
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022 609

Unrolled Wirtinger Flow With Deep Decoding
Priors for Phaseless Imaging

Samia Kazemi , Bariscan Yonel , Member, IEEE, and Birsen Yazici , Fellow, IEEE

Abstract—We introduce a deep learning (DL) based network and
an associated exact recovery theory for imaging from intensity-only
measurements. The network architecture uses a recurrent struc-
ture that unrolls the Wirtinger Flow (WF) algorithm with a deep
decoding prior that enables performing the algorithm updates in
a lower dimensional encoded image space. We use a separate deep
network (DN), referred to as the encoding network, for transform-
ing the spectral initialization used in the WF algorithm to an appro-
priate initial value for the encoded domain. The unrolling scheme
models a fixed number of iterations of the underlying optimization
algorithm into a recurrent neural network (RNN). Furthermore, it
facilitates simultaneous learning of the parameters of the decoding
and encoding networks and the RNN. We establish a sufficient
condition to guarantee exact recovery under deterministic forward
models. Additionally, we demonstrate the relation between the
Lipschitz constants of the trained decoding prior and encoding
networks to the convergence rate of the WF algorithm. We show the
practical applicability of our method in synthetic aperture imaging
using high fidelity simulation data from the PCSWAT software. Our
numerical study shows that the decoding prior and the encoding
network facilitate improvements in sample complexity.

Index Terms—Deep learning, inverse problems, phase retrieval,
deep prior, Wirtinger Flow, synthetic aperture imaging, algorithm
unrolling.

I. INTRODUCTION

A. Motivation and Prior Art

Phaseless imaging refers to the task of reconstructing an
image from measurements whose magnitude or intensity values
are available while the phase information is either missing or
unreliable. This challenging problem necessitates compensation
either through hand-crafted prior information [1] or significant
measurement redundancy [2], [3]. In practical imaging applica-
tions with deterministic forward maps, hand-crafted priors may
not be sufficiently descriptive of the underlying image domain to
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reduce the requirement of a large number of measurements [4],
[5]. In this paper, we introduce a deep learning (DL) based
phaseless imaging method that incorporates data-driven prior
information for deterministic imaging problems with theoretical
convergence and an exact recovery guarantee.

We consider the state-of-the-art phase retrieval methods that
fall under two general categories: Wirtinger Flow (WF) type
algorithms [2], [6]–[8] and DL-based approaches [9]–[13]. The
first category includes WF [2] and its variants [4]–[7], [14]
which offer exact recovery guarantees based on non-convex opti-
mization. Unlike the earlier lifting-based convex phase-retrieval
algorithms [15], [16], WF performs iterations in the signal space
relieving the extensive computation and memory requirements.
However, classical WF requires an appropriate choice of the
initial estimate, learning rate and high sample complexity of
O(N logN) under the Gaussian measurement model. Several
initial estimates for WF have been studied including the spectral
estimation [2], spectral estimation with sample truncation [17]
and more general sample processing functions [18]–[20], lin-
ear spectral estimation [21], orthogonality-promoting initial-
ization [22] etc. Original WF algorithm has been extended to
include prior information [4], [7] to reduce its sample com-
plexity, most prominent of which is sparsity. However, finding
a hand-crafted optimal basis over which the unknown image
is sparse can be challenging. Other variants of WF aiming to
reduce sample complexity include [6], [14]. However, the exact
recovery theory of WF [2] and its variants [4], [6], [7], [14]
relies on the assumption that the forward map is Gaussian. This
poses a fundamental limitation for imaging applications since
the forward models are almost always deterministic.

Recently, in [8], we introduced a mathematical framework for
establishing an exact recovery guarantee for the WF algorithm
involving deterministic forward maps under a sufficient condi-
tion that sets a concentration bound on the spectral matrix [2].
This paves the way for the adoption of WF-type algorithms in a
wide range of practical applications with provable performance
guarantees. However, this framework does not account for prior
information about the image domain or study how the sufficient
condition will be affected by the incorporation of such informa-
tion.

The second category of state-of-the-art methods for phaseless
imaging are practically attractive as they present a trade-off
between the number of measurements and the training data, by
solving the imaging problem in a lower dimensional encoded
image space using a generative prior [9]–[12]. These are iterative
algorithms where the parameters of the prior network, often
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referred to as the generative network, are learned to capture
the global characteristics of the image manifold. Once trained,
starting from a randomly initialized encoded image, this network
is used to update the encoded image estimation. A convergence
guarantee for the phaseless imaging problem is established
for real positive-valued unknown image components in [9]
given that the trained weight matrices and the forward map
satisfy a weight distribution condition and a range restricted
concentration property, respectively. For the same network as
in [9] with expansive layers of particular dimensionalities, and a
measurement matrix and trained weight matrices of i.i.d. Gaus-
sian distributed components, [11] shows that optimal sample
complexity can be achieved for the phaseless imaging prob-
lem after a sufficient number of iterations. However, since the
prior network is trained separately from the phaseless imaging
problem, these methods require large training sets in order to
effectively estimate the probability distribution over the image
domain instead of a conditional distribution given the phaseless
measurements [23]. Additionally, this training scheme precludes
the inclusion of an optimal initialization scheme for the encoded
image space.

For overcoming the large training set requirement and fixed
image space restriction of the generative prior, a related class
of methods utilizes untrained networks in which the network
structure itself works as the prior [24]. For the phaseless imag-
ing problem, a deep decoder [13], [25], which uses an under-
parameterized architecture, is utilized in [13] and an exact
recovery guarantee is established for a two-layer decoder model
and Gaussian distributed forward map that satisfies a specific re-
stricted eigenvalue condition. However, an optimal initialization
scheme for the weights of the network, instead of the encoded
image, is not established. Additionally, theoretical results for
this approach are very limited.

To address the limitations of state-of-the-art phaseless imag-
ing methods, in this paper, we combine the WF algorithm and
theory in [8] with a DL-based approach. We consider the follow-
ing two major modifications: the use of a deep decoding prior
in conjunction with DL-based initialization and the unrolling of
the WF algorithm into a recurrent neural network (RNN) archi-
tecture which enables end-to-end training. Our overall network
is composed of the transformation network for initialization
referred to as the encoder, an RNN that represents the unrolled
gradient descent updates of the WF in the encoded domain and
the deep decoding prior network referred to as the decoder.

Unrolling, which has been widely implemented to a range
of linear inversion problems [23], [26] has limited utilization
in the phase retrieval literature. In [27], an unrolled network is
introduced for a Fourier phase retrieval problem with a reference
signal. In [28], a complex unrolled network with unsupervised
training is proposed for lensless microscopy imaging from
phaseless measurements. An unrolled Incremental Reshaped
Wirtinger Flow based phase retrieval approach is presented
in [29] for direct image estimation from amplitude measure-
ments. However, the trainable parameter set for this method
is only related to the learning rates and no theoretical exact
recovery guarantee is established. To the best of our knowledge,
our approach is the first to unroll a phaseless imaging algorithm

with deep priors and end-to-end supervised training for general
imaging applications. Additionally, we have established a the-
oretical exact recovery guarantee. A related approach in [30]
incorporates adaptive step sizes, but their implementation does
not use a fixed number of iterations, the step sizes are not learned
and no theoretical exact recovery guarantee is established.

B. Our Approach and Its Advantages

Our approach bridges the class of theoretically sound state-of-
the-art purely optimization-based non-convex approaches with
data-driven schemes deploying deep decoding priors for phase-
less imaging in a deterministic setting. Instead of the generative
adversarial network (GAN) [31] based training used in the
prior work [9]–[12], we adopt an end-to-end training approach
where the parameters of the decoder, RNN and the encoder are
learned simultaneously during training. The unrolling strategy
benefits from the inherent computational efficiency of a trained
optimal network. Additionally, being derived from model-based
iterative algorithms, the network also offers interpretability of
its architecture and parameters unlike an arbitrary deep network
for phaseless imaging.

Our approach relates the spectral initialization-based WF
algorithm with a generative prior based approach within a DL
framework. Existing applications of the generative prior [9]–
[12] lack a rigorous justification for the choice of initialization.
Furthermore, it is not well-understood how this value affects
the convergence rate. By establishing an explicit connection to
the spectral initialization step, we determine the effect of the
decoding network on the validity of the convergence guarantees
and the rate of convergence to the true solution. Our theoretical
analysis reveals two key observations:
� Firstly, the parameters of the underlying encoding and

decoding prior networks have direct implications on the
convergence rate and initialization accuracy which can be
quantified by their Lipschitz constant values after training.
A learned decoding prior can achieve a faster convergence
rate compared to non-DL based WF [8] as long as certain
Lipschitz constant related conditions are satisfied by the
trained networks.

� Secondly, using the lower dimensional embedding of the
decoding prior, we establish a new sufficient condition for
exact recovery where, by virtue of specific imposed condi-
tions on the decoder, the concentration property considered
in [8] is parameterized over the encoded space. Hence, a
sufficiently accurate initial estimate for the algorithm can
be obtained using fewer measurements, as the representa-
tions are embedded in the lower dimensional space by the
encoder. This sample complexity reduction aspect is also
observed empirically through our numerical simulations.

