvement of the above theorem:

Theorem 1.3 The (M, z) in the above theorem must be a rational elliptic surface (see
Definition 2.7). Moreover, in the ALG case, D can not be regular.

In [54], Tian—Yau proved that there exists a non-compact complete Calabi—Yau
metric if there exists a good background metric. Moreover, they found two ways
of constructing good background metrics to produce complete Calabi—Yau metrics
with volume growth rate 1 or % on the complement of anti-canonical divisors to
n-dimensional manifolds.

Besides Tian—Yau’s Kihler geometry method, hyperKiahler 4-manifolds can also
be constructed using gauge theory. In [17], Cherkis and Kapustin predicted complete
hyperkéhler metrics on the moduli space of periodic monopoles, which is a rational
elliptic surface minus a fiber of type IZ;, S 98 I;, 4 In [6], Biquard and Boalch
constructed complete hyperkihler manifolds using wild non-abelian Hodge theory on
curves.!

In [7], Biquard and Minerbe constructed ALF-Dy (k > 4), ALG and ALH gravita-
tional instantons on the minimal resolutions of the quotient of Taub-NUT metric by
the binary dihedral group, (R? x T?)/Zx (k = 2, 6, 4, 3) or (R x T?)/Z», respectively.

In [24], Hein chose many background metrics, used Tian—Yau’s result [54] to get
more complete hyperkidhler manifolds on the complement of a fiber D (the anti-
canonical divisor in this case) to a rational elliptic surface M. Moreover, Hein [24]
proved the asymptotic geometry of such construction. When D is regular, the metric
is ALH. When D has type I%, II, IT*, III, IIT*, IV, or IV*, the metric is ALG. When
D hastypeI},b =1,2,...,4, the volume growth, injectivity radius decay, curvature

decay rates and tangent cone at infinity are 72, (logr)~'/2, r=>(logr)~! and R?/Z,.

1 We are grateful for the anonymous referee who kindly pointed out to us that “Biquard and Boalch [6]
proved that the many moduli spaces of solutions to Hitchin’s equations on a non-compact curve (with wild
boundary conditions) form complete hyperkdhler manifolds. In one complex structure in the hyperkdhler
Sfamily they are moduli spaces of meromorphic connections and in another complex structure they are moduli
spaces of meromorphic Higgs bundles (and so are algebraic integrable systems). The examples of complex
dimension two are thus the complement of the anticanonical divisor D to the rational elliptic surface M (the
meromorphic Hitchin systems of complex dimension two). Moreover, there is a nice relationship between
the type of D and Dynkin diagrams extending that of Kronheimer commonly used in the ALE case:

13 I I3 I; I I e | o | ur | v | Iv*
Dy | D3 | Dy | Dy Dy | Eg | Ay | E7 Aq E¢q Ay

See [8] for the relationship between Biquard—Boalch metric and Painlevé equations. See [48] for the
relationship between Painlevé equations and rational elliptic surfaces following the works in [41-44]. The
readers may also read [9] and the references therein for the survey about Biquard—Boalch metric. See also
[55] as well as the talk ‘Some geometry of irregular connections on curves’ given by Boalch at the workshop
on ‘Gauge Theory and Representation Theory’ at Institute for Advanced Study in 2007.”
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It was called ALG by some authors but a more appropriate terminology would be
ALG™ because the curvature decay is too slow and the fibers have no limit at infinity.
When D has type I, b = 1,2,...,9, the volume growth, injectivity radius decay,
curvature decay rates and tangent cone at infinity are #4/3, »=1/3, r=2 and [0, c0). An
appropriate terminology for this kind of asymptotic geometry would be ALH*.

The background metrics constructed in [54] provide ALH and ALH* examples
using their existence result. In [20,21], Cherkis-Kapustin’s prediction [17] was par-
tially verified. It was proved that the moduli space of periodic monopoles is a
non-empty hyperkihler manifold. However, it is still unknown whether this metric
is complete or whether it is an elliptic surface. It is conjectured to be ALG or ALG*
but this conjecture has not been proved yet. The Biquard—Boalch’s construction [6] is
also conjectured to be ALG or ALG*, but this conjecture has not been proved, too.

In this paper, we will slightly modify Tian—Yau—Hein’s construction [24,54] and
then prove that any ALG gravitational instanton must be obtained by this modified
construction:

Theorem 1.4 (1) Let (M, z) be a rational elliptic surface with D = {z = oo} of
type I, I II*, III, III*, IV, or IV*. Let o* = w® + iw® be a rational 2-form
on M with [D] = {w™ = oo}. For any Kihler form w on M, there exists a
real smooth polynomial growth function ¢ on M = M\D such that (M, »' =
w+i 85¢, w?, w3) is an ALG gravitational instanton.

(2) The form w + idd¢ in the first part is uniquely determined by its asymptotic

geometry.

(3) Given any ALG gravitational instanton, after a hyperkdihler rotation, we can

assume that a1l 4+ ayJ + a3 K in Theorem 1.2 is in fact 1. Then o+ = o +iw’
is a rational 2-form on M with [D] = {w+ = 00}. There exist a Kiihler form w
on M and a real smooth polynomial growth function ¢ on M = M\ D such that
o' = w4+ i3d¢. When D is of type II*, III*, or IV*, we may need a new choice
of M to achieve this.

In the ALH case, as a corollary of Theorems 1.2 and 1.3, any ALH gravitational
instantons are diffeomorphic to each other. In particular, they are diffeomorphic to the
minimal resolution of (R x T3)/Z, by [7]. The torus T> = R3/A is determined by
the lattice A = Zv| @ Zv, ® Zvs. It is easy to see that H> (R x T3)/Z;, R) = R is
generated by three faces Fj; spanned by v; and v, and eightrational curves X ; coming
from the resolution of eight orbifold points in (R x T3) /Z>. Using those notations,
we will prove the following classification result of ALH gravitational instantons:

Theorem 1.5 (Torelli theorem for ALH gravitational instantons) Let M be the
smooth 4-manifold which underlies the minimal resolution of (R x T3)/Z,. Let
[a'], [0?],[¢®] € H 2(M ,R) be three cohomology classes which satisfy the non-
degeneracy conditions:

(1) The integrals f;jk of o' on the three faces Fjy satisfy
fiz fisr fie

3 31 | >0
323 331 fiz
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(2) For each [X] € Hy(M,Z) with [Z1? = —2, there exists i € {1, 2,3} with
[«'][Z] # 0.
Then there exists on M an ALH hyperkdhler structure such that ® in Definition 2.6
can be chosen to be the identity map and the cohomology classes of the Kdhler
forms ['] are the given [a'). It is unique up to tri-holomorphic isometries which
induce identity on Hy(M, 7.).
Moreover, any ALH gravitational instanton must be constructed by this way.

Remark Recently, Haskins, Hein and Nordstrom [23] classified asymptotically cylin-
drical Calabi—Yau manifolds of complex dimension at least 3. In dimension 2, their
analytic existence theorem (Theorem 4.1 of [23]) still holds. However, when T3 does
not split isometrically as S' x T2, their geometric existence theorem (Theorem D of
[23]) fails due to the lack of background Kihler form in the cohomology class.

Remark 1In [24], Hein proved that the space of ALH gravitational instantons module
isometries is 30 dimensional. After adding 3 parameters of hyperkéhler rotations,
the space of ALH gravitational instantons module tri-holomorphic isometries which
induce identity on Hy (M, Z) is 33 dimensional. Our Theorem 1.5 is consistence with
Hein’s computation. Remark that by Theorem 1.10 of [24], the number of parameters
of Tian—Yau’s ALH construction is smaller than the dimension of moduli space of
ALH gravitational instantons. So Theorem 1.5 indeed provides ALH metrics which
can not be constructed by Tian—Yau’s ALH method.

It is interesting to compare Theorem 1.5 with the Torelli theorem for ALE gravi-
tational instantons [32,33], ALF gravitational instantons [13] as well as K3 surfaces,
which was proved by Burns—Rapoport [10], Todorov [52], Looijenga—Peters [35] and
Siu [51]. It was reformulated by Besse in Section 12.K of [5]. Anderson [2] also proved
a version of Torelli theorem for K3 surfaces which allows orbifold singularities.

Theorem 1.6 ([5], Torelli theorem for K3 surfaces) Let M be the smooth 4-manifold
which underlies the minimal resolution of T*/Z. Let Q be the space of three coho-
mology classes [a!], [@?], [03] € H2(M, R) which satisfy the following conditions:

(1) (Integrability)
/ Oli /\Olj = 23,']"/.
M

(2) (Nondegeneracy) For any [X] € Hy(M, Z) with [Z1? = —2, there exists i €
{1,2,3} with [«'][Z] # 0.
Q has two components Q" and Q™. For any ([al], [o?], [a3]) € QF, there exists
on M a hyperkihler structure for which the cohomology classes of the Kdihler
forms ['] are the given [a']. It is unique up to tri-holomorphic isometries which
induce identity on H»(M, 7).
Moreover, any hyperkdihler structure on K3 surface must be constructed by this
way.

@ Springer



692 G. Chen, X. Chen

One may ask whether Torelli theorem holds for ALG gravitational instantons. This
is not a easy problem. First of all, one may ask whether all ALG gravitational instan-
tons are diffeomorphic to each other if they have same type of D. It involves deep
understandings of the moduli space of rational elliptic surfaces and is hard partially
because it may be GIT unstable [39]. Even if it is true, the uniqueness part fails at least
when D is of type IT*, IIT*, or IV*.

Theorem 1.7 When D is of type II*, III*, or IV*, there exist two different ALG gravi-
tational instantons with same [o'].

