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Abstract

For an equivariant commutative ring spectrum R, π0R has algebraic
structure reflecting the presence of both additive transfers and multi-
plicative norms. The additive structure gives rise to a Mackey functor
and the multiplicative structure yields the additional structure of a Tam-
bara functor. If R is an N∞ ring spectrum in the category of genuine
G-spectra, then all possible additive transfers are present and π0R has
the structure of an incomplete Tambara functor. However, if R is an N∞
ring spectrum in a category of incomplete G-spectra, the situation is
more subtle.

In this chapter, we study the algebraic theory of Tambara structures
on incomplete Mackey functors, which we call bi-incomplete Tambara
functors. Just as incomplete Tambara functors have compatibility con-
ditions that control which systems of norms are possible, bi-incomplete
Tambara functors have algebraic constraints arising from the possible
interactions of transfers and norms. We give a complete description of the
possible interactions between the additive and multiplicative structures.

7.1 Introduction

The complexity of the equivariant stable category for a finite group
G is a consequence of the desideratum that the orbits G/H must be
dualizable. In contrast to the non-equivariant setting, there are many
possible variants of the equivariant stable category determined by which
a Department of Mathematics, Columbia University
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orbits are dualizable. Classically, this structure is captured by a universe,
an infinite-dimensional G-inner product space that contains infinitely
many copies of a collection of finite-dimensional G-inner product spaces
including Rn for each n. A result of Lewis tells us that G/H is dualizable
in the equivariant stable category structured by U if G/H embeds in
U [18]. Another way of saying this is that the universe controls which
transfer maps exist. On π0, a shadow of this is reflected in the Mackey
functor structure.

Equivariant commutative ring spectra have traditionally also been
controlled by a universe in the form of the action of LG(U), the G-
equivariant linear isometries operad for a universe U [17]. Just as the
“additive” structure of the equivariant stable category is expressed by the
presence of transfer maps, the multiplicative structure encoded in the
operad can be described in terms of the multiplicative norms introduced
in Hill–Hopkins–Ravenel [13]. Building on this, we defined the notion of
an N∞-operad and showed that these operads control the transfers and
norms in the equivariant stable setting [5]. Moreover, we showed that
the data of these operads is essentially algebraic, encoded in indexing
systems. An important aspect of this perspective is that indexing systems
capture a more general range of possible compatible systems of norms or
transfers than universes. We review the definitions and combinatorics of
indexing systems (and associated “indexing categories”) in Section 7.2.1.

This algebra becomes most concrete when we pass to π0. When we
restrict to a model of the equivariant stable category that only has some
transfer maps (e.g., the O-stable categories of [7]), π0 has the structure of
an incomplete Mackey functor. That is, for any indexing system we have
a notion of an incomplete Mackey functor associated to that indexing
system.

When working with N∞ ring spectra, it is standard in the subject
to assume that the additive structure is complete and study variation
in the multiplicative structure. Then on π0 we obtain various kinds
of incomplete Tambara functors, which are Mackey functors equipped
with additional norm maps satisfying certain compatibilities [6]. Since
incomplete Tambara functors are less familiar than incomplete Mackey
functors, we give a concrete description.

Tambara functors can be expressed in terms of a particular equivariant
Lawvere theory, being a diagram category indexed by a category of
“polynomials” or “bispans” (see [25] and [24]).
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Definition (Definition 7.11) Let PG be the category with objects finite
G-sets and where the morphisms from S to T are isomorphism classes of
“polynomials”: diagrams of the form

Th ◦Ng ◦Rf := S
f←− U1

g−→ U2
h−→ T

with f , g, and h maps in SetG.

The composition rules for these are somewhat involved; we review the
theory of polynomials in detail in Section 7.2.2.

Incomplete Tambara functors are defined by restricting the collection
of maps g, parameterizing the “norm” Ng in the polynomials, to lie in
a subcategory of SetG. A priori , this just describes a subgraph of PG;
unpacking the requirements for this subgraph to be a category led us
to the definition of an indexing category. When these maps are in an
indexing category O, then this gives the category PG

O of polynomials
with exponents in O.

The natural follow-up question is to determine what happens when
we vary the “additive” structure as well, i.e., restricting the map h

parameterizing the “transfer” Th to also lie in some subcategory of SetG.
It is clear we at least need to restrict to considering indexing categories
here as well, but additional compatibility will be required.

Definition (Definition 7.26) Let Oa and Om be indexing categories,
and let PG

Oa,Om
be the wide directed subgraph of PG so that the arrows

from S to T are the isomorphism classes of polynomials

Th ◦Ng ◦Rf := S
f←− U1

g−→ U2
h−→ T

with g ∈ Om and h ∈ Oa.

In these terms, the following is the main question studied in this
chapter.

Main Question What compatibility must we have between the addi-
tive indexing category Oa and the multiplicative indexing category Om

so that the subgraph PG
Oa,Om

of PG is a subcategory?

The subtle point here arises from the “equivariant distributive property”
which records how to take a norm of a sum or a transfer. Following Mazur,
we call this kind of interchange “Tambara reciprocity” [20], and a key
feature is that the formulae depend only on G and its subgroups. In gen-
eral, this will involve transfers and norms connecting many intermediate
subgroups.
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Example 7.1 For G = C4 with generator γ, the norm NC4
e associated

to the unique map C4 → ∗ satisfies

NC4
e (a+ b) = NC4

e (a) +NC4
e (b) + trC4

C2

(
NC2

e (a) · γNC2
e (b)

)
+ trC4

e (a · γa · γ2a · γ3b+ a · γa · γ2b · γ3b+ a · γb · γ2b · γ3b).

Incomplete Tambara functors are specified by including only a subset
of the possible norm maps. The required compatibility check ensures that
if we have the norm NH

K , then we must also have any of the norms that
occur in any Tambara reciprocity formula. If we also include only some
of the transfers, then we have much more stringent conditions: as the
example shows, we run into several different transfers in the Tambara
reciprocity formulae.

In general, distributivity of the twisted product, parameterized by
some g, over twisted sums is recorded by the “dependent product” Πg

(we review this in Definition 7.16 below). This allows us to concisely state
the required compatibility data.

Definition (Definition 7.29) Let Oa and Om be indexing categories.
The indexing category Om distributes over Oa if for all maps g : S → T

in Om, we have

Πg

(
(Oa)/S

)
⊆ (Oa)/T .

In this situation, we will say that the pair (Oa,Om) is compatible.

The first main theorem, proved in Section 7.3, guarantees that this is
the right notion.

Theorem (Theorem 7.30) If (Oa,Om) is compatible, then PG
Oa,Om

is
a subcategory of PG.

This gives rise to the following basic definition of a bi-incomplete
Tambara functor.

Definition (Definition 7.34) Let (Oa,Om) be a compatible pair of
indexing categories. An (Oa,Om)-semi-Tambara functor is a product
preserving functor

R : PG
Oa,Om

→ Set.

An (Oa,Om)-Tambara functor is an (Oa,Om)-semi-Tambara functor R

such that for all finite G-sets T , R(T ) is an abelian group.
We write (Oa,Om)-T amb to denote the category of (Oa,Om)-Tambara

functors.
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Bi-incomplete Tambara functors have good categorical properties anal-
ogous to the properties of (incomplete) Tambara functors. We review
these in Section 7.4, including a discussion of the additively incomplete
box product.

In Section 7.5, we express the notion of compatibility in more concrete
terms, eventually reducing verification of compatibility to checking a
tractable combinatorial condition.

Theorem (Theorem 7.65) Let Oa and Om be indexing categories. Then
(Oa,Om) is compatible if and only if for every pair of subgroups K ⊆ H

such that H/K is an admissible H-set for Om and for every admissible
K-set T for Oa, the coinduced H-set MapK(H,T ) is admissible for Oa.