The main differences with the existing generative prior based
phase retrieval methods are notably in the initialization criteria,
and the type of conditions assumed on the measurement vectors
and the DL network parameters for establishing exact recovery
guarantee when compared to [9], [11]. In [9]–[12], the encoded
unknown is randomly initialized, while in our approach, which
can be viewed as a DL enhanced WF, we implement a DL net-
work to transform the spectral initialization output to an encoded
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TABLE I
LIST OF IMPORTANT NOTATIONS

initialization value in order to facilitate a better starting point.
Even though the spectral initialization is computationally more
expensive compared to a random initialization step, imaging
applications in [10], [12] use multiple initial guesses each of
which is iteratively updated for selecting the best one. Our
approach avoids the need for repeating the algorithm for an
arbitrary number of initial guesses, and its computation com-
plexity is of the same order as in [32]. Additionally, unlike [9],
[11], our sufficient conditions on the trained DL networks for
achieving exact recovery guarantee do not depend on the explicit
consideration of the network architectures or imposition of
specific properties on the trained network weights. The sufficient
condition on the forward map is similar to the deterministic WF
analysis in [8] rather than the generative network architecture
dependent condition in [9], [11].

Our numerical simulation results demonstrate the ability of
end-to-end learning with the unrolled WF method for recon-
structing a wide range of unknown image sets. This includes
MNIST image set of handwritten digits, simulated images with
geometric objects and PCSWAT [33] simulated images with
mine-like objects for different non-Gaussian deterministic for-
ward maps.

C. Notation and Organization of the Paper

Bold upper case and bold lower case letters are used to
represent matrices and vectors, respectively. ‖X‖F refers to the
Frobenius norm of X, and it is calculated as Tr(XHX). Tr(.)
denotes the trace of a matrix, while superscripts T and H on a
matrix (or vector) denote its transpose and Hermitian transpose,
respectively. ‖.‖ around a matrix and a vector refer to their
spectral norm and �2-norm, respectively. Calligraphic letters
and doublestruck upper case letters are used for operators and
sets, respectively. We use lower case Greek letters to represent
various constants, and lower case italic letters, with or without
subscripts, are used to denote different functions. For a network
B with input x, B(x) is its output vector. Finally, we are using
upper case italic letters for constant integers, and a set of integer
values from 1 to K is written as [K].

Table I includes a list of important notations used throughout
this paper and the supplementary material.

The rest of the paper is organized as follows: The problem
statement and background on the non-DL based phase retrieval

methods are discussed in Section II. The DL-based overall imag-
ing network is introduced in Section III. Theoretical foundations
required for establishing the exact recovery guarantee of our
approach are discussed in Section IV. Section V presents our
theoretical results involving the accuracy of the DL-based initial
value, convergence guarantee and properties on the DNs for
desired reconstruction performance. The training process and
the implementation details of specific properties of the encoder,
decoder and the RNN are presented in Subsection VI-A and
Subsection VI-B discusses the computational complexity of our
approach. Numerical simulations examining the performance of
our approach compared to the WF algorithm and other DL-based
methods are presented in Section VII. Finally, Section VIII
concludes the paper.

II. PROBLEM STATEMENT

A. The Phase Retrieval Problem

The phase retrieval problem entails estimating an unknown
ρ∗ ∈ C

N , from its intensity, or magnitude-only measurements
of the form:

dm = |〈am,ρ∗〉|2, for m = 1, 2, . . .M, (1)

where am ∈ C
N , for all m = 1, . . . ,M , denotes the mth sam-

pling vector. These vectors constitute a known, linear measure-
ment model, F, pertaining to the application of interest, such
as Gaussian sampling, coded diffraction patterns, Fourier trans-
form etc. We refer toF as the forward map. When {am}Mm=1 are
Fourier sampling vectors, the problem is classically known as
Fourier phase retrieval, or the phase problem in optical imaging,
and quantum physics fields.

Fundamentally, (1) constitutes a system of M quadratic equa-
tions, and solving it is known to be NP-hard in general [34].
Nonetheless, classical algorithms based on alternating mini-
mization have been used to empirical success in optical imaging
applications [35]–[37], despite the severe ill-posedness of the
problem that arises due to the quadratic dependence of the
measurements to the quantity of interest in (1) [38].

Over the last decade, optimization-based approaches have me-
thodically progressed towards establishing performance guar-
antees in exactly recovering ρ∗ from d = [d1, · · · dM ]T ∈ R

M .
First major developments to this end have been through a re-
formulation of (1) via lifting the problem, as the recovery of a
rank-1, positive semidefinite (PSD) unknownρ∗ρ∗H fromd. (1)
become equivalent to realizations under a linear measurement
model, governed by a lifted forward map, F : CN×N �→ C

M ,
where

dm = 〈amaHm,ρ∗ρ∗H〉F , for m = 1, . . .M. (2)

This reformulation facilitates the use of established tools from
low rank matrix recovery theory through convex-relaxations and
semidefinite programming [15], [16]. The injectivity and the
spectral properties of F over rank-1, PSD matrices therefore
determine the exact recovery of ρ∗ρ∗H [15].

More recently, algorithms that attain performance guarantees
by directly operating on the original signal domain [39]–[41]
have been introduced to overcome the demanding computational
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and memory requirements of the lifting-based approaches. One
of the most prominent one is the WF algorithm [2], which
minimizes the following functional:

J (ρ) :=
1

2 M

M∑
m=1

|(am)HρρHam − dm|2. (3)

At the pth iteration step, the WF algorithm updates the current
estimate ρ(p−1) of the unknown quantity as follows:

ρ(p) = ρ(p−1) − γp
‖ρ(0)‖2∇J (ρ)ρ=ρ(p−1) . (4)

Here,γp denotes the learning rate at thepth stage and the gradient
is given by the Wirtinger derivative of J (ρ),

∇J (ρ) =

(
∂J
∂ρ

)H

. (5)

The critical component of the WF framework is at the initializa-
tion step, where ρ(0) is determined from the leading eigenvector
v0 of the backprojection estimate Y ∈ C

N×N as follows:

Y :=
1

M
FH(d), (6)

ρ(0) =
√

λ0v0, (7)

where FH is the �2 adjoint of F and the scaling factor
√

λ0 is a
norm-estimate of the unknown image of interest. We refer to Y
as the spectral matrix.

Under the following concentration inequality on Y

‖Y − (ρρH + ‖ρ‖2I) ‖ ≤ δ‖ρ‖2, (8)

the initial estimate provably enters a basin of attraction in
the neighborhood of the global solution set P := {ρ∗eiφ, φ ∈
[0, 2π)}, such that convergence is guaranteed under the validity
of a regularity condition for the loss functional J in the noise-
free setting with Gaussian sampling, and coded-diffraction mod-
els [16]. These amount to exact recovery guarantees in the
statistical setting, where any ρ ∈ C

N can be exactly recovered
up to a global phase factor, with overwhelming probability if the
number of samples exceeds O(N logN).

On the other hand in [8], the validity of (8) for all ρ ∈ C
N

with a sufficiently small δ (< 0.184) was shown to be a sufficient
condition for universal exact recovery via WF for any F in
a deterministic mathematical framework. Hence, deterministic
forward maps, F, that relate to underlying data collection ge-
ometry are equipped with exact recovery guarantees. This is
especially useful for wave-based imaging applications, where
the sampling vectors, {am}Mm=1, are related to the transmitter
and receiver locations, transmission signal waveform, and its
speed within the propagation medium, and are unlikely to follow
i.i.d. Gaussian distribution.

B. WF With a Deep Decoding Prior

In this paper, we build on the mathematical arguments intro-
duced in [8] in establishing the exact recovery guarantee for a
DL-based algorithm. This allows our DL-based algorithm and
theoretical results to be applicable to a wide range of practical

imaging applications involving deterministic forward maps. In
particular, we present our phaseless imaging approach that per-
forms WF iterations in a lower dimensional encoded space in
C

Ny , where Ny � N , in lieu of the original image domain in
C

N .
The key distinction from existing phase retrieval theory arises

from the non-linearity of the underlying measurement map
prior to loss of phase information, since (1) corresponds to
d = |Fρ∗|2, where | · | denotes element-wise absolute-value
operation, and F ∈ C

M×N is the matrix with {aHm}Mm=1 as its
rows. Namely, we now assume that our image class of interest
resides in a low dimensional manifold T, embedded in the high
dimensional space inCN . We aim to capture this image manifold
Y by parameterization over the CNy in the range of a non-linear
transformation H : Y ⊂ C

Ny �→ T, which we refer to as the
decoder. This yields a measurement model of the form:

dm = |〈am,H(y∗)〉|2, for m = 1, . . .M (9)

where ρ∗ = H(y∗), such that we have a compositely non-linear
mapping, d = |FH(y∗)|2, over the low dimensional parameter
space in Y ⊂ C

Ny .
The problem consists of two key elements: i) givenH, solving

for the underlying, compressive representation y ∈ Y from (9),
and ii) solving for an H that sufficiently approximates the
image manifoldT ⊂ C

N . While the first component requires the
composite mapping formed byF andH to demonstrate favorable
properties of the parameter space, the other requires constructing
one such representation in the first place. Practically, the two
can be summarized under an objective using a training set of
D := {ρ∗

t ,dt}Tt=1, such that

arg min
{yt}Tt=1,H∈W

1

TM

T∑
t=1

M∑
m=1

|aHmH(yt)H(yt)
Ham − dt,m|2

s.t. ‖H(yt)− ρ∗
t‖ ≤ ε, ∀t = 1, . . . T, (10)

where W denotes a space of functionals that acts as a constraint
in the search of H, and ε > 0 models the approximation error in
the range of the decoder.

