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Abstract
We consider the Scale-Free Adversarial Multi Armed Bandits(MAB) problem. At the beginning of
the game, the player only knows the number of arms n. It does not know the scale and magnitude
of the losses chosen by the adversary or the number of rounds T . In each round, it sees bandit
feedback about the loss vectors l1, . . . , lT ∈ Rn. The goal is to bound its regret as a function of
n and norms of l1, . . . , lT . We design a bandit Follow The Regularized Leader (FTRL) algorithm,
that uses an adaptive learning rate and give two different regret bounds, based on the exploration
parameter used. With non-adaptive exploration, our algorithm has a regret of Õ(

√
nL2 + L∞

√
nT )

and with adaptive exploration, it has a regret of Õ(
√
nL2 + L∞

√
nL1). Here L∞ = supt ∥lt∥∞,

L2 =
∑T

t=1 ∥lt∥22, L1 =
∑T

t=1 ∥lt∥1 and the Õ notation suppress logarithmic factors. These are the
first MAB bounds that adapt to the ∥ · ∥2, ∥ · ∥1 norms of the losses. The second bound is the first
data-dependent scale-free MAB bound as T does not directly appear in the regret. We also develop
a new technique for obtaining a rich class of local-norm lower-bounds for Bregman Divergences.
This technique plays a crucial role in our analysis for controlling the regret when using importance
weighted estimators of unbounded losses. This technique could be of independent interest.
Keywords: Multi Armed Bandit, Scale-Free Algorithm, FTRL, Adaptive FTRL

1. Introduction

The Adversarial Multi Armed Bandit(MAB) problem proceeds as a sequential game of T rounds
between a player and an adversary. In each round t = 1, . . . , T , the player selects a distribution pt
over the n-arms and the adversary selects a loss vector lt belonging to some set L ⊆ Rn. An action
it is sampled from pt and the player observes the loss lt(it). The (expected) regret of the player is:

RT = E

[
T∑
t=1

lt(it)−min
i∈[n]

T∑
t=1

lt(i)

]
We assume that the adversary is oblivious, i.e., the loss vectors l1, . . . , lT are chosen before the

game begins. So, the above expectation is with respect to the randomness in the player’s strategy. The
goal of the player is to sequentially select the distributions p1, . . . , pT such thatRT is minimized. The
adversarial MAB problem has been studied extensively; we refer the reader to the texts of Bubeck and
Cesa-Bianchi (2012); Lattimore and Szepesvári (2020); Slivkins (2019) for further details. Assuming
that L is bounded, and the ∥ · ∥∞-Lipschitz constant G is known to the player in advance (i.e.
supl∈L ∥l∥∞ = G <∞), the minimax rate of regret is known to be Θ(G

√
nT ). The Exp3 algorithm

(Auer et al., 2002) has a O(G
√
nT log(n)) regret bound whereas the Poly-INF algorithm (Audibert

and Bubeck, 2009) removes the
√
log(n) factor, achieving the optimal O(G

√
nT ) regret bound.
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Exp3 and Poly-INF use G in tuning the learning rate, which helps them achieve a linear dependence
on G.

In this paper, we address the case when the player has no knowledge of L. We consider
Scale-Free bounds for MABs, which aim to bound the regret in terms of n and norms of the
loss vectors l1, . . . , lT for any sequence of loss vectors chosen arbitrarily by adversary. Scale-
free bounds have been studied in the full-information setting (where the player sees the complete
vector lt in each round). For the Experts problem, which is the full-information counterpart of
adversarial MAB, the AdaHedge algorithm (de Rooij et al., 2014) has a scale-free regret bound

of O(
√

log(n)(
∑T

t=1 ∥lt∥2∞)). For the same problem, the Hedge algorithm (Freund and Schapire,

1997) has a regret bound of O(G
√
T log(n)) with knowledge of G. The scale-free bound is more

general as it holds for any l1, . . . , lT ∈ Rn, whereas the bound achieved by the Hedge algorithm only
holds provided that supt ∥lt∥∞ < G where G needs to be known in advance.

1.1. Our Contributions

We present an algorithm for the scale-free MAB problem. By appropriately setting the parameters
of this algorithm, we can achieve a scale-free regret upper-bound of either Õ(

√
nL2 + L∞

√
nT ),

or Õ(
√
nL2 +L∞

√
nL1). Here L∞ = supt ∥lt∥∞, L2 =

∑T
t=1 ∥lt∥22, L1 =

∑T
t=1 ∥lt∥1 and the Õ

notation suppress logarithmic factors. Our algorithm is also any-time as it does not need to know the
number of rounds T in advance. Assuming supt ∥lt∥∞ < G, our first regret bound achieves linear
dependence on G (sans the hidden logarithmic terms). This bound is only Õ(

√
n) factor larger than

Poly-INF’s regret of O(G
√
nT ). The second bound is the first completely data-dependent scale-free

regret bound for MABs as it has no direct dependence on T . Moreover, these are the first MAB
bounds that adapt to the ∥ · ∥2, ∥ · ∥1 norms of the losses. The only previously known scale-free result
for MABs was O(L∞

√
nT log(n)) by Hadiji and Stoltz (2020), which adapts to the ∥ · ∥∞ norm

and is not completely data-dependent due to the T in their bound.
In the analysis, we present a novel and general technique to obtain local-norm lower-bounds

for Bregman divergences induced by a special class of functions that are commonly used in online
learning. These local-norm lower-bounds can be used to obtain regret inequalities as shown in
Lattimore and Szepesvári (2020, Corollary 28.8). We use our technique to obtain a full-information
regret inequality that holds for any arbitrary sequence of losses and is particularly useful in the bandit
setting due to its local-norm structure. This technique could be of independent interest.