This formulation makes it clear that there are harsh necessary condi-
tions on a pair (Oa,Om) for them to be compatible; we explore these in
Section 7.6. These conditions alone rule out about half of all possible
pairs!

Proposition (Proposition 7.69) If (Oa,Om) is a compatible pair and
H/K is an Om-admissible set for H, then for every L ⊆ H such that
K ⊆ L, the H-set H/L is Oa-admissible.

To get a sense for how this plays out in practice, we analyze the
classical examples coming from equivariant little disks and equivariant
linear isometries operads. On the one hand, we find that the little disks
do not necessarily interact well with each other:

Corollary (Corollary 7.81) For any non-simple group G, there is a
universe U such that the indexing category associated to the little disks
in U is not compatible with itself.

On the other hand, as is implicit in the classical literature, the indexing
category for the linear isometries operad on a universe U is always
compatible with the indexing category corresponding to the little disks
operad for U .

Proposition (Proposition 7.82) Let U be a universe for G, let Oa be
the indexing category associated to the little disks operad for U and let
Om be the indexing category associated to the linear isometries operad
for U . Then (Oa,Om) is compatible.

We close in Section 7.7 by proving some basic change-of-group results
and then putting forward a series of conjectures about an “external” form
of bi-incomplete Tambara functors. The thesis work of Mazur and of
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Hoyer [20, 15] showed that Tambara functors were Mackey functors with
additional structure, i.e., external norm maps. Our conjectures outline
how such a description should work for bi-incomplete Tambara functors,
exhibiting them as ordinary incomplete Mackey functors together with
additional structure.

A key step is producing additively incomplete versions of the norm
functor.

Conjecture (Conjecture 7.90) If (Oa,Om) is a compatible pair of
indexing categories, and H/K is a Om-admissible H-set, then there is a
norm functor

NH
K : i∗KOa-Mackey → i∗HOa-Mackey

that is symmetric monoidal with respect to the box product.

These would assemble into the incomplete Mackey functor version of
the multiplicative symmetric monoidal Mackey functor structure on the
G-Mackey functors. In particular, we would hope to have the analogue
of the Hoyer–Mazur theorem that Tambara functors are G-commutative
monoids in Mackey functors.

Conjecture (Conjecture 7.94) For any compatible pair of indexing
categories (Oa,Om), there is an equivalence of categories between Om-
commutative monoids in Oa-Mackey functors and (Oa,Om)-Tambara
functors.

Acknowledgements

We offer our sincere, heartfelt thanks to John Greenlees. John offered
his generous support to both of us as young people in the field, and we
have found his beautiful mathematics deeply influential. In addition, the
myriad ways he has contributed to the homotopy theory community has
been an inspiration.

We thank Magdalena Kędziorek for her support and understanding
through this project, and we also thank the referee for an incredibly fast
and detailed report.

Finally, we thank Mike Hopkins, Tyler Lawson, Mike Mandell, Peter
May, and Jonathan Rubin for many interesting and helpful conversations
about this and related mathematics.

This material is based upon work supported by the National Science
Foundation under Grant No. DMS-1812064 and DMS-1811189.



282 A. J. Blumberg and M. A. Hill

7.2 Indexing systems, subcategories, and
polynomials

The purpose of this section is to review the basic algebraic framework for
incomplete Mackey and Tambara functors. Throughout the section, we
will fix a finite group G and denote by SetG the category of finite G-sets.

7.2.1 Indexing systems and categories

We begin with the definition of an indexing system; this is the basic
categorical structure that organizes the possible relationships between
transfers for different finite G-sets.

Definition 7.2 A symmetric monoidal coefficient system is a functor

C : OrbopG → Sym

from the opposite of the orbit category of G to the category of symmetric
monoidal categories and strong symmetric monoidal functors.

Example 7.3 The fundamental example of a symmetric monoidal
coefficient system is the functor which assigns to G/H the category of
finite H-sets, with the symmetric monoidal structure induced by disjoint
union; we denote this by Set�.

Example 7.4 There is also a multiplicative version which assigns to
G/H the category of finite H-sets with the Cartesian symmetric monoidal
structure; we will denote this by Set×

Definition 7.5 An indexing system is a full symmetric monoidal sub-
coefficient system O of Set� that contains all trivial sets and is closed
under

(1) levelwise finite limits and
(2) “self-induction”: if H/K ∈ O(G/H) and T ∈ O(G/K), then

H ×
K
T ∈ O(G/H).

The collection of indexing systems for G forms a poset ordered by
inclusion. This poset has a least and a greatest element.

Example 7.6 The poset of indexing systems has a least element: Otr,
for which Otr(G/H) is always the subcategory of SetH of H-sets with a
trivial H-action.
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Example 7.7 The symmetric monoidal coefficient system Set� itself
is an indexing system, Ogen, and this is the maximal element in the poset
of indexing systems.

We will often write O(H) for O(G/H).

Definition 7.8 We say that an H-set T is admissible if T ∈ O(H).

Indexing systems admit an intrinsic formulation, which we can interpret
equivalently as gluing together all of O(H), viewed as subcategories of
slice categories of SetG via the equivalences

SetH
G×

H
(-)

−−−−→
	

SetG/(G/H).

Definition 7.9 An indexing category is a wide, pullback stable, finite
coproduct complete subcategory O of the category of finite G-sets.

Indexing categories also form a poset under inclusion, and pullback
stability and finite coproduct completeness guarantee that the assignment

G/H �→ O/(G/H)

gives us a map of posets from the poset of indexing categories to the
poset of indexing systems.

Theorem 7.10 ([6, Theorem 1.4]) The map from the poset of indexing
categories to that of indexing systems is an isomorphism.

Because of this isomorphism, we will engage in mild abuse of notation
and use the same symbols to denote both indexing categories and the
associated indexing systems.

7.2.2 Polynomials

The point of indexing categories, as opposed to indexing systems, is that
this reformulation provides a convenient formalism for parameterizing
norms for incomplete Tambara functors [6] and for incomplete Mackey
functors [7]. Specifically, we employ a categorification of the notion of
polynomials (also called “bispans” [24]). Although this definition works
in the context of locally cartesian closed categories (by work of Gambino–
Kock [10] and Weber [26]), we focus here for concreteness on SetG.
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Definition 7.11 The category PG of polynomials has objects finite
G-sets and morphisms between objects S and T the isomorphism classes
of polynomials

Th ◦Ng ◦Rf := S
f←− U1

g−→ U2
h−→ T

where an isomorphism of polynomials is specified by two isomorphisms
U1 → U ′

1 and U2 → U ′
2 that make the evident diagrams commute.

The composition in the category is a little elaborate; we spend the rest
of this subsection unpacking and explaining it.

Remark 7.12 The category PG is obtained from a 2-category where
the category of morphisms is the category with objects polynomials and
morphisms maps of polynomials as in the definition, where the internally
described square is a pullback square.

The category of polynomials can be presented in terms of genera-
tors and relations, which is often technically convenient. Specifically, as
indicated, Th ◦Ng ◦Rf is a composite of basic maps:

Definition 7.13 Let f : S → T be a map of finite G-sets. Then we
define the following morphisms

Rf = T
f←− S

id−→ S
id−→ S

Nf = S
id←− S

f−→ T
id−→ T

Tf = S
id←− S

id−→ S
f−→ T.

These are stand-ins for the three basic ways we might build the poly-
nomials on a sequence of symbols:

R Repeat or drop some collection of the variables, then
N multiply collections of them (with “N” for the Galois theoretic norm),

and
T sum up the result (with “T” for the transfer or trace).