Roughly speaking, the failure of the uniqueness part of ALG Torelli theorem in
such case is due to the existence of an exact anti-self-dual form with decay rate less
than 1. So in order to describe the moduli space of ALG gravitational instantons,
one may need additional parameters corresponding to such exact anti-self-dual forms.
However, such modified version is still very hard at current stage. Since the uniqueness
part of ALH Torelli Theorem used the gluing of ALH gravitational instantons into K3
surfaces, one may need to do the similar thing in ALG case which is much harder
then the ALH case. As for the existence part, it seems that our proof of ALH Torelli

theorem is helpless for ALG manifolds because the total energy f (o @00 — 2)%"2
used in Theorem 7.2 is infinity if the decay rate of w; — wg is 2. However, recall that the
ALF Torelli theorem was proved using gauge theory. So it might be very helpful if one
can prove that the Biquard—Boalch metric [6] or probably its generalization is ALG
and is general enough so that any classes of [w'] as well as the additional parameters
corresponding to the exact anti-self-dual forms can be achieved.

In Sect. 3, we will study the topology of ALG and ALH gravitational instantons.
In Sect. 4, we will prove Theorem 1.4. In Sect. 5, we will prove Theorem 1.7 and the
theorem that the gluing of any ALH gravitational instanton with itself is a K3 surface.
In Sect. 6, we will use the gluing construction in Sect. 5 and the Torelli theorem for
K3 surfaces to prove the uniqueness part of Theorem 1.5. In Sect. 7, we will prove the
existence part of Theorem 1.5.

2 Definitions

Definition 2.1 (Hyperkdhler manifold) A manifold (M, g, I, J, K) is called a hyper-
kihler manifold if 7, J, K are three parallel complex structures on M which are
compatible with g and satisfy the quaternion relationships. Any map between two
hyperkéhler manifolds is called tri-holomorphic if it preserves /,J and K.

Itis well known that 7, J, K are all Kihler structures. They determine three Kahler
forms w!, w?, @>. The I-holomorphic 2-form w™ = w? + iw’ is called the holo-
morphic symplectic form. Conversely, it is well known that three closed forms '
satisfying o' A/ = 26; ; V for some nowhere vanishing 4-form V' determine a hyper-
kahler structure on M. In fact, given three such 2-forms, we can call the linear span
of them the “self-dual” space. The orthogonal complement of the “self-dual” space
under wedge product is called the “anti-self-dual” space. These two spaces determine
a star operator. It is well known that the star operator determines a conformal class
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Gravitational instantons with faster than quadratic curvature decay (Ill) 693

of metrics. The conformal factor can be determined by requiring V' to be the volume
form. Using this metric and the three forms @', we can determine three almost complex
structures I, J and K. Itis easy to see that /J = K or IJ = —K. In the K3 case, the
former happens on Q7 (the latter happens on 7). In noncompact case, the former
always happens if it happens on the end. By Lemma 6.8 of [26], I, J, K are parallel.

Definition 2.2 (Hyperkdhler rotation) For any matrix

ay a; aj

by by b3z | €SO,

M, g,a1l + axJ + azK,b\1 + byJ 4+ b3K, c1I + c2J + c3K) defines another
hyperkihler structure on M. It is called the hyperkihler rotation of (M, g, I, J, K).
After hyperkihler rotation, we can with out loss of generality, assume that the complex
structure a; I + a>J + a3 K in Theorem 1.2 is actually 7.

Definition 2.3 (ALG model) Suppose B € (0,1] and 7 € H = {r|Imt > 0} are
parameters in the following table:

D | Regular 1”6 1I r* I | II* v Iv*
B 1 1 1 5 1 3 1 2
T cH GZH 627?1‘ /3 627?1‘ /3 ? ? 62% /3 ez% /3

Suppose ! > 01is any scaling parameter. Let E be the manifold obtained by identifying
(u, v) with (€27 Pu, > ) in the space

{(u, v)|argu € [0, 2mB], [u| > R} C (C — Bg) x C/(Zl ® Zzl).

Then there is a flat hyperkihler metric z on E such that ! = %(d uNdu+dv Adv)
and wt = w? + iw® = du A dv. It is called the standard ALG model.

Definition 2.4 (ALG) (M, g) is called ALG of order § if there exist a bounded domain
K C M, and a diffeomorphism ® : E — M\K such that

V" (D*g — h)| = O(Ju| ™™ %)

for some 6 > 0 and any m > 0.

Definition 2.5 (ALH model) Let (E, h) be flat product of [R, 00) X T3. Let r be the
coordinate of [R, 00). Let (01, 02, 93) be the coordinates of T3 = R3/ A. Then there
exists a hyperkhaler structure on it defined by

dr = I*d6' = J*d6? = K*d6°.
It is called the standard ALH model.
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694 G. Chen, X. Chen

Definition 2.6 (ALH) (M, g) is called ALH of order 7 if there exist a bounded domain
K C M, and a diffeomorphism ® : E — M\K such that

[V*(@*g — )| = 0(e™™), [V"(®*T = )| = O(e™™),
IV (@*T — D)= 0@ ™), [V"(®*K —K)| = 0(e™™)

for some T > 0 and any m > 0.

Remark We [12,13] proved that the order of any ALH gravitational instanton is at
least A1 = 27 minyeax\(o} |A], where A* = {x € R} < A,0 >€ Z, V6 € A}. Later,
in Sects. 5, 6, 7, we will choose a positive number 6 < A;/100 and use e as the
weight function.

Definition 2.7 (Rational elliptic surface) Let F, G be two linearly independent cubic
homogenous polynomials on CP?. {F = 0} and {G = 0} intersect at 9 points with
multiplicity. Let M be the blow up of CP? on these 9 points, if needed repeatedly. Then
z = F/G is a well-defined meromorphic function on M whose generic fiber has genus
1. (M, z) is called the rational elliptic surface. It is well known that it has a global
section o corresponding to any exceptional curve in the blowing up construction.

Definition 2.8 (Holomorphic radius) The largest y satisfying the following conditions
is called the C1**-holomorphic radius at p:
There exist holomorphic coordinates z/ on B(p, y) such that

1
581']7 = 8ij = 251-]7

and
Y *llgllcte < 1.

Definition 2.9 yx is a smooth cut-off function from (—oo, +00) to [0, 1] such that
x =1on (—oo,—%],x = 0 on [%,oo) and -2 < x' <0.

Definition 2.10 In the ALG case, by Theorem 1.2, (after hyperkihler rotation) there
exists an /-holomorphic function z on M asymptotic to u'/#. The letter z in this paper
will always mean this function. » will always mean the function |z|#(1 — x(|z|f —
1)) + )((|z|/S — 1). In the ALH case, the function »(1 — x(r — R — 1)) can be well
defined on M. It is still denoted by r.

3 The topology of ALG and ALH gravitational instantons

In this section, we will study the topology of ALG and ALH gravitational instantons.
We start from the study of flat gravitational instantons:

Theorem 3.1 For gravitational instanton M, the following conditions are equivalent:
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(1) M is flat;
(2) M has trivial holonomy;
(3) M splitsas R** x T, k =0,1,2, 3.

Proof By the arguments in the proof of Theorem 3.4 in our first paper [12], it is easy to
see that any flat gravitational instanton M must have trivial holonomy. It is well known
that M is isometric to the Euclidean space quotient by covering transforms. However,
since the holonomy is trivial, any covering transform must be a pure translation.
Therefore, M is isometric to the product of the Euclidean space with a flat torus.
Conversely, it is trivial that (2) or (3) implies (1). O

Therefore, as mentioned in the introduction, we will assume that any gravitational
instanton is non-flat.

Theorem 3.2 The first betti number of any ALG or ALH gravitational instanton must
be 0. Moreover, in the ALG case, D can not be regular.

Proof In the ALH case, Melrose’s theory [37] works. In particular, the first coho-
mology group H'(M,R) is a subspace of the space of bounded harmonic 1-forms
[37]. By Weitzenbock formula, any bounded (d*d + dd*)-harmonic 1-form ¢ is also
V*V-harmonic. By Melrose’s theory, V¢ decays exponentially. After integration by
parts,

/ IV x(r — R) < / IVolIVx(r — R)[ — 0,
M M

as R — oo. Therefore, ¢ is a parallel 1-form. If it is nonzero, the holonomy group
must be trivial since the action of Sp(1) is free on R*\{0}. It contradicts the non-flat
assumption.

In the ALG case, (after hyperkihler rotation) if D is regular, i.e. if 8 = 1, the
I-holomorphic function z on M is asymptotic to the function # on E. Vdu = 0 on E,
so when we go through the construction of z in our first paper [12], it is easy to see
that |[Vdz| = O (r~'~¢) for any small enough €. So

/M|de|2x (%—1) 5/M|de||vx (é—1)|—>o,

as R — oo. As before, it contradicts the non-flat assumption.
Therefore 8 < 1. Inspired by Lemma 6.11 of [37] ,we define

(1,1 (2R 3\
f(")—(;-l-ﬁ)((T—z)) .

Then f is incrgasing. f@r) = r when r < Rand lim, o f(r) = 4R.Letu = ret?.
The map F(re'?, v) = (f(r)e'?, v) on M is homotopic to the identity. Therefore, any
smooth closed 1-form ¢ is cohomologous to F*¢. It is easy to see that F*¢ = O(r).
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By Theorem 4.12 of [12], for any small positive €, there exists a smooth 1-form v
such that

/ |w|2r7876 + |V¢|2r767€ + |V2w|2r747€ < 00
M
and

F*¢ = dd*y + d*dy.