1.2. Related Work

Scale-Free Regret. As mentioned earlier, Scale-Free regret bounds were studied in the full informa-
tion setting. The AdaHedge algorithm from de Rooij et al. (2014) gives a scale-free bound for the
experts problem. The AdaFTRL algorithm from Orabona and Pál (2018) extends these bounds to
the general online convex optimization problem. We rely on the analysis of AdaFTRL as presented
in Koolen (2016). For the MAB problem, Hadiji and Stoltz (2020) show a scale-free bound of
O(L∞

√
nT log(n)), which is close to the O(G

√
nT log(n)) bound of Exp3. Our scale-free bounds

are more versatile as they are able to adapt to additional structure in the loss sequence, such as the
case of sparse losses with large magnitude, i.e., when L2 << L2

∞nT and L1 << L∞nT . Even in
the worst-case, our bounds are a factor of Õ(

√
n) and Õ(

√
nL∞) larger than their bound respectivley.
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Data-dependent Regret. These bounds use a “measure of hardness” of the sequence of loss vectors
instead of T . Algorithms that have a data-dependent regret bound perform better than the worst-case
regret, when the sequence of losses is “easy” according to the measure of hardness used. For instance,
First-order bounds (Allenberg et al., 2006; Foster et al., 2016; Pogodin and Lattimore, 2019), also
known as small-loss or L⋆ bounds depend on L⋆ = mini∈[n]

∑T
t=1 lt(i). Bounds that depend on the

empirical variance of the losses were shown in Hazan and Kale (2011); Bubeck et al. (2018). Path
length bounds that depend on

∑T−1
t=1 ∥lt − lt+1∥ or a similar quantity appear in Wei and Luo (2018);

Bubeck et al. (2019). Zimmert and Seldin (2021) give an algorithm that adapts to any stochastictiy
present in the losses. Our bound is comparable to a result in Bubeck et al. (2018), where they derive
a regret bound depending on

∑T
t=1 ∥lt∥22. However, all these results assume either L = [0, 1]n or

L = [−1, 1]n.

Effective Range Regret. The effective range of the loss sequence is defined as supt,i,j |lt(i)− lt(j)|.
Gerchinovitz and Lattimore (2016) showed that it is impossible to adapt to the effective range in
adversarial MAB. This result does not contradict the existence of scale-free bounds as the effective
range could be much smaller than, for instance, the complete range supt,s,i,j |lt(i)− ls(j)|. In fact,
Hadiji and Stoltz (2020) already show a regret bound that adapts to the complete range. We do
note that under some mild additional assumptions, Cesa-Bianchi and Shamir (2018) show that it is
possible to adapt to the effective range.

1.3. Organization

In Section 2 we present the scale-free MAB algorithm (Algorithm 1) and its scale-free regret bound
(Theorem 1). Section 3 introduces Potential functions, based on which we build our analysis. Section
4 shows a technique for obtaining local-norm lower-bounds for Bregman divergences. Section 5
briefly discusses full-information FTRL, AdaFTRL and in Theorem 8 we obtain a regret inequality
for AdaFTRL with the log-barrier regularizer. Theorem 1 is proved in Section 6.

1.4. Notation

Let ∆n be the probability simplex {p ∈ Rn :
∑n

i=1 p(i) = 1, p(i) ≥ 0, i ∈ [n]}. Let 1i be the vector
with 1i(i) = 1 and 1i(j) = 0 for all j ̸= i. For ϵ ∈ (0, 1], let 1iϵ = (1− ϵ)1i + ϵ/n. The all ones and
all zeros vector are denoted by 1 and 0 respectively. Let Ht be the history from time-step 1 to t, i.e.,
Ht = {l1(i1), l2(i2), . . . , lt(it)}.

2. Algorithm

Consider for a moment, full-information strategies on ∆n. In the full information setting, in each
round t, the player picks a point pt ∈ ∆n. Simultaneously, the adversary picks a loss vector lt ∈ Rn.
The player incurs a loss of l⊤t pt and (unlike the bandit setting) sees the entire vector lt. A full-
information strategy F takes as input a sequence of loss vectors l1, . . . , lt and outputs the next iterate
pt+1 ∈ ∆n. A MAB strategy B can be constructed from a full-information strategy F along with
two other components as follows:

1. A sampling scheme S , which constructs a sampling distribution p′t from the current iterate pt.
An arm it is then sampled from p′t and the loss lt(it) is revealed to the player.
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2. An estimation scheme E , that constructs an estimate l̃t of the loss vector lt using lt(it) and pt.

3. A full-information strategy F , which computes the next iterate pt+1 using all the estimates
l̃1, . . . , l̃t.

In fact, most existing MAB strategies in the literature can be described in the above framework with
different choices of S, E ,F .

A delicate balance needs to be struck between S, E and F in order to achieve a good regret
bound for B. Suppose the best arm in hindsight is i⋆ = argmini∈[n]

∑T
t=1 lt(i) The expected regret

of MAB strategy B can be decomposed as follows:

E

[
T∑
t=1

(lt(it)− lt(i
⋆))

]
= E

[
T∑
t=1

l⊤t (p
′
t − 1i

⋆
)

]
= E

[
T∑
t=1

l⊤t (p
′
t − pt)

]
+ E

[
T∑
t=1

l⊤t (pt − 1i
⋆
)

]

= E

[
T∑
t=1

l⊤t (p
′
t − pt)

]
︸ ︷︷ ︸

(1)

+E

[
T∑
t=1

(lt − l̃⊤t )(pt − 1i
⋆
)

]
︸ ︷︷ ︸

(2)

+E

[
T∑
t=1

l̃⊤t (pt − 1i
⋆
)

]
︸ ︷︷ ︸

(3)

Term (1) is due to the sampling scheme S , term (2) is the effect of the estimation scheme E and term
(3) is the expected regret of the full-information strategy F on the loss sequence l̃1, . . . , l̃T compared
to playing the fixed strategy 1i

⋆
.

Sampling Scheme. A commonly used sampling scheme mixes pt with the uniform distribution using
a parameter γ, i.e., p′t = (1− γ)pt + γ/n. Such schemes were first introduced in the seminal work
of Auer et al. (2002) and have remained a mainstay in MAB algorithm design. We use a time-varying
γ, i.e., we pick p′t = (1− γt−1)pt + γt−1/n. Here γt−1 could be any measurable function of Ht−1.

Estimation Scheme. We use the Importance Weighted(IW) estimator which was also introduced by
Auer et al. (2002). It computes l̃t as:

l̃t =
lt(it)

p′t(it)
1it

Since the sampling distribution is p′t, the IW estimator is an unbiased estimate of lt:

Eit∼p′t [l̃t] =
n∑

it=1

p′t(it)
lt(it)

p′t(it)
1it = lt

Note that pt is a measurable function of Ht−1. Using the tower rule and the fact that Eit∼p′t [l̃t] = lt,
we can see that term (2) is 0.