Ultimately, despite serving as a conceptual motivation, solv-
ing (10) is not meaningful without attaining proper generaliza-
tion over the image manifold T, i.e., any ρ ∈ T must be reliably
reconstructed by recovering its encoded representation from its
intensity-only measurements. To this end, we enlist a DL-based
approach, whereH is obtained in a task-driven manner, such that
it facilitates the accurate recovery of elements in T in its range
after the iterative procedure of WF is deployed on the lower
dimensional, encoded parameter space. The DL-based approach
effectively splits the objective in (10) to be minimized over its
forward, and back-propagation stages. Namely, at the forward
pass, we pursue a solution ŷ ∈ Y that minimizes the following
objective function for each training sample:

K(y) :=
1

2 M

M∑
m=1

[
(am)HH(y)H(y)Ham − dm

]2
, (11)
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whereas in the back-propagation, we use the solution ŷ to
formulate the training loss over H ∈ W, evaluated over the
training set D.

Accordingly, our approach incorporates a deep decoding
prior into the WF framework. Deep decoding prior refers to
the type of compressive representation implemented under our
decoding network H, as it constrains the reconstructed images
to its output space. We opt to use decoding prior in referring toH
to differentiate our overall approach from works that consider
generative priors [9]–[12], which do not utilize the phaseless
measurements and the corresponding ground truth images for
training, and instead use pre-trained GAN generator model for
H. The end-to-end training of H transforms an M/N phase
retrieval problem into an M/Ny phase retrieval problem akin
to the generative prior setting. Hence, the composite operator
mapping y to the measurements attains a higher oversampling
factor, albeit, at the cost of non-linearity. On the other hand,
overcoming the N/Ny factor reduction is offloaded to the ap-
proximation capability of the decoder. In accordance, we are
interested in the theoretical justifications of recovering a true
representation y∗ ∈ Y, for a given H such that H(y∗) = ρ∗,
using the iterative scheme of WF.

Unlike [9], [11], our architecture is based on the observation
that H and the measurement map F need to satisfy certain
sufficient conditions for exact recovery in composition with each
other. This serves as our key motivation to utilize end-to-end
training, as it directly entangles the presence of the generator
with the measurement map of the problem, hence drives the
training procedure to enhance the feasibility of the phase re-
trieval problem over T. However, guarantees on finding such
an H, or the impact of approximation and generalization errors
encountered in the training of H are beyond the scope of this
paper.

III. NETWORK ARCHITECTURE

As our phaseless imaging approach recovers an encoded
version of the unknown image through WF updates, our first
challenge is to design an efficient initialization scheme for
the encoded image space. To this end, we utilize the spectral
initialization step, and learn a non-linear transformation from
the set of initial estimates S ⊆ C

N to the set of encoded initial
estimates Y0 ⊆ C

Ny , G : S �→ Y0, to map the spectral estimate
ρ(0) ∈ S to an initial estimate y(0) ∈ Y0 in the encoded im-
age space. We refer to G as the encoding network. We use
an L-layer RNN, R, to generate the final estimated encoded
image R(y(0)) = y(L) = ŷ, where y(L) is the output of the Lth

layer of the RNN. We denote the set of encoded image values
generated at the lth RNN layer byYl ⊂ C

Ny for l ∈ [L− 1] and
define Y as Y =

⋃L
l=0 Yl ⊂ C

Ny . Thus, R : Y0 �→ Y. Finally,
the output from the RNN is decoded back by H : Y �→ T to
generate the estimated image ρ̂ ∈ T. Under exact recovery,
ρ̂ = ρ∗.

In our network architecture, the encoder, RNN and the de-
coder are jointly learned through supervised training. The train-
ing dataset D is composed of different ground truth or correct
images and the corresponding intensity measurement vectors.

Fig. 1. Schematic diagrams showing the (a) training and (b) inversion pro-
cesses.

On the other hand, each new sample from the test set, Dtest,
only requires the intensity measurement vector which is then
applied to the trained imaging network to produce the estimated
image. A block diagram of the training and inversion phases of
our algorithm are shown in Fig. 1(a) and 1(b), respectively.

A. RNN Structure From the Iterative WF Updates

Starting from the initial encoded representation y(0), iterative
WF update at the lth stage is calculated as follows:

y(l) = y(l−1) − γl
‖y(0)‖2∇K(y)y=y(l−1) . (12)

y(l) denotes the output at the lth iteration and γl is a positive
real-valued constant associated with the learning rate for the lth

update. The WF update in (12) results in y(l) that reduces the
data fidelity termK(.) compared toy(l−1). The gradient ofK(y)
with respect to y ∈ C

Ny is given by

∇K(y) =

(
∂K
∂y

)H

=
1

M
∇H(y)FH (e)H(y), (13)

where e = [e1 · · · eM ] and em ∈ R, for m ∈ [M ], is defined
as em := aHmH(y)H(y)Ham − dm.

Instead of continuing to update the encoded representation
until convergence, we consider a fixed number of iterative update
steps over which the algorithm is promoted to recover accurate
solutions over certain conditions on the network parameters.
Similar to [42]–[46], L number of subsequent update steps
from (12) are mapped into the stages of an L-layer RNN. The
resulting network is referred to as an RNN due to the recursive
nature of its architecture. Each RNN layer essentially carries out
a WF update on the encoded representation. The learning rate
related constants, {γl}Ll=1, are all trainable parameters of the
RNN whose values are learned during the training process. The
overall diagram of our DL-based inversion network for phaseless
imaging is shown in Fig. 2.

B. Lipschitz Constants of the DL Networks

The encoding and decoding prior networks are trained with
the goal of recovering images from their low dimensional rep-
resentations at a faster convergence rate compared to the WF
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Fig. 2. Block diagram of DL-based phaseless imaging network.

algorithm and extending the recovery guarantees of [8] to chal-
lenging problem settings withM<N for arbitrary forward maps.
In order to achieve the above two objectives, we characterize
the impact of the encoder and decoder networks on recovery
guarantees through their Lipschitz constants, rather than the
explicit architectures of the networks or any probabilistic prop-
erties on their learned parameter values. Appropriate ranges
of these constants that are associated with improved recovery
performance compared to the WF algorithm is presented in
Section V.

The Lipschitz constant of G is defined as the smallest value
of μG ∈ R

+ satisfying [47]

‖G(ρ(0)
1 )− G(ρ(0)

2 )‖
‖ρ(0)

1 − ρ
(0)
2 ‖

≤ μG , (14)

∀ρ(0)
1 ,ρ

(0)
2 ∈ S, and is given by

μG = sup
ρ(0)∈S

σ(∇G(ρ(0))), (15)

where σ(A) denotes the largest singular value of A.
Suppose y(0) = G(ρ(0)) is expressed as a function of a set

of weight matrices Uj ∈ C
Pj×Pj−1’s, bias vectors bj ∈ C

Pj ’s,
and non-linear functions fj(.)’s, where j ∈ [J ], with P0 = N
and PJ = Ny . The output at the jth step, denoted by y̆j ∈ C

Pj ,
relates to its input y̆j−1 ∈ C

Pj−1 as follows:

y̆j = fj(Uj y̆j−1 + bj), (16)

where y̆J = y(0) and y̆0 = ρ(0). The activation function fj(.)
operates componentwise on the corresponding vector inputs. For
the choice of fj(.) as the rectified linear unit (ReLU), Lipschitz
constant of fj(.) is upper-bounded by 1 and thus, the Lipschitz
constant of G(.) for this case is upper bounded by

∏J
j=1 σ(Uj).

Similarly, the Lipschitz constant of H is calculated as μH =
supy∈Y σ(∇H(y)).

IV. THEORETICAL FOUNDATIONS

In order to justify the effectiveness of our phaseless imaging
approach, we provide a theoretical foundation towards attaining
exact recovery for a given, arbitrary lifted forward map F , and
an image manifold that is assumed to be characterized in the
range of a non-linear operator H.

In terms of the technical content of the exact recovery the-
ory, our work differs from prior works in [9], [11] in two
notable ways. The first pertains to the conditions exerted on
H. In [9], [11], a pre-determined architecture is assumed for
H and a concentration property on the network weights is used
to facilitate recovery guarantees by a sufficient condition on
F . We do not deploy an architecture specification for H, and

only assume a local concentration-type property instead. The
second pertains to the sufficient condition on the measurement
map F , where [9], [11] use a range restricted RIP-type property
on the underlying linear sampling vectorsF, while our sufficient
condition enforces a range restriction on the sufficient condition
introduced in [8]. The major distinction arises in the domain
of the accompanying concentration property, where our work
evades the requirement of validity over pair-wise differences.