Since F*¢ is closed, it is easy to see that d*dy is a closed harmonic 1-form.

Similar to Theorem 4.6 of [13], the leading term of d*d+/ can be written as auldu+
bir®dii for some § < 1. To make it well-defined, (6 + 1) B must be an integer. The first
available choiceisd = 1/ —1if 8 > 1/20or§ = —1if B < 1/2. In the first case,
d*dy¥y — aBdz — bBdz is a much smaller closed harmonic 1-form on M. Its order is
also at most ~!. However, by maximal principle and the Ricci flatness, any decaying
harmonic 1-form on M must be 0. In conclusion, ¢ must be exact. In other words,
H'(M) = 0 for any ALG gravitational instanton. O

Theorem 3.3 M is a rational elliptic surface.

Proof Choose a tubular neighborhood 7 of D. Then M = M U T . The Mayer-Vietoris
sequence is

H'M)® HYT) > HOMNT) - H' (M) > H' (M) ® H'(T).

The first map is surjective, so the second map is 0. So the third map is injective.
Notice that H'(T) = H'(D) = 0 because D is of type I, II, IT*, III, IIT*, IV, or IV*.
H'(M) also vanishes by Theorem 3.2. So H' (M) = 0.

A careful examination of our construction of M in [12] and Kodaira’s paper [28,29]
yields that w™ can be extended to a meromorphic 2-form on M with a pole D. In other
words, D is the anti-canonical divisor of M. Since D is homologous to another fiber of
z, the self intersection number of D is 0. In other words c%(M) = c%(—K) =[D]? =0.
It is also very easy to see that HO(M, mK) = 0 for any m > 0. In particular the
geometric genus pg = dimH(M, K) = 0.

By Kodaira’s classification of complex surfaces [30], since the first betti number
of M is even and pe =0, M must be algebraic. By Castelnuovo theorem, M must
be rational because H*! (M) = H(M, 2K) = 0. By Kodaira’s Equation 13 in [30],
¢t +dimH%! +b~ = 10p,+9.Sob~ = 9. By Theorem 3 of [30], b+ = 1+2p, = 1.
Therefore the second betti number b, of M equals to 10. It is standard [40] to prove
that (M, z) is a rational elliptic surface defined in Definition 2.7. O

Theorem 3.4 Given any ALH gravitational instantons M, there exists a diffeomor-
phism from the minimal resolution of (R x T3)/Zy to M whose restriction on
[R, 00) x T3 is ® in Definition 2.6.

Proof The divisor D is smooth by our construction of the compactification. So for
any small enough deformation in the coefficients of F and G, the diffeomorphism
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type of M = M\D is invariant. For generic choice of coefficients of F and G,
{G = 0} is smooth and {F = 0} intersects {G = 0} in distinct points. Since the non-
generic parameters have real codimension 2, generic points can be connected by paths
inside the set of generic points. Therefore, it is easy to see that any ALH gravitational
instantons are diffeomorphic to each other. In particular, they are diffeomorphic to the
specific example of Biquard and Minerbe [7] on the minimal resolution of (R x T?) /Z,.

O

4 Classification of ALG gravitational instantons

In this section, we will slightly modify Hein’s result in [24] to get Theorem 1.4.

Let w be any Kihler form on M. Let a be the area of each regular fiber with respect
to w. Recall that for any section ¢’ of z on A* = {|z|# > R}, Hein [24] wrote down
some explicit formula of the semi-flat Calabi—Yau metric wst 4[c'] on M|a+ whose
area of each regular fiber is also a:

Definition 4.1 [24] Using o’ as the zero section, M|+ is locally biholomorphic to
M|y = (U x C)/(z,v) ~ (z, v+ m71(2) + n12(2))

for some holomorphic functions 7| and 7. So locally, o™ = g(z)dz A dv for some
holomorphic function g : U — C. Then locally

Im(7 T | a _ o=
wst alo’] = fePE) g azr g L9 4y~ rdz)(di — dZ),
a 2 Im(7110)
where
@ v) L @02 — @
V) = —— (Im(T1v) — — Im(Tv)—).
< Im(T110) : dz 20 dz

It is easy to check that wsf 4[] is actually a globally well-defined form.
After that, the following theorem is essential:

Theorem 4.2 There exist a real smooth polynomial growth function ¢1 on M|+ and
a polynomial growth holomorphic section o’ of z over A* such that ws 4[0'] =
w+100¢;.

Remark Compared to Hein’s Claim 1 in page 382 of [24], the key improvement in our
paper is that both o’ and ¢ grow at most polynomially.

Proof As Hein did in [24], there exists a real 1-form ¢ on M|a+ such that d¢ =
st q[0]—w. Choose the map F as in Theorem 3.2. By Cartan’s formula, the homotopy
between F and the identity map implies that F*w — @ = d¢; and F*wst 4[0] —
wsf qlo] = d¢s for some real polynomial growth 1-forms ¢; and £». However, dF*¢ =

@ Springer



698 G. Chen, X. Chen

F*wst qlo] — F*o for some polynomial growth 1-form F*¢. In conclusion, we can
without loss of generality assume that ¢ grows polynomially.

Using o as the zero section, any section o’ of z can be written as v = ¢’ (z) in local
coordinates. Hein calculated that there exists a real 1-form 2 such that wst 4[0'] —
wstqlo] = d;: and the (0,1)-part§‘ of Z can be written as

i
2Im(T112)

£ = [0/(1)(0117 —T(z,v)dz) — %f(z, G’(Z))dZ] .

N
Im(7112)

the (0,1)-part & of ¢ on each fiber. Then o’ and & grow polynomially. Moreover, the
average of the coefficient of dv term of & + £ on each fiber vanishes. So on each fiber,
£ + £ can be written as i d¢ by solving the d-equation on each fiber. It is easy to see
that ¢, also grows polynomially. So the (0,1)-form & + & — ;3¢ can be written as
f(z, v)dz. However, it is d-closed, so f(z, v) = f(z). By solving the 5—equation on
A* E+E—id¢y = id¢3 for some polynomial growth function ¢3(z). In conclusion

Choose ¢’ so that % o’ equals to the average of the coefficient of dv term of

wst.alo’] — o = d[id (g2 + ¢3) —id(h2 + ¢3)] = 103 (2 + P2 + P53 + h3).
O

Theorem 4.3 There exists a real smooth polynomial growth function ¢4 such that
w~+i00¢4 is ALG and

, 1
(w+i90¢4)* = §w+ Aot

Remark Compared to Hein’s Theorem 1.3 of [24], the key improvements in our paper
are that ¢4 grows polynomially and that we obtain w™ A @* instead of Y™ A &

for large enough «.

Proof To achieve this, we still introduce a real positive bump function b on C supported
in {R < |z|# < 4R} such that b = 1 on {2R < |z|# < 3R}. The involution with the
Green function provides a real at most polynomial growth function ¢s on C such that
193¢ = ib(z)dz A dz.

Now let us look at the form w + i9d((1 — X(% — %))zbl). It equals to w when
r < 2R and wsf 4[0'] when r > 3R. On the part 2R < r < 3R, this form may not be
positive. However, as Hein did in Claim 3 of [24],

- r 5
w,:a)+138 <<1—X<E—§>>¢]+t¢5)

is positive for large enough 7.
To achieve the integrability condition [y, (w? — Jo* A @") = 0, we start from
choosing large enough R and ¢ such that wgt 4 [0 '] is close enough to the standard ALG
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model %%(dzﬂ AdzP +dv A dD) and [, (0? — %afr A @) > 0. Then we consider

I a r r
Dt = @ 4 Imt ( X R X R s) Bl cAd

Itis easy to see that for any s > 5, w; ; must be positive. What is more, since f M (wf’ [

%aﬁ‘ A @7T) decreases to negative infinity when s goes to infinity, by intermediate

value theorem, there exists s such that the integrability condition is achieved. By the
work of Tian—Yau [54], there exists a real smooth bounded function ¢g such that
(ws.; +100¢6)> = %w* A @*. By Proposition 2.9 of [24], the solution w; , + idd¢e
is actually ALG. O

Thus, the first part of Theorem 1.4 has been proved. The second part is quite simple:

Theorem 4.4 Suppose there exist two ALG metrics w; = o + i85¢>j, j =17,8, satis-
fring 0% = 0} = Jot AdT, V" (w7 — wg)| = O %) and |¢;| = O(") for all
j=7,8,m>0andsomes, N > 0. Then w7 = ws.

Proof 1tis easy to see that @ = w+i93(¢7 +¢g) /2 also defines a Kihler metric which
is asymptotic to the standard ALG model. Since & A i33(¢7 — ¢g) = 0, ¢7 — ¢g is
harmonic with respect to @. By Theorem 4.13 of [12], it is asymptotic to a, 2" + b, 7"
for some constants a,, and b,,. The difference has smaller order. Repeat the procedure
until the order is smaller than 0. The maximal principle implies that the difference is
0. In other words,

n
¢ — g = Zakzk + bk
=0

Theorem 4.5 The third part of Theorem 1.4 holds.

Proof Let (M, warG, »?, w3) be the ALG gravitational instanton in the third part
of Theorem 1.4. Let a be the area of each regular fiber with respect to wayg. Now
pick a Kéhler metric wp on M whose area of each regular fiber is a. Then wgt 4[0”] =
w0 +13d¢y for some holomorphic section ¢’ on {|z | > R} and some real function ¢y.
It is easy to see that Theorem 4.2 also holds for wa1 G, i.e. wst 4[0"] = waLG +idd10
for some holomorphic section o” on {|z|f > R}.