Heuristically, the map N should be thought of as “multiply together the
fibers over a point” and T as “sum together the fibers”.

Composition in this category is most easily expressed by showing how
to transform an arbitrary string of composable combinations of T , N ,
and Rs into one of the form in Definition 7.11.

First, we consider composing T s with T s, etc. In terms of our heuristic,
we can duplicate, multiply, or add things either in stages or all at once.
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Proposition 7.14 For any composable maps f : S → T and g : T → U ,
we have

Rg◦f = Rf ◦Rg

Tg◦f = Tg ◦ Tf

Ng◦f = Ng ◦Nf .

In other words, T and N extend to covariant functors SetG → PG, while
R extends to a contravariant one.

Next, we encode the heuristic that adding or multiplying and then
duplicating is the same as first duplicating and then adding or multiplying
coordinatewise. This is expressed in terms of pullbacks, as follows.

Proposition 7.15 Given a pullback diagram

T ′ T

S′ S,

g′

f ′ f

g

we have identities

Rf ◦ Tg = Tg′ ◦Rf ′ and Rf ◦Ng = Ng′ ◦Rf ′ .

The most complicated interchange is swapping T and N , which is
a form of generalized distributivity. This uses the dependent product,
which is heuristically the “product over the fibers”.

Definition 7.16 If g : S → T is a map of finite G-sets, the dependent
product along g is the functor

Πg : SetG/S → SetG/T
that is the right adjoint to the pullback along g.

Recall that an exponential diagram is a diagram isomorphic to one of
the form

T S T ×
U
Πg(S)

U Πg(S),

g

h f ′

g′

h′

where

(1) h′ is dependent product of h along g,
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(2) g′ is the pullback of g along h′, and
(3) where f ′ is the counit of the pullback-dependent product adjunction.

Notice that only the maps h and g can vary freely; all of the other pieces
are pseudofunctorially determined.

Proposition 7.17 Given an exponential diagram

T S T ×
U
Πg(S)

U Πg(S),

g

h f ′

g′

h′

then

Ng ◦ Th = Th′ ◦Ng′ ◦Rf ′ .

Put another way, the exponential diagram records concisely how to
express a general formula for the product of a sum.

Finally, we record an unexpected categorical result that arises from
the asymmetry in the roles of R, S, and T .

Proposition 7.18 For any objects S and T , the maps

πS = [S ! T ← S
=−→ S

=−→ S] and πT = [S ! T ← T
=−→ T

=−→ T ]

are the projection maps witnessing S ! T as the categorical product in
PG.

In other words, regarding R as a functor

R : SetG,op → PG,

it is product preserving.

7.2.3 Incomplete Tambara functors

A natural question to ask is when the subset of polynomials with maps
in a restricted subcategory of finite G-sets itself forms a category. The
key observation is that this occurs precisely when the subcategory in
question is an indexing category [6, 2.10].

Theorem 7.19 Let O be an indexing category. The category PG
O of

polynomials with exponents in O has objects finite G-sets and morphisms
between objects S and T the isomorphism classes of bispans

S
f←− U1

g−→ U2
h−→ T,
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where g is an arrow in O. Disjoint union of finite G-sets is the categorical
product.

With this definition in hand, we can define incomplete Tambara func-
tors as follows.

Definition 7.20 ([6, Definition 4.1]) Let O be an indexing category.
An O-semi-Tambara functor is a product-preserving functor

PG
O → Set.

An O-Tambara functor is an O-semi-Tambara functor which is valued in
abelian groups.

7.2.4 Incomplete Mackey functors

Tambara’s category of polynomials is a multiplicative generalization of
Lindner’s category of spans that records “linear functions” [19]. When we
are interested in just the additive structure, we can choose the map g to
be the identity and then we recover the Mackey version of the incomplete
polynomials from [7].

Definition 7.21 ([7, Definition 2.23]) Let O be an indexing category.
Then AG

O is the category with objects finite G-sets and morphisms
isomorphism classes of spans

AG
O(S, T ) =

{
[S ← U

h−→ T ] | h ∈ O
}
,

with composition given by pullback.

Remark 7.22 Once again, this is the quotient category associated to a
2-category in which we keep track of the coherence of iterated pullbacks.

Example 7.23 When O = SetG, the category AG
O is the usual Lindner

category of spans AG.

In the case of O = SetG, this category is isomorphic to the subcategory
of polynomials where the norm maps are only along isomorphisms, and
this showed how to extract the underlying additive Mackey functor of an
incomplete Tambara functor.

The disjoint union is again the product in AG
O (and in fact, here it is

the biproduct).
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Definition 7.24 ([7, Definition 2.24]) An O-Mackey functor is a prod-
uct preserving functor

M : AG
O → Set.

A semi-Mackey functor is a Mackey functor if it is group complete.
A map of O-Mackey functors is a natural transformation. We will

denote the category of O-Mackey functors by O-Mackey.

Definition 7.25 The group completion of the representable AO(∗, -)
is the O-Burnside Mackey functor: AO. For any subgroup H ⊆ G,

AO(G/H) = Z
{
[H/K] | H/K ∈ π0O(H)

}
is the group completion of the commutative monoid π0O(H) of isomor-
phism classes of admissible H-sets.

7.3 Additive Incompleteness

We now study the common generalization of incomplete Mackey and
Tambara functors in terms of polynomials with additional restrictions.

Definition 7.26 If Oa and Om are indexing categories, then let PG
Oa,Om

be the wide subgraph of PG with morphisms the isomorphism classes of
polynomials

X ← S
g−→ T

h−→ Y,

with g ∈ Om and h ∈ Oa.

These are polynomials with norms parameterized by Om and transfers
parameterized by Oa. We have no reason to believe, a priori , that this
subgraph is actually a subcategory, and we can see what can go wrong
with an explicit example.

Example 7.27 A G = C2-Tambara functor is the following data:

(1) A commutative Green functor R and,
(2) a multiplicative map n : R(C2/{e}) → R(C2/C2)

that are required to satisfy the relations

(1) If x is the Weyl conjugate of x in R(C2/{e}), then

n(x) = n(x) and Res ◦ n(x) = x · x,

where Res is the restriction map R(C2/C2) → R(C2/{e}), and
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(2) for any a, b ∈ R(C2/{e}), we have

n(a+ b) = n(a) + n(b) + Tr(a · b),

where Tr is the transfer map R(C2/{e}) → R(C2/C2).

In particular, the existence of the norm in this case necessitates the
existence of the transfer map.

Remark 7.28 When dealing with specific classes of groups G, it might
be reasonable to consider weaker compatibility requirements than the
ones we study here. Specifically, it is not the case that for every group G

we need to require transfers for all elements to consistently talk about
norms. In fact, Georgakopoulos has shown that in that absence of torsion,
the transfers themselves are forced by the existence of certain norms [11].

This puts some constraints on the additive indexing category. In fact,
compatibility is a purely combinatorial condition.

Definition 7.29 Let Oa and Om be indexing categories. The indexing
system Om distributes over Oa if for all maps h : S → T in Om, we have

Πh

(
(Oa)/S

)
⊆ (Oa)/T .

In this situation, we will say that the pair (Oa,Om) is compatible.

The force of this definition is given by the following theorem.

Theorem 7.30 If (Oa,Om) is compatible, then PG
Oa,Om

is a subcategory
of PG.

Proof We need to verify the interchange formulae for Th, Ng, and Rf ,
where h ∈ Oa, g ∈ Om, and f is arbitrary.

