Exploring System-level Coordination of Vehicular
Electronics: A Case Study for Traction Control

Md Rafiul Kabir and Sandip Ray
Department of ECE, University of Florida, Gainesville, FL 32611. USA
kabirm@ufl.edu, sandip@ece.ufl.edu

Abstract—In current practice, exploring the computation and
software level of individual ECUs of an automotive system does
not seem feasible enough for a system-level understanding of
vehicular electronics. Exploring vehicular system-level use cases
requires exercising the communication and coordination of the
constituent ECUs. We are developing a prototype environment,
VIVE, to enable early exploration of system-level coordination.
VIVE enables extensible use case definition, as well as smooth
and seamless addition of new, compute, sensor, or actuation
functionality. This solution is flexible and configurable in such a
way that enables the user to exercise inter-component and inter-
system interactions. In this paper, we demonstrate the utility of
such a prototyping environment in the exploration of a fraction
control use case.

I. INTRODUCTION

Modern automotive systems are complex, distributed cyber-
physical systems consisting of hundreds of Electronic Control
Units (ECUs), a variety of sensors and actuators, several in-
vehicle networks, and several hundred Megabytes of software
code. A key challenge with automotive system validation is
to explore and exercise system-level usage scenarios. Any
system-level usage scenario (e.g., the response of the vehicle
to the successful pressing of a brake or turning of steering
wheel) entails coordination of multiple components through
a variety of networks; innocent optimizations to the process
with an inaccurate mental picture can lead to subtle safety
and security vulnerabilities. On the other hand, it is difficult
to exercise such scenarios early in the system design life-
cycle as all the hardware vehicular components have been
manufactured at a later stage. These scenarios after all require
the interaction of different ECUs, sensors, and actuators, and a
significant component of the functionality is realized through
software; correspondingly, exploring them requires a mature
platform in which the ECUs, sensors, and actuators have been
integrated and the relevant software can run. Obviously, errors
and vulnerabilities found at that stage can be costly to fix,
resulting in delays in production timeline as well as brittle
patches, workaround, and point fixes.

In recent work, we proposed a solution for this problem
by defining a prototyping environment, VIVE, for automo-
tive system-level usage scenarios [1]. The key idea is to
abstract details of ECU functionality and instead focus on the
communication and coordination among various components.
Correspondingly, VIVE includes a detailed simulator for in-
vehicle networks (e.g., CAN) providing a flexible interface
to integrate ECUs, sensors, and actuators. VIVE enables

extensible use case definition, as well as smooth and seamless
addition of new, compute, sensor, or actuation functionality.
We showed the efficacy of VIVE as an exploration platform
for several automotive use cases e.g., anti-lock braking system
(ABS), right turn, return-to-center (RTC), traction control
system (TCS), cruise control, and direct tire pressuring moni-
toring system (dTPMS) and indirect tire pressuring monitoring
system (iTPMS). We also showed the efficacy of this platform
for optimization by using existing optimization techniques
like simulated annealing targeting two critical parameters i.e.,
congestion and latency.

In this paper, we do a deep dive on a system-level use case
study: traction control. The basic functionality of the system
is fairly standard [2], [3]; the idea is to adjust the torque
based on the calculated slip rate during vehicle acceleration.
However, from our perspective, the goal is to comprehend
and exercise the variety of interactions across different ECUs
through CAN to realize the functionality and scope for poten-
tial optimization. We show how VIVE enables realistic, early
exploration of this use case without requiring the constituent
ECUs to be available in their fully elaborated (silicon or RTL)
implementation a priori.

II. RELATED WORK

Nowadays, virtual prototyping has become a feasible
method to explore the possibilities of development in vehicular
electronics. There are a few closely depicted research works
to mention. A graphical processing unit (GPU) virtualization
of a digital cluster has been addressed in [4], which is
mentioned as Virtualized Automotive Display (VADI) system.
They can manage multiple in-vehicle execution software. In
[5], a comprehensive discussion is provided on the exploits
of automotive virtualization to integrate multiple ECUs into a
few Domain Controller Units (DCUs). An integration of VP
to the V-model of automotive software development in [6],
has been introduced that enables verification and validation on
SoC, ECU, and system level. The primary concept and control
schemes were addressed in [2], [7], that described system
functionality in details. However, that was not conceptualized
using any kinds of exploration platform. Our solution is
complementary to the existing practice but stands differently
by taking a system-level approach while abstracting individual
vehicular components.