Full-information strategy. For F , there is a large variety of full-information algorithms that one
could pick from. Most if not all of them belong to one of the two principle families of algorithms:
Follow The Regularized Leader(FTRL) or Online Mirror Descent(OMD). Further, one also has to
choose a suitable regularizer F within these algorithms for the particular application at hand. We
refer to Cesa-Bianchi and Lugosi (2006); Shalev-Shwartz (2012); Hazan (2016); Orabona (2019);
Joulani et al. (2017, 2020) for a detailed history and comparison of these algorithms. The particular
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algorithm we use is FTRL with a Ht measurable, adaptive learning rate ηt that resembles the adaptive
schemes in AdaHedge (de Rooij et al., 2014) and AdaFTRL (Orabona and Pál, 2018).

The regret of F has an component called the stability term Ψp : Rn → R. In the bandit case, F
receives the IW estimates l̃t. So, it is important that the stability term be bounded with IW estimates.
Without going into any technical details, we note that it is desirable to have a stability term bounded
by Ψp(l) ≤ p⊤l2 as its expectation with IW estimates can be bounded.

Previous techniques to bound the stability term by p⊤l2 relied on the assumptions on l, such as
either l ≥ 0 or l ≥ −1 (See (Lattimore and Szepesvári, 2019, Page 5)). For arbitrary l ∈ Rn, we
show that it is possible to bound the stability term by p⊤l2 using the log-barrier regularizer. The
procedure we develop to obtain this bound is the main technical contribution of our paper.

The complete algorithm for the scale-free MAB problem is described below. We give two choices
for the exploration parameter γt. A simple non-adaptive scheme that is similar to the one in Hadiji
and Stoltz (2020), where γt ∝ 1√

t
and an adaptive scheme that picks γt in a fashion that resembles

the adaptive learning rate scheme ηt.

Algorithm 1: Scale-Free Multi Armed Bandit

Starting Parameters: η0 = n, γ0 = 1/2

Regularizer F (q) =
n∑
i=1

(f(q(i))− f(1/n)), where f(x) = − log(x)

First iterate p1 = (1/n, . . . , 1/n)
for t = 1 to T do

Sampling Scheme: p′t = (1− γt−1)pt +
γt−1

n
Sample Arm it ∼ p′t and see loss lt(it).

Estimation Scheme: l̃t =
lt(it)

p′t(it)
1it

Compute γt for next step:
(Option 1) Non-adaptive γt = min(1/2,

√
n/t)

(Option 2) Adaptive γt =
n

2n+
∑t

s=1 Γs(γs−1)
where Γt(γ) =

γ|lt(it)|
(1− γ)pt(it) + γ/n

Compute ηt =
n

1 +
∑t

s=1Ms(ηs−1)
where Mt(η) = sup

q∈∆n

[
l̃⊤t (pt − q)− 1

η
BregF (q∥pt)

]
Find next iterate using FTRL: pt+1 = arg min

q∈∆n

[
F (q) + ηt

t∑
s=1

q⊤ l̃s

]
end

Our main result is the following regret bound for Algorithm 1.

Theorem 1 For any l1, . . . , lT ∈ Rn, the expected regret of Algorithm 1 is at most:

1. Õ(
√
nL2 + L∞

√
nT ) if γt is non-adaptive (Option 1) and T ≥ 4n

2. Õ(
√
nL2 + L∞

√
nL1) if γt is adaptive (Option 2)

Where L∞ = maxt ∥lt∥∞, L2 =
∑T

t=1 ∥lt∥22, L1 =
∑T

t=1 ∥lt∥1.
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3. Preliminaries

We begin by recalling a few definitions.

Definition 2 (Legendre function) A continuous function F : D → R is Legendre if F is strictly
convex, continuously differentiable on Interior(D) and limx→D/Interior(D) ∥∇F (x)∥ = +∞.

For instance, the function x log(x)− x, −
√
x, − log(x) are all Legendre on (0,∞)

Definition 3 (Bregman Divergence) The Bregman Divergence of function F is:

BregF (x∥y) = F (x)− F (y)−∇F (y)⊤(x− y).

Definition 4 (Potential Function) A function ψ : (−∞, a) → (0,+∞) for some a ∈ R ∪ {+∞}
is called a Potential if it is convex, strictly increasing, continuously differentiable and satisfies:

lim
x→−∞

ψ(x) = 0 and lim
x→a

ψ(x) = +∞

Figure 1: Potential Function

For instance, exp(x) is a potential with a = ∞ and −1/x is a potential with a = 0. A potential
function typically looks like Figure 1. Potentials were introduced in Audibert and Bubeck (2009);
Audibert et al. (2011, 2014) for analyzing the Implicitly Normalized Forecaster(INF) algorithm, of
which Poly-INF is a specific case.

Associated with a potential ψ, we define a function fψ as the indefinite integral fψ(z) =∫
ψ−1(z)dz + C. Since the domain of ψ−1 is (0,∞), the domain of fψ is also (0,∞). For instance,

if ψ(x) = −1/x on the domain (−∞, 0), the associated function is fψ(x) = − log(x) + C.
Observe that f ′ψ(z) = ψ−1(z) and f ′′ψ(z) =

[
ψ′(ψ−1(z))

]−1. Since ψ is strictly convex and
increasing, ψ′ > 0 and thus f ′′ψ > 0, making fψ strictly convex. Moreover, limz→0 | f ′ψ(z) |=
limz→0 | ψ−1(z) |= +∞. Thus fψ is a Legendre function on (0,∞). Define the function Fψ :
Rn → R as Fψ(x) =

∑n
i=1[fψ(x(i))− fψ(1/n)]. This function is Legendre on (0,∞)n.

Given a potential ψ : (−∞, a) → (0,+∞) and its associated function fψ, the Legendre-Fenchel
dual of fψ is f⋆ψ : (−∞, a) → R defined as f⋆ψ(u) = supz>0(zu−fψ(z)). The supremum is achieved
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at z = f ′ψ
−1(u) = ψ(u). So we have that f⋆ψ(u) = uψ(u)− fψ(ψ(u)). This implies f⋆ψ

′(u) = ψ(u)

and f⋆ψ
′′(u) = ψ′(u). Further, using integration by parts on

∫
ψ(u)du and substituting ψ(u) = s:∫

ψ(u)du = uψ(u)−
∫
uψ′(u)du = uψ(u)−

∫
ψ−1(s)ds = uψ(u)−fψ(ψ(u))+C = f⋆ψ(u)+C

Thus f⋆ψ(u) =
∫
ψ(u)du − C. Here C is the same constant of integration picked when defining

fψ(z) =
∫
ψ−1(z)dz + C. We have the following property (proof in Appendix A):

Lemma 5 Let x, y be such that x = ψ(u) and y = ψ(v). Then Bregfψ(y∥x) = Bregf⋆ψ(u∥v)

4. New local-norm lower-bounds for Bregman divergences

Let ψ be a potential and x, y ∈ R+. We show a general way of obtaining lower-bounds using
potential functions, that are of the form:

Bregfψ(y∥x) ≥
1

2w(x)
(x− y)2

Where w is some positive function.