A. Approach

To understand the feasibility of such a theoretical justification
under an arbitrary pairing of F and H, it is useful to initially
revisit the standard phase retrieval problem in the statistical
setting of Gaussian sampling. Indeed, theoretical results in phase
retrieval literature commonly consider this case, where am are
i.i.d. complex Gaussian distributed, with which the recovery
from intensity-only measurements is achieved with overwhelm-
ing probability [2], [7].

Using the property that Gaussian distribution is invariant
under unitary transformations, the classically studied statistical
phase retrieval problem under the Gaussian sampling model
is equivalent to a 1D-Fourier phase retrieval problem under a
linear Gaussian generator:

d = |As|2 = |FMFH
MAs|2 = |FMÃs|2 = |FMt|2, (17)

where A ∈ C
M×Ns has all i.i.d. Gaussian distributed compo-

nents, s ∈ C
Ns , FM ∈ C

M×M is the discrete 1D-Fourier ma-
trix, Ã = FH

MA and t = Ãs. In other words, standard statistical
theory states that a signal t ∈ C

M realized from a Gaussian
generative prior can provably be recovered from its M−point
periodogram, if the intrinsic dimension Ns is sufficiently low.

Exact recovery guarantees in the statistical setting highlight
the power of having a generative prior at inference, albeit
disguised as the measurement model due to spherical symmetry
of the Gaussian distribution. This is because the 1D-Fourier
phase retrieval problem is well-known to be severely ill-posed:
it admits at best2M non-equivalent solutions in the feasible set of
d = |FMt|2 for an arbitrary t ∈ C

M [48]. The linear Gaussian
generator alleviates the fundamental limitations in this regard,
and provides a guarantee directly on the lower, Ns-dimensional
encoded space, given that t = Ãs.

Ultimately, our work aims at generalizing this phenomenon
by: i) using the deterministic setting of [8] to account for an
arbitrary F , and ii) incorporating the presence of a non-linear H
that can capture the signal domain. To this end, we quantify the
impact of operating in the lower dimensional encoded domain
on the existing deterministic guarantees of [8] by specifying
conditions onH within the sufficient conditions, and identifying
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the numerical impact of the generator, i.e. our decoder, on
convergence guarantees.

B. Background

a) Exact phase retrieval theory: For universality of exact
recovery described in [8], the concentration bound in (8) is a
sufficient condition if it holds over all ρ ∈ C

N with δ < 0.184.
The terms involved in the concentration bound are relevant for
the initial estimate to land within a basin of attraction around
the true solution ρ∗, guaranteeing that:

1

M
‖F(ρρH − ρ∗ρ∗H)‖2 ≥ (1− δWF

1 )‖ρρH − ρ∗ρ∗H‖2F .
(18)

Let Nε(ρ
∗) denote this ε-neighborhood of ρ∗ obtained from

the sufficient condition in (8), and ε ∈ R
+ and δWF

1 ∈ R
+ are

both functions of δ. In the end, (18) facilitates the restricted
strong convexity around the solution ρ∗ if δWF

1 < 1, which (8)
guarantees an initial estimate to land in for any ρ∗. The way to
establish (8) as a sufficient condition is through deriving (18) as
a deterministic consequence, and showing that the requirement
of δWF

1 < 1 implies δ < 0.184 in the sufficient condition.
b) Range restriction with H: The stringency of the suffi-

cient condition in (8) arises through its universality over all
ρ ∈ C

N and the corresponding requirement for FHF to be
well-conditioned over the manifold of rank-1 PSD matrices.
On the other hand, with the presence of H, the range of the
decoder incorporates an additional constraint, and hence, creates
a smaller feasible set for the problem over which FHF should
be well-conditioned instead.

An intuitive incorporation of the image manifold in the recov-
ery guarantees therefore is by restricting the parameter space
of the original concentration bound, where the lifted normal
operator is to satisfy, for all y ∈ Y ⊂ C

Ny :∥∥∥∥ 1

M
FHF(H(y)H(y)H)− (H(y)H(y)H + ‖H(y)‖2I) ∥∥∥∥

≤ δ‖H(y)‖2. (19)

(19) shows that the concentration property of FHF is now
required to hold over only the image manifold captured by the
range of H.

To fully understand the usefulness of this condition, we must
establish its corresponding restricted strong convexity property
over the image manifold. Namely, for aρ = H(y), and a ground
truthρ∗ = H(y∗), does (19) with a sufficiently small δ imply the
property in (18) with δWF

1 replaced by δ1 < 1 in some locality in
the parameter space, i.e. y ∈ Nεy(y

∗)? Here, Nεy(y
∗) denotes

the εy-neighborhood of y∗ and εy ∈ R
+.

c) The limitation for sufficiency: In order to verify whether the
restricted concentration property is sufficient, we consider first
the linear perturbation operatorΔ that mapsρρH toCN×N over
all ρ vectors that are reproducible by the decoder from y ∈ Y,
as

Δ(ρρH) =
1

M
FHF(ρρH)− (ρρH + ‖ρ‖2I). (20)

Similarly to the steps of the proof of Lemma III.4 in [8], it is
easy to verify that the validity of the restricted strong convexity
condition through (18) hinges on the concentration property of
a perturbation operator Δ, over the pairwise differences,∣∣∣∣〈Δ(Eρ),Eρ〉F

∣∣∣∣ ≤ δ1 ‖Eρ‖2F , (21)

where Eρ is defined as

Eρ = H(y)H(y)H − ρ∗ρ∗H , (22)

and that (21) is guaranteed to hold with δ1 < 1 when (19) is
satisfied. As we know, |〈Δ(Eρ),Eρ〉F | can be upper bounded
by

√
2‖Eρ‖F ‖Δ(Eρ)‖. Moreover, ‖Δ(Eρ)‖ can be upper

bounded by
∑2

i=1 |λi|‖Δ(viv
H
i )‖, where λi ∈ R and vi ∈ C

N

are the ith eigenvalue and the corresponding eigenvector of Eρ,
respectively, for i ∈ {1, 2}.

Consequently, to promote (19) as a sufficient condition for
our approach, vi’s need to be reproducible by the decoding
network H, such that ‖Δ(viv

H
i )‖ terms are controlled. For an

arbitrary pair of ρ,ρ∗, the error Eρ for the corresponding lifted
Kronecker signals admit a direct spectral analysis, such that the
vi are formed by affine combinations in the range of H (see
Section IX-A of the supplementary material). This presents the
key limitation for the sufficiency of a range restriction by the
generator H, unless the domain of concentration is expanded to
include the union of pair-wise affine hulls of the elements in the
range of H.

C. Conditioning H
a) Sufficiency with linearity: It is clear that for a linear H,

(19) is a sufficient condition, as the affine combinations are
reproducible by H via an affine combination in the Y-domain.
However, for a general non-linear H, the eigenvectors vi do not
necessarily admit such a representation. We instead are inter-
ested in casting (19) as a sufficient condition through specific
conditions on an arbitrary, non-linear H. To this end, we first
identify the properties that facilitate our objective when using a
linear decoder model, towards obtaining an intuitive extension
onto the general case. The assumption that H is a linear map,
i.e., H(y) = Hy where H ∈ C

N×Ny , leads to

‖Δ(Eρ)‖ = ‖Δ(H(yyH − y∗y∗H)HH)‖. (23)

Now, yyH − y∗y∗H can be represented by its eigenvalues and
eigenvectors as

∑2
i=1 λiuiu

H
i , where λi ∈ R and ui ∈ C

Ny are
eigenvalues and the corresponding eigenvectors for i = 1, 2. u1

and u2 are constructed from affine combinations of y, y∗ per
spectral analysis presented in Section IX-A of the supplementary
material.

b) Requirements for the general case: We now as-
sume that (19) holds for all H(y), y ∈ R

Ny for conve-
nience. Therefore, since ‖Δ(Eρ)‖ can be upper bounded by∑2

i=1 |λi|‖Δ((Hui)(Hui)
H)‖whenH is linear, then using the

relation in (19), we have from (23),

‖Δ(Eρ)‖ ≤ δ
2∑

i=1

|λi|‖Hui‖2. (24)
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Here, the first crucial property of H arises, as the Lipschitz
continuity of H, along with the assumption that H(0) = 0,
which yields the following upper bound for linear H:

‖Δ(Eρ)‖ ≤ δ max(|λ1|, |λ2|)
2∑

i=1

‖Hui‖2

≤ 2δμ2
H‖yyH − y∗y∗H‖. (25)

Although this bound is not the tightest, it is of interest
because, it gives a blueprint that befits generalization to the
non-linear setting. Mainly, in the linear setting with a spec-
trally well-conditioned generator, we can obtain a universal
constant (2 in this case) that upper bounds this perturbation
operator only through the leading eigenvalue-eigenvector pair,
since ‖Hui‖2 ≤ μ2

H by the Lipschitz property of H. The key
observation is that via an encoder-decoder scheme that enforces
the model to operate in an εy-neighborhood in the parameter
space, such a condition as in (25) is only needed to be satisfied
locally over Y, in lieu of the global property demonstrated by a
linear H.

c) Extension via a local property: For a general non-linear
decoder, we instead perform this analysis using an operator H̃ :
C

Ny×Ny �→ C
N×N , which is defined as follows:

1) Given input Z ∈ C
Ny×Ny , extract the leading eigenvalue-

eigenvector pair: λ0, u0.
2) Apply H on

√
λ0u0 to calculate H(

√
λ0u0).