When D is of type I}, I, 111, or IV, i.e. B < 1/2, our goal is to show that the action
T(z,v) = (z,v+0"(z) — 0'(2)) as well as its inverse can be extended across D. If
it is true, then

WALG = st al0”] — 18310 = (T~ *wst ol0'] — i03¢10 = (T™" ) wo — 1331

S0 ® = wALG +i00((1 — x (% — %))¢11 + t¢s) will be the required Kihler form on
M for large enough .
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To understand the structure near D, we start from the elliptic surface over A =
{lii] < R~} constructed by (A x C)/(ii, v) ~ (i, v + mti(ii) + n12(i1)). Take the
quotient by (it, v) ~ (e*"'fii, ¢*"Py), then there are several orbifold points in the
central fiber. As Kodaira did in [28,29], those orbifold points can be resolved by replac-
ing the neighborhoods by the non-singular models N, constructed in page 583 of
[28,29]. Then blow down exceptional curves if they exist. M|+ U D is biholomorphic

to such model by the relationship z = u!/# =771 = 5=1/8,
In those coordinates, if 7 is given by T (i,v) = (u,v + f(u)ur), then by the
i af (i

proof of Theorem 4.2, 5 i) will be the average of the coefficient of dv term of
the (0,1)-part & of ¢ on each fiber, where ¢ is a real smooth polynomial growth 1-
form satisfying d¢ = wgr 4[0'] — waLG. By Main Theorem 1 of [13], the difference
between the two ALG metrics war g and wsr 4[0'] is bounded by |u|_2. By Theorem
4.4 of [13], ¢ = (d*d + dd*)y; and wsf 4[0'] — waLg = (d*d + dd*)yr, for some
Y1 and Y on M|a+. So (d*d + dd*)(d*dy; — d*yp) = 0. Therefore, the leading
term of d*dyr; — d*y, must be the linear combinations of wdu, #bdu, ubdv, uldv
and their conjugates. However, d(d*dy; — d*y») = d*dy», has small order. So if
3 is large, the leading term of d*dyr; — d*y», must be the linear combinations of
u®du and its conjugate. However, such kind of term can be written as the linear
combinations of dz” and its conjugate for some integer m. We can then subtract the
leading term from d*dvyr; — d*yr, and repeat the process. Finally, it is easy to see that
f(2) = f(a) is bounded by |z| =€ for any small positive €. By removal of singularity
theorem of holomorphic functions on the punctured disc A*, f(z) can be extended to
a holomorphic function on A.

Therefore, the induced map of 7 on the resolution is holomorphic outside the central
curves in N4, and continuous across those curves. By removal of singularity theorem,
it can be extended holomorphically. Then, in the blow down procedure, the induced
map is holomorphic outside the blow down of the exceptional curves. By Hartog’s
theorem, it can be extended on M |- Similarly, T-! can also be extended.

When D is of type II*, IIT*, IV*, i.e. 1/2 < B < 1, the arguments above fail
because the meromorphic function f may have a pole at {Z = 0} corresponding to the
term u'/#=2du A d¥ in the difference wst.q[0'] — waLG. However, recall that in [12],
we used the section o as zero section to compactify M into M. If we use the section
o +0” —o’ instead, then we may get a different M. For this new choice of M, the form
wst.al0"1+i00¢p12 = waLG +1d¢p13 is a smooth Kihler form on M N{|Z| < R~'/F)
for some real smooth polynomial %rowth functions ¢2, ¢13 on M N {|z| < R~}

Sow = warg +i93((1 — x (% — 3))$13 + t¢s) will be the required Kéhler form on

the new choice of M for large enough 7. O

5 Gluing of ALH gravitational instantons
In this section, we will prove that the gluing of any ALH gravitational instanton with

itself is a K3 surface. We learned this idea as well as some initial set-ups of the gluing
construction [19] from the lecture of Sir Simon Donaldson in the spring of 2015 at
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Stony Brook University. We will also construct a counterexample of ALG Torelli
Theorem when D is of type II*, IIT*, or IV*.

We will use the notations of Kovalev and Singer [31] in order to apply their results.
Pick two copies of M. Define 11 = r on the first copy M. Define 1, = —r on the
second copy M,. For any gluing parameters (p, ®) € [R + 8, 00) x T, the gluing
manifold M, e is defined by truncating the two manifolds at ; = £p and identifying
the boundary points (p, &) € M, with the points (—p, ® — 0) € M. On M, g, the
function ¢ is defined by t = ;1 — p = t» + p. The picture can be found in page 10 of
[31].

Our metric on M, g is slightly different from [31]. In fact, there are three Kéhler
forms w!, w? and w> on M. The closed forms

o' — oy = d;(r,0)dr AdO7 + b (r, 0)d67 A doF

are very small on {p — 1 <r < p + 1} by Definition 2.6. Now define

P = [/r a’(s, e)ds] de’.
P

Then
k
dg’ = a’(r, 0)dr Ado7 + [/ 0% al (s, 9)dsi| do* A do’
i J Y j k
=a(r,0)dr Ad67 + | [ =Dl (s,0)ds |6/ A do
o Or
= al(r.0)dr AdO7 + bl (r,0)d07 A do* — b (p. 0)dOT A do*.
Therefore
o — why = d¢’' + bl (p, 0)d07 A do*

are cohomologous to the forms b;k (p,0)do7 A dOF on T3.

Notice that any closed form on T> can be cohomologous to a form with constant
coefficients and any 2-form with constant coefficients is invariant under the map 6 —
® — 6. Therefore, when we glue the part {p — 1 =n=p+ 1} on M with the part
{op—1< —1t < p+ 1} on My, the difference a)ﬁw2 - a)ﬁwl = dy’ for some small ¢/*.

Now define the forms wi)’@ on M, ¢ by
0l o = oy, +d((1 = xO)WY') = oy, —d(x(OY").

Then a)i @ are three closed forms and |V’" (wi o~ a)’M ) = O(e=*1*) for allm > 0.

Now we can call the linear span of ' 0.0 the * self dual” space. The orthogonal
complement of the “self-dual” space under wedge product is called the ‘“anti-self-
dual” space. These two spaces determine a star operator. It is well known that the
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star operator determines a conformal class of metrics. The the conformal factor is

determined by requiring the volume form to be 1 5 (det (e 0o/ o’ 5.0)) 173 The resulting
metric is called g, @. Itis slightly different from [31], but it satisfies all the properties
needed in [31].

Now we define three operators on the space of self-dual 2-forms by

Pi¢p = e (d*d + dd*) (e’ ),
Pogp = 722 (d*d +dd") (2 9),

and
Py o¢ = e 2(d*d + dd*) (¥ ¢),

where § < A1/1001is a small positive number. It is easy to prove the following theorem:

Theorem 5.1 (1) Py, P2, Py,¢ are Fredholm operators from Wkt2.2 4, Wk'zfor any
k > 0. In other words, the kernels are finite dimensional and the cokernels, i.e. the
kernelsof P}, Py, P* @ arealso finite dimensional. The range is the L?-orthogonal
complement of the cokernel. The operator from the L*-orthogonal complement of
the kernel to the range is an isomorphism.

(2) ker P| = span{e %'}, coker P| = {0},

ker P, = {0}, coker P| = span{e®2a},

span{e™% ‘ o) Cker Py o, span{eata)/’o o) C cokerP, @.

Proof The first part was proved by Lockhart and McOwen in [34]. As for the second
part, on any Kdhler manifold with Kéhler form w, define the operator L by L¢ = ¢ Aw.
Then by Kéhler identities, [L, ] = 0 and [L, 8*] = —id. Therefore

[L,d*d +dd*] = 2[L, 0*3 + 39*] = 2[L, 3]0 + 29[L, 3*] = —2i(30 + 39) = 0.
In particular for any function f,
(d*d + dd")(fw) = (=A fo,

where A f = —(d*d + dd*) f is the ordinary Laplacian operator on functions. On
hyperkdhler manifolds M; and M>, there are three Kihler structures 7, J and K.
Therefore,

3 3
D (d d+dd)(fioh) ==Y (Af)o'.

i=1 i=1

In other words, the Laplacian on the self-dual forms is exactly the Laplacian on the
coefficients. On M, @, even though the metric is not hyperkihler, @), ¢ are still har-
monic since they are closed self-dual forms. The second part follows dlrectly from the
two facts above. O
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The most important result of [31] is the following theorem: (Proposition 4.2 in their
paper)
Theorem 5.2 There exists py > 0 such that for all p > py, the induced map P;)/’@from
the L*-orthogonal complement of span{y (t; — ,0/2)6_8[16()”.0)@} in W22 10 the L2-
orthogonal complement of span{x (—t; — p/ 2)e5’2w2, o) in W*2 is an isomorphism
and the operator norm of [P")”@]*] is bounded independent of p and ©.

It is easy to prove the following lemmas in functional analysis:
Lemma 5.3 (1) Suppose V = span{vy, ..., v,} is a finite dimensional subspace in

W2 for some k > 0. Let V- be the L?-orthogonal complement of V in W*2,
then W2 =V @ V+ and

ILf =+ gllwez = [ fllwez +118llwee = (A +2CDILf + gllwe2

£ 1wk,
forall f € Vand g € V', where C; = SUP rev\ (0} W‘IVLI;Z
(2) Suppose W = span{wi, ..., wy} is another subspace. Let a;; = (w;, vj) 2.