Lemma 6 Let ψ be a potential and x ∈ R+ such that x = ψ(u) for some u. Let ϕ be a non-
negative function such that ψ(u+ ϕ(u)) exists. Define the function m(z) = ψ(z+ϕ(z))−ψ(z)

ϕ(z) . For all

0 < y ≤ ψ(u+ ϕ(u)) we have the lower bound: Bregfψ(y∥x) ≥
1
2

(x−y)2
m(ψ−1(x))

Proof Let v be such that y = ψ(v). Using Lemma 5, we have Bregfψ(y∥x) = Bregf⋆ψ(u∥v). Using

the fact that f⋆ψ(u) =
∫
ψ(u)du− C, we have:

Bregf⋆ψ(u∥v) = f⋆ψ(u)− f⋆ψ(v)− f⋆ψ
′(v)(u− v) =

∫ u

v
ψ(s)− y(u− v)

We can visualize Bregf⋆ψ(u∥v) using the potential function. When v ≤ u, it is the area with
green borders in Figure 2 and when u ≤ v, it is the area with green borders in Figure 3.

Consider the line passing through (u, x) and (u + ϕ(u), ψ(u + ϕ(u)). Its slope is m(u) ≥
ψ′(u) > 0. In both cases, the height of the red triangle is |x− y| and its base is |x−y|

m(u) . So, the area of

the red triangle will be 1
2
(x−y)2
m(u) . Since the triangle is always smaller than Bregf⋆ψ(u∥v), we have the

lower bound Bregfψ(y∥x) ≥
1
2

(x−y)2
m(ψ−1(x))

.

In the context of online learning, local-norm lower-bounds have been studied before, see for
example Orabona (2019). However, these relied upon Taylor’s theorem to show that Bregfψ(y∥x) =
1
2(x − y)2f ′′ψ(z) for some z ∈ [x, y]. Then, they used further conditions on x, y to argue that
cf ′′ψ(x) ≤ f ′′ψ(z) for some positive constant c and thus arrive at Bregfψ(y∥x) ≥

c
2(x − y)2f ′′ψ(x).

We generalize this argument in Lemma 6, through which we are able to generate a more rich class of
lower-bounds. We illustrate with an example below:
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Figure 2: v ≤ u Figure 3: u ≤ v ≤ u+ ϕ(u)

Corollary 7 Let ψ(u) = −1/u in the domain (−∞, 0). For x, y ∈ (0, 1], we have the lower-bound

Bregfψ(y∥x) =
y

x
− 1− ln

(y
x

)
≥ 1

2

(x− y)2

x

Proof For any x ∈ (0, 1], let u ∈ (−∞,−1] be such that ψ(u) = x. Let ϕ(u) = −1− u. Clearly,
ϕ(u) ≥ 0 and ψ(u+ ϕ(u)) = ψ(−1) = 1. We have

m(u) =
ψ(u+ ϕ(u))− ψ(u)

ϕ(u)
=

1 + 1
u

−1− u
=

−1

u
= ψ(u) = x

Applying Lemma 6, we have the lower-bound for all 0 < y ≤ 1:

Bregfψ(y∥x) =
y

x
− 1− ln

(y
x

)
≥ 1

2

(x− y)2

m(ψ−1(x))
=

1

2

(x− y)2

x

The result of Corollary 7 is illustrated in Figure 4. The shaded region is {(x, y) : x ≥ 0, y ≥
0, yx − 1 − ln

( y
x

)
≥ 1

2
(x−y)2
x }. Clearly the region {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} is within the

shaded region.

5. Full-Information FTRL and AdaFTRL

The iterates of FTRL with the regularizer Fψ(x) =
∑n

i=1[fψ(x(i))− fψ(1/n)] for some potential
function ψ and positive learning rates {ηt}Tt=0, are of the form:

pt+1 = arg min
q∈∆n

[
Fψ(q) + ηt

t∑
s=1

l⊤s q

]

Since Fψ is Legendre, the point pt+1 always exists strictly inside ∆n. Orabona (2019) and Joulani
et al. (2017, 2020) provide general purpose regret analysis of FTRL. For the sake of completeness,
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Figure 4: y
x − 1− ln

( y
x

)
≥ 1

2
(x−y)2
x

we show a simple way of analyzing FTRL when the action set is ∆n and the regularizer chosen is of
the form Fψ(x) =

∑n
i=1[fψ(x(i))− fψ(1/n)] in Appendix C.

The AdaFTRL strategy picks a specific sequence of learning rate ηt based on the history Ht. This
strategy was analyzed in Orabona and Pál (2018) and a simpler analysis was given by Koolen (2016).
Our analysis is adapted from Hadiji and Stoltz (2020, Section E.2.1). We consider the adaptive
learning rate:

ηt =
α

β +
∑t

s=1Ms(ηs−1)

Where Mt(η) = supq∈∆n

[
l⊤t (pt − q)− 1

ηBregFψ(q∥pt)
]
, is the Mixability Gap and α, β > 0.

Since q = pt is a feasible solution for this optimization problem, we have Mt(η) ≥ 0. Let p⋆t be the
optimal value of q in the optimization. We have the upper bound

Mt(η) = l⊤t (pt − p⋆t )−
1

η
BregFψ(p

⋆
t ∥pt) ≤ l⊤t (pt − p⋆t ) ≤ 2∥lt∥∞

Since Mt(η) are non-negative and bounded, the sequence ηt is non-increasing.