For interchanges with R, assume we have pullback squares

S′ S

T ′ T,

f ′

g′ g

f

and
U ′ U

T ′ T,

f ′′

h′ h

f

where g ∈ Om and h ∈ Oa. By pullback stability, g′ is also in Om and h′

in Oa, and hence

Rf ◦Ng = Ng′ ◦Rf ′ and Rf ◦ Th = Th′ ◦Rf ′′

are again elements of PG
Oa,Om

.
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Since both are subcategories, the compositions of T s or Ns are also
correct: for any composable pair g1, g2 ∈ Om and h1, h2 ∈ Oa,

Ng1 ◦Ng2 = Ng1◦g2 and Th1 ◦ Th2 = Th1◦h2

is of the desired form.
The key thing to check is therefore the interchange between Th and

Ng. For this, let

T S T ×
U
Πg(S)

U Πg(S)

g

h f ′

g′

h′

be an exponential diagram expressing the interchange relation

Ng ◦ Th = Th′ ◦Ng′ ◦Rf ′ .

The map g′ is the pullback of g along h′, and hence g being in Om

means that g′ is in Om. The assumption that (Oa,Om) is compatible
means exactly that h′ is in Oa, and hence the interchange is again in
PG
Oa,Om

.

Example 7.31 For any Om, the pair (Ogen,Om) is compatible. The
associated category of polynomials are precisely the “polynomials with
exponents in O” studied in [6].

Since the categories Oa and Om are indexing categories, for any objects
S and T , the maps

πS = [S ! T ← S
=−→ S

=−→ S] and πT = [S ! T ← T
=−→ T

=−→ T ]

are always in PG
Oa,Om

. These are the projection maps in the category
PG, so we deduce the following.

Proposition 7.32 If (Oa,Om) is compatible, then the disjoint union
of finite G-sets is the categorical product in PG

Oa,Om
.

In ordinary Mackey or incomplete Tambara functors, additive or mul-
tiplicative monoid structures on the mapping sets arise from transfering
or norming along the fold maps. The proof of the usual case for Tambara
functors (as in [25] or also in [24]) goes through without change in the
bi-incomplete case, since the key features are that all of the terms are in
fact again in the category in question. That is, in the bi-incomplete case,
we simply skipped some transfers as well as norms.
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Proposition 7.33 Let (Oa,Om) be a compatible pair of indexing cat-
egories. Then the hom objects in PG

Oa,Om
are naturally commutative

semi-ring valued, with addition given by

[S ← T1 → T2 → U ]+[S ← V1 → V2 → U ] = [S ← T1!V1 → T2!V2 → U ],

and multiplication given by

[S ← T1 → T2 → U ] · [S ← V1 → V2 → U ] =[
S ←

(
(T1 ×

U
V2)! (T2 ×

U
V1) → T2 ×

U
V2 → U

]
.

The transfer maps are map of additive monoids and the norm maps
are maps of multiplicative monoids.

This is formally exactly like what we see with Tambara and incomplete
Tambara functor. There the hom objects are commutative semi-rings,
and the restriction maps are ring homomorphisms.

Definition 7.34 Let (Oa,Om) be a compatible pair of indexing cat-
egories. An (Oa,Om)-semi-Tambara functor is a product preserving
functor

R : PG
Oa,Om

→ Set.

An (Oa,Om)-Tambara functor is an (Oa,Om)-semi-Tambara functor R

such that for all finite G-sets T , R(T ) is an abelian group.
A map of (Oa,Om)-Tambara functors is a natural transformation of

product preserving functors.
We will write (Oa,Om)-T amb to denote the category of (Oa,Om)-

Tambara functors.

Implicit in the definition is that any product preserving functor

PG
Oa,Om

→ Set

is naturally commutative semi-ring valued. This was a fundamental result
of Tambara in the ordinary Tambara functor case [25]. Tambara also
showed that the group completion of any semi-Tambara functor naturally
has the structure of a Tambara functor. As in the incomplete Tambara
functor case, the proof goes through without change.

Proposition 7.35 ([25], [24]) Given any (Oa,Om)-semi-Tambara func-
tor R, the object-wise group completion is an (Oa,Om)-Tambara functor.
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More general compatibility

The proof of Theorem 7.30 only used that indexing categories are wide,
pullback stable, together with a condition of closure under dependent
product. That is, the same proof works to establish the analogous result
in this more general case. It turns out that the wide subcategory of
isomorphisms SetG∼=, which is not an indexing category, will be necessary
to define the “underlying” incomplete additive and multiplicative Mackey
functors associated to a bi-incomplete Tambara functor.

Proposition 7.36 Let D be any wide, pullback stable subcategory. Then

(1) SetGIso distributes over D, and
(2) D distributes over SetGIso.

Proof For the first claim, note that the pullback along an isomorphism
is an equivalence of categories, and hence the right adjoint, the dependent
product, is naturally isomorphic to the pullback along the inverse to the
isomorphism. Hence any pullback stable subcategory is closed under the
dependent product along an isomorphism.

For the second claim, since dependent product is a functor, it takes
isomorphisms to isomorphisms.

Note that SetGIso is initial amongst all wide, pullback stable subcate-
gories of SetG.

7.4 Categorical Properties

In this section, we describe the formal structure of the category of bi-
incomplete Tambara functors.

7.4.1 The box product for incomplete Mackey functors

The box product of Mackey functors is essential in showing that Tambara
functors have colimits, since this serves as a model for the Mackey functor
underlying the coproduct. For coproducts in the bi-incomplete case, we
need to build the box product of incomplete Mackey functors.

Lemma 7.37 Indexing categories are closed under products: if fi : Si →
Ti are in O with i = 1, 2, then

f1 × f2 : S1 × S2 → T1 × T2
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is as well.

Proof It suffices to show this when f1 is the identity, since

f1 × f2 = (1× f2) ◦ (f1 × 1),

and the twist map is an isomorphism (and hence in any indexing category).
Since the Cartesian product distributes over the disjoint union and since
indexing categories are pullback stable, we reduce to the case S1 = G/H.
This means we consider

1× f : G/H × S → G/H × T.

We have a commutative square

G/H × S G×
H
i∗HS

G/H × T G×
H
i∗HT,

1×f

∼=

1×
H
i∗Hf

∼=

where the unlabeled maps are the natural “shearing” isomorphisms (the
asymmetrical directions of the horizontal maps is to help make transparent
that the right-hand map is in the image of induction). However, by [6,
Proposition 3.13], induction preserves indexing categories, and by [6,
Proposition 6.3], so does restriction.

The Cartesian product endows AG with a symmetric monoidal struc-
ture (e.g., see the discussion in [24, Section 3]). Lemma 7.37 shows this
is compatible with the inclusions

AG
O ↪→ AG

induced by O ↪→ SetG, where AG is the Lindner category of Exam-
ple 7.23.

Corollary 7.38 The category AG
O is a symmetric monoidal subcategory

of AG under the Cartesian product.

The box product on Mackey functors is the Day convolution product
of the Cartesian product in AG with the tensor product on Ab [9]. We
make an analogous definition for incomplete Mackey functors.
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Definition 7.39 The box product on O-Mackey functors is the left
Kan extension of the tensor product along the Cartesian product: given
M and N , the box product is defined by

AG
O ×AG

O Ab

AG
O

×

M⊗N

M�N

Remark 7.40 Strickland shows a very important generalization of this:
we can actually take the left Kan extension not of the tensor product to
Ab but rather the Cartesian product to Set.

This is essential for Tambara functors: Any product preserving functor
from PG to Ab is necessarily zero, since a multiplication that is both
linear and bilinear must be zero.

The definition as the left Kan extension gives a universal property of
this incomplete box product completely analogous to the usual one for
the box product: a map of O-Mackey functors

M	N → P

is the same data as a natural transformation of functors on A×2
O

M(-)⊗N(-) → P (-× -).