If the matrix A = {a;;} is invertible with A~V = {d7}, then the composition
of the inclusion and the projection maps P = Projy L oi : vt > Whisan
isomorphism. What is more

(1 +C)7IPfllwez < 11 fllwea < C3lIPSlyea,

where

S 4 [P

,C3 =1+ C(m)||A™"|| max [|v;|| .2 max |[w | yx..
rew\ioy f11z2

Proof The proof is quite obvious. The only thing to notice is that

P_lf =f- Z aij(f, Vi) 2wj.

ij=1
O

The following corollary of Theorem 5.2 and Lemma 5.3 provides the main estimate
of this section:

Corollary 5.4 There exists px > 0 such that for all p > px, the space of harmonic
self-dual 2-forms on M, o equals to HT = span{a);’(_)}. The Laplacian operator
A, g = d*d +dd* from the L?-orthogonal complement of H* in W*t22(A™) to the
L?-orthogonal complement of H in W*2(A™) is an isomorphism and the operator

normof G, g = A;}@ is bounded by Ce**" for some constant C independent of p and
0.
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Proof The isomorphism map in Theorem 5.2 can be decomposed into the composition
of following maps:

(x(t = p/2eMw o)t — (7wl o)™ — (ker Py o)"

N (cokeer,(.))l — (estw;@) — (x(—tr — p/2)e‘3t2wp,®)i.

The first and the fifth maps are isomorphisms by Lemma 5.3. Therefore, the sec-
ond map must be injective and the fourth map must be surjective. In other words,
ker P, @ = spanf{e™ ‘”w’ ()} and cokerP, g = span{e‘” i O} So all the maps are
actually isomorphisms. By Theorem 5.2 and Lemma 5.3, the operator norm of the
inverse of the map P, o : (ker Pp’@)L — (cokeer,@)l is bounded. It is straight

forward to switch this estimate into the estimate of the Laplacian operator. O
We are ready for the main theorem of this section:

Theorem 5.5 Fixk > 3. For large enough p, and any p > px, there exists a hyperkdih-
ler structure a) © on My e such that ||a)p o~ a)p ollwk2 < CeMT290 for some
constant C zndependent of p and ©.

Proof Fix the Volume form V = % det(a)i N a)j ®) 13 onM 0,0- When two symmet-

. . /\w
ric matrices A = “po © and B are close enough to the identity matrix, the equatlon

CACT = B has a solution C = B'/2A~1/2, Define F(B) by F/(B) = C,-ja)p’@.
Then F'(B) A F/(B) = 2b;; V.
Recall that the map G, ¢ on (Ht)L c AT satisfies
Y = (d*'d+dd")Gp ey = —(xdxd+dxdx)G, ey
—(+1d)d*dG, oY =dT(=2%dG, e¥).

Soif ¢' € A! satisfy the equation

d=¢% A d—¢ﬁ)

¢' = —2%dG,eProjL F' <3a,3 - v

then the closed forms a)p o = 4@’ + Projy+ F'(8ap — M) will satisfy the
required equation @ ¢ A a)/{) o =28i;V.
We will solve the equation by iterations

¢h =0,

/ j A= Ad=f
bpy1 = —2%dG) oProjgye)L F! <5aﬁ — %) )
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Since W*2 embeds into CY, if ||¢£,||Wk+1.z < e *P/2and p > py, then

Wl o AW g o d=¢. Ad™¢n < Co—M
T ij e =
2V 2V
co co
can be arbitrarily small if p, is large. So
, 28 : ; d gy Ad ¢l 428
i 1llwesia < Ce™™ ||ProjpeyL F' | Sap — IZZ—V < Ce7M1+29p,
Wk‘2

As long as py is large enough, the above estimate holds by induction. It follows that
1042 = Bppt w2 < Ce TP — @l lIpana.

As long as py is large enough, ¢/ = lim,,_, o ¢, will be the solution. ]
Corollary 5.6 For any ALH gravitational instanton M, fM |Rm|? = 9672,

Proof It is easy to deduce this conclusion from the well known fact that for K3 surface
M, o, fMp‘(_) |Rm(@, o)|* = 8% (M, @) = 19277, O

Theorem 5.7 Suppose o are three 2-forms satisfying the following conditions:

ey

/ az/\a3=/ a3/\a1=/ al/\ot2=0,
Mp.0 M0 Mp.e

/ al/\aI:/ az/\azzf o Ao
Mp,(;) Mp,@) Mp.(;)

©)
o' — @} gllg2 < e H1P/%,

Then there exists a hyperkdhler structure o on M 0,0 such that o € [o'] and
e 5 s
o' — @), gllwke = Ce™Plla’ — o), gllL2.

Proof Using 5);) © as the background hyperkéhler structure, we can choose harmonic
representatives A’ from the cohomology classes [« ]. Therefore,

CHIB =&} ollwra < 118" — @) ollz2 < lla' = @), gll2 < e H1P/%,
After replacing a);')’ o by B! in the proof of Theorem 5.5, we can find a hyperkihler

structure a)f) such t_hat span{[a)f)]} = span{[a']}. By the condition (1) of ', the hyper-
kahler structure o' can be chosen to be some rescaling and hyperkéhler rotation of
(- O
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Now we will use the method in this section to construct a counterexample of Torelli
Theorem in ALG case:

Theorem 5.8 When D is of type II*, III*, or IV*, there exist two different ALG gravi-
tational instantons with same [o'].

Proof In Examplg 3.1 of [24], Hein explains how the pairs IV, IV*) occur in rational
elliptic surfaces M birational to (P! x T?)/T" with I' = Z3. Let D be the fiber of type
IV*. Then, the construction in [24] provides an ALG gravitational instanton @' on

M = M\ D.Moreover, the asymptotic rate is 2 + % In particular, [Rm| = O (r7%74).
There is a similar example when D is of type II* or IIT*.

By Theorem 4.12 of [12], there exists a harmonic (0,1) form & on M asymptotic to
%lul/ﬁ_ 145. So d(Reh) is an exact harmonic form asymptotic to Re(u'/B=2dundpd).

B
Moreover, it is anti-self-dual because the coefficients of its self-dual part are decaying

harmonic and thus 0.
Let us use the notations in [12]. For example,

1611572 =\/f |¢|2r5dVol+/ |V¢|2r5+2dV01+/ |V2¢|2r3+4dVol.
M M M

Then by Theorem 4.12 of [12], for k¥ > 5 and small positive €, there exists a map
G: Hé‘ s (A — H§+§ ((AT) such that = (d*d + dd*)G . We still define
_4_ ~4-

F': T(R33) — A* as in Theorem 5.5 so that F'(B) A F/(B) = 2b;;V. Then we

do the iteration

b0 =3 =0, 9% = tReh,

: : d=¢% Ad—¢f .
¢;1+1 = -2x%xdG (Fl ((Saﬂ — %) - CUI) + 8i2tReh
When ¢ is small enough, (¢, $7 — rReh, ¢3) — (¢!, ¢* — tReh, @) € H '}
B

Then ' + d¢' will be an ALG gravitational instanton. By direct computation, the

1 —
curvature of the metric corresponding to (J, w? 4 td(Reh)) is proportional to r # .

It is also true for the metric corresponding to w' + d¢' because their difference is in
H 6" 4 In particular, the metric corresponding to @' + d¢' is not isometric to the
-4

metric corresponding to w'. O

6 Uniqueness of ALH gravitational instantons

In this section, we will prove the uniqueness part of Theorem 1.5. We start from the
understanding of the cross section:

Theorem 6.1 The integrals of o' on the three faces determine the torus T°.
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Proof On the flat model, recall that
dr = I*do' = J*do* = K*do°.
So

o' =dr Ado' +do% A do3,
w? =dr AdO* +do3 A do!,
o> =dr Ado3 +do' A do>.

The torus T> = R3 /A is determined by the lattice A = Zv; @ Zv, ® Zvs. Let v;; be
the % components of v;. Then

fiz fizr fie

f23 fa31 oz

f323 f3r fie

equals to

V22033 — V23V32  U32V13 — VU33V12  V12V23 — V13022
V23031 — V21V33  U33V11 — U31V13  V13V21 — V11023
V21V32 — V22V31  U31V12 — U32V11  V11V22 — V1202]

It is exactly the adjunct matrix adj(A) of

Vil V12 Vi3
A= vy vy v3
V3] V32 V33

Since adj(A)A = det(A)l, it is easy to see that det(adj(A)) = (det(A))2. Thus,
A = (det(adj(A)))~'/?adj(adj(A)) is determined by adj(A). On M, the hyperkihler
structure is asymptotic to the flat model. So we can get the same conclusion. O

Theorem 6.2 ALH gravitational instantons are uniquely determined by their three
Kdihler classes [w'] up to tri-holomorphic isometry which induces identity on
Hy(M, 7).

Proof Suppose two ALH hyperkihler structures o, k = 1,2 on M satisfy [w!!] =
[w>!]. By the results in the previous section, we have two families of K3 surfaces
(M, 0y d)];]’f’ @,)- To understand the relationship between M and M, e, let us start
from the flat orbifold (R x T3)/Z,. Take two copies of it. On the first copy, define
t1 = r. On the second copy, define 1, = —r. Now we glue them by truncating the
two manifolds at #; = 4o and identifying the boundary points (o, ) with the points
(—p, ® — 6). An alternating way to describe the gluing is to start from [0, 2p] x T3,
and then identify (0, ) with (0, —6) and identify (2p, 6) with (20,20 — @0). Let
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4 = (R x T3)/Z(4p,20). Then it is easy to see that the gluing is actually the
orbifold T*/Z,.