3) Get output H̃(Z) by lifting: H(
√

λ0u0)H(
√

λ0u0)
H .

Under this definition, our desired bound on the perturbation
operator for a generic H as can be written as

‖Δ(H̃(yyH)− H̃(y∗y∗H))‖ ≤ δ̂‖yyH − y∗y∗H‖F , (26)

which, incorporating the locality property on the encoded do-
main, should hold ∀y∗ ∈ Y, y ∈ Nεy(y

∗). For the PSD rank-1
inputs yyH and y∗y∗H , H̃(yyH) and H̃(y∗y∗H) are equal to
H(y)H(y)H and ρ∗ρ∗H , respectively. Moreover, we are not
necessarily interested in this bound globally as obtained for the
linear case in (25), but only locally, since that is sufficient for
our guarantees.

This leads us to the following property onH: for the definition
of H̃ presented above, for a given F , the following inequality is
satisfied ∀y∗ ∈ Y, y ∈ Nεy(y

∗):

‖Δ(H̃(yyH)−H̃(y∗y∗H))‖ ≤ ω(εy)‖Δ(H̃(yyH−y∗y∗H))‖,
(27)

where ω(εy) is a positive real-valued constant. We omit the
term in the bracket for future references to this constant, and its
dependency on εy should be understood. Under this condition,
it is straightforward to verify that the desired bound in (26) is
satisfied with a constant

δ̂ = ωμ2
Hδ, (28)

as shown in Section IX-B of the supplementary file.

V. RECOVERY GUARANTEES

In this section, we present the exact recovery guarantee for
our end-to-end DL-based algorithm. This result is built upon the

theoretical foundations presented in Section IV. We elaborate on
the numerical implications of our result, and discuss its key out-
comes in quantifying the impact and limitations of incorporating
a decoding prior. Finally, we consider the practical implications
of our result for implementation purposes.

A. Main Result

Let dist(y(0),y∗) be the distance betweeny(0) andy∗ defined
as follows:

dist(y(0),y∗) = min
φ∈[0,π]

‖y(0) − y∗eiφ‖. (29)

Our main result concerns the convergence of the WF iterates to
the true representation in the encoded space via our unrolled,
encoder-decoder network architecture. Let μG , μR and μH be
the Lipschitz constants of G, R and H, respectively. We assume
that there exists μ̃H > 0 and μH > 0 such that

μ̃H ≤ ‖H(y1)−H(y2)‖
‖y1 − y2‖ ≤ μH, (30)

for all y1,y2 ∈ Y.
We define εy, which we introduced in Subsection IV-B, as

εy := χμHε. χ is a positive real-valued constant and ε is defined
in (21) in [8]. χ is lower bounded by

χ ≥ max [b1(μG , μH, ε), b2(μG , μH, μR, ε)] , (31)

and b1(μG , μH, ε) and b2(μG , μH, μR, ε) are defined in Sec-
tion IX-C of the supplementary material along with the detailed
derivation of (31). We also define the following quantities:

c(δ, εy) := (1 + εy)(2 + εy)(2 + ωδ), (32)

ερ := μGμRμH(1 + ε)εy, (33)

δ1 :=

√
2δ̂(2 + ερ)(2 + εy)

μ̃2
H(1− ερ)(2− ερ)

, (34)

h(δ, εy) := μ̃4
H(1− δ1)(1− ερ)(2− ερ). (35)

Theorem 1: Suppose the conditions in (19) and (27) are
satisfied for all y ∈ Y, where Y is an affine subset of CNy . Ad-
ditionally, assume that there exist μ̃H > 0 and μH such that (30)
holds; and G(0) = 0 and H(0) = 0. Then, starting from y(0)

that is εy-distant from y∗, using the step sizes γl

‖y(0)‖2 ≤ 2
β , the

iterates in (12) satisfy

dist2(y(j),y∗) ≤ ε2y

[
j∏

l=1

(
1− 2γl

α‖y(0)‖2
)]

‖y∗‖2, (36)

for j ∈ [L], where α, β > 0 are such that

4

αβ
≤
(
μ̃H
μH

)8(
h(δ, εy)

c(δ, εy)

)2

. (37)

Proof: See Section IX-D of the supplementary material. �
This theorem unveils a number of important implications.

Most notably, the concentration bound parameter δ is no longer
the sole determinant of the recovery guarantee, as for the regime
in (36) to be valid, several parameters must compositely satisfy
the inequality δ1 < 1. Once this strict bound is violated, we no
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longer have a feasible α, β pair to guarantee the convergence in
the encoded parameter space. This, in turn, requires

δ <

(
μ̃H

μH

)2
(1− ερ)(2− ερ)√
2ω(2 + ερ)(2 + εy)

, (38)

within our sufficient conditions of exact recovery. Furthermore,
we can infer that μ̃H, which is smaller than μH by definition,
should be away from 0 and ερ should be less than 1 as both of
these constants affect the feasibility of the bound in (38).

B. Sketch of Proof for Theorem 1

Proof of the exact recovery guarantee in Theorem 1 depends
on achieving an initial encoded image within a small neighbor-
hood of the correct encoded unknown y∗ ∈ Y. For our initial-
ization scheme described in Section III and under the condition
from (19), we have dist2(ρ(0),ρ∗) ≤ ε2‖ρ∗‖2 and

dist2(y(0),y∗) ≤ ε2y‖y∗‖2. (39)

The inequality relation in (39) is derived in Section IX-C of the
supplementary material. Our regularity condition states that for
all y ∈ Nεy(y

∗), K(y) satisfies the following inequality:

Re (〈∇K(y), ey〉) ≥ 1

α
‖ey‖2 + 1

β
‖K(y)‖2, (40)

where ey = y − y∗ and α, β > 0. This ensures local strong
convexity ofK(y)within the εy neighborhood ofy∗. Under (19)
and (27), the regularity condition (40) is observed to be equiva-
lent to

1

α‖y∗‖2 +
1

β
μ8
Hc

2(δ, εy)‖y∗‖2 ≤ h(δ, εy). (41)

Therefore, for (40) to be satisfied by K(y) for all y ∈ Nεy(y
∗),

the left hand side of (41) is required to be smaller than h(δ, εy),
which, in turn, leads to the condition in (37). Finally, by ex-
panding ‖y(l) − y∗‖ using (12), and through (40) and the upper
bound 2

β on the step sizes, we arrive at the result in (36).

C. Key Outcomes

a) Implications on the rate of convergence: By using fixed step
sizes γ ∈ R

+ for the L updates and by defining γ′ = γ
‖y(0)‖2 ≤

2
β , we observe from (36) that 2γ ′

α is a convergence rate related
term where the convergence rate increases with an increase in its
value. Furthermore, from Theorem 1, by using the upper bound
2
β on the step sizes, we can upper bound 2γ ′

α by 4
αβ . Therefore,

we can infer from (37) that h2(δ)
μ8
Hc

2(δ,εy)
is essentially an upper

bound on 2γ ′
α . As long as μ̃H/μH, εy, ερ and ω values are such

that our modified upper bound on 2γ ′
α is larger than the one for

the WF algorithm, our DL based approach will converge faster
to the correct solution.

b) Conditions on the Lipschitz constants: From the definitions
of εy and ερ, it is evident that with χ equal to τ ∈ R

+, upper
bounding τμH and τμGμ2

HμR(1 + ε) by ξy ∈ R
+ and ξρ ∈ R

+,
respectively, leads to the upper bound εξy on εy and εξρ on ερ.
It is shown in Section IX-E of the supplementary material that,

τμH ≤ ξy ≤ 1 and τμGμ2
HμR(1 + ε) ≤ ξρ ≤ 1, if

(1− τεμH)
(1 + ε)

≤ μGμH ≤ min

[
2− 1

μR
,
ξρ
ξy

]
1

(1 + ε)
, (42)

μH ≤ ξy/τ, (43)

μR ≤ 1. (44)

These bounds are sufficient for upper bounding εy by εξy and
ερ by εξρ. For a given τ and ω, if

ω

(
μH
μ̃H

)2
(2 + ερ)(2 + εy)

(1− ερ)(2− ερ)
≤ (2 + ε)√

(1− ε)(2− ε)
, (45)

then our exact recovery guarantee is valid over a larger range of
δ compared to the WF algorithm.

c) Requirements on the Y-domain: In the theorem statement,
we assume that Y is an affine subset of CNy . This assumption
is made for mere convenience to deal the fact that the two
eigenvectors of Ey := yyH − y∗y∗H are formed by normal-
ized affine combinations of y and y∗. This can be verified by
following similar steps as the spectral analysis presented in
Section IX-A of the supplementary material. For contractions
in the parameter domain, the concentration property we imply
via the H-condition is required to hold over these eigenvectors,
hence, we require that Y is an affine set, such that u1 ∈ Y.
Furthermore, this requirement can actually be relaxed to instead
involve a union of subspaces model for Y, since we merely need
the union of pair-wise affine combinations of these elements
y,y∗ ∈ Y.

