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ABSTRACT

Robots will benefit from identifying novel objects in their
environments through multi-modal sensing capabilities. The
overarching goal of this research is to accelerate multi-modal
sensor data collection for general-purpose robots to infer ma-
terial properties of objects they interact with. To this end, we
designed a benchmarking testbed to enable a robot manipu-
lator to perceive spectral and spatial characteristics of scene
items. Our design includes the use of a push broom Visible to
Near Infrared (VNIR) hyperspectral camera, co-aligned with
a depth camera. This system enables the robot to process and
segment spectral characteristics of items in a larger spatial
scene. For more targeted item manipulation, we integrate a
VNIR spectrometer into the fingertips of a gripper. By acquir-
ing spectral signatures both at a distance and at grasp time,
the robot can quickly correlate data from the two sensors,
each of which contain distinct quantum efficiencies and noise.
Our approach to this challenge is a step towards using spec-
tral data for enhanced grasp selection in cluttered environ-
ments and automated ground-truthing of hyperspectral sen-
sor data. This paper describes our approach to the design of
this benchmarking testbed. The project code and material list
are located here: https://github.com/RIVeR-Lab/
HyperBot.

Index Terms— Hyperspectral Imaging, Robot Spec-
troscopy, Grasp Planning, Sensor Fusion, Ground Truth Ac-
quisition

1. INTRODUCTION

Hyperspectral imaging (HSI) has traditionally been applied
in the context of remotely sensed images, where limited spa-
tial resolution fostered the development of multi-band sensors
to compensate for the coarseness of ground data. Existing
datasets such as Pavia University and Indian Pines are exhaus-
tively studied and are viewed as benchmarks for nearly every
new development in HSI [1]. Despite the popularity of hyper-
spectral imaging, the time and effort required to create accu-
rate ground truth measurements is a commonly cited problem
in expanding available datasets [2]. In supervised machine

This research is supported by the National Science Foundation under
Award Number 1928654.
*Corresponding author hanson.n@northeastern.edu

Quartz Tungsten
Halogen Lamps

Gripper
Imaging Array

Spectrometer

Fig. 1. Spectral benchmarking testbed with architecture to
acquire scene hyperspectral datacubes and in-hand spectral
data. Note the axes orientations and cell dimensions.

learning techniques, labels for a portion of the data are re-
quired to both train and evaluate the performance (accuracy,
precision, recall) of models. Labeling hyperspectral datasets
has traditionally been undertaken in the laborious process of
a technician carrying a field spectrometer and acquiring spec-
tral signatures pinpointed to a referenced coordinate sample.
Our work seeks to automate that process, by developing a
first of its kind robot workcell capable of collecting hyper-
spectral datacubes for a scanned set of items and associating
camera pixels with high resolution spectral readings from in-
hand sensor. Our process allows for the rapid identification of
items in a table scene through registered HSI and point cloud
measurements. The contributions of this paper are:

1. The design, analysis, and procedures for an automated
hyperspectral ground truthing testbed.

2. A pipeline to process and convert spectral readings
between a VNIR hyperspectral camera and fiber optic
spectrometer in real time.

Developing this setup enables the automated collection of
hyperspectral data, without the need for operator intervention.
This work is also needed to enable future research on the role
hyperspectral imaging can play in enhancing object handling
and perception for autonomous systems.



2. RELATED WORK

Prior work in use of spectral data in robotics can be split into
two main approaches. The first involves industrial process-
ing of products on a conveyor belt as demonstrated by [3],
[4]. These applications rely on spectral identification of ob-
jects using pretrained machine learning models to enable pla-
nar motion planning.

The second use case is abstract object recognition in un-
structured environments. In our prior work, we focused on
the use of spectral signatures in terrain classification for au-
tonomous vehicles [5], and grasped object manipulation via
the use of point-based spectrometers [6]. Erickson et al. [7]
has demonstrated enhanced material recognition with scan-
ning spectrometers mounted on a mobile manipulator; how-
ever, their work heavily focuses on common objects likely to
be encountered in everyday life.