The resolution of this picture provides the topological picture of the construction
of My, e,. The second homology group H»(M,, o, R) = R?? is generated by 16
curves X, corresponding to 16 orbifold points, 3 faces Fyg spanned by v, and vg and
3 faces F,, spanned by (4p,20) and (0, vy). Any hyperkihler structure ' on the K3
surface determines 48 integrals ;o on X, 9 integrals fiog on Fyg and 9 integrals fiq
on Fy. The integrability condition [, o’ A @/ = 28;;V is equivalent to

1 1
—3 Y ciaCja + > > Jia fjpy + fiafipy =26V
a=1

(a,B,y)=(1,2,3),(2,3,1),(3,1,2)

If ¢io, fiap are given, itis a rank 5 linear system in 9 variables fiq.

1,p1,0] 2 ,02,02
By the construction of @ a) o Ok on My, e, the differences c; -,

filag' O _ ffxé’z ‘92 are all bounded by Ce(~*1+2901 4 Ce(= 2 for large enough

ok However f; Lo fli £2.82 may be very large. Fortunately, we are free to change
the 8 parameters pi, ®r. When p; and ®; are changed by adding épx and §Oy,
the integrals f;, koe Ok gre changed by adding the almost linear terms L (§px, ®y) +

0 (eCMH30)01 4 o(=h1438)02) \where

and

0 d
L(8pk, 8Ok) = 45 (vou @> +2 <5®k X Vg, ﬁ)

are determined by the cross section R3 /(Zvy ® Zvr & Zv3), Spr and §Oy. The image
of L is exactly the linear space

(fia)|3Cs.L. > fiafipy + fiafipy = 28;C ¢ .
(o, B,y)=(1,2,3),(2,3,1),(3,1,2)

where fiqp = (V4 X vg, 3 9,) Therefore, after increasing the gluing parameters o1 or
p2 and changing the parameters ©y,

min pll2 < CeHHP1 . ol

~1,i ~2,i
¢€|:w/)1,(:-)1 Dpr. 0

By Theorem 5.7, there exists a hyperkahler structure ' on M, @, such that [»'] =

~2.i —h1+68 —)1+68
[a)p1 ol]and||a) —a)p2 o, llwk2 = Ce=M1H6901 | Ce(=117+69)r2 By Theorem 1.6,
o' and w'(l) o, are tri-holomorphically isometric to each other. Moreover the isometry

induces 1dent1ty on Hy(M, e, Z). Notice that the long neck regions are almost flat
but by Corollary 5.6, the compact parts are not flat. So all the isometrics must map
compact parts to compact parts. In particular, we can apply the Arzela—Ascoli theorem
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and the diagonal argument to get a limiting tri-holomorphic isometry on the original
manifold M which induces identity on H> (M, Z) when pi go to infinity. O

Theorem 6.3 The Kdihler classes [o'] satisfy the two conditions in Theorem 1.5.

Proof The first condition is a trivial consequence of det(adj(A)) = (det(A))? and
det(A) # 0 in the proof of Theorem 6.1. As for the second condition, any ALH gravi-
tational instanton M can be glued with itself to obtain a K3 surface. By Theorem 5.7,
we can modify the hyperkihler metric on the K3 surface so that the integrals of &’ on
the 11 cycles are unchanged in the gluing process. For any [X] € Hy(M, Z) such that
[£]? = —2, we can find a corresponding element in the second homology group of the
K3 surface. By Theorem 1.6, there exists i such that [ ][Z] # 0. Since the integrals
of ' on the K3 surface are the same as the integrals on M, the second condition must
be satisfied. O

7 Existence of ALH gravitational instantons

In this section, we will use the continuity method to prove the existence part of The-
orem 1.5. Given any three classes [} ] satisfying two conditions in Theorem 1.5, the
cross section T is determined by Theorem 6.1. By the work of Biquard and Minerbe

[71, there exists an ALH hyperkéhler structure w6 on (R x T3)/Z;. Now we are going
to connect [O‘li] with [aé] = [a)f)]. We require that along the path, the cross section T3,
i.e. the integrals on the faces Fj; are invariant.

We already know that for any k = 0, 1, any [X] € Hy(M, Z) with [£]* = 2,
there exists i € {1, 2, 3} with [a,i][E] # 0. After a hyperkéhler rotation, we can
assume that [oc,i][E] # Oforany k =0,1,anyi = 1,2,3 and any [X] € H>(M, Z)
with [Z]? = —2.

Now we can connect [af)] with [a’i] by several pieces of segments. Along each
segment, two of [o'] are fixed while the remaining one is varying. We require that the
actions of the two fixed [o/] on any [X] € Hy(M, Z) with [Z]? = —2 are nonzero.
Therefore along the path, the two conditions of Theorem 1.5 are always satisfied.

So we only need to consider each segment. Without loss of generality, we can
assume that there is only one segment and [o?], [@3] are fixed along the segment.
Actually, we can assume that /, > and > are invariant along the continuity path.
Only [«'], i.e. the I- Kihler class is varying. We denote the original a)(l) € [aé] by wy.
We will use it as the background metric.

By Proposition 6.16 of [37], for wp, the second cohomology group H>(M, R) is
naturally isomorphic to the space of bounded harmonic forms which are asymptotic
to the linear combinations of d9% A d§3, d93 Ad9! and dO' A d92. We only care about
the forms whose integrals on Fj; are 0. Such kind of forms must decay exponentially.
By the calculation in Theorem 5.1 and the maximal principle, the self-dual part of any
decaying harmonic form vanishes. It is well known that any anti-self-dual form must
be (1,1).

Thus, we can add linear combinations of those exponential decay anti-self-dual
harmonic forms to change the Kéihler class. However, the integrability condition
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f M((al)z — @ =0 may not be satisfied. Fortunately, there is an exponential
decay exact form d((1 — x (r — R —2))I*dr) on M. Moreover, it is (1,1) since in local
coordinates

d((1 = X0 = R =2)1"dr) =d (1 = x = R = 2)) (irjde! — ir;az/ ) )
= —2i(1 — x(r — R =2))r;pdz/ AdZ* +2ix'(r — R = 2)rjrpdz/ A dz*.

If we add this term with «!, then

R—o0 J,—R

f (@' +ad((1 — x(r = R =2)I*dr))* — (@")? = 2a lim I*dr Aol
M

The integral [ _, I*dr Aa! on M converges to the term [15 —d6' Ad6* A d6? on the
flat model, which is non-zero. So we can choose a suitable a to achieve the integrability
condition. We call the resulting (1,1) form ;. It satisfies the following conditions:

(1) For any m > 0, ||e)‘1’VZ‘O(a, — a7)||co converges to O when ¢ goes to 7. In
particular, ||e*1” Vi (@ — w0)]|co is uniformly bounded.
2) [y —}) =0.

Remark «; is positive in far enough region. However, it may not be positive in the
compact part. That is the reason why the geometric existence part of [23] fails.

Now define [ as the set
m _ —\r _ .09 2 _ 2
{t € [0, 11[3¢rs.t.¥m = 0, [V ¢y| = O(e 7M7), o = o + 03¢, > 0, 0} = o } .

It is trivial that O € 1.
Theorem 7.1 [ is open

Proof Suppose T € I, then as long as 7 is close enough to T, a; + i3dér is positive.
It satisfies the integrability condition

[ e +ivion - o) = [ (witivgr? ~ad)+ [ @ of) =0,
M M M

By Theorem 4.1 of [23], (o +i9d¢7 +i9d¢)? = w] has a solution ¢. So ¢ € I with
¢ = o1 + ¢. ]

Now we are going to show that / is closed. Assume that {t;} € I converge to T'. To
make the notation simpler, we will use «;, w; and ¢; to denote oy;, @y, and ¢;,.
We start from an estimate:

Theorem 7.2

0)2
/ (trpyw; —2)—=> < C.
" 2
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Moreover

w?
/M (tre; @i — 2)7] -0

asi, j — oo.

Proof

w2
/(trwoa)i—Z)?O:/ a)o/\w,-—a)(%:/ wo A (o —awp) < C.
M M M

Moreover

@] )
/(trwja),-—2)7=/ wj/\a),-—a)j:/ aj A —aj) —0
M M M
asi, j — oo. |

Remark By mean inequality, both try,@; — 2 and tr,; w; — 2 are non-negative since
0 = 0 = .
Theorem 7.3 Let Uy be the sets {N < r < N + 1} in the sense of wg. Then for all
large enough N, there exist subsets Vi C Uy such that the volume Vol(Vy;) >

Vol(Un)/2 = C and for any y1, y2 € Vi, duw, (y1, y2) < C1.

Proof It was proved by Demailly, Peternell and Schneider as Lemma 1.3 of [18] from
the bound in Theorem 7.2. O

By the volume comparison theorem on Ricci flat manifolds, if we pick any point
PNi € Vyi, then the volume of radius R ball centered at py; in the sense of w; has a
uniform lower bound depending on R.

Theorem 7.4 For any fixed number R, the w;-curvature in B, (pyi, R) is uniformly
bounded. Moreover, the w;-holomorphic radius in B, (pn;, R) is uniformly bounded
below.

Proof Suppose on the contrary, the w;-curvature goes to infinity. Then we can rescale
the metric so that the largest curvature equals to 1. By Theorem 4.7 of [11], the
volume lower bound and the curvature bound imply the lower bound on the injectivity
radius. Then, by Lemma 4.3 of [46], the holomorphic radius has a lower bound.
By Page 483 of [1], the bound on the L?-norm of curvature, the lower bound on the
volume and the harmonic radius imply that the rescaled metric converges to an Einstein
ALE space M. Replacing the harmonic radius by the holomorphic radius, we can
show that M, is actually Kihler. Moreover, before taking limit, the manifold has a
parallel holomorphic symplectic form w? + iw?. Thus, on Mo, there exists a parallel
holomorphic symplectic form, too. In other words, M is actually hyperkéhler.
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By Bando—Kasue—Nakajima [4] and Kronheimer [32,33], the (non-flat) ALE-
gravitational instanton M, contains a curve X, with self intersection number — 2.
Before rescaling, the integrals of w;, w? and w3 on T; converge to 0.

