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Abstract

In this paper we prove that Local (S)GD (or
FedAvg) can optimize deep neural networks
with Rectified Linear Unit (ReLU) activation
function in polynomial time. Despite the es-
tablished convergence theory of Local SGD
on optimizing general smooth functions in
communication-efficient distributed optimiza-
tion, its convergence on non-smooth ReLU
networks still eludes full theoretical under-
standing. The key property used in many
Local SGD analysis on smooth function is
gradient Lipschitzness, so that the gradient
on local models will not drift far away from
that on averaged model. However, this decent
property does not hold in networks with non-
smooth ReLU activation function. We show
that, even though ReLU network does not
admit gradient Lipschitzness property, the
difference between gradients on local mod-
els and average model will not change too
much, under the dynamics of Local SGD. We
validate our theoretical results via extensive
experiments. This work is the first to show
the convergence of Local SGD on non-smooth
functions, and will shed lights on the opti-
mization theory of federated training of deep
neural networks.

1 Introduction

The proliferation of mobile devices and internet of
things (IoT) have resulted in immense growth of data
generated by users, and offer huge potential in further
advancement in ML if harnessed properly. However,
due to regulations and concerns about data privacy,
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collecting data from clients and training machine learn-
ing models on a central server is not plausible. To
decouple the ability to do machine learning without
directly accessing private data of users, the Local SGD
(a.k.a. Federated Averaging (FedAvg)) algorithm pro-
posed in [ , | to train deep neural
networks in a communication efficient manner, with-
out leaking users’ data. In Local SGD, the goal is to
minimize a finite sum problem under the orchestration
of a central server, where each component function is
the empirical loss evaluated on each client’s local data.
Local clients perform SGD on their own local models
and after every T steps, server synchronizes the models
by aggregating locally updated models and averaging
them. This simple idea has been shown to be effective
in reducing the number of communication rounds, while
enjoying the same convergence rate as fully synchronous
counterpart, and become the key optimization method
in many federated learning scenarios. We refer readers
to several recent surveys | , ,b,

) | and the references
therem for a non-exhaustive list of the research.

Although significant advances have been made on
understanding the convergence theory of Local
SGD | , , , ,

, 4], however these works
mostly focus on general smooth functions. It has been
observed that Local SGD can also efficiently optimize
specific family of non-smooth functions, e.g., deep
ReLU networks | , ,

, , , ] Up until now,
the theoretlcal understanding of Local SGD on optimiz-
ing this class of non-smooth functions remains elusive.
Inspired by this, we focus on rigorously understand-
ing the convergence of Local GD or Local SGD when
utilized to optimize non-smooth objectives.

While numerous studies investigated the behavior of
single machine SGD on optimizing deep neural net-
works | , , , , ,

|, and established linear convergence when the
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neural network is wide enough, however, these results
cannot be trivially generalized to Local SGD. In fact,
in local methods, due to local updating and periodic
synchronization, the desired analysis should be more
involved to bound the difference between local mod-
els and (virtual) averaged model. On general smooth
functions, according to gradient Lipschitzness property,
we know that local gradients are close to gradients on
averaged model. However, due to non-smoothness of
ReLU function, this idea is no longer applicable. This
naturally raises the question of understanding why Lo-
cal (S)GD can optimize deep ReLU neural networks,
which we aim to answer in this paper.

Contributions. We show that, both Local GD and Lo-
cal SGD can provably optimize deep ReLLU networks
with multiple layers in polynomial time, under het-
erogeneous data allocation setting, meaning that each
client has training data sampled from a potentially
different underlying distribution. In the deterministic
setting, we prove that Local GD can optimize an L-
layer ReLU network with Q(n!6L'?) neurons, with a
linear convergence rate O(e~%#), where R is the total
number of communication rounds. In the stochastic
setting, we prove that Local SGD can optimize an L-
layer ReLU network with Q(n!®L'?) neurons, with the
rate of O(e~ /1), where Ry is some constant depend-
ing on the number of samples n and neurons m. To
the best of our knowledge, this paper is the first to
analyze the global convergence of the both Local GD
and Local SGD methods on optimizing deep neural
networks with ReLLU activation, and the first to show
that it can converge even on non-smooth functions. To
support our theory, we conduct experiments on MNIST
dataset and demonstrate that the results match with
our theoretical findings.

From a technical perspective, a key challenge to es-
tablish the convergence of both methods appears to
be the non-smoothness of objective. In fact, as men-
tioned before, in the analysis of Local SGD on general
smooth functions, a crucial step is to leverage the gra-
dient Lipschitzness property, such that we can bound
the gap between gradients on local model and aver-
aged model. However, deep ReLLU networks do not
admit such benign property which complicates bound-
ing the drift between local models and virtual averaged
model due to multiple local updates (i.e., infrequent
synchronization). To overcome the difficulty resulting
from non-smoothness, we discover a “semi gradient
Lipschitzness” property that indicates despite the
non-smooth nature of ReLU function, its gradient still
enjoys some almost-Lipschitzness geometry and char-
acterizes the second order Lipschitzness nature of the
neural network loss. This allows us to develop tech-
niques to bound the local model deviation under the

dynamics of Local (S)GD.

Notations. We use boldface lower-case letters such
as « and upper-case letters such as W to denote vec-
tors and matrices, respectively. We use ||v|| to de-
note Euclidean norm of vector v, and use |W|| and
[W]|r to denote spectral and Frobenius norm of ma-
trix W, respectively. We use N(u,d) to denote the
Gaussian distribution with mean g and variance . We
also use W to denote the tuple of all Wy, ..., W, i.e.,
W = (Wy,..., W). Finally, we use B(W,w) to denote
the Euclidean ball centered at W with radius w.

2 Related Work

Local SGD. Recently, the most popular idea
to achieve communication efficiency in dis-
tributed/federated optimization is Local SGD
or FedAvg, which is firstly proposed by

[ | to alleviate communication bottleneck
in the distributed machine learning via periodic
synchronization, which is initially investigated em-
pirically in | , | to improve parallel
SGD. [ | gives the first proof that Local SGD
can optimize smooth strongly convex function at the
rate of O (+5), with only O(VKT) communication
rounds. [ | refine the Stich’s bound,
which reduces the O(v/T) communication rounds
to Q(K). [ | give the first
analysis on the nonconvex (PL condition) function,
and proposed an adaptive synchronization scheme.

[ | gave the analysis of
Local GD and SGD on smooth nonconvex functions,
under non-IID data allocation. [ ]
also prove the convergence of FedAvg on smooth
strongly convex function under non-IID data setting
. [ ,a] do the comparison
between mini-batch SGD and Local SGD by deriving
the lower bound for mini-batch SGD and Local
SGD, in both homogeneous and heterogeneous data
settings. For some variant algorithm,

[ | propose SCAFFOLD algorithm which
mitigates the local model drifting and hence speed
up the convergence. [2020] borrow
the idea from acceleration in stochastic optimization,
and propose the first accelerated federated SGD,
which further reduced the communication rounds to
O(K'/3).