Sensor/Actuator

o TCS TCS Switch Electronic Control Units (ECUs)
ON/OFF Electrical Signal ON/OFF
Acceleration | |]
Pedal Position . N Sensors TCS]
Acceleration | prssiearsign) ocoioion | !
Signal PP 1 Wheel Speed ‘
1 5062 ADAS '
Sensor
Wheel Speed |) Actuator !
Sensor v D25 1) 5003 5 !
Wheel Speed | Elecirical Signal ~ Slip Rate >0.3? CAN Vehicle Speed] Acceleration 6001 5&1 % 5003 !
1 Pedal Position = 5065 g
1 £ 4 Throttle I
el Modulate Contis | i,-, s :
lodulate ontinue 1 i
Message AN e | e O — EcM — Z |
Receive Gateway 1 o !
Distribute 1 !
Send Packets Chu Tod 1 6002 Gateway !
1 !
|]
Reduce —_ Reduce
Engine Torque cemealSignal & b e Torque 7400
: Throttle !

Figure 1. Traction Control system (a) platform’s functionality flow diagram and (b) platform’s primary system design

III. VIVE ARCHITECTURE

Any automotive system compromises sensors, actuators,
and ECUs with an in-vehicle communication network (e.g.,
electrical signal, CAN, LIN, etc). A more detailed exposition
of the VIVE architecture is available in a previous paper [1].
Here we provide a brief exposition to make the paper self-
contained.

A. In-vehicle Communication

VIVE models the vehicular components in a simulated
environment to exercise system-level use cases (e.g., ABS,
Right turn, etc) that involve coordination of computation,
communication, sensor, and actuarial functions. Since VIVE
focuses primarily on exploring the coordination of compo-
nents, the central focus of the architecture is a simulator for
in-vehicle communication. There are two types of communi-
cation shown here: (1) Electrical signal, and (2) In-vehicle
communication network, e.g., CAN. A reconfigurable CAN
simulator is modeled to implement the CAN bus by using
the available CAN library to build the CAN frame as byte
array messages. The simulator uses Transmission Control
Protocol (TCP) sockets to realize interaction among all the
ECU processes where the socket programming is based on a
standard client-server model.

B. Vehicular Electronic Components

Aside from the communication, the other automotive com-
ponents involved in an use case are incorporated into VIVE
as follows.

e ECU: Unlike traditional simulation platforms, a complete
software model of the ECU is not required for VIVE.
Instead, it bears the computational attributes of an ECU to
simulate the functionality as relevant to the use cases by
taking inputs from corresponding sensors or other ECU
computational blocks.

e Sensors: VIVE provides an interface that can be used to
connect a physical sensor or simply a software process
to generate synthetic computational data representing the
behavior of automotive subsystem sensors (e.g., brake
pedal sensor, angle sensor, etc).

e Actuators: Actuators are mostly functioning as the out-
puts to ECUs for actuarial activities, similarly represented
by software processes.

Note that, the goal of this platform is to enable the user to
get a realistic idea of the interaction of different components
and subsystems through automotive use-cases. Therefore, all
these vehicular components are modeled as continuously
running computation blocks. For example, the angle sensor
implemented provides simulated steering wheel angle data
continuously giving inputs to the ECU associated with that
use case (e.g., right turn).

IV. TRACTION CONTROL WITH VIVE

Fig. 1 provides an overview of the Traction Control Sys-
tem (TCS) and its implementation in VIVE. The compo-
nents include TCS ECU, advanced driver-assistance systems
(ADAS) ECU, engine control module (ECM) ECU, gateway,
acceleration pedal position sensor, wheel speed sensor, TCS
switch, and throttle. In VIVE we realize the ECUs and
sensors as indigenous processes.! The coordination entails data
communication through the CAN simulator that uses TCP
sockets; each computation process is correspondingly hooked
with port numbers (e.g., 5003, 6001, etc) and arbitration ids
(e.g., 1, 4 and 5) i.e., shown in Fig. 1 (b).

Table T
BYTE ARRAY MESSAGES
Components Data
Acceleration Pedal Position [0] or [1]

Wheel Speed Sensor
ADAS

simulated values from [0] to [60]
simulated values from [0] to [60]
(CAN)

[0] or [1] (CAN)

[0] or [1] (CAN)

[0] or [1]

TCS (final output)
TCS (for gateway)
ECM

'VIVE also enables the integration of actual ECUs as well as Raspberry Pls
as ECU placeholders to develop a software-only feature. These more elabo-
rated integrations can be used at advanced stages of system development when
detailed implementations of individual hardware and software components are
available. For this paper, we stick to the indigenous process model since we
focus on exercising system-level scenarios early in the design. Nevertheless,
the replacement of a component by a more elaborated one is a matter of simple
component swap in VIVE: the interfaces themselves remain unchanged.

Sensar ECU Actuator

Wheel Speed Sensor ,|ADAS ECU | Throttle =

Acceleration pedal -|TCS ECU - =

TCS switch |ECM ECU -l -l
~|Gateway ~ |

Name of Use Case ‘Traction Control

Add Component

Create New Use Case |
Exit

Apply optimization technique?