We note there is a slight wrinkle with the usual Frobenius relation: the
equations

a⊗ Tf (b) = Tf

(
Rf (a)⊗ b

)
and Tf (b)⊗ a = Tf

(
b⊗Rf (a)

)
only make sense when f is a map in O. When O = Otr, then any map
preserves isotropy and the Frobenius relation just expresses that the
tensor is bilinear.

Example 7.41 If O = Otr is the initial indexing category of Ex-
ample 7.6, then the box product is just the ordinary levelwise tensor
product.

General properties of the Day convolution product show that this is a
symmetric monoidal product on Mackey functors here too.

Proposition 7.42 The box product is a symmetric monoidal product
on O-Mackey functors with unit the O-Burnside Mackey functor.

Definition 7.43 An O-Green functor is a commutative monoid for the
box product in O-Mackey functors.
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7.4.2 Colimits and limits

Strickland’s careful treatment of the complete Tambara case actually goes
through without change! At no point does Strickland use that we have
transfers and norms for all maps in SetG, using instead the compatibility
relations needed for particular given maps.

For coproducts, he uses that we can formally create the “norm of a
transfer” in the box product by using the corresponding exponential
diagram. We have to check that in both cases, we are working entirely in
our restricted subcategory PG

Oa,Om
.

Proposition 7.44 ([24, Lemma 9.8]) The coproduct of (Oa,Om)-
Tambara functors is the box product for Oa-Mackey functors.

For coequalizers, Strickland works very generally with relations in a
wide collection of algebraic structures ([24, Definition 10.4]).

Proposition 7.45 ([24, Proposition 10.5]) Coequalizers exist in
(Oa,Om)-Tambara functors.

Since filtered colimits commute with finite products in Set and since
(Oa,Om)-Tambara functors are a full subcategory of a diagram category
defined in terms of a product condition, we can deduce the existence
of filtered colimits [24, Proposition 10.2]. Putting this all together, we
conclude that all colimits exist.

Theorem 7.46 The category of (Oa,Om)-Tambara functors is cocom-
plete.

Since the categories of bi-incomplete semi-Tambara functors are dia-
gram categories in a complete category, they are automatically complete.

Theorem 7.47 For any compatible pair (Oa,Om), the category of
(Oa,Om)-Tambara functors is complete, with limits formed objectwise.

Proof The category of functors from a [skeletally] small category J to
a complete category C is complete, with objects formed levelwise.

In our case, we need also ensure that the limit is again a product
preserving functor, but this follows from limits and products both being
categorical limits, and hence commuting.

7.4.3 Forgetful Functors

Inclusions of indexing categories naturally give rise to inclusions of the
corresponding wide subgraphs of polynomials. We only want to consider



296 A. J. Blumberg and M. A. Hill

the case where the pair of indexing categories is compatible, so we focus
on inclusions here.

Definition 7.48 Let (Oa,Om) and (O′
a,O′

m) be two compatible pairs
of indexing categories. We will write

(Oa,Om) ⊆ (O′
a,O′

m)

and say that we have an inclusion of pairs if we have (not necessarily
proper) inclusions

Oa ⊆ O′
a and Om ⊆ O′

m.

The following is immediate from the definitions.

Proposition 7.49 If (Oa,Om) ⊆ (O′
a,O′

m) is an inclusion of compat-
ible pairs of indexing categories, then the natural inclusion

PG
Oa,Om

↪→ PG
O′

a,O′
m

is a product-preserving functor.

These inclusions give us “forgetful functors”, since the composite of
product-preserving functors is product-preserving:

Proposition 7.50 If (Oa,Om) ⊆ (O′
a,O′

m) is an inclusion of compat-
ible pairs of indexing categories, then precomposition with the inclusion
of polynomials gives a forgetful functor

(O′
a,O′

m)-T amb → (Oa,Om)-T amb.

Since limits are computed objectwise, the forgetful functors all com-
mute with limits. Since the categories of (Oa,Om)-Tambara functors
are cocomplete diagram categories, we further deduce the existence of
left-adjoints.

Proposition 7.51 The forgetful functor

(O′
a,O′

m)-T amb → (Oa,Om)-T amb

has a left-adjoint, the corresponding free functor.

Proof Since the forgetful functor commutes with limits, by the adjoint
functor theorem, it suffices to show that we have a small set of projective
generators. However, when

T =
∐
H⊆G

G/H,
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then the Yoneda lemma shows that the (group completion) of the repre-
sentable functor PG

Oa,Om
(T, -) is a projective generator.

Conceptually, these free functors freely adjoin any transfers and norms
parameterized by (O′

a,O′
m) but not in (Oa,Om).

Example 7.52 Let Oa = Om = Otr. An (Oa,Om)-Tambara functor
here is just a coefficient system of commutative rings. Since Otr is the
initial indexing system, for any compatible pair (Oa,Om), we have an
inclusion

(Otr,Otr) ⊆ (Oa,Om).

The corresponding forgetful functor just records the underlying coefficient
system of commutative rings.

For the corresponding left-adjoint, it is helpful to factor the inclu-
sion into two steps. The pair (Oa,Otr) is always compatible (see Theo-
rem 7.62), and so we have inclusions of compatible pairs

(Otr,Otr) ⊆ (Oa,Otr) ⊆ (Oa,Om).

The left adjoint for first inclusion creates the free Oa-Green functor,
putting in all of the missing transfers in algebras and enforcing the
Frobenius relation. The left adjoint for the second inclusion then freely
puts in the norms.

It is worth noting here that this is the only order that works in general.
If Om is non-trivial, then a consequence of Corollary 7.70 below is that
(Otr,Om) is never compatible. In other words, we had to put in the
missing transfers, and then we can put in the missing norms.

Underlying incomplete Mackey functors

The inclusions here make sense also for more general wide, pullback
stable subcategories like SetG∼=, as in Proposition 7.36. Here, we need to
also note that Proposition 7.32 only used the wideness of the categories
structuring the norms and transfers, since it used only the identity maps
there. Using these more general forgetful functors, we can talk about
“underlying” structures.

Example 7.53 Let Oa and Om be compatible indexing categories.
Then for any (Oa,Om)-Tambara functor R, we have

(1) an underlying additive Oa-Mackey functor and
(2) an underlying multiplicative Om-semi-Mackey functor
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which arise from the inclusions

(Oa,SetG∼=) ⊆ (Oa,Om) ⊇ (SetG∼=,Om).

The forgetful functor to the underlying additive Oa-Mackey functor
also has a left adjoint: this is the bi-incomplete version of the symmetric
algebra. The forgetful functor to the underlying multiplicative Om-semi-
Mackey functor is a little stranger, but it also has a left adjoint. This is
a bi-incomplete version of Nakaoka’s “Tambarization of a semi-Mackey
functor” [21, Theorem 2.12].

7.5 Rewriting compatibility

The purpose of this section is to provide alternate conditions for compati-
bility that are easier to check in practice. The contravariant functoriality
of the pullback gives covariant functoriality of the dependent product: if
f : S → T and g : T → U , then we have a natural isomorphism

Πg ◦Πf
∼= Πg◦f : SetG/S → SetG/U .

We use this to simplify the condition of compatibility: any map in SetG
can be written as a disjoint union of composites of fold maps and maps
between orbits. Note here that there is also the possibility of some of the
disjoint summands being empty. Putting these observations together, it
suffices to consider the dependent products along

(1) the unique map ∅ → T ,
(2) a disjoint union of maps (S1 → T1)! (S2 → T2),
(3) the fold map S ! S → S, and
(4) maps of orbits G/H → G/K.