Convergence Theory of Neural Network. The
empirical success of (deep) neural networks motivated
the researchers to study the theoretical foundation be-
hind them. Numerous studies take efforts to establish
the convergence theory of overparameterized neural
networks. While earlier works study the simple two
layer network as the starting point [ , ,
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, |, but these papers make
strong assumption on input data or sophisticated ini-
tialization strategy. [ | study the two
layer network with cross-entropy loss, and for the first
time show that if the network is overparameterized
enough, SGD can find the global minima in polynomial
time. Furthermore, if the input data is well structured,
the guarantee for generalization can also be achieved.

[ | derive the global linear convergence of
two-layer ReLU network with [5 regression loss. They
also extend their results to deep neural network in [

; ], but they assume the activation is smooth.
[ | firstly prove the global linear
convergence of deep RelU network, and derive a key
semi-smoothness property of ReLU DNN, which ad-
vances the analysis tool for ReLU network.
[ | further improve Allen-Zhu’s result. They reduce
the width of the network to a small dependency on
the number of training samples, by deriving a tighter
gradient upper bound. Recently, some works further
reduce this dependency to cubic, quadratic and even
linear | , ,

; 2021].

Local (S)GD on Neural Network. Recently,

[ | study the convergence of Local GD on 2-
layer ReLU network, which is the most relevant work to
ours. However, besides the analysis methods which are
significantly different, [2021] only considers
deterministic algorithm (Local GD) on a simple two-
layer network. In this paper, we establish convergence
for both Local GD and Local SGD on an L-layer deep
ReLU network.

) )

3 Problem Setup

We consider a distributed setting with K machines.
Let S; = {(z%,9}), ..., (x%,4)} denote the set of all
n training data allocated at client ¢ . We further let
S = Ufil S; to be the union of all clients’ data. The
goal is to solve the following finite sum minimization
problem in a distributed manner:

K
. 1
min L(W) = 74 ZZ:; L;(W),

where L;(W) = 1 > (wes; (W@, y) is the loss func-
tion evaluated on ith client data based on loss function
£(). The description of the network architecture and
loss function type are presented next.

Deep ReLU network. We consider a L-layer neural
network architecture with ReLU activation function:

FW, V) =Vo(Wro(Wr_1---0(Wix)))

where o(z) = max(z,0), W; € R™*™ is the weight
matrix of Ith layer (we set Wi € R™*4) x € R? is
the input data. For ease of exposition, we assume
the number of neurons is same for all layers. Also,
following the prior studies | , ,
, , , |, we fix the top layer
V, and only train the parameters of the hidden layers
W= (W;,Wy,...,Wp).

We consider regression setting with squared losss
UW,V;z,y) = || f(W,V,z) — y||* where the gradi-
ent of L;(W) w.r.t. W can be derived as:

1
Vw,Li(W) = n Z DjJBjT,l-&-l(fj —Yj) fi-1,
(x5,4;)€S:

where

fii=0(Wio(Wi_1---0(Wiz;))),
fj = VO’(WLO'(WL,1 R O’(Wle))),
Bjiy1=VD; ;W ---Dj; 11 Wiy

and D;; € R™*™ is a diagonal matrix with entries
D;(r,r) =1[(Wifji-1)r > 0] for r € [m]. For ease of
exposition, we will express Vw L;(W) as the following
tuple:

VwL;(W)=(Vw,L;(W), -, Vw,L;(W)).

Algorithm description. To mitigate the communi-
cation bottleneck in distributed optimization, a popular
idea is to update models locally via GD or SGD, and
then average them periodically [ , ,
, |. The Local (S)GD algorithm proceeds for
T iterations, and at tth iteration, the ith client locally
performs the GD or SGD on its own model W@ (¢):

Local GD: W@ (¢t + 1) = WO () — yVw L (W(i)(t)) ,

Local SGD: W (¢t + 1) = W@ (t) — nG",

where Gl(t) is the stochastic gradient such that
E[G"] = VwL; (W®(#)). After 7 local updates
(i.e., t divides 7), the server aggregates local models
WO (t+1),i=1,...,K and performs the next global
model according to:

K
1 .
W(t+1) = > WOt +1).
i=1

Then, the server sends the averaged model back to local
clients, to update their local models and the procedure
is repeated for T'/7 stages. This idea can significantly
reduce the communications rounds by a factor of 7,
compared to fully synchronized GD/SGD. Even though
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Algorithm 1: Local (S)GD

Input: Synchronization gap 7 , Number of
iterations T'. Initialization network parameter
W(0) ~ N(0,2/mI) and v ~ N(0,I/d)

parallel for i =1, ..., K do

fort=1,...,T do

WO+ 1) = WO@E) — nVwL; (WO(2))

# Local GD

Sample a data (&,y) uniformly from S;.

Compute G\ = nVy £ (WO (t); 2, 7).

woe + 1) = WO - G

# Local SGD

if ¢t divides 7 then
all nodes send their local parameter

W@ (t 4+ 1) to server.
W(t+1) = %35, WO +1);
send W (t + 1) to all nodes to update
their local models.

each client initializes its local models:
WOt +1)=W(t+1).

end
end
end

it is a simple algorithm, and has been employed for
distributed neural network training for a long time,
we are not aware of any prior theoretical work that
analyzes its convergence performance on deep ReLU
neural networks. We note that the aggregated model at
server cannot be treated as 7 iterations of synchronous
SGD, since each local update contains a bias with
respect to the global model which necessities to bound
the drift among local and global models. The bias
issue becomes even more challenging when non-smooth
ReLU is utilized compared to the existing studies that
focus on smooth objectives.

4 Main Results

In this section, we present the convergence rates. We
start with making the following standard separability
assumption | , , , |
on the training data.

Assumption 1. For any « € S, ||z|| = 1, and for any
z,x' €8, ||lx—a| > ¢.

The following theorem establishes the convergence rate
of Local GD on deep ReLLU network:

Theorem 1 (Local GD). For Local GD, under As-

i ; Kdn'SL'2(1 3
sumption 1, if we choose m > w, n =

(@) (%) then with probability at least 1 — e~ X((log m)?)
it holds that

L(W(T)) < e " WL(W(0)),

where R = % is the total number of communication
rounds, and W (T) = = S5 w@(T).