No ﬂ

Which optimization technique?

Run and Get Results |

Stop |

Figure 2. Traction Control simulation window

The user initiates actuarial actions by pressing the TCS
switch (by default it is ON unless pressed to turn OFF)
and acceleration pedal position, which is enabled through the
VIVE GUI. Fig. 2 shows the initial simulation window from
which a use case can be initialized. The window enables
multiple GUIs denoting the TCS switch, acceleration pedal
position and final simulation output. Table I shows all the byte
array messages sent by the components (indicating both CAN
and non-CAN messages). Here, the acceleration pedal position
has only binary message options instead of intermittent values
because the traction control function (active or not active) does
not vary based on a long-range of values, rather on the pressed
or not pressed status of the acceleration pedal. The TCS
ECU only needs to take this binary input into consideration
alongside TCS switch.

The VIVE action log shows the sequence of actions induced
by the use case. The sequence involves (1) the acceleration
pedal position sensor sending the pedal position signal to
TCS ECU, (2) calculation of slip rate from simulated speed
values, (3) communication of a byte array message containing
CAN frame from TCS to ECM ECU if a high slip rate
(greater than 0.3) is computed, and (4) the communication
of torque reduction data to the throttle for applying traction
that allows the car to accelerate in a more controlled manner.
In addition, the TCS ECU sends a CAN message to the
gateway ECU for distributing packets. The functionality of
the use cases has been currently implemented till the gateway
to focus on the system level operations; the functionality of
the instrument cluster (e.g., TCS active notifications in the
head-up display) are not implemented. The wheel speed sensor
is a continuously running process; consequently, the slip rate
value continually changes resulting in engaging or disengaging
of traction control which can be visualized in VIVE in real-
time. The speed values are ranged between 0 to 60 mph for
simulation purposes, not conceptually limited to this range for
any use case.

Note that the TCS exploration involves interactions involv-
ing multiple ECUs (i.e., four ECUs for this particular use
case), along with sensors and actuator under implemented
network simulator. The use of VIVE for this use case demon-
strates that the interactions can be explored, customized, and
optimized early in the platform design time frame. This is in
stark contrast with related work [4], [6], which focus primarily
on prototyping environment at ECU and SoC levels. We report
that the system-level exploration we demonstrated for the
respective vehicular subsystems, provide a more feasible high-
level scenario compared to the current trend of analyzing
through the ECU level.

V. CONCLUSION

Exploring and exercising system-level use cases early in
the design is a critical requirement for system-level validation
of vehicular electronics. To achieve this, we are building
VIVE with the explicit goal to realistically simulate in-vehicle
communications. In this paper, we demonstrated the utility
of VIVE in the exploration of an illustrative system-level
automotive use case. The fact that we can explore coordination
and communication among components naturally shows the
value of such a system-level prototyping framework.

Obviously, VIVE is an early work in progress. In future
work, we plan to harden VIVE with more realistic implemen-
tations, implement more use cases, and explore corner cases
resulting from their interactions.

Acknowledgements: This research has been supported in
part by the National Science Foundation under Grant No.
CNS-1908549.

REFERENCES

[1] M. R. Kabir, N. Mishra, and S. Ray, “Vive: Virtualization of vehicular
electronics for system-level exploration,” in 24th IEEE International
Conference on Intelligent Transportation (ITSC 2021), 2021.

[2] J. H. Park and C. Y. Kim, “Wheel slip control in traction control system
for vehicle stability,” Vehicle system dynamics, vol. 31, no. 4, pp. 263—
278, 1999.

[3] L. Austin and D. Morrey, “Recent advances in antilock braking systems

and traction control systems,” Proceedings of the Institution of Mechan-

ical Engineers, Part D: Journal of Automobile Engineering, vol. 214,

no. 6, pp. 625-638, 2000.

C. Lee, S.-W. Kim, and C. Yoo, “Vadi: Gpu virtualization for an auto-

motive platform,” IEEE Transactions on Industrial Informatics, vol. 12,

no. 1, pp. 277-290, 2015.

M. Strobl, M. Kucera, A. Foeldi, T. Waas, N. Balbierer, and C. Hilbert,

“Towards automotive virtualization,” in 2013 International Conference on

Applied Electronics. 1EEE, 2013, pp. 1-6.

M. Safar, M. A. El-Moursy, M. Abdelsalam, A. Bakr, K. Khalil, and

A. Salem, “Virtual verification and validation of automotive system,’

Journal of Circuits, Systems and Computers, vol. 28, no. 04, p. 1950071,

2019.

[71 K. Chun and M. Sunwoo, “Wheel slip control with moving sliding
surface for traction control system,” International journal of automotive
technology, vol. 5, no. 2, pp. 123-133, 2004.

[4

—

[5

—_

[6

[t