Proposition 7.36 shows that the dependent product along an isomorphism
preserves any pullback stable subcategory, so we will use this whenever
it makes formulae easier.

7.5.1 Main reductions

We now begin a series of reductions of the condition from Definition 7.29.
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Initial maps

Proposition 7.54 The dependent product along ι : ∅ → T is always a
terminal object T → T of the slice category over T .

Proof The slice category over the empty sets is the full subcategory
of initial objects in SetG. Every object in this category is uniquely
isomorphic to every other object, and this means that every object is also
a terminal object of this category. Being a right adjoint, the dependent
product preserves terminal objects.

Corollary 7.55 The dependent product along ∅ → T preserves any
indexing category.

Disjoint Unions

Proposition 7.56 Let f : T → T ′ and g : U → U ′. If h : S → T ! U ,
let

ST = h−1(T )

let hT : ST → T be the restriction of h, and similarly for SU and hU .
Then we have a natural isomorphism

Πf�g(h) ∼= (Πf (hT ))
∐

(Πg(hU )).

Proof The assignment

h �→ (hT , hU )

gives a functor

SetG/(T�U) → SetG/T × SetG/U .

This is an equivalence of categories, with inverse equivalence given by(
(ST → T ), (SU → U)

)
�→ (ST ! SU → T ! U).

This product decomposition is also natural: we have a commutative
diagram

SetG/(T�U) SetG/(T ′�U ′)

SetG/T × SetG/U SetG/T ′ × SetG/U ′

	

(f�g)∗

(f∗,g∗)

	

The result follows from noting that the left vertical map takes h to
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(hT , hU ), the right adjoint to the bottom map is (Πf ,Πg), and right
vertical map is the disjoint union.

Being closed under dependent products along disjoint unions follows
from simply being closed under disjoint unions and the dependent prod-
ucts along the summands.

Corollary 7.57 If an indexing system O is closed under dependent
products along f : T → T ′ and g : U → U ′, then it is closed under the
dependent product along f ! g.

Fold maps

The dependent product along the fold map is closely connected to the
categorical product in the slice categories.

Proposition 7.58 Let ∇ : T!T → T be the fold map, and ιL, ιR : T →
T ! T be the left and right inclusions. We have a natural isomorphism

Π∇ ∼= ι∗L ×
T
ι∗R.

Proof Given any S → T ! T , let

SL = ι∗L(S) and SR = ι∗R(S).

We have a natural isomorphism over T ! T :

SL ! SR
∼= S

expressing the disjunctive property of maps to a disjoint union of sets.
We now appeal to a direct construction of the dependent product: the
fiber over a point t ∈ T is the set of sections of S over ∇−1(t). The set
∇−1(t) is {t} ! {t}, and a section over this is by construction a pair
(sL, sR), where sL ∈ SL and sR ∈ SR both map to t. This is the same
data as a point in the fiber of SL ×

T
SR over t.

Lemma 7.59 Slices of indexing categories are closed under fiber prod-
ucts.

Proof This is a consequence of pullback stability. Let f : S1 → T and
g : S2 → T both be in O. Then the fiber product is defined by the
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pullback diagram

S1 ×
T
S2 S2

S1 T.

g′

f ′

g

f

Pullback stability of O guarantees that g′ is in O as well, and hence the
composite f ◦ g′ is.

Remark 7.60 Under the equivalences

SetG/(G/H) � SetH ,

the fiber product in G-sets over G/H is sent to the ordinary product
of H-sets. Lemma 7.59 is then the indexing category version of the
statement “admissible H-sets are closed under products”, which is [5,
Lemma 4.11].

Corollary 7.61 Any indexing category is closed under dependent prod-
ucts along fold maps.

We pause here to note that these pieces alone are sufficient to show
that the analogue of Green functors always works.

Theorem 7.62 For any indexing category Oa, the pair (Oa,Otr) is
compatible.

Proof In Otr, the only allowed maps of orbits are isomorphisms, and
hence the only conditions we needed to check to ensure compatibility are
the first three.

The (Oa,Otr)-Tambara functors are essentially Oa-Green functors. In
fact, Strickland’s proof for the additively complete case Oa = Ogen goes
through without change in the incomplete case.

Proposition 7.63 ([24, Proposition 12.11]) There is an equivalence of
categories between O-Green functors and (O,Otr)-Tambara functors.

7.5.2 Admissibility

Our reductions show that the possible obstruction to compatibility of an
additive and multiplicative indexing category is the dependent product
along a map of orbits

G/K → G/H.
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It turns out that this is a surprisingly harsh condition. By Proposi-
tion 7.36, we may assume that K ⊆ H and the map is the canonical
quotient. We recall a proposition from [14].

Proposition 7.64 ([14, Proposition 2.3]) Let K ⊆ H be subgroups of
G, and let f : T → G/K be a map of G-sets. Then the dependent product
of f along the canonical quotient G/K → G/H is

G×
H
MapK(H,Te) → G/H,

where Te = f−1(eK) is the K-set corresponding to T under the equiva-
lence of categories

SetK � SetG/(G/K).

This gives us the last piece we need, so we collect all of our reductions
into one statement.

Theorem 7.65 Let Oa and Om be indexing categories. Then (Oa,Om)

is compatible if and only if for every pair of subgroups K ⊆ H such that
H/K is an admissible H-set for Om and for every admissible K-set T
for Oa, the coinduced H-set MapK(H,T ) is admissible for Oa.

Although this may seem confusing, it records a very conceptual re-
formulation. Recall that we have symmetric monoidal Mackey functor
extensions (in the sense of [8] or [12]):

(1) Set� has the coCartesian extension, where categorical transfers are
induction, and

(2) Set× has the Cartesian extension, where the categorical transfers
are coinduction.

An indexing system Oa is by definition a sub-symmetric monoidal
coefficient system of Set�. We have some closure under induction, but
that is not relevant for compatibility. Additionally, since admissible sets
are closed under products, we deduce that Oa is also a sub-symmetric
monoidal coefficient system of the Cartesian symmetric monoidal Mackey
functor Set×. Theorem 7.65 is simply compatibility with the Om-Mackey
structure.

Corollary 7.66 A pair (Oa,Om) is compatible if and only if Oa is
actually a sub-symmetric monoidal Om-Mackey functor of the Cartesian
monoidal Mackey functor Set×.
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7.6 Limits on Compatibility

For a general pair (Oa,Om) of indexing categories, it can be difficult to
check that Om distributes over Oa. We make a few basic observations
here.

7.6.1 The additive hull

It is straightforward to check that compatibility conditions are preserved
by intersection.

Lemma 7.67 If (Oa,Om) and (O′
a,O′

m) are compatible pairs, then

(Oa ∩ O′
a,Om ∩ O′

m)

is a compatible pair.

From this, we deduce that there is always a kind of “compatible hull”
of the additive indexing category making a compatible pair.

Proposition 7.68 For any pair of indexing categories Oa and Om,
there is a minimal Oa containing Oa such that (Oa,Om) is compatible.

Proof Consider the set

E =
{
(O′

a,O′
m) | (O′

a,O′
m) compatible & (Oa,Om) ≤ (O′

a,O′
m)

}
,

and let

Oa =
⋂

(O′
a,O′

m)∈E
O′

a and Om =
⋂

(O′
a,O′

m)∈E
O′

m.

The set E non-empty because (Ogen,Om) is always in this, and this also
shows that Om = Om. By Lemma 7.67, the pair (Oa,Om) is compatible.

Proposition 7.69 If (Oa,Om) is a compatible pair and H/K is an
Om-admissible set for H, then for every L ⊆ H such that K is sub-
conjugate to L, the H-set H/L is Oa-admissible.