Although there is demonstrable value in understanding
physio-chemical material characteristics with spectrometers,
the close working distance and limited spatial coverage of
the photodetector array requires motion planning to bring
the gripper into the correct 6-dimensional pose to acquire a
spectral measurement which is time and energy intensive for
robots. Other projects have attempted to design specialized
grasping systems for fruit ripeness detection [8], but such
a manipulator does not translate to the diversity of grasps
required by general-purpose robots.

3. ROBOT DESIGN

The design of the testbed emphasizes the repeatability and
accuracy of the system, especially when acquiring spectral
measurements. The testbed employs a 6 degrees of freedom
(DoF) robot manipulator (Universal Robotics UR3e). The
end-effector is a 2-fingered gripper (RobotIQ 2F-85) which
is controllable through a serial interface. The robot system
interfaces with a Linux PC running Ubuntu 20 and the open
source Robot Operating System (ROS) [9].

The arm is mounted to a linear actuator (LOPRO) which
is driven by a stepper motor connected through a serial USB
connector. The drive motor can move the rail gantry at a
speed from 0.01-1 m/s. This rail in effect provides a sev-
enth degree of freedom, increasing the workspace of the arm
and enabling scanning for the hyperspectral camera as further
detailed in Section 4. The environment is isolated from the
rest of the ambient room lighting by an extruded aluminium
frame which provides additional mounting points for sensors
and active lighting. We utilize two Quartz Tungsten Halogen
(QTH) lighting sources to provide diffuse, full-spectrum illu-
mination within the testbed. The complete setup is shown in
Fig. 1.
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Fig. 2. Multi-modal perception setup for sensing both spatial-
spectral characteristics of total workspace and in-hand. NB:
Z-axis is perpendicular, coming out of the page.

4. SENSING SYSTEM

Our approach to multi-modal sensing combines two classical
modalities extensively used in remote sensing: VNIR push
broom hyperspectral sensing and point clouds. Most remote
sensing point cloud datasets are generated with Light De-
tection and Ranging (LIDAR) sensors [10]; however, in our
design we substitute a Time-Of-Flight (ToF) camera (Azure
Kinect) to provide both point clouds and RGB images. As
an active sensor, the ToF camera emits infrared light beyond
the VNIR range, meaning spectral readings are not perturbed
by the operation of this sensor. Depth and RGB images are
captured at a consistent 30 frames per second (fps).

The Hyperspectral Camera (Hyperspec-Nano) is mounted
with its lens aligned with the ToF camera. A single measure-
ment of the camera consists of 640 pixels each containing 273
wavelength channels between 400 - 1000 nm. The camera is
run in 12-bit depth mode for all the experiments in this work.
To create the composite datacube, streamed line images are
passed into a dynamically allocated buffer as the rail trans-
lates along the x-axis. The exposure time is set to 25 ms and
the system moves at 0.021 m/s.

The gripper contains additional sensors placed behind
protective elastomer gel (Solaris) which provides added tack
for grasping in-hand objects. The optical clarity of the gel
membrane was confirmed in our previously conducted trans-
mission tests [6]. The reinforced finger tips are 3D printed
with reinforced carbon fiber for added rigidity, and contain
clamp rings to minimize sensor movement. One finger con-
tains an endoscope with a Light Emitting Diode (LED) light
ring to capture macro texture images of grasped items. This
sensor is unused in the scope of this paper, but will be in-
cluded in future work. The opposite finger contains a fiber



optic probe with 8 Low OH fiber optic cores - 7 provide illu-
mination from a QTH light source and the central one reads
the signal back to a VNIR spectrometer (StellarNet). Data
from the spectrometer is acquired at 10 Hz, and consists of
a 2048 length vector of photon counts acquired during the
integration period in the wavelength range of 350 - 1150 nm.
The complete sensing array is detailed in Fig. 2.

