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Abstract
Forming a molecular candidate set that contains
a wide range of potentially effective compounds
is crucial to the success of drug discovery. While
many aim to optimize particular chemical prop-
erties, there is limited literature on how to prop-
erly measure and encourage the exploration of the
chemical space when generating drug candidates.
This problem is challenging due to the lack of for-
mal criteria to select good exploration measures.
We propose a novel framework to systematically
evaluate exploration measures for drug candidate
generation. The framework is built upon three
formal analyses: an axiomatic analysis that vali-
dates the potential measures analytically, an em-
pirical analysis that compares the correlations of
the measures to a proxy gold standard, and a prac-
tical analysis that benchmarks the effectiveness
of the measures in an optimization framework of
molecular generation. We are able to evaluate a
wide range of potential exploration measures un-
der this framework and make recommendations
on existing and novel exploration measures that
are suitable for the task of drug discovery.

1. Introduction
Drug discovery aims to find molecules that can effectively
bind to certain targets, which is often compared to finding
needles in a haystack. Indeed, it is estimated that the small
organic chemical space has more than 1060 molecules (Kirk-
patrick & Ellis, 2004; Ruddigkeit et al., 2012). In such a
tremendous space, only a small number of molecules can
satisfy the bioactivity requirement for a specific target. In
contrast, the space that has been explored by scientists is
very limited: the largest authoritative molecular database
contains only around 108 compounds (Kim et al., 2020).
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Machine learning based approaches have demonstrated
great potential in helping scientists go beyond the known
molecules and efficiently navigate through the huge chemi-
cal space, usually through de novo molecular generation (El-
ton et al., 2019; Schwalbe-Koda & Gómez-Bombarelli,
2020; Bian & Xie, 2021; Deng et al., 2022). Such molecular
generation methods learn to generate candidate drug designs
by optimizing various molecular property scores, like the
binding affinity scores that are relevant to the drug efficacy.
In practice, these scores can be computationally obtained us-
ing biological activity prediction models (Olivecrona et al.,
2017; Li et al., 2018), which is the key to obtaining massive
labeled training data for machine learning.

However, there is a huge gap between the in silico property
scores of a drug design and its in vivo efficacy, as such com-
putationally obtained scores provide limited information
about the complex chemical interactions in the real world.
Expensive wet-lab experiments are still required to verify
the true effectiveness of each candidate molecule. To in-
crease the chance of finding drug hits in these experiments,
it is crucial to generate a variety of qualified candidates that
explore (or cover) a broad area of the chemical space (Hug-
gins et al., 2011; Wawer et al., 2014; Ashenden, 2018),
rather than a concentrated cluster of molecules with high
property scores.

A fundamental challenge is quantitatively measuring the ex-
tent that a set of candidate molecules explores the chemical
space, and we call such measures as exploration measures.
A potential exploration measure for a molecular set is to test
their varieties of inhibitory capability, such as half maximal
inhibitory concentration (IC50) across a range of biological
targets, through wet-lab experiments (Yung-Chi & Prusoff,
1973). These experimental data provide important refer-
ence information for drug design but they are expensive
to annotate. An easy-to-calculate exploration measure that
faithfully reflects the variety of functionalities is extremely
valuable. While a number of studies have evaluated more or
less related properties of generated compounds such as inter-

nal diversity (Brown et al., 2019; Polykovskiy et al., 2020),
the validity of these measures is rarely justified. In fact,
finding a good measure of exploration itself is challenging.
Compared to molecular property scores, the ground truth
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Table 1. Regarding the three suggested criteria, #Circles is the most
recommended exploration measure, and SumBottleneck (noted as
SumBot) is also a good alternative choice.
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-tions (Sec. 4)
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-bility

(Sec. 5)
Measures Subaddi

-tivity

Dissimi

-larity
Fixed Growing

Diversity 7 3 Med Low 1.35x
SumBot 7 3 High Med 1.87x

#FG 3 7 Med Med
#Circles 3 3 High High 1.86x
Richness 3 3 Low Med

about the coverage of biological functionalities is harder
to obtain. Moreover, the chemical space is complex and
combinatorial, making the design of a good measure even
more difficult.