Theorem 8 If the regularizer is the log-barrier Fψ(x) =
∑n

i=1[log(1/n)− log(x(i))] then for any
i ∈ [n], ϵ ∈ (0, 1] and any sequence of losses l1, . . . , lT , the iterates of AdaFTRL satisfy the regret
inequality

∑T
t=1 l

⊤
t (pt − 1iϵ):

≤ n log(1/ϵ)

(
β

α
+

2 supt ∥lt∥∞
α

)
+ 2 sup

t
∥lt∥∞ +

√√√√ T∑
t=1

p⊤t l
2
t

(
n log(1/ϵ)√

α
+
√
α

)

9
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Proof The log-barrier regularizer Fψ(x) =
∑n

i=1[log(1/n) − log(x(i))] is obtained by using the
potential ψ(u) = −1/u on the domain (−∞, 0). Using Corollary 7, we have the lower-bound:

BregFψ(p
⋆
t ∥pt) =

n∑
i=1

Bregfψ(p
⋆
t (i)∥pt(i)) ≥

n∑
i=1

1

2

(pt(i)− p⋆t (i))
2

pt(i)

This gives us the upper-bound:

Mt(η) = l⊤t (pt − p⋆t )−
1

η
BregFψ(p

⋆
t ∥pt) ≤

n∑
i=1

[
lt(i)(pt(i)− p⋆t (i))−

(pt(i)− p⋆t (i))
2

2ηpt(i)

]

≤
n∑
i=1

sup
s∈R

[
lt(i)s−

1

2η

s2

pt(i)

]
≤ η

2

n∑
n=1

pt(i)lt(i)
2 =

η

2
p⊤t l

2
t

Thus, we have
Mt(ηt−1)

ηt−1
≤ 1

2
p⊤t l

2
t

Applying Theorem 13(Appendix C), for any i ∈ [n] and ϵ ∈ (0, 1] we have that
∑T

t=1 lt(pt − 1iϵ):

≤ Fψ(1iϵ)
(
β

α
+

2 supt ∥lt∥∞
α

)
+ 2 sup

t
∥lt∥∞ +

√√√√ T∑
t=1

p⊤t l
2
t

(
Fψ(1iϵ)√

α
+
√
α

)

The term Fψ(1iϵ) can be bounded as:

Fψ(1iϵ) = n log(1/n)− (n− 1) log(ϵ/n)− log((1− ϵ) + ϵ/n)

≤ n log(1/n)− n log(ϵ/n) = n log(1/ϵ)

For p ∈ ∆n and regularizer Fψ, the stability term Ψ is defined as

Ψp(l) = sup
q∈∆n

[
l⊤(p− q)− BregFψ(q∥p)

]
Observe that ηMt(η) = Ψpt(ηlt). For the log-barrier regularizer, we have Mt(η) ≤ ηp⊤t l

2
t . Thus,

Ψp(l) ≤ p⊤l2 for all l ∈ Rn. Previously, the only known way to achieve Ψp(l) ≤ p⊤l2 was by using
the negative-entropy regularizer along with the assumption l ≥ −1 (See Lattimore and Szepesvári
(2019, Eq. 6 ) or Lattimore and Szepesvári (2020, Eq. 37.15)).

6. Scale-free bandit regret bounds

Theorem 1 For any l1, . . . , lT ∈ Rn, the expected regret of Algorithm 1 is at most:

1. Õ(
√
nL2 + L∞

√
nT ) if γt is non-adaptive (Option 1) and T ≥ 4n

2. Õ(
√
nL2 + L∞

√
nL1) if γt is adaptive (Option 2)

10
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Where L∞ = maxt ∥lt∥∞, L2 =
∑T

t=1 ∥lt∥22, L1 =
∑T

t=1 ∥lt∥1.

Proof Suppose the best arm in hindsight is i⋆ = argmini∈[n]
∑T

t=1 lt(i). Let 1i⋆ be the vector with
1i⋆(i⋆) = 1 and 1i⋆(i) = 0 for all i ̸= i⋆. Let 1i⋆ϵ = (1 − ϵ)1i⋆ + ϵ/n. The expected regret of
Algorithm 1 is:

E

[
T∑
t=1

lt(it)− lt(i
⋆)

]
= E

[
T∑
t=1

l⊤t (p
′
t − 1i⋆)

]
= E

[
T∑
t=1

l⊤t (1
i⋆
ϵ − 1i⋆)

]
+ E

[
T∑
t=1

l⊤t (p
′
t − 1i⋆ϵ )

]

= E

[
T∑
t=1

l⊤t (1
i⋆
ϵ − 1i⋆)

]
︸ ︷︷ ︸

(1)

+E

[
T∑
t=1

l⊤t (pt − 1i⋆ϵ )

]
︸ ︷︷ ︸

(2)

+E

[
T∑
t=1

l⊤t (p
′
t − pt)

]
︸ ︷︷ ︸

(3)

Define S∞ = ∥
∑T

t=1 lt∥∞. For term (1), we have:

E

[
T∑
t=1

l⊤t (1
i⋆
ϵ − 1i⋆)

]
=

T∑
t=1

l⊤t (1
i⋆
ϵ − 1i⋆) ≤ 2ϵ

∥∥∥∥∥
T∑
t=1

lt

∥∥∥∥∥
∞

= 2ϵS∞

For term (2), we use the fact that E[l̃t] = lt:

E

[
T∑
t=1

l⊤t (pt − 1i⋆ϵ )

]
= E

[
T∑
t=1

l̃⊤t (pt − 1i⋆ϵ )

]

Since Algorithm 1 runs log-barrier regularized AdaFTRL with the loss sequence l̃1, . . . , l̃T , we can
bound the sum inside the expectation using Theorem 8 as

∑T
t=1 l̃

⊤
t (pt − 1i⋆ϵ ):

≤ log(1/ϵ)

(
1 + 2 sup

t
∥l̃t∥∞

)
+ 2 sup

t
∥l̃t∥∞ +

√√√√n

T∑
t=1

p⊤t l̃
2
t (log(1/ϵ) + 1) (∗)

Consider the term supt ∥l̃t∥∞:

sup
t

∥l̃t∥∞ = sup
t

|lt(it)|
p′t(it)

= sup
t

|lt(it)|
(1− γt−1)pt(it) + γt−1/n

≤ n sup
t

|lt(it)|
γt−1

Since γt is a positive, non-increasing sequence:

sup
t

∥l̃t∥∞ ≤ n
supt |lt(it)|

γT
≤ nL∞

γT

Finally, consider the term p⊤t l̃
2
t :

p⊤t l̃
2
t = pt(it)

lt(it)
2

p′t(it)
2
= pt(it)

lt(it)
2

((1− γt−1)pt(it) +
γt−1

n )p′t(it)
≤ lt(it)