The proof of Theorem 1 is provided in Appendix A.
As expected, the fastest convergence rate is attained
when the synchronization gap 7 is one. Theorem 1
however precisely characterizes how large the number
of neurons needs to picked to guarantee linear conver-
gence rate. Here we require the width of network m
to be O(Kn'SL'?) to achieve linear rate in terms of
communication rounds, which is linear in the number
of clients and polynomial in n and L. The most rele-
vant work to this paper is [ |, where
they consider two-layer ReLU network, and achieve
and O(e~"/K) convergence rate with Q(n?) neurons.
Their convergence rate is strictly worse than us, while
they require smaller number of neurons because they
only consider simple two-layer architecture. An inter-
esting observation from above rate is that the number
of neurons per layer is polynomial in the number of
layers which is also observed in our empirical studies.
This implies that by adding to the depth of model, we
also need to increase the number of neurons at each
layer accordingly. We note that compared to analysis
of single machine GD on deep ReLU networks |

, , , |, the width obtained here
is worse, and we leave the improvement on either the
dependency on n or K as a future work.

Now we proceed to establish the convergence rate of
Local SGD:

Theorem 2 (Local SGD). For Local SGD, under

. . Kds 18L12 1 5
Assumption 1, if we choose m > w7

n = 0O (%) then with probability at least
1 — =208 ™)) 4t holds that

L(W(T)) < (nlog®m) - e (/T L(W (0)),

where R = % is the total number of commu-

. . n° log? m
nication rounds, Ry = "%, and W(T) =
K ,
% 2img WO(T).

Comparison to related bounds on Local SGD.

[ | established an
O(1/v KT) rate with O(vV KT') communication rounds
on general smooth nonconvex functions, while our result
enjoys faster rate and better communication efficiency.
We would also like to emphasize that our setting is
more difficult, since 1) we study nonconvex and non-
smooth functions; 2) we prove a global convergence,
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but their result only guarantees the convergence to a
first order stationary point, and 3) our result is stated
for last iterate, but theirs only guarantees that at least
one of the history iterates vissits local minima.

Comparison to related work on ReLU networks.
Since we are not aware of any related work of Local
SGD on ReLU network, here we only discuss single
machine algorithms. Compared to single machine SGD
on optimizing ReLLU network, the most analogous work
to ours is | , |, since both our and
their analysis adapt the proof framework from |
, ]. They achieve linear convergence

with Q(n'7) neurons for achieving linear convergence,
while we need Q(n'®) neurons. We also noticed that
recent works |

| have reduce the network width to a 51gn1ﬁcantly
small number, so we leave improving our results by
adapting a finer analysis as future work.

5 Overview of Proof Techniques

In this section we will present an overview of our proof
strategy for deterministic setting (Local GD). The
stochastic setting shares the similar strategy. We let
W(t) = + Zf; W (t) denote the virtual averaged
iterates. We use t. to denote the latest communication
round, also the cth communication round.

5.1 Main Technique

Our proof involves three main ingredients, namely (i)
semi gradient Lipschitzness, (ii) shrinkage of lo-
cal loss, and (iii) local model deviation analysis
as we discuss briefly below.

Semi Gradient Lipschitzness. 'In the analysis of
Local SGD on general smooth functions, one key step
is to utilize the gradient Lipschitzness property, such
that we can bound the gap between gradients on local

model and averaged model by: HVL H
H HW — WH However, ReLU network does not ad-

mit such benign property. Alternatively, we discover a
“semi-gradient Lipschitzness” property. For any param-
eterization W and W such that W, W € B(W(0),w):

VL (W)Hi

K
Z HVWL

<0 (mL4 HW WH )—1—0 (M) L(W).

d

'Notice that this is not the semi-smoothness property
derived by Allen Zhu et al | , |, even
though we also need that property in analysis.

This inequality demonstrates that for any two models
lying in the small local perturbed region of initializa-
tion model, ReLLU network almost achieves gradient
Lipschitzness, up to some small additive zeroth order
offset. That is, if we can carefully move local models
W () such that they do not drift from the initializa-
tion and virtual average model W () too much, then
the gradient at local iterate Vyy ) L;(W (1)) is guar-
anteed to be close to the gradient at virtual averaged
iterate Vw L;(W (t)).

Shrinkage of Local Loss. Another key property of
local loss is that the local loss is strictly decreasing,
compared to the latest communication round. We
show that with high probability, if we properly choose
learning rate, the following inequality holds: for Local
GD:

Li(W®(t)) < LW (¢t —

1) < < L(WO(t)),

and for Local SGD:
¢

Li(W9O(1)) < -
( (1) < exp (mn2-5 log®m

) LW
where t. <t <t.+7—1, and t. is the latest commu-
nication round of ¢. This nice property will enable us
to reduce the loss at any iteration to its latest commu-
nication round.

Local Model Deviation Analysis. During the dy-
namic of Local (S)GD, the local models will drift from
the virtual averaged model, so the other key technique
in Local (S)GD analysis is to bound local model de-
viation |[W(t) — W (t)||r. However, in the highly-
nonsmooth ReLLU network, this quantity is not a viable
error to control. Hence, inspired by [ ],
we consider the deviation |W®)(t) — W (t,)||r, where
t. is the latest communication round of ¢, and derive
the deviation bound as:

7 2 [wo - wa, <o (T ) Lo,

Here we bound the local model deviation by the loss
at the last communication round, which is a key step
that enables us to achieve linear rate.

5.2 Sketch of the Proof

In this section we are going to present the overview
of our key proof techniques. The detailed proofs are
deferred to appendix. Before that, we first mention
two lemmas that facilitate our analysis.

Lemma 1 (Semi-smoothness | , D-
Let

e [Q(1/(d**m3/? 10g**(m))), O (1/(log*?(m)))].
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Then for any two weights W and W satisfying
W, W € BW©) w), with probability at least 1 —
exp(—Q(mw3/2L)), there exist two constants C' and
C" such that

L(W) < L(W) + (VL(W),W - W) (1)
, w3 /mlog(m) <

+C \/L(W)'T'HW—WH

(2)

+ EW W Q

Lemma 2 (Gradient bound | , D.
Let w = O(¢3/?n=3L=F log_3/2(m)), then for all
W € B(W(0),w), with probability at least 1 — exp ( -
Q(mg/(dn))), it holds that

IVL(W)|[f < O(mL(W)/d),
IVL(W)[& > Q(méL(W)/(dn?)).

The above two lemmas indicate that, if the network pa-
rameters lie in the ball centered at initial solution with
radius w, then the network admits local smoothness,
and there is no critical point in this region.

The key idea of the proof is that, we firstly assume
each local iterates and virtual averaged iterates lie in
the w-ball centered at initial model, so that we can
apply the benign properties (semi smoothness, bounded
gradients and semi gradient Lipschitzness) of objective
function. Then, with these nice properties we are able
to establish the linear convergence of the objective as
claimed. Lastly, we verify the correctness of bounded
local iterates and virtual averaged iterates assumption.