This yields an interesting premise if the representations pur-
sued for our image manifold are constrained to be sparse in the
parameter space in C

Ny . To this end, a k−sparsity constraint
on representations results in the union of all 2 k-dimensional
subspaces in C

Ny for Y. Such a constraint however, must be
enforced in the architecture via projection operators in the
definition of the RNN-module. In our architecture and imple-
mentations, we do not provide any additional structure in Y, and
simply assume validity over all CNy .

d) Spectral conditioning of H: For convenience in presenting
the theoretical results, we assume a global upper and lower Lips-
chitz property on H in (30). However, once an εy-neighborhood
is guaranteed in the parameter space, it suffices that such a
property is needed only locally over the neighborhood of a y∗.
To follow through with this relaxation, we need an additional
spectral conditioning on H, such that:

σ̃H‖y‖ ≤ ‖H(y)‖ ≤ σH‖y‖, (46)

for all y ∈ Y where σ̃H, σH ∈ R
+. This is the basic premise of

assuming that H is a frame over Y. In this setting, the recovery
guarantees promptly feature both ratio of μH and μ̃H , and the
ratio of the frame coefficients, where the convergence bound
becomes

4

αβ
≤
(
μ̃H
μH

)4(
σ̃H
σH

)4(
h(δ, εy)

c(δ, εy)

)2

, (47)
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with the sufficient condition

δ <

(
σ̃Hμ̃H
σ2
H

)
(1− ερ)(2− ερ)√
2ω(2 + ερ)(2 + εy)

. (48)

Most notably, with a linear H, if (46) is satisfied over CNy , all
the ratios reduce to that of frame coefficients. This is highly rel-
evant for the Gaussian linear encoder, which is the fundamental
case that inspired our formulation under an arbitrary decoder.
Namely, an over-determined Gaussian matrix satisfies the RIP
over the whole domain in C

Ny , with the RIP-constant δH ∈ R
+

approaching 0 as M/Ny (i.e., the oversampling factor) grows,
which increasingly well-conditions the problem, consistent with
the statistical theory of phase retrieval.

VI. TRAINING

A. Implementation of Lipschitz Constant Bounds

For our training set D, let the intensity measurement vector
and the associated ground truth image for the tth sample, where
t ∈ [T ], be denoted by dt and ρ∗

t , respectively. Training loss
is computed as the average �2-norm difference between the
estimated and the ground truth images. Moreover, since the
image estimation ρ

(l)
t , calculated as H(y

(l)
t ) at the lth RNN

stage, is expected to get gradually closer to ρ∗
t as l increases, an

additional term is typically added to the training loss function
that sums the average �2-norm differences between ρ

(l)
t and ρ∗.

Our training loss ctr(U) is defined as

ctr(U) =
1

T

T∑
t=1

[
‖ρ̂t − ρ∗

t‖2 +
L∑

l=1

ηl‖H(y
(l−1)
t )− ρ∗

t‖2
]

+ c0(U). (49)

ηl ∈ R
+, where l ∈ [L], is a constant, U denotes the set of

parameters of the overall imaging network, and c0(U) is used
to impose desirable properties on the trained networks. We set
c0(U) as the sum of ci(U), where i ∈ [4], and define ci(U) in
the following discussion.

For imposing the property that G(0) = 0 and H(0) = 0,
c1(U) can be set as η1(‖G(ρ)|ρ=0‖2 + ‖H(y)|y=0‖2) where
η1 ∈ R

+. In order to impose a specific Lipschitz constant value
on the RNN, we define c2(U) as follows:

c2(U) = η2

(
max

t1,t2∈[T ]

‖R(y
(0)
t1

)−R(y
(0)
t2

)‖
‖y(0)

t1
− y

(0)
t2

‖
− μR

)2

, (50)

where η2 ∈ R
+. The Lipschitz constants of G and H can be

set to specific values using a similar approach as [49] by
first setting c3(U) and c4(U) equal to η3

∑J
j=1(σ(Uj)− μj

G)
2

and η4
∑K

k=1(σ(Wk)− μk
H)

2, respectively, where η3, η4 ∈
R

+,
∏J

j=1 μ
j
G = μG and

∏K
k=1 μ

k
H = μH. σ(.) and Uj are

defined in Subsection III-B. Wk ∈ C
Qk×Qk−1 is the weight

matrix at the kth layer of a similar H architecture as the one
presented for G in Subsection III-B, where k ∈ [K], Q0 = Ny

and QK = N . While using the stochastic gradient descent to
minimize ctr(W), in order to calculate the gradients of c3(U)
and c4(U), we need to estimate the leading eigenvectors of the

different weight matrices of G and H, respectively. A power
method is implemented in [49] where the leading eigenvectors
estimated during one training update is reused as the initial
vectors for the next update, for which the gradient of ctr(U)
is calculated using a different mini-batch from the training set.

B. Computational Complexity

Computational complexity of our approach depends on the
number of RNN stages L as well as the network architectures of
G and H. For linear activation functions for G and H, forward
propagations through these networks require

∑J
j=1 PjPj−1

and
∑K

k=1 QkQk−1 floating-point operations (FLOP), respec-
tively. For ReLU activation functions and assuming that each
comparison operation requires a single FLOP, an additional∑J−1

j=1 Pj +
∑K−1

k=1 Qk +Ny +N FLOPs are carried out. The
output of theH network is required to be calculatedL+ 1 times.
For the initial encoded image, we calculate the leading eigen-
vector of Y, defined in (6), using the power method, and it in-
curs O(N3) computational cost. Calculating FH(y(l)) and then
F(H(y(l))H(y(l))H) requiresO(MN) +O(M) FLOPS in to-
tal. From F(H(y(l))H(y(l))H), calculating 1

MFH(e)H(y(l))
takes another O(MN) +O(M) operations. The error related
term e is defined in Subsection III-A after (13). H(y(l))
and its gradient ∇H(y)|y=y(l) have updated values at each
RNN stage, and the gradient is multiplied by an N length
vector requiring an additional O(NNy) FLOPS per itera-
tion. With ReLU activation functions, H(y(l)) calculation re-
quires

∑K
k=1 QkQk−1 +

∑K−1
k=1 Qk +N FLOPs. For calcu-

lating the gradient, the derivatives of the non-linear function
require N +

∑K−1
k=1 Qk comparisons while the matrix multi-

plication part requires
∑K

k=1 QkQk−1 +
∑K−2

k=0 QkQk+1Qk+2

additional FLOPs. M is typically some constant multiple of
N , where the constant is significantly smaller than N . If the
value of Qk, for k ∈ [K − 1], are in the order of N , then the
computational complexity increases to O(N3) per iteration. For
this case, if the number of RNN stages L is significantly less
than N , then the overall complexity remains O(N3), similar
to the generalized WF for interferometric inversion approach
in [32]. On the other hand, for achieving an accuracy level
of εWF ∈ R

+, the computational cost of the WF approach is
O(N2 logN log( 1

εWF
)) [2].

VII. NUMERICAL SIMULATIONS

In this section, we demonstrate the feasibility of our DL-based
phaseless imaging approach through the training and subsequent
performance evaluations on a number of real and simulated
datasets, with measurement geometries of both experimental
and practical interest. The main objectives of our numerical
simulations are the following:

1) Demonstrating the reconstruction performance of our ap-
proach on both real and synthesized datasets, and compar-
ing with the reconstruction results obtained using the WF
algorithm [2], [8] and comparable DL-based state-of-the-
art phaseless imaging methods, in order to highlight the
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relative advantages of our approach over a range of image
sets.

2) Numerically verifying the robustness of our approach
under additive noise on the intensity measurements for
relatively low M

N values.
3) Numerically verifying a number of theoretical observa-

tions and insights presented in Section IV. These include
showing the improved accuracy of the initial encoded
image, resulting from the inclusion of G, compared to
the accuracy of the spectral estimation, observing the
sample complexity improvement compared to the WF
algorithm [2], [8] as well as other DL based approaches,
and observing the necessity of having ample training set
sizes for H to appropriately model various image classes
of interest.

We adopt the normalized mean squared error (MSE) as the
figure of merit throughout this section, and it is defined as
MSE = 1

Ts

∑Ts

t=1 ‖ρ̂t − ρ∗
t‖2/‖ρ∗

t‖2. Ts is the number of sam-
ples in the test set, Dtest, and ρ̂t and ρ∗

t denote the reconstructed
and the corresponding ground truth images, respectively, for the
tth sample of Dtest.

A. Dataset Descriptions

In this subsection, we introduce three image sets, and the
associated deterministic forward maps that results from three
different data acquisition geometries.