2

(1− γt−1)p′t(it)

Since 0 ≤ γt−1 ≤ 1/2, we have 1 ≤ (1− γt−1)
−1 ≤ 2. Thus:

p⊤t l̃
2
t ≤ 2

lt(it)
2

p′t(it)

11
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Substituting these bounds in the regret inequality (∗), we have
∑T

t=1 l̃
⊤
t (pt − 1i⋆ϵ ):

≤ log(1/ϵ) +

√√√√2n

T∑
t=1

lt(it)2

p′t(it)
(log(1/ϵ) + 1) +

2nL∞
γT

(log(1/ϵ) + 1)

Applying expectation, we have E
[∑T

t=1 l̃
⊤
t (pt − 1i⋆ϵ )

]
:

≤ log(1/ϵ) + E


√√√√2n

T∑
t=1

lt(it)2

p′t(it)

 (log(1/ϵ) + 1) + 2nL∞ (log(1/ϵ) + 1)E
[
1

γT

]

For the expectation in the second term, we apply Jensen’s inequality:

E


√√√√2n

T∑
t=1

lt(it)2

p′t(it)

 ≤

√√√√2nE
T∑
t=1

[
lt(it)2

p′t(it)

]
=

√√√√2n

T∑
t=1

n∑
i=1

lt(i)2 =
√
2nL2

Thus term (2) can be bounded as E
[∑T

t=1 l
⊤
t (pt − 1i⋆ϵ )

]
:

≤ log(1/ϵ) +
√
2nL2 (log(1/ϵ) + 1) + 2nL∞ (log(1/ϵ) + 1)E

[
1

γT

]
6.1. Non-Adaptive Exploration

First, we present a simple way to bound term (3):

E

[
T∑
t=1

l⊤t (p
′
t − pt)

]
= E

[
T∑
t=1

l⊤t ((1− γt−1)pt + γt−1/n− pt)

]
= E

[
T∑
t=1

γt−1l
⊤
t (1/n− pt)

]

≤ E

[
2

T∑
t=1

γt−1∥lt∥∞

]
≤ 2L∞E

[
T∑
t=1

γt−1

]

Combining the upper-bounds for term (1), (2) and (3), we have E
[∑T

t=1 lt(it)− lt(i
⋆)
]
:

≤ 2ϵS∞ + log(1/ϵ) +
√

2nL2 (log(1/ϵ) + 1) + 2nL∞ (log(1/ϵ) + 1)E
[
1

γT

]
+ 2L∞E

[
T∑
t=1

γt−1

]

Pick ϵ = (1 + S∞)−1 and the exploration rate γt = min(1/2,
√
n/t). If T ≥ 4n, the regret of

Algorithm 1 with non-adaptive exploration is bounded by:

≤ 2 + log(1 + S∞) +
√
2nL2(1 + log(1 + S∞)) + 2L∞

√
nT (2 + log(1 + S∞))

≤ (2 + log(1 + S∞))
(
1 +

√
2nL2 + 2L∞

√
nT
)

= Õ(
√
nL2 + L∞

√
nT )

12
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6.2. Adaptive Exploration

An alternate way to bound term (3) is:

E

[
T∑
t=1

l⊤t (p
′
t − pt)

]
= E

[
T∑
t=1

l̃⊤t (p
′
t − pt)

]
= E

[
T∑
t=1

γt−1
lt(it)

p′t(it)
(1/n− pt(it))

]

≤ E

[
T∑
t=1

γt−1
|lt(it)|
p′t(it)

]

Combining the upper-bounds for term (1), (2) and (3), we have E
[∑T

t=1 lt(it)− lt(i
⋆)
]
:

≤ 2ϵS∞ + log(1/ϵ) +
√

2nL2 (log(1/ϵ) + 1) + E

[
2nL∞ (log(1/ϵ) + 1)

γT
+

T∑
t=1

γt−1
|lt(it)|
p′t(it)

]
Consider the expression inside the expectation. Let

Γt(γ) =
γ|lt(it)|

(1− γ)pt(it) + γ/n

When 0 ≤ γ ≤ 1/2, we have 0 ≤ Γt(γ) ≤ n|lt(it)| ≤ nL∞. Moreover, we have

Γt(γt−1)

γt−1
=

|lt(it)|
p′t(it)

Pick
γt =

n

2n+
∑t

s=1 Γs(γs−1)

We satisfy 0 ≤ γt ≤ 1/2. Applying Lemma 10, we have:

E

[
2nL∞ (log(1/ϵ) + 1)

γT
+

T∑
t=1

γt−1
|lt(it)|
p′t(it)

]
= E

[
2nL∞ (log(1/ϵ) + 1)

γT
+

T∑
t=1

Γt(γt−1)

]

≤ 2nL∞(2 + L∞) (log(1/ϵ) + 1) + nL∞ + (2L∞ (log(1/ϵ) + 1) + 1)E


√√√√2n

T∑
t=1

|lt(it)|
p′t(it)


For the expectation above, we apply Jensen’s inequality:

E


√√√√2n

T∑
t=1

|lt(it)|
p′t(it)

 ≤

√√√√2nE
T∑
t=1

[
|lt(it)|
p′t(it)

]
=

√√√√2n

T∑
t=1

n∑
i=1

|lt(i)| =
√
2nL1

Pick ϵ = (1 + S∞)−1. The regret of Algorithm 1 with adaptive exploration is bounded by:

≤ 2 + log(1 + S∞) +
√
2nL2 (log(1 + S∞) + 1)

+ 2nL∞(2 + L∞) (log(1 + S∞) + 1) + nL∞ + (2L∞ (log(1 + S∞) + 1) + 1)
√

2nL1

= Õ(
√
nL2 + L∞

√
nL1)

13
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Chamy Allenberg, Peter Auer, László Györfi, and György Ottucsák. Hannan consistency in on-line
learning in case of unbounded losses under partial monitoring. In José L. Balcázar, Philip M.
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Sébastien Bubeck, Michael B. Cohen, and Yuanzhi Li. Sparsity, variance and curvature in multi-
armed bandits. In Firdaus Janoos, Mehryar Mohri, and Karthik Sridharan, editors, Algorithmic
Learning Theory, ALT 2018, 7-9 April 2018, Lanzarote, Canary Islands, Spain, volume 83
of Proceedings of Machine Learning Research, pages 111–127. PMLR, 2018. URL http:
//proceedings.mlr.press/v83/bubeck18a.html.
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Appendix A. Basic results on potentials

Consider a function g : Rn×R → R+ defined as g(θ, λ) =
∑n

i=1 ψ(θ(i) + λ) for some potential ψ.