The proof is conducted via induction. The in-
ductive hypothesis is as follows: for any h < t,
we assume the following statements holds for w =
(0] (¢3/2n_6L_6 logfg’/2 (m)):

@ W) = W) <w,

HW“)(h) —W(O)H <w, VielK].
C
an Lw() < (1—9(’”””’)) L(W(0).

dn?

The first statement indicates that the virtual iterates
do not drift too much from the initialization, under
Local GD’s dynamic, if we properly choose learning
rate and synchronization gap. The second statement
gives the linear convergence rate of objective value.
Now, we need to prove these two statements hold for
t+ 1.

Step 1: Boundedness of virtual average iterates.
We first verify (I), the boundedness of virtual iterates
during algorithm proceeding. The idea is to keep track

of the dynamics of the average gradients on each local
iterate. To do so, by the updating rule we have:

IW(t+1) - WOl <0

o3 VLAW(”(J'))H

<03 %30 (|5 ) vEwT)

< mé() (/%) vEw@,

where we apply the gradient upper bound (Lemma 2)
and the decreasing nature of local loss. Now we plug
in induction hypothesis II to bound L(W (t.)):

IW(t+1) - W)

o () (- () v
o ()50 (52) Vi

j=1
0 2v/dn?
vme

) LIW(0)).

. Kdn'6 L2 10e3 .
Since we choose m > =%°—=-"°8 M it can be con-

cluded that |[W(t+1) — W(0)|| < w.

Step 2: Boundedness of local iterates. The next
step is to show that local iterates are also lying in
the local perturbed region of initial model. This can
be done by tracking the dynamic of the gradients on
individual local model:

s v -wo <13 ferovo)|

< mgo (/%) vEEWEE)
SO(Q\/EHQ

P > KL(W(0)) < w.
Step 3: Linear convergence of objective value.
We now switch to prove statement (IT). Since we know
that, |[W(t+ 1) — W|| < w, we can apply Lemma 1
by let W = W (t.y1) and W = W(t,) and gradient
bound (Lemma 2). We have the following recursive
relation over the loss at different communication stages:
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dn?

L(W(tesr)) < (1 _Q <"Tm¢>) L(W(L.))

K te—1
+ g% > > HVLZ-(W(tc)) - VLi(W(Z)(t/))Hi
i=1t'=t._q
;- w32 mlOg(m)
+nC 20Vd

te—1

%Z > HVL(W(tc)) — VL (W9(t))

i=1t'=t,_q

2

)

F

where t. is the latest communication round at iter-

ation t. Now we can use semi gradient Lipschitzness
property to reduce the difference between gradients to
local model deviation. Further plugging in the local
model deviation bound, and unrolling the recursion
will complete the proof:

rwie) < (1-9 (55 ) ) LWl

< e MR L(W(0)).

6 Experiment

In this section we present our experimental results to
validate our theoretical findings. For this purpose, we
run our experiments on MNIST dataset using a varying
number of MLP layers with ReLU activation function
on the hidden layer. We denote the number of neurons
in the hidden layer with m. To run the experiments
on a distributed setting, we create 50 clients. Then,
we distribute the MNIST dataset on these clients in
IID (homogeneous) or non-IID (heterogeneous) ways.
For IID setting, each client has training data i.i.d.
sampled from the whole dataset. For non-IID setting,
we allocate only two classes of data to each client, and
hence, different clients will have access to different
distribution of data.

Effects of different model sizes m. We firstly train
the model using Local SGD with the same synchro-
nization gap and different number of hidden neurons,
m. Figure 1 shows the results of this experiment on
models with different hidden layer’s size in homoge-
neous and heterogeneous settings. As it can be seen
in both cases, the model with higher model size can
achieve better final accuracy. This phenomenon has
more impact in the heterogeneous data distribution
compared to homogeneous setting.

Effects of different synchronization gap 7. Now,
we fix the model size m = 50 and change the synchro-
nization gap 7. We do the comparison between fully
synchronous SGD and Local SGD with 7 = 5,10, 20, 50.
The results in Figure 2 shows that in both homoge-
neous and heterogeneous settings, the convergence rate

=

—e— Local (r = 20, m = 50)
—— Local (7 = 20, m = 500)
Local ( = 20, m = 1000)

2 —e— Local (7 =20, m = 50)
| —— Local (7 =20, m = 500)
// Local (7 = 20, m = 1000)

0 250 500 750 1000
Number of Lacal lterations

i e S E—
s oo S0 250 500 750 1000 1250 1500
Number of Local Iterations

—— Local (7 =20, m = 50)
08 —— Local (7 =20, m = 500)

2
20, m = l(iUU) 0.6

—e— Local (r = 20, m = 50)
—— Local (r = 20, m = 500)

Local (7 = 20, m = 1000)

Local (7

0.2 X’\ 03
—_—

.2
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Number of Local lterations Number of Local Iterations

(a) Homogeneous Data (b) Heterogeneous Data

Figure 1: Comparing the effect of model size using
Local SGD in homogeneous and heterogeneous distri-
butions. By changing the model size from m = 50 to
m = 1000, the model converges faster. In heteroge-
neous setting the increasing the model size has more
impact on the rate than the homogeneous setting.

becomes slower when synchronization gap increases.
However, in the heterogeneous setting, increasing 7
will decrease the convergence speed more significantly.

Effects of number of layers L. When we increase
the number of layers L, based on condition of m in
Theorem 2, we need to increase the number of neu-
rons as well to achieve the same rate. For instance,
Figure 3 shows the convergence rate of models with
L = 5 and various m € {10, 50,100}, compared with
the single layer model with m = 50. If we use the same
number of neurons as the single layer (i.e. m = 10 and
L =5), it is evident that the model performs poorly.
By increasing the number of neurons per layer, we can
see that m = 100 can make 5-layer model achieve the
same performance of the single layer model, which has
10x more neurons and more than 3x bigger in terms
of parameter size. This is consistent with Theorem 2,
as increasing the number of layers requires significantly
more neurons per layer compared to single layer coun-
terpart to guarantees linear convergence rate.

7 Discussion and Future Works

In this paper, we proved that both Local GD and
Local SGD that are originally proposed for communi-
cation efficient training of deep neural networks can
achieve global minima of the training loss for over-
parameterized deep ReLU networks. We make the
first theoretical trial on the analysis of Local (S)GD
on training Deep ReLLU networks with multiple layers,
but we do not claim that our results, e.g., number of
required neurons and dependency on the number of
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Figure 2: Comparing the effect of synchronization gap (i.e., number of local updates 7) on the model convergence.