Proof For any subgroup K, the K-set

{a, b} := ∗ ! ∗

is always admissible for any indexing system. By Theorem 7.65, if H/K

is an Om-admissible H-set, then we must have that

MapK
(
H, {a, b}

) ∼= Map
(
H/K, {a, b}

)
∈ Oa(H).
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Since admissible sets are closed under conjugation, it suffices to consider
the case that L contains K. Consider the function

f : H/K → {a, b}

defined by

f(hK) =

{
a h ∈ L

b h �∈ L.

Then the stabilizer of f is L, and hence we have a summand

H/L ∼= H · f ⊆ MapK
(
H, {a, b}

)
,

which means H/L is admissible for Oa, as desired.

Corollary 7.70 If (Oa,Om) is a compatible pair, then Oa ≥ Om in
the partial order on indexing categories given by inclusion.

Corollary 7.71 If G is an admissible G-set for Om, then Oa = SetG
is the terminal indexing category.

Put another way, having the norm from the trivial subgroup to G can
only happen for ordinary incomplete Tambara functors.

Corollary 7.70 also bounds sharply the number of compatible pairs.

Corollary 7.72 Let n(G) be the cardinality of the poset of indexing
categories for G and let c(G) be the number of pairs of indexing categories
(O,O′) such that O ≥ O′. Then we have

# compatible pairs
# all pairs

≤ c(G)

n(G)2
≤ 1

2
+

1

2n(G)
.

Proof The first bound follows immediately from Corollary 7.70 and
the observation that there are n(G)2 total possible pairs. The second
bound follows from a combinatorial observation. If we consider all poset
structures on the set of n elements, then the maximal number of pairs
(a, b) with a ≥ b occurs when the poset is a total order. In this case, we
have 1

2 (n
2 + n), from which the second bound follows.

Example 7.73 For G = Cp, the poset of indexing categories is the
total order on two elements, and we achieve the bound: 3/4 of the pairs
are compatible.

For larger groups, we expect the bounds to be less than 1/2, as the poset
of indexing categories seem generically to contain many incomparable
elements.
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Example 7.74 For G = Cp2 , Balchin–Barnes–Roitzheim showed there
are 5 indexing categories in the poset, and looking at them shows that
there are 13 pairs (O,O′) with O ≥ O′ [1, Theorem 2]. Of these, 12
are compatible: the indexing category for the little disks operad on
∞(1 + λ), where λ is a 2-dimensional faithful representation of Cp2 , is
not compatible with itself, due to Corollary 7.71.

Using the classifications of Balchin–Barnes–Roitzheim, of Balchin–
Bearup–Pech–Roitzheim, and of Rubin, we can at least provide upper
bounds on the number of compatible pairs. We stress that in these cases,
we have used only Corollary 7.70 and Proposition 7.69, and we do not
know if all of the possible pairs that conform to these also satisfy the
conditions of Theorem 7.65.

Example 7.75 For G = Cp3 , Balchin–Barnes–Roitzheim showed there
are 14 indexing categories [1, Theorem 2], and looking at the poset
structure (as depicted in [22, Section 3.2]), we see 67 are comparable. Of
these, 55 conform to the conditions of Proposition 7.69.

Example 7.76 For G = Cpq with p and q distinct primes, Balchin–
Bearup–Pech–Roitzheim and Rubin showed there are 10 indexing cate-
gories [2, Section 3], [22, Section 3.2]. Of the 100 possible pairs, 44 are
comparable, and 39 conform to the conditions of Proposition 7.69.

To try to get sharper estimates on the number of compatible pairs,
we first look at the edge-cases: when an indexing system is compatible
with itself. Recall that an indexing category is “linear isometry-like” if
whenever H/K is an admissible H-set, the sets H/L for any K ⊆ L ⊆ H

are also all admissible [22].

Corollary 7.77 If (O,O) is compatible, then O is linear isometry-like.

These conditions alone already put stringent constraints, and we have
only used the “trivial” part of Oa. Any additional stabilizer types will
give more conditions.

Remark 7.78 It is not necessarily the case that if (Oa,Om) is com-
patible and O′

a ≥ Oa, then (O′
a,Om) is compatible: additional stabilizers

can show up.

7.6.2 Examples: little disks and linear isometries

The initial motivation for our study of N∞-operads was the problem of
understanding to what extent linear isometries and little disks operads
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failed to be equivalent, equivariantly. We recall the explicit conditions
for admissibility for linear isometries and little disks operads.

Theorem 7.79 ([5, Theorems 4.18 & 4.19]) Let U be a universe.
A finite H-set T is admissible for the linear isometries operad for U

if and only if there is an H-equivariant isometry

R · T ⊗ U ↪→ U,

where R · T is the permutation representation generated by T .
A finite H-set T is admissible for the little disks operad for U if and

only if there is an H-equivariant embedding

T ↪→ U.

Proposition 7.80 Let V be a faithful representation of G. If there
exists a subgroup H such that G/H does not embed in ∞(1+V ), then the
indexing category O associated to the little disks operad is not compatible
with itself.

Proof Since V is a faithful representation of G, for any non-trivial
subgroup H ⊆ G, the H-fixed points of V are a proper subspace of V .
Since there are finitely many non-trivial subgroups, we find that the
collection of all vectors in V with a non-trivial stabilizer is a finite union
of hyperplanes and hence a proper subset. We therefore have vectors with
a trivial stabilizer. Any of these gives an equivariant embedding G ↪→ V ,
and Theorem 7.79 then says that G is an admissible G-set for O.

Corollary 7.71 shows that if G is an admissible Om set, then all H-sets
are Oa admissible for all H. However, Theorem 7.79 also shows that
the assumption that G/H does not embed is equivalent to the assertion
that G/H is not admissible. This means O cannot be compatible with
itself.

One key result in this direction was [5, Theorem 4.24], which showed
the existence of little disks operads inequivalent to any linear isometries
operad, provided the group is not simple. The key step was producing
a representation of G such that G embeds but G/N does not for some
normal subgroup: inducing up the reduced regular representation for N

works.

Corollary 7.81 For any non-simple group G, there is a representation
V such that the indexing category for the little disks on V is not compatible
with itself.
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On the other hand, as topology informs us, the indexing category for
the linear isometries operad on a universe U is always compatible with
its corresponding little disks. We can see this algebraically.

Proposition 7.82 Let U be a universe for G, let Oa be the indexing
category associated to the little disks operad for U and let Om be the
indexing category associated to the linear isometries operad for U . Then
(Oa,Om) is compatible.

Proof By Theorem 7.65, it suffices to show that the Oa-admissible sets
are closed under coinduction along Om-admissible sets.

When T = H/K, the isometric embedding condition of Theorem 7.79
can be rewritten as the existence of an isometric embedding

R[H] ⊗
R[K]

U ↪→ U.

Using the isomorphism of induction with coinduction in representations,
we deduce our desired result. If T is a finite K-set that equivariantly
embeds into i∗KU , then a choice of such an embedding gives an embedding

MapK(H,T ) ↪→ MapK(H, i∗KU) ∼= R[H] ⊗
R[K]

U ↪→ U,

as desired.

7.6.3 The multiplicative hull

In Proposition 7.68, we saw that there is a smallest additive Oa compat-
ible with any fixed multiplicative Om using the intersection. The poset
of indexing categories is actually a lattice, and intersection realizes the
“meet”. The join operation is more difficult to describe, but it has been
identified by Rubin [23]. Rubin works with “transfer systems” or “norm
systems”, another equivalent form of the data of an indexing system
defined independently by Rubin [22] and Balchin–Barnes–Roitzheim [1].
For convenience, we state the result in indexing categories.