In this paper, we aim to evaluate potential exploration mea-
sures for molecular generation and make recommendations
accordingly. In particular, we propose a novel evaluation
framework that consists of three complementary criteria,
based on which we are able to investigate and evaluate a
series of existing and new exploration measures: (C1) The
first criterion is based on an axiomatic analysis with two
intuitive axioms that a good exploration measure should
satisfy. Surprisingly, multiple heuristic measures that are
commonly used in literature, such as internal diversity, fail
to satisfy one or both of the axioms. (C2) The second crite-
rion compares the exploration measures with a proxy of gold
standard: the number of unique biological functionalities
covered by the set of molecules. We find that a novel explo-
ration measure not only satisfies both axioms but also better
correlates with the gold standard. (C3) The third criterion
further evaluates the selected measures in an optimization
setting, i.e., how effectively one can jointly optimize the
molecular property scores and each exploration measure.
By simply adding novelty terms derived from proper explo-
ration measures to the objective function of a state-of-the-art
molecular generation model, the augmented models can dis-
cover high-quality molecules that span a larger chemical
space, in comparison to optimizing molecular properties
alone or with alternative exploration measures.

2. Related Work
2.1. Molecular Generation

Most studies in drug discovery lays their focus on optimiz-
ing molecular properties of generated compounds. Tradi-
tionally, rule-based genetic algorithms (GA) and fragment-
based combinatorial methods are widely applied to find drug
candidates (Brown et al., 2004; Devi et al., 2015; Jensen,
2019). Machine learning, especially deep learning models

are proposed to optimize molecular property scores with
better efficiency. One such example is the variational au-
toencoder (VAE), which uses Bayesian inference to find
optimal molecules in the latent space (Gómez-Bombarelli
et al., 2018; Liu et al., 2018; Jin et al., 2018). Another
branch of methods employs reinforcement learning to gen-
erate compounds in the explicit chemical space (Olivecrona
et al., 2017; You et al., 2018; De Cao & Kipf, 2018; Popova
et al., 2019; Shi et al., 2020). Recently, Markov chain Monte
Carlo (MCMC) methods also present strong performance in
optimizing multiple desired properties simultaneously (Xie
et al., 2021). Targeting molecular properties usually leads
these algorithms into narrow regions of similar compounds
and hinders exploration into the broader chemical space.

2.2. Measuring Exploration

Beyond property optimization, some studies evaluate the
molecular generation models with measures that are more
or less related to the degree of exploration in the chemical
space. Commonly used measures include internal diver-
sity, external diversity, and the number or percentage of
unique molecules (You et al., 2018; De Cao & Kipf, 2018;
Elton et al., 2019; Brown et al., 2019; Popova et al., 2019;
Polykovskiy et al., 2020; Shi et al., 2020; Xie et al., 2021).
Zhang et al. (2021) propose to use the number of unique
functional groups or ring systems to estimate the chemical
space coverage and to compare several recent generative
models. Similarly in Blaschke et al. (2020), the number of
unique Bemis-Murcko scaffolds is used to measure the vari-
ety of drug candidates. Koutsoukas et al. (2014) study the
effect of molecular fingerprinting schemes on the internal
diversity of compound selection. These measures usually
mix the concepts of diversity, coverage, or novelty, and their
validity as a measure of exploration is not justified.

To the best of our knowledge, this is the first work that
formally investigates the validity of the molecular explo-
ration measures. In particular, axiomatic approaches are
used to analytically evaluate various designs of a measure-
ment, such as utility functions (Herstein & Milnor, 1953),
cohesiveness (Alcalde-Unzu & Vorsatz, 2013), or document
relevance (Fang et al., 2004). Using axiomatic analysis to
evaluate the exploration measures in the chemical space is
novel. With empirical studies in addition to the axiomatic
analysis, we make practical recommendations on effective
exploration measures, including two novel measures.