In this experiment the model size is fixed on m = 50.

layers, are optimal in any sense. A number of future
works/improvements are still exciting to explore:

Tightening the condition on the number of neu-
rons. In the bounds obtained for both Local GD and
SGD, the required number of neurons to has a heavy
dependency on the number training samples n, which
is worse than the single machine case. We are aware
of some recent works [Noy et al., 2021, Nguyen and
Mondelli, 2020, Nguyen, 2021] that demonstrate signif-
icantly reduced number of required neurons, and we
believe incorporating their results can also improve our
theory to entail tighter bounds.

Extension of analysis to other federated opti-
mization methods. To further reduce the harm
caused by multiple local updates, a line of recent stud-
ies proposed alternative methods to reduce the local
model deviation [Karimireddy et al., 2019, Yuan and
Ma, 2020]. Establishing the convergence of these vari-
ants in deep non-smooth networks is another valuable
research direction.

Extension to other neural network architec-
tures. Here we only consider simple ReLU forward feed
neural network, but as shown in the prior works [Allen-
Zhu et al, 2019, Zou et al., 2020b], single machine
SGD can optimize more complicated neural network
like CNN, ResNet or RNN as well. Hence, one natural
future work is to extend our analysis to those models.

2 x

I3

Validation Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Number of Local Iterations

Training Loss

0 250 500 750 1000 1250 1500 1750 2000
Number of Local Iterations

Figure 3: The effect of number of layer L. By increasing
the number of layers to 5, compared to single layer, we
need more neurons (m) to converge with the same rate
as a single layer model.
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A Proof of Theorem 1 (Local GD)

In this section we present the proof of convergence rate of Local GD (Theorem 1). Similar to analysis of Local
SGD for smooth objectives [2018], [2020], we start from pertubed virtual iterates analysis. We

let W(t) =+ Zfil W@ () denote the virtual averaged iterates. Before providing the proof, let us first introduce
some useful lemmas.

A.1 Proof of Technical Lemma

The following lemma is from Allen-Zhu et al’s seminal work [ |, which characterizes the
forward perturbation property of deep ReL.U network:
Lemma 3 (Allen et al [ ). Consider a weight matrices W, W such that W, W € B(W(0), w),

with probability at least 1 — exp(—O0(mw?/3)), the following facts hold:

1F0-1 = Fims )] € O (w2 /logm) .
i1l < O(1),
HUTV(DJ',LWL Dy AW Dy — Dy Wy bj,lﬂwlﬂﬁj,l)“ <0 (WI/P’LQ\/TW) ol
Ifii—1 = fiaall <O <L3/2||W - W),
[o" V(DLW Dyt Wi Dy < O (W) o,
where v is arbitrary vector, f;;-1(0) = c(W;(0)o(W;-1(0) - - - c(W1(0)x;))).

The following lemma establishes a bound on the deviation between local models and (virtual) averaged global
model in terms of global loss.

Lemma 4. For Local GD, let t. denote the latest communication stage of before iteration t. If the condition
that L;(W®(t)) < Li(W(t.)) for any t. <t < t.+ 7 — 1 holds, then the following statement holds true for
te <t<t.+717-—-1:

Hw@(t) —W(t,) i <0 ((n%? + n%)%) Li(W(t.)).

where K is the number of devices, T is the number of local updates between two consecutive rounds of synchronization,
n is the size of each local data shard, and m is the number of neurons in hidden layer.

Proof. According to updating rule we have:

2

[WO+ 1) - W[ =[ WO ~nvL W) - W)

F

= [WO - Wit 20 (TLWO (@), WO 1) - W)
+P VLW (1) &
= [wow - w|[ +2n <m<w“> )0 Y VLW <t>>>
+ P VLW (1)]12
5 t—1
= [WOw - W) +20r <VLi(W(i)(t))v % > VL(WY ('5))>

+0? [ VL(WO (1))
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Applying the identity (a,b) = %|lal|* + 1[|b||> — 3||a — b]|* on the cross term yields:

HW“)(t 1w

F
— [WO @)~ yoLaw WO 0) - Wit

F
2
4 2 1
< HW(”(t)—W(tc)HF—i—nQ(t—t HVL Wt H = Z VL(WO(1))
+ 1P [V Li(W (1))
. 2 A 2 2
< [WOw -wit)| +wPe -t (mewwt))H = o) )
(S
+ 1P [[VLi(W (2))][3
Plugging the gradient upper bound from Lemma 2 yields:
. 2
HW(’>(t+ - W)
. 2
= [WO@) = VLW ) - W)
4 9 =
< [WOw - W) +nP -t (0(”;”) AWOW) + = > 0 ) LW >>>
¢ v=t,

mn i
+ PO LW O 1),
Since we assume L;(W®(t)) < L;(W(t.)) for any t. <t <t.+ 7 — 1, so we have:

[WO 1) - W) = [ W)~ nv LW @) - W)

. 2 . :
< [WOW - Wite)|+ 27 (0(H) LW (1)) + O(F) LW (1))
mn »
+ Uzo(j)Li(W(l)(tc»
Doing the telescoping sum from ¢ + 1 to ¢, will conclude the proof:

mn

Hw@ (t+1) — W(t.) y

2
FSO((UT +177')

) LW t.)).
O

The next lemma is the key result in our proof, which characterizes the semi gradient Lipschitzness property of
ReLU neural network.

Lemma 5 (Semi-gradient Lipschitzness). For Local GD, at any iteration t, if W, W € B(W(0),w), then with
probability at least 1 — exp (—Q(mw2/3)), the following statement holds true:

fZHVWL -V liW)[] <0 (M [w - W) 4o (Lo s

where K is the number of devices, T is the number of local updates between two consecutive rounds of synchronization,
n is the size of each local data shard, and m is the number of neurons in hidden layer.

Proof. Observe that:

2

1 & 0 | KoL )
K ; vaLi(W) - VVVLi(W)HF K ;; val vVVzLi(W)HF~
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Let f;i) = VD;f)LWS-j) e DjJng)acj and L;i) = f;i) — y;. Now we examine the difference of the gradients:

Vw, Li(W) — Vi, Li(W)

(LYTVD; W - Dj,l+1Wz+1Dj,l)T(f;fz)_l)T - (E?”Vﬁj,LVVL L ﬁj,mwmﬁj,l)T(f;,iz)_l)T

.
I
=

I
-
INgE

DT @ i
{((Lg RN )T)VD]}LWL cee Dj’l+1wl+1Dj,l)T(f;yl)_1)-r]

J
j=1
ln (0T A DT 5w D) (D T
+ nz L7 ' VD; W DjitaWiiDjy =Dy s Wr Dy i Wi D) ) (f570)
j=1
1N r (i s X = i 73
+ =3 [ TVD W Dy Wi D) T = A0 T
J=1

According to Lemma 3 we know the following facts:
10— 70 < 0 (w2 Viogm).
151 < o),
s i i ~ ) ) . B
H (L;l)TV(Dj,LWL o DjitiWiaDj — D Wy - "Dj,z+1Wz+1Dj,l)) H <0 (wl/3L2 mlogm/d) . ||L§*Z)||7

H(Ly’)T ~LT)VD, , W, - -Dj,HlWlHDj,l)TH <0 (\m/d- 1 HW - WHQ) .