5. SPECTRAL MATCHING

A core capability of our system is the ability to associate spec-
tral signatures sensed by the Hyperspectral camera, with sig-
natures acquired in the gripper. Both sensors utilize different
grating technologies and photodetectors with distinct quan-
tum efficiencies, making the transformation more complex.

5.1. Reflectance Calibration

To begin, both devices are calibrated to normalized re-
flectance values. The in-hand spectrometer was used to
grasp a Spectralon reflectance standard in 10 trials in dif-
ferent gripper orientations. The probe was then capped and
10 dark current readings were acquired. Eq. 1 shows the
procedure to normalize readings to a range of [0,1]. Readings
for the StellarNet spectrometer were very low noise so the
mean value of the dark and light calibrations is used here. L
is a bright calibration signal, D is the dark signal, and S is a
single time step input input signal. Fig. 3 shows a collection
of calibrated spectral signatures.

Sspec - Dspec

S - = 1
cal spec Lspec — Dspec ( )

Similarly, a sample datacube was acquired using the previ-
ously set parameters for the hyperspectral camera. The same
Spectralon captured the reflectance values for 100 frames and
100 capped frames provided the dark current readings. The
data was noisier than the spectrometer with occasional dead
pixel readings. To prevent these from skewing the results, the
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Fig. 3. Reflectance calibrated spectrometer readings using
colored blocks for evaluation of VNIR spectral signatures.

max and min of the signals are taken in Eqn. 2.

Staw — min(DHSI)

2)

S =
AlHSE ™ hax(List) — min(Dygy)

5.2. Downsampling

The camera and the spectrometer also have slightly different
wavelength ranges. To account for the difference here, we
clip the input spectrometer signal to the inclusive wavelength
range of the spectral camera. The dimensionality of the HSI
signal is an order of magnitude lower than that of the spec-
trometer. To intelligently reduce the dimensionality of the
spectrometer signal to match that of the camera, we consider
the Full Width Half Maximum (FWHM) values for the pho-
todetector. For the camera, this value is 6 nm. To down-
sample the spectral values, we pass a moving Gaussian filter
over the spectrometer data using the derivation from [11]. Us-
ing each wave in the HSI range, \;, centered on the target
wavelength from the spectrometer, we weight the signal con-
tributions using:

Weight(\) =

1 ()\hsi - Aspec)2
FWHM /o eXp ( 9 (FWHM>2 @)

2.355 2.355

5.3. Detector Compensation

As a final step, our model must account for differences in
optics efficiencies. For instance, the silica in the fiber optic
cable introduces signal loss at known wavelengths [12]. For
this processing step, real non-zero and non-max signals were
required. We collected a sample hyperspectral datacube and
spectral readings from grasped painted wooden blocks. These
simple items were chosen since they covered the visible light
spectrum. The HSI was segmented into rectangular bounding
boxes encompassing the spectral signatures of the region of
each color type.

We solve a multivariate regression problem to find cor-
rective weight factors at each wavelength of light with Non-
negative Least Squares [13]. Namely, we take a matrix B of
sampled spectral camera readings. As an input to the sys-
tem, we stack multiple spectrometer readings that have been
reduced according to the steps in Sections 5.1 and 5.2. Solv-
ing a linear regression problem yields a mapping A — B
with 273 factors, forming an appropriate translation between
sensors. To avoid overfitting the model, the collected sample
values are randomly shuffled into test-train sets with a ratio
of 1:3, respectively. The mean squared error by wavelength is
plotted in Fig. 4.

6. OBJECT SEGMENTATION

The second part of our work discusses the procedure needed
to locate the 3D coordinates and align them with an HSI dat-
acube for proper grasping.
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Fig. 4. Mean squared error for fit linear regression model.
Note the higher noise at longer wavelengths is correlated with
increased sensor noise in the hyperspectral camera.