2.3. Encouraging Exploration

A handful of work tries to encourage the model to explore
broader chemical space. For example, Nigam et al. (2020)
add an adversarial loss into the fitness function of GA to
avoid the traps of local optima; Blaschke et al. (2020) use a
memory unit to score the novelty of generated molecules;
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Bengio et al. (2021) suggest to sample a distribution of
trajectories instead of generating a single sequence of ac-
tions with highest-reward; Fu et al. (2021) incorporate a
determinantal point process (DPP) strategy to encourage the
diversity of compounds.

One of our analyses explicitly formalizes the molecular gen-
eration problem as a joint optimization of both molecular
properties and a given exploration measure so we can study
the behavior of multiple measures in this optimization set-
ting. This formulation also suggests a strong potential for
improving drug discovery by encouraging exploration.

3. Criterion #1: An Axiomatic Analysis of
Molecular Exploration Measures

We first present an axiomatic approach to analytically evalu-
ating various exploration measures of the chemical space.

3.1. Definition of Exploration Measures

To define an exploration measure, we first formalize the
notion of chemical space with the following assumption.
Assumption 3.1 (Chemical space). The chemical space U
contains all possible molecules and is a metric space with a
distance metric function d : U ⇥ U ! [0,+1).

This assumption is widely adopted in cheminformatics, us-
ing distance metrics such as the Tanimoto distance (Tani-
moto, 1968; Bajusz et al., 2015).
Definition 3.2 (Tanimoto distance). For two molecules
x1, x2 2 U , whose binary molecular fingerprint vectors
are x1,x2 2 {0, 1}n where n is the dimensionality of the
fingerprint, their Tanimoto distance is defined as

d(x1, x2) :=

Pn
j=1 x1j · x2jPn

j=1 max(x1j ,x2j)
.

The Tanimoto distance is also referred to as the Jaccard
distance (Jaccard, 1912) in other domains. Its range is [0, 1].
For finite sets (e.g., molecular fingerprints), the Jaccard
distance is a metric function (Kosub, 2019; Lipkus, 1999).

Besides the Tanimoto distance, one can also use the distance
of latent hidden vectors (Preuer et al., 2018; Samanta et al.,
2020) or the root-mean-square deviation (RMSD) of three-
dimensional molecular conformers (Fukutani et al., 2021).

We then define an exploration measure as the following.
Definition 3.3 (Exploration measure). Given the universal
chemical space U , an exploration measure is a function that
maps a set of molecules to a non-negative real number that
reflects to what extent the set spans the chemical space, i.e.,
µ : P(U) ! [0,1), where P(·) is the notation of power
set. In particular, µ(;) = 0.

3.2. Examples of Exploration Measures

Definition 3.3 is intentionally left general. Many measures
related to the coverage, diversity, or novelty of a molecular
set fall into this definition. We summarize these various
measures used in literature into three categories: distance-

based measures, coverage-based measures, and locality-

based measures. We are also able to define new exploration
measures under this formulation.

3.2.1. DISTANCE-BASED MEASURES

For a set S with n molecules, we can define an exploration
measure according to the distances among the molecules:

Diversity(S) := 2

n(n� 1)

X

x,y2S
x 6=y

d(x, y), (1)

SumDiversity(S) :=
X

x2S

1

n� 1

X

y2S
y 6=x

d(x, y)

= n · Diversity(S), (2)
Diameter(S) := max

x,y2S
x 6=y

d(x, y), (3)

SumDiameter(S) :=
X

x2S
max
y2S
y 6=x

d(x, y), (4)

Bottleneck(S) := min
x,y2S
x 6=y

d(x, y), (5)

SumBottleneck(S) :=
X

x2S
min
y2S
y 6=x

d(x, y), (6)

DPP(S) := det(S), (7)

where x, y are molecules in S, d is a distance metric as de-
fined previously, and S is the similarity matrix of candidate
molecules (e.g., 1� d(x, y) for Tanimoto similarity).