LOT IL?THF - HVO’(WL o o(Wiz;)) — Vo(Wy - ~~J(W1:Cj))H <0 (L3/2 HW - VVHQ) ,

So we have the following bound for Frobenius norm:

“VWLLZ-(W) — VWLLi(VV)Hi

< (O (\/m L3/? HW — WH2) +0 (wl/SLQ\/mlogm/d) . ||I~J§Z)|| +0 (wL5/2\/mlogm/d) ||I~J§l)||)2

2 s
<0 (m/d LB HW - WH2> +0 (w2/3L4mlogm/d+w2L5mlogm/d) ||L;-Z)H2.

Hence we can conclude the proof:

K K L
1 21 2
SRR RS ol LT
i=1 i=1 I=1
4 - 12 2/315 276 -
<0 (mj HW_WH2> Lo (w L Zlnlogm LY L Tzlogm) L(W).

Lemma 6. For Local GD, at any iteration t in between two communication rounds: t. <t <t.+7—1 and
i € [K], if WO(t) € BIW(0),w), then with probability at least 1 — exp (—Q(mw?/3)), the following statement
holds true:

LiWO(1) < LW (t - 1)) < - < LW (1))
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Proof. According to updating rule and the semi smoothness property:

Li(WD (1) < L(WO(t — 1)) + [<VLZ.(W<Z'> (t—1)), WO(t) - WO (g — 1)>}

ronJLwo). < v B WO (e) - WOt - 1)) + C//fmuw“) (1) - WOt —1)|3
< LW (t = 1)) = (VLW (t = 1)), VLW (¢ - 1)))

+nC\ LW (£ — 1)) - “USLQ\/W’;W |[vLiw =)+ C”flsz [vEwo )|

< (1 _ <’7;Z§¢)> LW (t - 1)),

where in @ we plug in the gradient upper bound from Lemma 2. According to our choice of 7, we can conclude
that

LW (1) < Li(WW(t—1)) <o < LW (1))

A.2 Proof of Theorem 1

With the key lemmas in place, we now prove Theorem 1 by induction. Assume the following induction hypotheses
hold for h < ¢:

D [WH) = WO) <o [WOH) - WO) <w. ik,

a we < (1-0(552)) Lowo)

dn?

where w = O(¢3/2n_6L_610g73/2(m)), and t. is the latest communication round of h, which is also cth
communication round. Then we shall show the above two statements hold for t + 1.

A.2.1 Proof of inductive hypothesis I

Step 1: Bounded virtual average iterates. First we prove the first hypothesis for ¢ + 1:
IW(t+1) — W(0)|| <w. By the updating rule we know that:

[W(t+1) - W(0)] < WZ

1 & ,
T2 VLxW(”(j))H
i=1

t K
03 1 >0 TIVEWG)

SO WS WNENALIE)
<04/ VEWG),
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where we apply the gradient upper bound (Lemma 2) in @ and the decreasing nature of local loss (Lemma 6) in
@. Now we plug in induction hypothesis IT to bound L(W (¢.)):

IW(t +1) - W(0)| < WZO \f \/( <n;$¢>>

gl o) e

j=1

< 7770(\/;)0 (;f;¢> L(W(0))

_ 2v/dn?
o222 zowi,

Since we choose m > wa, it follows that [|[W(t+ 1) — W(0)| < w.

Step 2: Bounded local iterates. Then we prove the second hypothesis for ¢ +1: |[W®(t + 1) — W(0)|| < w.
By the updating rule we know that:

WO +1) -w) < ni | LW )|

gnéo(\/f) LW ()
Snfilo(\/f) LW (i)
gngo(\/f) RL(W(iL)),

where we apply the gradient upper bound (Lemma 2) and the decreasing nature of local loss (Lemma 6). Now we
plug in induction hypothesis IT to bound L(W (¢.)):

wie - woil <o (/%) V (1-2 (%)) Lowo)

c

gmo( K?)Z(l—ﬂ(%ﬁ))c Li(W(0))

oo (7)o (2 iy
:o<2\‘£:;:;> KL;(W(0)).

Since we choose m > W, it immediately follows that HW(U (t+1)— W(O)H < w as desired.

A.2.2 Proof of inductive hypothesis II

Step 1: One iteration analysis from Semi-smoothness. Now we proceed to prove that hypothesis IT
holds for t+1. If t, <t+1 < tcy1, then the statement apparently holds for ¢t.. If t4+1 > ¢.11, we have to examine
the upper bound for L(W (t.+1)). The first step is to characterize how global loss changes in one iteration. We
use the technique from standard smooth non-convex optimization, but notice that here we only have semi-smooth
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objective. According to semi-smoothness (Lemma 1) and updating rule:

L(W(tet1)) < LW (te)) + (VL(W({e)), W(ter1) = W(te))

w312, /mlog(m C’”L2
= B |W(ten) — Wt 2 +

K tey1—1
sL(W(tc>><VL< meZ > VL (WO ))>

i=1 t'=t.

+C'VIL(W(t)) - W (t.) — W(t)l3

w3 L2 /mlog(m) '
Vd

+n7C'\/L(W (t.—1)) -

K tey1—1

Z > VL (WO(t))

=1 t'=t.

C//L2

+

K tet1—1

TKZ > VLW (1) )

=1 t'=t.

INS

L(W(t)) ~ 5 [VLW (L) -

2
F

K tey1—1 2

> VLW (t))
i=1 t'=t.
w3 L2 /mlog(m)
2vd

K tey1—1

Z Y. VL(WO)) - VL(W(t))

zlt’f

1

L0 2L
2 TK

|VL( ( c)) -

F

+n7C'\/L(W(t.)) -

X | VLW (L) llg +

K tey1—1

Z > VL(WO())

=1 t'=t.

C//L2

F

< L(W(t.)) — % ||VL(W<tc))||12:“ - (2777 - nC/:ij)

F)
K tep1—1

£33 VWO W)

i=1 t'=t.

£l i 2 w312, /mlog(m
+g . Z HVLi(W(tC)) - VLZ-(W(”(t’))HF +nC'\/L(W(t)) - L log(m)

2v/d

IVL(W (te))llg

K tey1—1

VL(W(t.) ZZVL (WO(t))

=1 t'=t.