6.1. Image Registration

After a datacube is collected with a single linear scan of the
workspace area, the rail is commanded to bring the arm back
into the center of the workspace environment. The camera
end effector is rotated to align the lens perpendicular to the
table. Here the field of view of the ToF camera, 90° horizontal
and 59° vertical, captures the scene with a single RGB image.

With knowledge of the forward and inverse kinematics of
the robot arm, we can rotate the view of the camera, 7, to
that of the base linkage of the robot arm Ty4se [14]. This
step enables all camera readings to be localized in the proper
global coordinate frame. The same transform procedure is
applied to the point cloud readings.

To register the hyperspectral datacube, three channels rep-
resenting RGB values are composited. The image is con-
verted to grayscale to aid in the generation of image keypoints
and descriptors, which are selected using the SURF algorithm
[15]. Because the hyperspectral spatial resolution is much
coarser than the high-resolution image from the Kinect, we
select a large quantity of features, 2,000, to describe the com-
ponents in the scene. To handle cases where the visual charac-
teristics of an scene are homogeneous, we add fiducial mark-
ers to ensure some scene contrast [16]. Because the images
are known to lie on the same plane, we can use a homography
to warp the hyperspectral image into the coordinate frame of
the ToF RGB image. To prevent noise and diminished reso-
lution from perturbing the solution, RANSAC [17] is used to
exclude false matches from the homography calculation.

6.2. Grasp Planning

Our grasp planning framework starts by clustering the objects
in the workspace. To do so, we first segment the table plane
from the raw point cloud using the RANSAC method. Next,
the point cloud above the table is extracted and fed into a Eu-
clidean clustering algorithm which generates the individual
point clouds of the objects. Finally, we apply Principal Com-
ponent Analysis (PCA) to find the 6D poses of the objects
T; € SE(3). This point cloud processing pipeline is imple-

Fig. 5. Real time robot visualization of point cloud data and
table scene objects. The centroid of each cluster is associated
with a local coordinate frame.

mented using the PCL library [18]. Fig. 5 shows the point
cloud segmentation and calculated object axes.

Once we have the poses of the objects, we then use a
simple heuristic-based top-down grasp detection strategy.
This strategy respects the added mass and size of the sensors
mounted near the end effector. The z-axis (downward) of
the grasp position is equal to the height of the object plus a
pre-determined offset and the x, y-axis is equal to the object’s
centroid position. For orientation, we set the z-axis to the
negative plane normal direction and y-axis to the largest seg-
ment of the object. From this, the x-axis is found as the cross
product of the y and z axes. To move the robot to the desired
grasp pose, the inverse kinematic problem (IK) is solved us-
ing the Levenberg—Marquardt algorithm [19]. Finally, the
found joint angles from the IK solution is sent to the UR3e’s
low-level position controller.

Once the object gripper is at its grasp planned position,
the fingers are commanded to close; commencing the collec-
tion of readings with the spectrometer. From this point, ob-
jects can either be released or removed from the scene. The
end-to-end cycle of acquiring a datacube takes approximately
1.75 minutes, while the grasp planning and execution takes an
average of 7 seconds per object.

7. CONCLUSION

Our work demonstrates the efficacy of a first of its kind robot
cell enabling the collection and ground truthing of hyperspec-
tral data. Our methodology allows a multi-degree of freedom
robot arm to capture hyperspectral datacubes, point clouds,
and in-hand spectral readings.

In future iterations of this work, we plan to orient the cam-
era in different positions with the arm, enabling the acqui-
sition of hyperspectral data from multiple angles relative to
scene items. This will enable the generation of dense spectral-
spatial models of object points not otherwise visible from a
top-down perspective. This extension could logically lead to



3D reconstruction of objects and the interrogation of the spec-
tral properties at each point.

While this work focused on the calibration, alignment,
and association of spectral data, our future work lies in un-
derstanding how hyperspectral data can enable robots to bet-
ter manipulate unknown objects. The authors hope the open-
sourcing of the control and processing code will encourage
the promising integration of spectral sensing into robotics.
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