Lemma 9 For every θ ∈ Rn, there exists a unique λ such that g(θ, λ) = 1

Proof For every θ ∈ Rn, we have that lim
λ→−∞

g(θ, λ) = 0 and lim
λ→a−mini(θ(i))

g(θ, λ) = +∞. As g is

monotonically increasing and continuous, by the intermediate value theorem, for every θ ∈ Rn there
exists a unique λ such that g(θ, λ) = 1.

16

http://blog.wouterkoolen.info/AdaFTRL/post.html
http://blog.wouterkoolen.info/AdaFTRL/post.html
http://arxiv.org/abs/1907.05772
http://arxiv.org/abs/1912.13213
https://doi.org/10.1016/j.tcs.2017.11.021
https://doi.org/10.1016/j.tcs.2017.11.021
http://proceedings.mlr.press/v115/pogodin20a.html
https://doi.org/10.1561/2200000018
https://doi.org/10.1561/2200000018
https://doi.org/10.1561/2200000068
http://proceedings.mlr.press/v75/wei18a.html
http://proceedings.mlr.press/v75/wei18a.html
http://jmlr.org/papers/v22/19-753.html
http://jmlr.org/papers/v22/19-753.html


SCALE-FREE ADVERSARIAL MAB

Using Lemma 9, we can define a function λ(θ) such that g(θ, λ(θ)) =
∑n

i=1 ψ(θ(i)+λ(θ)) = 1.
Since ψ(θ(i) + λ(θ)) ≥ 0 and

∑n
i=1 ψ(θ(i) + λ(θ)) = 1, we can see that the vector ψ(θ+ λ(θ)) ≡

{ψ(θ(i) + λ(θ))}ni=1 ∈ ∆n forms a probability distribution.

Lemma 5 Let x, y be such that x = ψ(u) and y = ψ(v). Then Bregfψ(y∥x) = Bregf⋆ψ(u∥v)

Proof Use the fact that f⋆ψ(u) = uψ(u)− f(ψ(u)).

Bregfψ(y∥x) = Bregfψ(ψ(v)∥ψ(u)) = fψ(ψ(v))− fψ(ψ(u))− f ′ψ(ψ(u))(ψ(v)− ψ(u))

= vψ(v)− f⋆ψ(v)− (uψ(u)− f⋆ψ(u))− u(ψ(v)− ψ(u))

= f⋆ψ(u)− f⋆ψ(v)− f⋆′ψ(v)(u− v) = Bregf⋆ψ(u∥v)

Appendix B. A useful summation

Lemma 10 Let A > 0 and 0 ≤Mt(a) ≤ L for all t = 1, . . . T and a ∈ A ⊆ (0,∞). Consider the
expression

A

aT
+

T∑
t=1

Mt(at−1)

Where
at =

α

β +
∑t

s=1Ms(as−1)

Constants α, β > 0 are chosen such that at ∈ A. If Mt(at−1)
at−1

≤ gt, then we have the upper bound:

A

aT
+

T∑
t=1

Mt(at−1) ≤ A

(
β

α
+
L

α

)
+ L+

√√√√2

T∑
t=1

gt

(
A√
α
+
√
α

)

Proof Substituting for aT in the above expression, we have:

A

aT
+

T∑
t=1

Mt(at−1) =
Aβ

α
+

(
A

α
+ 1

) T∑
t=1

Mt(at−1)

Consider
(∑T

t=1Mt(at−1)
)2

17
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(
T∑
t=1

Mt(at−1)

)2

=
T∑
t=1

Mt(at−1)
2 + 2

T∑
t=1

Mt(at−1)
t−1∑
s=1

Ms(as−1)

=
T∑
t=1

Mt(at−1)
2 + 2

T∑
t=1

Mt(at−1)

(
α

at−1
− β

)

≤
T∑
t=1

Mt(at−1)
2 + 2α

T∑
t=1

Mt(at−1)

at−1

≤ L
T∑
t=1

Mt(at−1) + 2α
T∑
t=1

gt

Using the fact that x2 ≤ a+ bx implies that x ≤
√
a+ b for all a, b, x ≥ 0, we have:

T∑
t=1

Mt(at−1) ≤

√√√√2α
T∑
t=1

gt + L

Thus, we get:

A

aT
+

T∑
t=1

Mt(at−1) =
Aβ

α
+

(
A

α
+ 1

) T∑
t=1

Mt(at−1) ≤
Aβ

α
+

(
A

α
+ 1

)
√√√√2α

T∑
t=1

gt + L


= A

(
β

α
+
L

α

)
+ L+

√√√√2
T∑
t=1

gt

(
A√
α
+
√
α

)

Appendix C. FTRL and AdaFTRL regret bound

Recall the FTRL update:

pt+1 = arg min
q∈∆n

[
Fψ(q) + ηt

t∑
s=1

l⊤s q

]

The iterate pt+1 can be expressed in a simple closed form using ψ. Let θt = −ηt
∑t

s=1 ls. The
Lagrangian of the above optimization problem is L(q, α) = Fψ(q)− θ⊤t q − α(1− 1⊤q), where 1 is
the all ones vector. Taking its derivative with respect to q(i) and equating to 0, we get:

ψ−1(q(i)) = θt(i) + α =⇒ q(i) = ψ(θt(i) + α)

To compute α, we use the fact that
∑n

i=1 q(i) = 1 along with Lemma 9 to show that α = λ(θt).
Thus, pt+1 can be written as:

pt+1 = ψ(θt + λ(θt)) where θt = −ηt
t∑

s=1

ls

18
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We introduce the Mixed Bregman in order to simplifies our analysis of FTRL.

Definition 11 (Mixed Bregman) For α, β > 0 the (α, β)-Mixed Bregman of function F is:

Bregα,βF (x∥y) = F (x)

α
− F (y)

β
− ∇F (y)

β

⊤
(x− y).

The Mixed Bregman is not a divergence as Bregα,βF (x∥x) may not be zero. However, we do have the
relation αBregα,αF (x∥y) = BregF (x∥y).