1) MNIST Dataset: The first image set that we consider in
this paper is MNIST, which is a publicly available dataset of
handwritten digits. Each image has a dimension of 28× 28
pixels, and depicts one of the 10 digits. We randomly select
10000 samples, with 1000 samples for each digit, as the training
dataset, and another randomly selected 100 images, 10 for each
digit, constitute the test set. For the forward mapping matrix,
we use the one available with the publicly available dataset
from [50] for the 40× 40 pixels imaging scenario. This dataset
considers a multiple scattering transmission environment with
phaseless measurements, and the forward map is recovered using
the prVAMP based double phase retrieval approach. Since our
images have a lower pixel count, we consider the first 784
columns of this matrix to form our forward map F, and discard
the phases of theFρ∗

t values to form the phaseless measurements
for the images in the MNIST dataset. The number of rows of F,
which is the number of total measurements M , is varied for
experimentation purposes, and for each case, we consider the
first M rows of F.

2) Simulated Synthetic Aperture Dataset: The second
dataset is selected with the goal of showing a scenario where
our approach is applicable in a practical setting with a de-
terministic forward map. We apply our method for synthetic
aperture imaging [51] from simulated measurement under Born
approximation. Each scene being imaged has a dimension of
500 m × 500 m and is reconstructed as a 14× 14 pixels image.
There is a single square object located at a random location
within the area being imaged, and the background varies from
scene to scene. The number of samples in the training and test
sets are 9950 and 50, respectively. We consider a mono-static

Fig. 3. Data collection geometry for the synthetic aperture imaging.

Fig. 4. Data collection geometry for PCSWAT dataset for SAS imaging.

data-collection strategy, with the transmitter-receiver trajectory
along a circular path at 7 km height and at a radius of 10 km.
Total number of measurements is set equal to the number of
unknowns, i.e., M = 196, and additive Gaussian noise of zero
mean and different variances is assumed to be present in the
measured intensity values of the received signal. A schematic
diagram of the associated data collection geometry is shown in
Fig. 3.

3) PCSWAT Generated SAS Dataset: For the third dataset,
we consider a PCSWAT 10 software generated simulated dataset
for synthetic aperture sonar (SAS) imaging of underwater
scenes. PCSWAT is a tool-set developed for simulating high-
fidelity SAS data [52]. It offers a selection of realistic targets
and underwater surface types, and allows the incorporation of
varying sound-velocity profiles, marine life property, wind speed
etc. For the samples in our training and test sets, we consider that
the background medium is composed of sandy gravel, and there
is sparse marine life present in the medium. Each scene contains
a single hemi-spherically end-capped cylinder of varying length
and fixed radius located at a random location on the scene along
a random orientation. Each area being imaged has a dimension
of 19 m ×25 m and it is reconstructed as a 22× 31 pixels
image. The number of samples in the training and test set are
800 and 5, respectively. We consider a 2D environment, and
the vehicle and the water depth are set to 15 m and 100 m,
respectively. The center frequency and the bandwidth of the
transducers mounted on the moving vehicle are set equal to
120 kHz and 30 kHz, respectively. The data collection geom-
etry for the SAS operation simulated via PCSWAT is shown
in Fig. 4.
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B. DL Architectures and Reconstruction Results

The quality of the reconstructed images is heavily dependent
on theG andH network architectures. For evaluating our numer-
ical results for the MNIST dataset, we consider the following
network model: the number of RNN stages is set to 10; for
G, we use a 5 layer CNN model with leaky_relu(.) activa-
tion functions from the tensorflow library, and output dimen-
sions 24× 24× 4, 20× 20× 16, 16× 16× 16, 12× 12× 4
and 8× 8× 1 for the 5 consecutive layers; for H, we have used
a 5 layer ANN architecture with relu(.) activation functions, and
output vector lengths of 64, 64, 64, 100 and 784, respectively.
Additionally, since the maximum value of each MNIST image
is 255, we consider this as prior information while applying
our DL-based approach as well as the other methods that we
evaluate for comparison. This is performed by first normalizing
the set of intensity vectors by 2552, and then adding the term
1
T

∑T
t=1(maxn∈[N ] ρ̂t(n)− 1)2, where ρ̂t(n) denotes the nth

element of ρ̂t, to the training loss functions of the end-to-end
DL-based methods. On the other hand, for the iterative methods
including the WF algorithm, we normalize the updated image
estimation at each iteration so that the maximum pixel value
equals to 1.

The network models implemented for the synthetic aperture
and the PCSWAT generated SAS datasets are kept similar as
the ones used for MNIST. For synthetic aperture imaging, the
number of filters in G network layers are 8, 12, 12, 8 and 1,
respectively, while the output vector lengths of the 5 consecutive
layers of H are 81, 85, 90, 100 and 196, respectively. For the
SAS dataset, the number of filters used in the G network layers
are the same, except, in this case, the encoded image dimension
Ny is set to 64. The output vector lengths for the 5 consecutive
H layers are 64, 81, 100, 150 and 200, respectively. We used
ADAM optimizer for training, with a learning rate equal to 10−5,
and batch sizes equal to 100, 50 and 5 for the MNIST, synthetic
aperture and the PCSWAT datasets, respectively.

For the remainder of this section, we refer to our approach
by DL-WF. We note that while comparing with other DL-
based state-of-the-art phaseless imaging approaches, we exclude
comparisons with the generative prior based methods [9]–[12],
as they require us to separately train a GAN using a large
amount of images from comparable image classes. One of
the motivations of our approach is to avoid the cumbersome
GAN network training, and instead adopt an end-to-end training
strategy that uses sample images and the corresponding intensity
measurements. Additionally, although our theoretical results do
not guarantee performance improvement over the generative
prior based methods, there are several advantages of our exact
recovery guarantee compared to the theoretical results derived
in [9], [11] as summarized in Section IV. In this section, we
instead include reconstruction results from two state-of-the-art
DL-based approaches with comparable training complexities,
namely, UPR [29] and prDeep [30]. UPR [29] uses an end-to-end
training scheme, with similar training dataset requirement as
DL-WF. On the other hand, prDeep is a regularization by denois-
ing [53] type approach for phaseless imaging, and it implements
a DnCNN [54] for denoising. We have used a 17 layer DnCNN

network with a similar architecture as the one presented in [54],
where the number of channels at each intermediate layer is 64.
Instead of patch extraction, due to the relatively small image
dimensions under consideration here, we apply the entire image
as input to the denoising network. For additional implementation
details for UPR and prDeep, we followed the various hyper-
parameter values suggested in [29] and [30], respectively.

Example reconstructed images using our DL-based method
along with the reconstructed images using the WF algorithm,
prDeep and UPR are shown in Figs. 5, 6 and 7 for the MNIST,
synthetic aperture and PCSWAT datasets, respectively. The num-
ber of training samples used for these three datasets are 10000,
9950 and 800, respectively. For all three cases, we observe
that our DL-WF approach yields significant improvement in the
estimated image accuracies compared to the WF algorithm, and
the DL-based UPR and prDeep methods.

Despite this improvement, the reconstructed images produced
by our approach still retain visual artifacts. There are two key
contributors to this end. Firstly, Section V discusses exact re-
covery with linear convergence for elements representable in the
range of H. For the particular training dataset and the optimiza-
tion algorithm used for training, whether we can estimate an H
with the properties specified in the theory of exact recovery is an
additional aspect that contributes to empirically observing such
guarantees. Secondly, even under the validity of these assump-
tions, observing exact recovery still potentially requires many
iterations of gradient updates in the lower dimensional encoded
space given the ill-posed problem settings under consideration.
The architecture is however limited by the number of layers in
the RNN unit, hence convergence to the true solution is not nec-
essarily observed. Accordingly in Fig. 12(c), we demonstrate the
expected decaying trend in average reconstruction error as the
number of RNN stages are increased. Furthermore, despite these
limitations, the improvements in the reconstruction quality that
our approach offers over the state-of-the-art phaseless imaging
methods is still quite significant.

C. Effect of Sample Complexity

In order to observe the effect of sample complexity on our
approach, MSE values for the MNIST test dataset are plotted
versus the M

N ratios in Fig. 8. It is observed that, for each of the
M
N ratios, our DL-based approach performs better compared to
the WF algorithm, prDeep and UPR. Additionally, as expected
intuitively, we observe reduced MSE values as M is increased
for a fixed image dimension. In Fig. 9(a), 9(b) and 9(c), we
consider the case, where the number of measurementsM is fixed
while the encoded image dimension Ny is varied, and we plot
the MSE values versus

√
Ny for the MNIST, synthetic aperture

and the PCSWAT datasets, respectively. For all three cases, we
observe reduced MSE values with increasing Ny . Our observa-
tion from Fig. 9 implies that the reconstruction in the encoded
image space Y, reveals a latent dimension of the images smaller
than the number of unknowns. This indicates that, compared to
the WF algorithm and the state-of-the-art DL-based methods,
our approach has lower sample complexity requirement since
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Fig. 5. First column includes the original unknown images of dimension 28× 28 pixels. For M = 0.5 N and 10000 training samples, the reconstructed images
using the WF algorithm [2] with 5000 iterations are shown in the second column. Corresponding estimated images using the prDeep [30] and the UPR [29]
approaches are included in the third and fourth columns, respectively. The last column shows the estimated images using our method with 10 RNN stages.