Among these measures, Diversity (also referred to as
the internal diversity), the average distance between the
molecules, is widely used in the literature (You et al., 2018;
De Cao & Kipf, 2018; Popova et al., 2019; Polykovskiy
et al., 2020; Shi et al., 2020; Xie et al., 2021). We follow the
topology theory and also introduce Diameter and Bottleneck
as the maximum and minimum distance between any pair of
molecules respectively (Edelsbrunner & Harer, 2010), since
they can also reflect the dissimilarity between molecules in
S. We further introduce three Sum- variants for the above
measures. The Sum- variants will tend to increase when new
molecules are added to the set. In addition, the determinant
of the similarity matrix of molecules is also a measure of
dissimilarity, which is often employed in diverse subset se-
lection as a key concept of the determinantal point processes
(DPP) (Kulesza & Taskar, 2011; 2012).
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Figure 1. #Circles counts the maximum number of mutually ex-
clusive circles that can fit into the molecular set S, where t is the
diameter of circles. In this example, #Circles(S) = 5.

3.2.2. COVERAGE-BASED MEASURES

Another broad category of exploration measures compares
the generated molecules S with a reference set R. In such
context, a coverage-based measure can be defined as below:

Coverage(S,R) :=
X

y2R

✓
max
x2S

cover(x, y)
◆
, (8)

where cover(x, y) indicates how the molecule x can cover
the reference y.

When the reference set R is taken as a collection of molecu-
lar fragments, the coverage function can be written as

cover(x, y) := I[molecule x contains fragment y],

where I[·] is the indication function. A large body of drug
discovery literature uses the number of distinct functional
groups (FG), ring systems (RS), or Bemis-Murcko scaffolds
(BM) in S to gauge the size of explored chemical space
(Zhang et al., 2021; Blaschke et al., 2020), corresponding to
the cases where R is the collection of all possible FG, RS,
or BM fragments. We denote these specific coverage-based
measures as #FG, #RS, and #BM respectively.

3.2.3. LOCALITY-BASED MEASURES

Inspired by the sphere exclusion algorithm used in com-
pound selection (Snarey et al., 1997; Gobbi & Lee, 2003),
we introduce a new exploration measure that highlights the
local neighborhoods covered by a set of molecules:

#Circles(S) := max
C✓S

|C|

s.t. d(x, y) > t, 8x, y 2 C, (9)

where t 2 [0, 1) is a distance threshold that corresponds to
the diameter of a circle.

Intuitively, as shown in Figure 1, #Circles counts the maxi-
mum number of mutually exclusive circles that can fit into

S as neighborhoods, with a subset of its members C as the
circle centers. When the threshold t = 0, #Circles becomes
the richness measure

Richness(S) := |{S}|, (10)

which is the number of unique molecules (Moore, 2013; Shi
& von Itzstein, 2019).

3.3. Axiomatic Analysis

While all the aforementioned measures can heuristically
reflect the degree of exploration, they do not always agree
with each other. We need a principled way to select the most
suitable measures from a variety of possible choices. Ideally,
these criteria should not depend on the particular targeted
molecular properties or the algorithm used to generate the
candidates. We achieve this through an axiomatic approach.

We propose two simple and intuitive principles that a good
exploration measure should satisfy: (1) discovering more
molecules should not decrease the degree of exploration;
(2) molecular sets with more dissimilar molecules have a
higher degree of exploration. These two principles are for-
malized below as two axioms and can be tested analytically.

Axiom 3.4 (Subadditivity). A good exploration measure

µ should be subadditive, i.e., for any two molecular sets

S1,S2 ✓ U , it holds that

max(µ(S1), µ(S2))  µ(S1 [ S2)  µ(S1) + µ(S2).

A subadditive measure tends to increase when more
molecules are included. This tendency is very intuitive
in drug discovery as testing more molecules means we can
have a higher probability of discovering a potentially effec-
tive drug. Some direct corollaries are listed in Appendix A.

A subadditive exploration measure is a special case of outer

measures in the context of mathematical measure theory.
Outer measures are relaxations of measures, where the lat-
ter requires a stricter additivity property, i.e., µ(S1 [ S2) =
µ(S1) + µ(S2) for any two disjoint sets S1,S2 (Halmos,
2013). We consider additivity to be too strong and can
conflict with intuitions in drug discovery: an additive mea-
sure defined on a discrete space must take the form of
µ(S) =

P
x2S w(x), in which w(·) is a weight function

that independently assigns a score to each element in the
space, meaning that additive measures defined on the dis-
crete chemical space cannot capture the interrelationship
between molecules in a candidate set, which counters the
reality.