Recall that H>(M, R) is generated by 8 curves X, and 3 faces F»3, F31, F12. In
fact, similar to Section B of [50], any element in H>(M, Z) can be represented by half
integral linear combinations of Xy and Fyg. Let

1
(2] =3 D (mialZal + miagl Fup))-

Then [2;]2 = -2 = _TZ 3 ml.za. So there are only finitely many possibilities of m2; .
By condition (1) of Theorem 1.5, the actions of lim;_, oo [w;], [w?] and [w?] on Fup
are linearly independent. Since the integrals of w;, > and w* on X; converge to 0, we
know that m;g also has a uniform bound. In other words, the homology class [%; ]
only has finitely many possibilities. Taking a subsequence where the homology class
of ¥; are same, we obtain a contradiction to the condition (2) of Theorem 1.5.

We have obtained a bound on the curvature. Theorem 4.7 of [11] and Lemma 4.3
of [46] now provide a lower bound on the holomorphic radius. m]

Let Dy be the upper bound on the diameter of Uy with respect to wy. We are
interested in the function e(#;) = tr,, wp = try,w; on By, (pni, 10Dp). We start from
a theorem:

Theorem 7.5 There exists a constant Cy such that if

y~2 / e(t;) < Ca
Bw[ (Pay)

for some ball B, (p,y) C By, (pni, 10Dy), then

1
sup o> sup  e(t) < —)/_2/ e(ti) < 1.
C Bm,- (p.v)

oel0.2y] By (p.2y—o0) 2

Proof 1t is well known that in the C!**-holomorphic radius, there are higher derivative
bounds automatically. Thus, the constant in Proposition 2.1 of [46] is uniform. (There
13 2 2 " ”

are several errors in [46]. After correcting them, we can only get “5y” instead of “y
in the statement) O

Theorem 7.6 Foreach i, there exists aset A; C {0, 1,2, ...} suchthat forall N & A;,
SUPB, (pni.4Do) e(t;) < 2.5 and the number of elements in A; is bounded.

Proof For any point p € M, the number of N such that p € By, (pni, 10Dy) is
bounded. Actually, by Theorem 7.3, for all such N, the set Vy; is contained in
B, (p, 10Dy +C7). The volume of B, (p, 10D+ C) has an upper bound by volume
comparison, while the volumes of the disjoint sets Vyy; have a lower bound.
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Therefore, by Theorem 7.2

Z/ (e(t) —2) < C.
N Y Bo; (pni.10Do)

Let y be a constant smaller than Dg such that y2 < 267;—22 Then by the volume
comparison theorem, the volume of B(R) on a Ricci flat 4-manifold is bounded by

2
4
”TR . So

C
/ 2 = 2Vol(By, (p. 1)) < —y2.
Bu)l- (p.y) 2

Therefore, as long as

C
/ (et —2) < 292,
Bu; (pni-10D) 2

we can get

/ e(t;) < Cry?
Bwi (pv)

forall p € By, (pni, 8Dp). So e(t;) = tro,wo < 3¥ 2 in By, (pni, 8Dp) by Theo-
rem 7.5. In particular, By, (pni, 8Do) C Buy(pni, 18y ~2Dy).

For any ¢ < %yz, let A; . denote the set of N such that the integral
wai (pNinODO)(e(t,-) —2)>c¢€or SUPB,,. (pwi, 18y ~2Dp) |Rm(wp)| > €. Then the number
of elements in A; ¢ is bounded. For all N ¢ A; , it is well known [46] that

— Ay e(ti) < C|[Rm(wo)le(1:)* < C|Rm(wp)|

in B, (pni, 8Dp). So both SUPB,, (pni,8Dp) —Agye(t;) and fBa)»(PNi»SDO)(e(ti) —2) are
bounded by Ce. By Theorem 9.20 of [22], supg_ (,, 4p,)(€(ti) —2) = Ce for all
N ¢ A; . After a suitable choice of €, we can make it smaller than 1/2. O

Lemma 7.7 There exists a constant R such that M C Uyga; B, (pni, R).

Proof For all N ¢ A;, %a)i < wyp = 2w; in By, (pyi,4Dy) by Theorem 7.6. In
particular,

Un C Buy(pni, Do) C Bw, (pni,>4Do).
Let Us; = Unea,; Un. Suppose R = sup, ¢y, infnga, do; (Pni, q) s achieved by
gi and N;. Then we will use the argument similar to Theorem 3.1 of [47] and Theorem

3.1 of [53] proved by applying Theorem 1.4.1 of [49]. Actually, if R > 10Dy, by
Theorem 7.6, it is easy to see that By, (g;, R — 10Dg) C Uy, and Uy, C B, (qi, R+
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10Dy)\ By, (gi» R — 10Dy). Since the volume of Uy, is bounded from above and
the volume of Uy, is bounded from below, it is easy to get a bound on R by the
Bishop-Gromov volume comparison theorem. O

Theorem 7.8 e(t;) = try w; = try, wo is uniformly bounded on M.

Proof By Theorem 7.4 and Lemma 7.7, the w;-holomorphic radius is bounded from

below. So the constant in Theorem 7.5 is uniform if we replace wp by w; in the
2

statement of Theorem 7.5. By Theorem 7.2, fM (trwj w; — 2)% — Qasi,j — oo.
So for large enough i and j, tre;w; is uniformly bounded on M. Fix j and let i go
to infinity. Since C;]wo < w; < Cjwp, the bound on e, ;i automatically implies a
bound on try,,w;. O

Now we are ready to use the arguments in [23] to prove Theorem 1.5. Let N be
a large constant such that when r > N, %a)o < o; < 2wp. We start from a theorem
which can be easily deduced from Proposition 4.21 of [23]:

Theorem7.9 Letw = f — be a weight function. Define the weighted norm ||u| |Lp
M
by llullpp = (f |u|Pw)1/P, thenforallu € C,

||u||L$ (fr=Nh = C||VM||L2({r>N}) + C||M||L4({N<r<1v+1})
It is easy to see that forall 1 < p < q < oo, ||u||L5 < ||u||LZ) by Holder’s inequality.
Theorem 7.10 [ is closed.

Proof Let ¢, = / "f gie —5 " be the weighted average of ¢;. By the standard Lockhart-
M€

McOwen theory [34], since constant is the only harmonic function less than & we
can obtain a bound on ||e~% (¢; — @ai)|lw22 from the L? bound of e"”Aqubi =
e 0" (trpow; — trayoti).

Let ui = ¢i — ¢ai- We already obtain a bound on [[u;||y22(<n44;) and
1 AwgtillLooay. SO [|uillw2p(r<n43p) 1s bounded for any p € (1, 00) by Theorem
9.11 of [22].

The C%“-estimate for real Monge—Ampére equation was done by Evans—Krylov—
Trudinger. See Section 17.4 of [22] for details. Now we are in the complex case.
However, the arguments in Section 17.4 of [22] still work. An alternative way to
achieve the bound on [Béui]ca({rSNJrz}) for all 0 < o < 1 was done by Theorem 1.5
of [14] using the rescaling argument. Now it is standard to get a C*° bound of u; on
{r < N + 1} through Schauder estimates.

As in [23],

P
/ V(i1 5 Por?
r>N

2
14 _ 1 _
< [f uilui [P (@} — af) — —/ wilui|P2du; A (o +Oli):| .
p —_ 1 er 2 r=N
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Therefore, for p > 2,

/ Vw5 ? < Cp (f ui 1P~ w + Cé"l> <Cp <C3/ i 1P~ w + Cé’) ,
r>N r>N r>N

where C3 is a bound on supy, -y |u;|. By Young’s inequality,

L2 2 P 2 P 14
/r>N|V|ul|z| < Cp (II will?, 1<{,>N}>+C3> = p? (Iill?y oy + €F) -

Apply Theorem 7.9 to |u;|?/2. Then

2
C4P (||ul||Lﬂ +C3p)-

|| l|| 2/) >N} — {r=N})

We already know that ||u;|| L2 ((r=N}) = < Cs. That is our starting point. We are going
to obtain a bound on ||u; ||Loo({r>N}) = lim; o0 [|u;l] by Moser iteration.
WD I il 2y <
@) T il 21 gy <
Jj > k, then

L3 (r=ny)
< Czforall j > 1, then [|u;|| L >Ny < Cs.

< Cszforall 1 < j < k but ||u;]]| > (3 for all

L2 (tr=N))

o'} —j—1 00 —j+1;
il Looqrany < QCHZ=2"" 222" ey < ¢

3) If ||u;]| > C3 for all j > 1, then

L2 ((r=NY)
o] —j—1 00 S
il oorany < QCHEF2 222 ey < ¢

The L bound on u; = ¢; — ¢,; implies a bound on ¢,; since ¢; decay exponen-
tially. Therefore, we actually have a L°° bound on ¢;. Then we can obtain a global
C° bound as before. Finally, we can go through the Step 3 and Step 4 in [23] to get
the C™ bound on " ¢;. We are done by taking the limit of some subsequence of

{¢:}. m]

Acknowledgements We learned the idea that the gluing of any ALH gravitational instanton with itself
is a K3 surface as well as some initial set-ups of the gluing construction from the lecture of Sir Simon
Donaldson in the spring of 2015 at Stony Brook University. We also thank Philip Boalch, Lorenzo Foscolo,
Hans-Joachim Hein, Robert Lazarsfeld and Dennis Sullivan for some suggestions.