Theorem 12 For any p ∈ ∆n and any sequence of losses l1, . . . , lT , the iterates of FTRL satisfy
the regret equality

∑T
t=1 l

⊤
t (pt − p)

=
1

ηT

[
BregFψ(p∥p1)− BregFψ(p∥pT+1)

]
+

T∑
t=1

[
l⊤t (pt − pt+1)− Bregηt,ηt−1

Fψ
(pt+1∥pt)

]
Further, if the sequence {ηt}Tt=0 is non-decreasing, we have the regret inequality

∑T
t=1 l

⊤
t (pt − p):

≤
Fψ(p)

ηT
+

T∑
t=1

[
l⊤t (pt − pt+1)−

1

ηt−1
BregFψ(pt+1∥pt)

]
Proof Note that ∇Fψ(pt+1) = ψ−1(pt+1) = θt + λ(θt). We also have that lt =

θt−1

ηt−1
− θt

ηt
. For any

p ∈ ∆n, we have l⊤t (pt − p):

= l⊤t (pt+1 − p) + l⊤t (pt − pt+1) =

(
θt−1

ηt−1
− θt
ηt

)⊤
(pt+1 − p) + l⊤t (pt − pt+1)

=

(
∇Fψ(pt)− λ(θt−1)

ηt−1
−

∇Fψ(pt+1)− λ(θt)

ηt

)⊤
(pt+1 − p) + l⊤t (pt − pt+1)

=

(
∇Fψ(pt)
ηt−1

−
∇Fψ(pt+1)

ηt

)⊤
(pt+1 − p) +

(
λ(θt)

ηt
− λ(θt−1)

ηt−1

)⊤
(pt+1 − p) + l⊤t (pt − pt+1)

=

(
∇Fψ(pt)
ηt−1

−
∇Fψ(pt+1)

ηt

)⊤
(pt+1 − p) + l⊤t (pt − pt+1)

Note that λ(θt)ηt
− λ(θt−1)

ηt−1
is a constant vector. So,

(
λ(θt)
ηt

− λ(θt−1)
ηt−1

)⊤
(pt+1 − p) = 0. Let α be any

number. Observe that:(
∇Fψ(pt)
ηt−1

−
∇Fψ(pt+1)

ηt

)⊤
(pt+1−p) = Bregα,ηt−1

Fψ
(p∥pt)−Bregα,ηtFψ

(p∥pt+1)−Bregηt,ηt−1

Fψ
(pt+1∥pt)

Taking summation over t, we have
∑T

t=1 l
⊤
t (pt − p):

=

T∑
t=1

[
Bregα,ηt−1

Fψ
(p∥pt)− Bregα,ηtFψ

(p∥pt+1)
]
+

T∑
t=1

[
l⊤t (pt − pt+1)− Bregηt,ηt−1

Fψ
(pt+1∥pt)

]
= Bregα,η0Fψ

(p∥p1)− Bregα,ηTFψ
(p∥pT+1) +

T∑
t=1

[
l⊤t (pt − pt+1)− Bregηt,ηt−1

Fψ
(pt+1∥pt)

]
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Since p1 = (1/n, . . . , 1/n), we have Fψ(p1) = 0 and ∇Fψ(p1) is a constant vector. We see that
∇Fψ(p1)⊤(p− p1) = 0, so the first term is:

Bregα,η0Fψ
(p∥p1)− Bregα,ηTFψ

(p∥pT+1) =
Fψ(pT+1)

ηT
+

∇Fψ(pT+1)
⊤(p− pT+1)

ηT

=
1

ηT

[
BregFψ(p∥p1)− BregFψ(p∥pT+1)

]
This completes the proof of the first part.

As Fψ(pt+1) ≥ 0 and ηt are non-increasing we have:

Bregηt,ηt−1

Fψ
(pt+1∥pt) =

Fψ(pt+1)

ηt
−
Fψ(pt)

ηt−1
−

∇Fψ(pt)
ηt−1

⊤
(pt+1 − pt)

≥
Fψ(pt+1)

ηt−1
−
Fψ(pt)

ηt−1
−

∇Fψ(pt)
ηt−1

⊤
(pt+1 − pt) =

1

ηt−1
BregFψ(pt+1∥pt)

Thus, we have
∑T

t=1 l
⊤
t (pt − p):

=
1

ηT

[
BregFψ(p∥p1)− BregFψ(p∥pT+1)

]
+

T∑
t=1

[
l⊤t (pt − pt+1)− Bregηt,ηt−1

Fψ
(pt+1∥pt)

]
≤ 1

ηT
BregFψ(p∥p1) +

T∑
t=1

[
l⊤t (pt − pt+1)− Bregηt,ηt−1

Fψ
(pt+1∥pt)

]
≤
Fψ(p)

ηT
+

T∑
t=1

[
l⊤t (pt − pt+1)−

1

ηt−1
BregFψ(pt+1∥pt)

]
This completes the proof.

Recall that the AdaFTRL strategy picks learning rate:

ηt =
α

β +
∑t

s=1Ms(ηs−1)

Where

Mt(η) = sup
q∈∆n

[
l⊤t (pt − q)− 1

η
BregFψ(q∥pt)

]

Theorem 13 If Mt(ηt−1)/ηt−1 ≤ gt, then for any p ∈ ∆n and any sequence of losses l1, . . . , lT ,
the iterates of AdaFTRL satisfy the regret inequality

∑T
t=1 l

⊤
t (pt − p)

≤ Fψ(p)

(
β

α
+

2 supt ∥lt∥∞
α

)
+ 2 sup

t
∥lt∥∞ +

√√√√2
T∑
t=1

gt

(
Fψ(p)√

α
+
√
α

)
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Proof When using non-increasing ηt, the regret of FTRL is bounded by Theorem 12:

T∑
t=1

l⊤t (pt − p) ≤
Fψ(p)

ηT
+

T∑
t=1

[
l⊤t (pt − pt+1)−

1

ηt−1
BregFψ(pt+1∥pt)

]

≤
Fψ(p)

ηT
+

T∑
t=1

Mt(ηt−1)

Using the fact that 0 ≤Mt(η) ≤ 2 supt ∥lt∥∞ and applying Lemma 10, we have
∑T

t=1 l
⊤
t (pt − p)

≤ Fψ(p)

(
β

α
+

2 supt ∥lt∥∞
α

)
+ 2 sup

t
∥lt∥∞ +

√√√√2
T∑
t=1

gt

(
Fψ(p)√

α
+
√
α

)
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