L(W(tc)) |

F

where in ® we use the identity (a,b) = $||la||? + 3||b]|*> — 1|la — b||*>. We plug in the semi gradient Lipschitzness

from Lemma 5 and gradient bound from Lemma 2 in last inequality, and use the fact that 5- — w >0 to
get:
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LWi(tesn)) = DWG) - @ (550 ) 1w, )

L 2 2/315 1 2L6 1
+1 (o(™ME [ worw) - wir) [ ) + o (S mosm | TLImos Y ()
2 d 2 d d
1/3L2 1
tgre’ Y ;’;Og(m)L(W(tc))
- w3 L2 /mlog(m)
nT

x <\/0 ( WO ) - Wt ) (W?’L?bgm N ‘”QLG’ZIOW) L(W(ta)L(W(tc)) :

/ . . .
$®;(m)3/2 where C,, is some large constant and plugging in local model deviation bound

from Lemma 4, to get the main recursion relation as follows:

LWt < (129 (15 ) ) Doweo) )

Choosing w =

dn
me

L(W(T)) < exp(—R)L(W(0)) = €

<~—R=0 <log 1) .

Unrolling the recursion and plugging in 7 = O( 2 ) will conclude the proof:

B Proof of Theorem 2 (Local SGD)

In this section we will present the proof of convergence rate of Local SGD (Theorem 2). Before that, let us first
introduce some useful lemmas.

B.1 Proof of Technical Lemma

The following lemma establishes the boundedness of the stochastic gradient.

Lemma 7 (Bounded stochastic gradient). For Local SGD, the following statement holds true for stochastic gradient
at any iteration t:

Es,

1 & ’
0)
.G
=1

o[ |

ZG(t)
K

<o (LW

where Sy = {(&;,7;)}X, are the set of randomly sampled data to compute + Efil th), K is the number of
devices, T is the number of local updates between two consecutive rounds of synchronization, n is the size of each
local data shard, d is the dimension of input data, and m is the number of neurons in hidden layer.

]

:[;zi,ll > HW(W(i)(t)%wjayj)Hz

i=1  (x;,y;)€S;

Proof. Observe the following facts:

1 K ( ’
t)
% 2 Gi
i=1

1 & :
K2 2E U’W(w@(t);:ﬁi,ﬂi)
=1

| /\

Ve Zo m/d)Li(W(¢)),
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where we plug in the gradiet upper bound from Lemma 2. According to the shrinkage of local loss (Lemma 9),
we can conclude that:

1 & ) ’
(t
T 2_Gi
i=1

Now we switch to prove the second statement by observing that:

1 & i
(t)
P
=1

<O(mL2im»)'

2

1 @ (1) %
:K;HVE(W (t); &3, i)

IN

1 & _
}_Z (mn/d)L;(W(t))

\ /\

}
Z (mn/d)L; (WD (¢,)),
which completes the proof. O

The next lemma is similar to Lemma 4, but it characterizes the local model deviation under stochastic setting.
Hence, it will be inevitably looser than the deterministic version (Lemma 4).
Lemma 8. For Local SGD, let t. denote the latest communication stage of before iteration t. If the condition

that L;( WO (t)) < Li(W(t.)) for any t. <t < t,+ 7 — 1 holds, then the following statement holds true for
te<t<t.+71-—1:

(i) 2 2_2 2_\mn
[Wow - wt)| <0 (@22 + 0™ ) LiW(t.)),
where K is the number of devices, T is the number of local updates between two consecutive rounds of synchronization,

n is the size of each local data shard, and m is the number of neurons in hidden layer.

Proof. According to updating rule:

2

E[WOt+1) - W) =E[WO@) -nG - wit)

F F

= E||W®O (1) - W(t.) —2nE<VL (WO (), W) — Wit )

+7°E| G2

=E|W®(t) - W(t,)

i+2n<VL (WO () tZEVL W(>())>

t'=t.
+1PE|G |12

t—1

LS vnwo <t>>>

(t - tc) t'=t,.

—E | W) - W(tC)H; +22(t — t.) <VLi(W(i)(t)),

+ P El|G |12

Applying the identity (a,b) = 5 HaH2 2116]|> = 3lla — b]|? on the cross term we have:

E HWU)(t 1w ’

o £ HW(i)(t) a W(tC)HF
2

+P(t—t) [ E|[VLwWE H = ZVL (W (1))

1 ) 2

21 WO (D) 20 s
- DR A O
(mj)yJ)esi
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Plugging the gradient upper bound from Lemma 2 yields:

]EHW@(tJr 1)~ Wi(t.) i i

<E Hw“)(t) - W(tC)H

F
e (o) owiin s Lo 8 o () wo)

+1°0 (%) LW ).
Since we assume L;(W®)(t)) < L;(W(t.)) for any t. <t <t.+7 — 1, we have:

E me(t T 1) - W(t) i <E Hw@) (t) — W(t.)

T (0(Z) LW ) + O() LW t.) )
+170(%) Li(W(to)).

Do the telescoping sum from ¢ + 1 to t. will conclude the proof:

E Hw<i>(t 1wl <o ((n%2 n n%)%) Li(W(t.)).

F

The next lemma will reveal the boundedness of objective in stochastic setting. The slight difference to the dynamic
of objective in deterministic setting (Lemma 6) is that, we show the ObJeCtIVG is strictly decreasing in Local GD,
but here we only derive a small upper bound of it: L; (W( (t)) <O(1)- Li(W(t.)), with high probability. Even
though it is not a strictly decreasing loss, it is enough to enable us to prove linear convergence of objective.

Lemma 9. For Local SGD, at any iteration t in between two communication rounds: t. <t <t.+7—1 and
i € [K], if WO(t) € B(W(0),w), then with probability at least 1 — exp (—Q(mw?/3)), the following statement
holds true:

LW (1)) < 0(1) - Li(W(tc).

Proof. We examine the absolute value bound for L;(W® (¢ —1)):

L(WO(1) < LW (t = 1)) + 5 [VL(W(t — 1)) HG“) ol

: 1/3L2 mlog C’”Lzm 2
, . ) B ] w 7,) 27
0 LW~ 1)) e et + s,
LWt — 1)) + @Li(w(i)(t —1))
1/3L2 1 . 1722
0 o8(m) 1 Wt 1)) + L L (Wt - 1)

< (1 +0 (”md*/ﬁ)) Li(WO(t — 1))

< (1+0 <msz))7mv<tc>>
<o () L(Wi) < 00) LW,

mn25log? m



Local SGD Optimizes Overparameterized Neural Networks in Polynomial Time

B.2 Proof of Theorem 2

With the above lemmas in hand, we can finally proceed to the proof of Theorem 2. We prove Theorem 2 ‘t2)y
induction. Assume the following induction hypotheses hold for all k < t, with probability at least 1 — e~¢2((logm)%).