References

1. Anderson, M.T.: Ricci curvature bounds and Einstein metrics on compact manifolds. J. Am. Math.
Soc. 2(3), 455-490 (1989)

2. Anderson, M.T.: The L? structure of moduli spaces of Einstein metrics on 4-manifolds. Geom. Funct.
Anal. 2(1), 29-89 (1992)

3. Atiyah, M., Hitchin, N.: The Geometry and Dynamics of Magnetic Monopoles. M. B. Porter Lectures.
Princeton University Press, Princeton (1988)

@ Springer



716

G. Chen, X. Chen

10.

11.

12.

13.

14.

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

32.

. Bando, S., Kasue, A., Nakajima, H.: On a construction of coordinates at infinity on manifolds with

fast curvature decay and maximal volume growth. Invent. Math. 97(2), 313-349 (1989)

. Besse, A.L.: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in

Mathematics and Related Areas (3)], vol. 10. Springer, Berlin (1987)

. Biquard, O., Boalch, P.: Wild non-abelian Hodge theory on curves. Compos. Math. 140(1), 179-204

(2004)

. Biquard, O., Minerbe, V.: A Kummer construction for gravitational instantons. Commun. Math. Phys.

308(3), 773-794 (2011)

. Boalch, P.: Symplectic manifolds and isomonodromic deformations. Adv. Math. 163(2), 137-205

(2001)

. Boalch, P.: Hyperkahler manifolds and nonabelian Hodge theory of (irregular) curves, arXiv e-prints

(2012). arXiv:1203.6607

Burns Jr., D., Rapoport, M.: On the Torelli problem for kéhlerian K — 3 surfaces. Ann. Sci. Ecole
Norm. Sup. (4) 8(2), 235-273 (1975)

Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for functions of the
Laplace operator, and the geometry of complete Riemannian manifolds. J. Differ. Geom. 17(1), 15-53
(1982)

Chen, G., Chen, X.: Gravitational instantons with faster than quadratic curvature decay (I), arXiv
e-prints (2015). arXiv:1505.01790

Chen, G., Chen, X.: Gravitational instantons with faster than quadratic curvature decay (II). J. Reine
Angew. Math. 756, 259-284 (2019)

Chen, X., Wang, Y.: €2 _estimate for Monge—Ampere equations with Holder-continuous right hand
side. Ann. Global Anal. Geom. 49(2), 195-204 (2016)

Cherkis, S.A., Hitchin, N.J.: Gravitational instantons of type Dy. Commun. Math. Phys. 260(2), 299—
317 (2005)

. Cherkis, S.A., Kapustin, A.: Singular monopoles and gravitational instantons. Commun. Math. Phys.

203(3), 713-728 (1999)

. Cherkis, S.A., Kapustin, A.: Hyper-Kéhler metrics from periodic monopoles. Phys. Rev. D (3) 65(8),

084015, 10 (2002)

Demailly, J.-P., Peternell, T., Schneider, M.: Kihler manifolds with numerically effective Ricci class.
Compos. Math. 89(2), 217-240 (1993)

Donaldson, S.K.: Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern, Nankai
Tracts Math., vol. 11. World Sci. Publ., Hackensack, pp. 153-172 (2006)

Foscolo, L.: Deformation theory of periodic monopoles (with singularities). Commun. Math. Phys.
341(1), 351-390 (2016)

Foscolo, L.: A gluing construction for periodic monopoles. Int. Math. Res. Not. IMRN 24, 7504-7550
(2017)

Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathe-
matics. Springer, Berlin (2001). Reprint of the (1998) edition

Haskins, M., Hein, H.-J., Nordstrom, J.: Asymptotically cylindrical Calabi—Yau manifolds. J. Differ.
Geom. 101(2), 213-265 (2015)

Hein, H.-J.: Gravitational instantons from rational elliptic surfaces. J. Am. Math. Soc. 25(2), 355-393
(2012)

Hitchin, N.J., Twistor construction of Einstein metrics, Global Riemannian geometry (Durham, 1983),
Ellis Horwood Ser. Math. Appl. Horwood, Chichester, pp. 115-125 (1984)

Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1),
59-126 (1987)

Ivanov, L.T., Ro¢ek, M.: Supersymmetric o -models, twistors, and the Atiyah-Hitchin metric. Commun.
Math. Phys. 182(2), 291-302 (1996)

Kodaira, K.: On compact analytic surfaces. II. Ann. Math. (2) 77, 563-626 (1963)

Kodaira, K.: On compact analytic surfaces. III. Ann. Math. (2) 78, 1-40 (1963)

Kodaira, K.: On the structure of compact complex analytic surfaces. I. Am. J. Math. 86, 751-798
(1964)

. Kovalev, A., Singer, M.: Gluing theorems for complete anti-self-dual spaces. Geom. Funct. Anal. 11(6),

1229-1281 (2001)
Kronheimer, P.B.: The construction of ALE spaces as hyper-Kéhler quotients. J. Differ. Geom. 29(3),
665-683 (1989)

@ Springer


http://arxiv.org/abs/1203.6607
http://arxiv.org/abs/1505.01790

Gravitational instantons with faster than quadratic curvature decay (lll) 717

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

49.

50.

51

52.

53.

54.

55.
56.

Kronheimer, P.B.: A Torelli-type theorem for gravitational instantons. J. Differ. Geom. 29(3), 685-697
(1989)

Lockhart, R.B., McOwen, R.C.: Elliptic differential operators on noncompact manifolds. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 12(3), 409-447 (1985)

Looijenga, E., Peters, C.: Torelli theorems for Kihler K3 surfaces. Compos. Math. 42(2), 145-186
(1980/1981)

Lindstrom, U., Ro¢ek, M.: New hyper-Kéhler metrics and new supermultiplets. Commun. Math. Phys.
115(1), 21-29 (1988)

Melrose, R.B.: The Atiyah—Patodi-Singer index theorem, Research Notes in Mathematics, vol. 4. A
K Peters Ltd, Wellesley (1993)

Minerbe, V.: Rigidity for multi-Taub-NUT metrics. J. Reine Angew. Math. 656, 47-58 (2011)
Miranda, R.: The moduli of Weierstrass fibrations over P! Math. Ann. 255(3), 379-394 (1981)
Naruki, I.: Configurations related to maximal rational elliptic surfaces, Complex analytic singularities,
Adv. Stud. Pure Math., vol. 8. North-Holland, Amsterdam, pp. 315-347 (1987)

Okamoto, K.: Studies on the Painlevé equations. III. Second and fourth Painlevé equations, Pp and
Pry. Math. Ann. 275(2), 221-255 (1986)

Okamoto, K.: Studies on the Painlevé equations. I. Sixth Painlevé equation Pyy. Ann. Mat. Pura Appl.
(4) 146, 337-381 (1987)

Okamoto, K.: Studies on the Painlevé equations. II. Fifth Painlevé equation Py. Jpn. J. Math. (N.S.)
13(1), 47-76 (1987)

Okamoto, K.: Studies on the Painlevé equations. IV. Third Painlevé equation Ppyp. Funkcial. Ekvac.
30(2-3), 305-332 (1987)

Page, D.N.: A periodic but nonstationary gravitational instanton. Phys. Lett. B 100(4), 313-315 (1981)
Ruan, W.-D.: On the convergence and collapsing of Kéhler metrics. J. Differ. Geom. 52(1), 1-40 (1999)
Ruan, W.-D., Zhang, Y.: Convergence of Calabi—Yau manifolds. Adv. Math. 228(3), 1543-1589 (2011)
Sakai, H.: Rational surfaces associated with affine root systems and geometry of the Painlevé equations.
Commun. Math. Phys. 220(1), 165-229 (2001)

Schoen, R., Yau, S.-T.: Lectures on differential geometry, Conference Proceedings and Lecture Notes
in Geometry and Topology, I, International Press, Cambridge. Lecture notes prepared by Wei Yue
Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu. Translated from the
Chinese by Ding and S. Y, Cheng, With a preface translated from the Chinese by Kaising Tso (1994)
Schulz, M.B., Tammaro, E.F.: M-theory/type IIA duality and K3 in the Gibbons-Hawking approxima-
tion, arXiv e-prints (2012). arXiv:1206.1070

Siu, Y.T.: A simple proof of the surjectivity of the period map of K3 surfaces. Manuscr. Math. 35(3),
311-321(1981)

Todorov, A.N.: Applications of the Kédhler—Einstein—Calabi—Yau metric to moduli of K3 surfaces.
Invent. Math. 61(3), 251-265 (1980)

Tosatti, V.: Limits of Calabi—Yau metrics when the Kéhler class degenerates. J. Eur. Math. Soc. (JEMS)
11(4), 755-776 (2009)

Tian, G., Yau, S.-T.: Complete Kihler manifolds with zero Ricci curvature. I. J. Am. Math. Soc. 3(3),
579-609 (1990)

Witten, E.: Gauge theory and wild ramification. Anal. Appl. (Singap.) 6(4), 429-501 (2008)

Yau, S.T.: The role of partial differential equations in differential geometry. In: Proceedings of the
International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, pp. 237—
250 (1980)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1206.1070

	Gravitational instantons with faster than quadratic curvature decay (III)
	Abstract
	1 Introduction
	2 Definitions
	3 The topology of ALG and ALH gravitational instantons
	4 Classification of ALG gravitational instantons
	5 Gluing of ALH gravitational instantons
	6 Uniqueness of ALH gravitational instantons
	7 Existence of ALH gravitational instantons
	Acknowledgements
	References