Axiom 3.5 (Dissimilarity). A good exploration measure

should have a preference to dissimilar elements, i.e., for any

two molecules x1, x2 2 U and a molecular set X (x1, x2) =
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Dissimilarity

Subadditivity

Bottleneck
SumBottleneck

SumDiameter

#Circles
Diversity

SumDiversity
Diameter DPP

Coverage-based
E.g., #FG, #RS, #BM

Figure 2. Exploration measures, categorized by whether they sat-
isfy subadditivity and/or dissimilarity. #Circles is the only measure
that satisfies both subadditivity and dissimilarity.

{x | d(x, x1)+d(x, x2) = d(x1, x2), x 6= x1, x2}, it holds

µ({x1, x2, x
⇤}) = max

x2X
µ({x1, x2, x}),

where x⇤
satisfies d(x⇤, x1) = d(x⇤, x2) =

1
2d(x1, x2) and

d is the distance metric on the chemical space U .

Intuitively, consider two molecules x1, x2 that are placed at
the two endpoints of a “segment”. An exploration measure
satisfying the dissimilarity axiom should increase the most
when the molecule x⇤ is added to the middle point of the
segment, since x⇤ is most dissimilar to x1, x2 compared to
any other points on the segment.

Depending on whether each exploration measure satisfies
subadditivity and/or dissimilarity, we can put it into one of
four quadrants as shown in Figure 2. The formal proofs are
provided in Appendix B. Despite that the two axioms are
simple and intuitive, surprisingly, the proposed #Circles is
the only measure that satisfies both axioms.

4. Criterion #2: Correlation with Biological
Functionality

While it is encouraging that only one measure stands out in
the axiomatic analysis, it does not guarantee its empirical
performance. Meanwhile, there are multiple measures that
satisfy one of the two axioms. We further investigate the va-
lidity of the exploration measures by testing their correlation
with the variety of the biological functionality of molecules.
Such functionalities are expensive to annotate and are biased
toward biological functions of human interests, but they still
provide valuable information in distinguishing molecules
and guiding the exploration of the unknown space.

In this section, we correlate the aforementioned exploration
measures to the number of unique biological functionalities
covered by a molecular set. A better exploration measure
should have a higher correlation to the coverage of biologi-
cal functionalities.

4.1. Experiment Setup

We base the analysis on the BioActivity dataset that is also
used to compare different compound selection algorithms
(Koutsoukas et al., 2014). This dataset contains 10,000
compound samples extracted from the ChEMBL database
(Gaulton et al., 2017) with bio-activity labels, which contain
50 activity classes with 200 samples each. Following Kout-
soukas et al. (2014), for a subset of this dataset S, we take
the number of unique class labels as a proxy “gold standard”
of the variety of the molecules in S , i.e.,

GS(S) := #unique labels in S,

which represents the number of biological functionality
types covered by S. We then compare the behavior of the
gold standard and the exploration measures in two settings
to determine their correlations.

4.2. Random Subsets with Fixed Sizes

We first consider randomly sampled molecular subsets of
the BioActivity dataset with a fixed size n. We randomly
sample n molecules S from the dataset and compute the
biological functionality coverage GS(S) as well as each
exploration measure µ(S). By repeating the randomization,
we can calculate Spearman’s correlation between the gold
standard GS and each individual measure µ.

From the correlations shown in Figure 3a, #Circles and
SumBottleneck have notably higher correlations to the gold
standard than other measures. This indicates that the locality
information is critical in evaluating exploration, as both of
the measures prefer new molecules that are at arm’s length
from their nearest neighbors.