(D [[W(h) = W(0)] <w, Hw(i>(h) _ W(O)H < w,Vi e [K],
(II) L(W(tp)) < nlog2 m - B*R/Ro7

where w = O(¢3/2n_6L_6 logfg/2 (m))7 t. is the latest communication round of h, also the cth communication

round, and Ry = %ﬁ. Then, we need to show that these two statements hold for ¢ + 1.

B.2.1 Proof of inductive hypothesis I

Step 1: Bounded virtual average iterates. Now we prove the first hypothesis for ¢ + 1:
IW(t+1) — W(0)|| <w. By the updating rule we know that:

1o~
?;G(Z)(j)
< Yo\ w)

<nr Z o (\/W;nnlog2 mec’/Rf))

=1

< ™ toe?m (14—t
<nr d nlog™m +el/(2Ro)_1
<nTy/ %nlogzm(l +2Rp)

< \/ElogmnS.

vm
181,12 10g% m

Since we choose m > *—=—75—", we conclude that [W(t +1) - W(0)|| < w.

[W(t+1)— W(0)| < nZ

Step 2: Bounded local iterates. Then we prove the second hypothesis for ¢ + 1: ||W(i)(t +1) - W(0)|| < w.
By the updating rule we know that:

[wie+1) - wo) < ni 96|

j=1
<mio ™) V/KL(W(t,))
VdK logmn3

<

/m )
where we apply the gradient upper bound (Lemma 2) and the decreasing nature of local loss (Lemma 9). Since
1 12 R .
we choose m > W, we know that ||[W® (£ +1) — W(0)|| < w.

B.2.2 Proof of inductive hypothesis 11

Now we proceed to prove that hypothesis IT holds for ¢t + 1. If t. <t 41 < t.41, then the statement apparently
holds for ¢.. If t+1 > ¢.41, we have to examine the upper bound for L(W (¢.4+1)). The first step is to characterize
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how global loss changes in one iteration. We use the technique from standard smooth non-convex optimization,
but notice that here we only have semi-smooth objective. According to semi-smoothness (Lemma 1) and updating
rule:

E[L(W (te41))] < LW (L)) + ELVL(W (L)), W(terr) — W(te))]

w3 L2\ /mlog(m) C"L*m
VR BIW (1) - Wit +

K tegy1—1
< L(W(t,)) — <VL( nT?Z > VL ))>

=1 t'=t.

W) - o log(m

K tey1—1

TKZ Z c® ()

i=1 t'=t.

K tu+1 1
< L(W(t)) <VL< Do S VLW >)>

=1 t'=t.

w1/3 2 mlog(m m
+n7C"/L(W (L)) - L \/glg( )-0< L(X{(tc))>

20”5% o (mL(X(@c)))

+C'/L(W(t)) - E[|W (te41) — W(te) |3

K tey1—1

KZ 3 GO

=1 t'=t.

+nrC’

2

C//L2

+7

+n

IN©

T 9 , W32 fmloe(m m -
L(W<tc))_%HVL(W(tc))HF-F?]TC L(W(t,)) - L ;/\/31 g( )o<\/ L(;?}V{(t )))

+7720”L2m0 (mL(W(tc)>) +g 1 Z S HVLZ-(W(tC)) —VLi(W(i)(t’))Hz

d dK F’

where in @ we use the identity (a,b) = %|la/|? + 1||b]|*> — 1|la — b||%. We plug in the semi gradient Lipschitzness
from Lemma 5 and gradient bound from Lemma 2 in last inequality to get:

E[L(W(tes1))] < LW (t)) = - [ VE(W(t) 7
w1/3 2 m loglm m
O IW() - 2\/81 B )0< L(X{(tc))>

L pCEm, (mL(X(uc»)

S (o wou - waol,)

2/3L5 1 216m1
ro (bmonm | LR L)),

. 3/2 . . . c .
Choosing w = ot LS Tog(m)e7 where C, is some large constant and plugging in local model deviation bound

from Lemma 8, to get the main recursion relation as follows:

Bl W) < (10 (550) ) Liwie). o)
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Also by semi smoothness, we have:

K tegq1—1
L(W(te41)) < LW(te)) + 2[[VL(W (te)) | KZ >, G
=1 t'=t. P
2
Wl/3L2 w/mlog K te C"i? L2m Kttt
C'n\/L(W (1)) - KZ > G +TE }Z > GO
i=1 t'=t, 2 i=1 t'=t,

)+ 2/ EW T W)
+ /B WW W) + ST )

d?K
< {1 10 (”m;‘fﬂ L(W (L)), (6)

Taking log on the both sides of (5) and (6) yields:

LW (1011))] < loglL(W(t)] + O (777,

Eflog[L(W (tc41))]] < log E[L(W (te41))] < log[L(W (2.))] + log (1 -0 (n;l;f))

dn?

< ogL(W ()] - (5.

So we can apply martingale concentration inequality. With probability at least 1 — e~ SUlog® m)

log[L(W(t11))] < Eflog[L(W(t.)]] + VO (”m;\/ﬁ) logm
< log[L(W(0))] - €2 (’"’”‘b) +1/cO (”””f) log m
mT n2 mT\/n ’ mrn?
< log[L(W(0))] — <ﬁ9< ”dnf’) - nimo (" d\f) log‘m) +0 (” i log? m) :

where in the last inequality we use the fact that 2a\/c—b%c = —(by/c—a/b)?+a?/b*. Plugging that n = do

m7n3 logZ m

yields:
2 Jn 2
nMmT @ dn nMmT\/n
< — _
log[L(W(te1.1))] < log[L(W (0))] (m ( e ) oo () 1ogm> ro)
n5log®m nmTeo
< log|L —1ic> — )| Q 1
<ot W) -1 [z 0 () o (B2 Lo
51002 2
< log[L(W(0))] — 1 {c >0 ("‘fm)] Q (¢20> +0(1),
@ n5log” m
where we use the inequality ——(2 — 2(:[)2 < —“thl[ t > %] at the last step. According to Allen-Zhu et
al [2019], log[L(W(0))] < O(nlog? m) with probability at least 1 — e~ 1°&"™ and using our choice

n®log? m nlog?m :
R>Q ( 4)% log ==& ) we have the following bound:

2
log[L(W(T))] < O(nlog®m) — Q (log nlog m> < loge,
€

so we conclude that L(W(T)) < e, or equavilently, L(W (T)) < nlog®m - e~ /o where Ry = n? 1252 T,
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