Proposition 7.83 ([23, Proposition 3.1]) The join of two indexing
categories O and O′ is just the finite coproduct complete subcategory
generated by them.

In other words, pullback stability is automatic. What this means for
us, however, is that we can join together multiplicatively compatible
indexing categories.
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Proposition 7.84 Let Oa be an indexing category. If (Oa,Om) and
(Oa,O′

m) are both compatible, then Oa is complatible with the join Om ∨
O′

m.

Proof One way to reinterpret Proposition 7.83 is that a map of orbits
G/H → G/K is in the join if and only if it can be written as a composition
of maps

G/H
f0−→ G/H1

f1−→ . . .
fn−→ G/K,

with the maps fi for 0 ≤ i ≤ n in at least one of Om or O′
m. We assumed

that Oa was compatible with both Om and O′
m, and hence it is closed

under dependent products along any of the maps in them. The proof of
Theorem 7.65 shows it suffices to check closure on maps between orbits,
so we are done.

This means we can find a largest multiplicative Om compatible with a
given Oa.

Corollary 7.85 For any Oa, there is a largest Om such that (Oa,Om)

is compatible.

Proof We simply join together all Om such that (Oa,Om) is compatible.
The set of these is non-empty, because Otr is compatible with all Oa.

Remark 7.86 In contrast to Remark 7.78, if (Oa,Om) is compati-
ble and O′

m ≤ Om, then (Oa,O′
m) is compatible. This reinforces an

underlying theme that Om puts constraints on Oa, but not vice versa.

7.7 Change of group

A basic property of Mackey functors that makes computation easier is
the fact that induction is naturally isomorphic to coinduction. This is a
reflection of the Wirthmüller isomorphism of “genuine” equivariant stable
homotopy theory, and it makes it relatively easy to form various kinds of
resolutions we might want for homological algebra. We can view this as
the G-equivariant version of “additive”, since it means that finite sums
indexed by the group are finite products indexed by the group. Work of
Berman cleanly explains this point [3].

In incomplete Tambara functors, we have none of this. The coproduct
and product do not agree, and while the forgetful functor to incomplete
Tambara functors for a subgroup has both adjoints, they never agree. The
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coproduct, product, and right adjoints are all expressible as corresponding
functors on the underlying Mackey functors (the latter ones because the
forgetful functor commutes with limits). In certain cases, the left adjoint
to the forgetful functor is also expressible in terms of a functor on Mackey
functors: the norm. We close by giving a few easy results of this form for
bi-incomplete Tambara functors, and then stating some conjectures for
structure that would tie everything together.

7.7.1 Restriction functors & coinduction

One of the key technical lemmas used in studying incomplete Tambara
functors was knowing when a pair of adjoint functors on a category
extends to a pair of adjoint functors on polynomials in that category with
some restricted class of norms ([6, Theorem 2.17]). The main ingredients
were

(1) the image of induction forms an “essential sieve”: if f : S → G×
H
T is

a map, then this is isomorphic over G×
H
T to a map of the form

G×
H
f ′ : G×

H
S′ → G×

H
T,

and
(2) an H-equivariant map f is in i∗HO if and only if G×

H
f is in O.

At no point in the proof did we use the fact that all transfers exist, so
we deduce that the result goes through in this setting without change.

Proposition 7.87 Precomposition with induction and restriction, re-
spectively give an adjoint pair of functors

i∗H : (Oa,Om)-T ambG 
 (i∗HOa, i
∗
HOm)-T ambH : CoIndG

H .

The key feature here is that coinduction and restriction are “the same”
functor no matter which indexing categories we use: simply precompose
with restriction or induction respectively. In particular, the values are
determined when we forget all the way down to coefficient systems.

7.7.2 Induction

Since the restriction functors commute with limits, for formal reasons
we know they have left adjoints. As in Mackey functors and incomplete
Tambara functors, these left adjoints are concisely described as left Kan
extensions.
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Definition 7.88 Let

nG
H : (i∗HOa, i

∗
HOm)-T ambH → (Oa,Om)-T ambG

be the left Kan extension along the induction functor

G×
H
(-) : PH

i∗HOa,i∗HOm
→ PG

Oa,Om
.

Since induction is product preserving, the left Kan extension along it
preserves product preserving functors [16]. It is formal that this gives
the left adjoint.

Proposition 7.89 The functor nG
H is left-adjoint to the restriction

functor.

In Mackey functors, this left adjoint is actually isomorphic to the right
adjoint. In Oa-Mackey functors, this is not always the case. Instead,
we have such an isomorphism when G/H is admissible (this is π0 of [7,
Theorem 3.25]).

7.7.3 The norm & externalized forms

The key application of the theses of Mazur and of Hoyer was that the norm
functor on Mackey functors describes the left adjoint on Tambara func-
tors [20, 15], and hence we have a reinterpretation of Tambara functors
as the G-commutative monoids in the category of Mackey functors [12].
A similar statement here would provide a clean, algebraic interpretation
of Corollary 7.66. We present several conjectures here.

Conjecture 7.90 If (Oa,Om) is a compatible pair, then for every
admissible H/K for Om, coinduction restricts to a functor

MapK(H, -) : i∗KOa → i∗HOa.

In this case, we will also say “coinduction preserves Oa”.

Since these are wide subcategories, this conjecture is really a statement
about the maps in the category being closed under coinduction. This
is a twisted version of Lemma 7.37, and it gives the twisted version of
Corollary 7.38.

Proposition 7.91 If coinduction from K to H preserves O, then it
induces a functor

AK
i∗KO → AH

i∗HO.
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This is the heart of generalizing the Hoyer–Mazur norm, and it gives
us the following definition which we conjecture is correct.

Definition 7.92 If coinduction from K to H preserves O, then left
Kan extension gives a norm functor

ON
H
K : O-MackeyK → O-MackeyH

that commutes with the box product.

Definition 7.92 says that the category of Oa-Mackey functors is natu-
rally a symmetric monoidal Om-Mackey functor under the box product
and norms: the restriction maps are the ordinary restrictions (which are
strong symmetric monoidal) and the transfer maps are the norms.

Warning 7.93 Just as the box product depends heavily on O, ranging
from the levelwise tensor product (for Otr) to the usual box product on
Mackey functors, so too will any norms. Different O will give different
definitions of the norm.

The symmetric monoidal Om-Mackey structure gives a collection of
endofunctors of i∗HOa-Mackey functors for all H: for any admissible H/K

for Om, let

Oa
NH/K := Oa

NH
K i∗K .

This functor is isomorphic to the left Kan extension along Map(H/K, -)

[4]. We should think of this as the categorical version of the formula
expressing the action of the Burnside ring of finite H-sets on any Mackey
functor M evaluated at G/H:

[H/K] ·m = trHKresHK(m).

Multiplying together the norm functors gives us an endofunctor for any
Om-admissible H-set T : writing T as T = H/K1 ! · · · !H/Kn, let

OaN
T (M) := OaN

H/K1M	 . . .	OaN
H/KnM.

With this, we conjecture the general external form of a (Oa,Om)-
Tambara functor.

Conjecture 7.94 A (Oa,Om)-Tambara functor is a Om-commutative
monoid in the symmetric monoidal Om-Mackey functor of Oa-Mackey
functors.

Unpacking this, this would mean that a (Oa,Om)-Tambara functor is
the following data:
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(1) A Oa-Mackey functor R,
(2) a unital commutative monoid structure on R: R	R → R, and
(3) for every map of Om-admissible H sets S → T , an “external norm”:

a map of commutative monoids

OaN
Si∗HR → OaN

T i∗HR.

These are required to be compatible in the sense that the norm map for
S → T restricts to the norm map for the restriction of S → T and the
norm maps compose to give the norm map for the composite.
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