Fig. 6. Image reconstruction results for the simulated synthetic aperture
dataset with 14× 14 pixel images and SNR = 10dB. For M = N and 9950
training samples, the five columns show the original images, and the recon-
structed images using the WF algorithm [2] with 5000 iterations, prDeep
approach [30], UPR approach [29] and our DL-WF approach with 10 RNN
stages, respectively.

Fig. 7. Image reconstruction results for the PCSWAT dataset with 22× 31
pixel underwater scenes and SAS measurements. ForM = 930 and 800 training
samples, the five columns show the original images, and the estimated images
using the WF algorithm [2] with 5000 iterations, prDeep approach [30], UPR
approach [29] and our DL-based approach with 10 RNN stages, respectively.

Fig. 8. MSE versus M
N for the samples in the MNIST test set.

it searches over a reduced space for the unknown image, as
supported by the corresponding MSE values in Fig. 8.

D. Effect of the Number of Training Samples

Another important criteria is the necessity of having an ad-
equate number of training samples for effective image recon-
struction at the decoding network output. In Fig. 10, we plot the
MSE values for the test set versus the number of training set
sizes for M = 1.36 N for the PCSWAT dataset. We consider
two cases with the same G and H network architectures, and
the number of RNN stages equal to 5 and 10. As expected, we
observe for both cases that an increasing training set size helpsH
to capture the underlying image prior more effectively as long as
the H architecture has sufficient capacity. Additionally, it helps
the encoder to learn a better encoded image space while si-
multaneously attaining improved RNN parameter values, which
translates into lower MSE values at similar stages of the training
process. As for the two curves corresponding to the different
numbers of RNN layers, we observe that as long as the overall
imaging network is sufficiently trained, which is represented by
the last points on both curves, increasing the number of RNN
layers helps improve the reconstruction accuracies.

E. Accuracy of the Initial Value

In order to observe the effect ofG on the initialization accuracy
and to indirectly verify the observation from (39), we consider
three separate mean initialization error related terms for the
samples in the test sets, namely, d1, d2 and d3. We define
d1, d2 and d3 as d1 = 1

Ts

∑Ts

t=1 ‖ρ(0)
t − ρ∗

t‖2/‖ρ∗
t‖2, d2 =

1
Ts

∑Ts

t=1 ‖H(y
(0)
t )− ρ∗

t‖2/‖ρ∗
t‖2 and d3 = 1

Ts

∑Ts

t=1 ‖y(0)
t −

y
(L)
t ‖2/‖y(L)

t ‖2. A more accurate calculation of the initializa-
tion error for the encoded image space, d3, requires y

(L)
t to

be replaced by y∗
t . When the G and H network architectures,

and the numbers of training samples are set as described in
Subsection VII-B, and the number of RNN stages is set to 10, we
observe that for the three datasets, the three initialization error
related terms have the following values: for MNIST with M =
0.5 N , d1 = 209.344, d2 = 0.999989 and d3 = 0.000145729;
for the synthetic aperture dataset with M = N , d1 = 2.02657,

Authorized licensed use limited to: The Libraries at Rensselaer Polytechnic Institute. Downloaded on October 17,2022 at 15:59:52 UTC from IEEE Xplore.  Restrictions apply. 



622 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

Fig. 9. MSE versus
√

Ny for fixed M/N ratio for the samples in the test set (a) for the MNIST dataset with M = 0.5 N , (b) for the synthetic aperture dataset
with M = N , and (c) for the PCSWAT dataset with M = 1.36 N , and the number of RNN stages L = 5.

Fig. 10. MSE versus the training set sizes for the PCSWAT dataset with M =
1.36 N .

Fig. 11. MSE versus SNR (dB) for M = N for the samples in the synthetic
aperture test dataset.

d2 = 0.300721 and d3 = 0.00103663; and for the PCSWAT
dataset with M = 1.36 N , d1 = 1.49407, d2 = 0.525142 and
d3 = 0.00129634. In all three cases, we observe that the trained
networks produce significantly reduced initialization errors for
the encoded image space compared to the ones for the original
image space.

F. Effect of SNR of the Intensity Measurements

The effect of varying SNR values, resulting from the different
levels of noise detected at the receiving sensors along with the
intensity values of the reflected signals, on the accuracies of
the reconstructed images for the synthetic aperture dataset is
shown in Fig. 11. We compare these values to the corresponding
image reconstruction accuracies for the WF algorithm. With
increasing SNR, we observe some reduction in the MSE values,

calculated after a fixed number of training updates. For each
case, our DL method is observed to significantly outperform the
WF algorithm.

G. Effect of G and H Architectures and No. Of RNN Layers

In this subsection, we show the effects of the encoding and
decoding network architectures, and the number of RNN stages
on the performance of our approach. We consider the PCSWAT
dataset for this purpose, and while evaluating the effect of each
of these criteria, for example theG network architecture, we keep
the remaining elements, i.e. the H network architecture and the
number of RNN layers, unchanged. In Fig. 12(a) and 12(b),
each point along the x-axis, corresponds to one realization of
the G and H networks, respectively. The number of parameters
for these different architectures increase from left to right, and
the linear architectures for each case are indicated by the last
points, where the corresponding linear networks have the maxi-
mum number of trainable parameters. These figures provide the
empirical observation that, the MSE value reduces with G and
H network architectures with increasing number of parameters,
and a linear encoder is more detrimental than a linear decoder.
Finally, Fig. 12(c) verifies that with an increasing number of
RNN layers, we can improve our reconstruction quality.

H. Comparison With DL Methods for Fourier Measurements

In this subsection, we compared our approach to prDeep and
UPR, under Fourier measurement models. We use the images
from the PCSWAT dataset along with two cases of the Fourier
forward map, where the number of measurements equal to 1.5
times and 2 times the number of unknowns. For our DL-based
approach, we adopt a 5 layer RNN, with G and H network
architectures as presented in Subsection VII-B for the PCSWAT
dataset. Example reconstructed images resulting from the three
approaches are shown in Fig. 13. For both values of M

N , we
observe that our approach outperforms the state-of-the-art DL-
based methods under Fourier measurements.

I. Comparison of Computation Time

Computation times during the inversion phases for our ap-
proach and the UPR method are dominated by the time required
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Fig. 12. MSE for the PCSWAT dataset using different (a) G and (b) H network architectures and 5 RNN layers. The last points on the x-axis correspond to the
linear encoding and decoding network architectures in (a) and (b), respectively. (c) shows the MSE values obtained by using different numbers of RNN stages for
fixed G and H network architectures.

Fig. 13. Reconstructed images for the samples in the PCSWAT test image-
set from the corresponding Fourier measurements using different DL-based
methods. For the ground truth image in the top left corner of Fig. 7, the first
three figures show the reconstructed images using prDeep, UPR and DL-WF,
respectively, for M = 1.5 N ; next three figures show the corresponding images
for M = 2 N .

to compute the spectral initialization output. On the other hand,
for the prDeep approach, significant computational time is in-
volved both for training the denoising network and the inversion
phase. Over all three datasets, we observe that the 20-layer RNN
network for the UPR approach has the lowest computational
time, followed by our DL-WF approach, while the WF algorithm
and the prDeep approach require the highest computational time
during the inversion phase. As an example, for the PCSWAT
dataset, the average computational times required in the inver-
sion phases of the WF algorithm, prDeep, UPR and DL-WF
with L = 5 are 3.8815, 9.8472, 0.0147, and 0.0148 minutes,
respectively. For the same dataset, the training time for the UPR
and the DL-WF approaches is approximately 2-3 days, while the
training time for the denoising network of the prDeep approach
is approximately a few hours.

VIII. CONCLUSION

In this paper, we introduced a DL-based phaseless imaging
approach that incorporates an RNN with DL-based encoding-
decoding stages, and determined sufficient conditions for exact
recovery guarantee. Our theoretical results show that, depending
on the Lipschitz constants of the encoding and the decoding
networks, it is possible to achieve improved convergence rate as
compared to the WF algorithm [2]. Additionally, the valid range
of forward maps for which the exact recovery guarantee holds
is less restrictive than those sufficient conditions introduced in
earlier works [8], [9], [11]. Desired spectral property of the
decoder for the feasibility of our recovery guarantee reveals
that our theoretical results are consistent with the observations
for the case with linear Gaussian generative priors and forward
maps with i.i.d. Gaussian distributed elements. Our numerical

simulations show the advantages of our approach, under low
sample complexity regimes and deterministic forward maps,
over the WF algorithm as well as the existing DL-based methods.
In future work, we will consider extensions to take into account
partially known forward maps which relates to a multiple scatter-
ing within extended objects scenario in practical remote sensing
applications. Additionally, we will pursue improvements to our
approach with deep equilibrium architectures [55] to facilitate
more iterations on the lower dimensional encoded space towards
higher accuracy in reconstructions.
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