4.3. Random Subsets with Growing Sizes

To mimic the molecular generation process, we also grow
the size of the subsets. Specifically, for a maximum size n,
we sequentially sample n molecules without replacement to
form n subsets {Si = {x1, . . . , xi}}ni=1. For both the gold
standard GS and an exploration measure µ, we record their
values as S grows into a time series, e.g., {(i, µ(Si))}ni=1.
Comparing the trajectory of an exploration measure with
the trajectory of the gold standard, we can observe the mea-
sure that behaves more similarly to GS. We quantitatively
estimate the similarity of their trajectories with the dynamic
time warping (DTW) distance of the two time series.

As shown in Figure 3b, #Circles surpasses all other explo-
ration measures. Coverage-based measures such as #FG,
#RS, and #BM also perform prominently. Both #Circles and
coverage-based measures satisfy the subadditivity property,
making them suitable for a “growth” setting. The Sum- vari-
ants of distance-based measures outperform their original
forms, as they tend to increase when adding new molecules.
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(a) Correlations between the gold standard GS and exploration
measures in the fixed-size setting. The subset size is set as n =
200. A higher correlation is better.

(b) DTW distances between the gold standard GS and exploration
measures in the growing-size setting. The maximum size is set as
n = 1000. A smaller distance is better.

Figure 3. Correlation between each exploration measure and biological functionality coverage. The exploration measure with the highest
correlation is highlighted in green. Results are aggregated by running experiments independently for ten times.

4.4. Discussion

The exploration measures behave differently between the
fixed-size and the growth settings; this discrepancy suggests
that we might need different measures for different settings.
For instance, SumBottleneck performs closely to #Circles
in the fixed-size setting but falls behind significantly in the
growth setting. This might be attributed to its requirement
on subadditivity, which SumBottleneck fails to meet. No-
tably, #Circles stands out in both settings, suggesting its
great potential in practice.

The experiment details are listed in Appendix C, where we
also discuss the impact of the distance metric d. As shown
in Table 3 and 3, we find the experiment results remain
consistent when using a different distance metric (i.e., the
latent space dissimilarity). We also study the sensitivity of
the subset size n, the strategy of adding new molecules, and
the threshold t of #Circles.

The empirical analysis shows that the locality-based #Cir-
cles measure is a robust choice for all tested scenarios, which
reconfirms the conclusion of the axiomatic analysis. Sum-
Bottleneck may be an effective choice when a fixed number
of candidates are the target. Coverage-based measures may
be a good alternative if carefully-designed and comprehen-
sive reference sets are available. Surprisingly, the widely
used Diversity measure is rendered inferior both analytically
and empirically, raising doubts on its efficiency in measuring
and encouraging exploration in molecular generation.

5. Criterion #3: Optimizability of Exploration
Measures

While the previous two criteria validate the quality of ex-
ploration measures in theory, their effectiveness also rely
on how they are deployed in practice. In particular, a good
exploration measure should be optimizable and encourage
exploration in the context of real-world molecular genera-

tion. In this section, we further investigate the exploration
measures in these regards.

5.1. Problem Formulation

In drug discovery, the search for active molecules towards
a druggable target is often formulated as the following
optimization problem (Olivecrona et al., 2017; Gómez-
Bombarelli et al., 2018; Liu et al., 2018; You et al., 2018;
Jin et al., 2018; De Cao & Kipf, 2018; Popova et al., 2019;
Shi et al., 2020; Xie et al., 2021):

argmax
x2U

Property(x) (11)

where x is a molecule in the chemical space U and Property :
U ! R is a function that scores particular biological prop-
erties of the molecule. This property term can incorporate
bio-activity such as binding affinity to protein targets, drug-
likeness, synthesizability, etc. (Nicolaou et al., 2012; Jin
et al., 2020; Xie et al., 2021), and these properties are ob-
tained computationally and often mapped into a single score.

However, the computational models for these properties
cannot predict wet-lab results with desired accuracy or lack
meaningful impact during the hit identification stage of
drug discovery. As pointed out in the chemistry literature,
other than optimizing the property scores, it is crucial to
generate a variety of compounds that span a wider range
of the chemical space (Huggins et al., 2011; Wawer et al.,
2014; Ashenden, 2018). We therefore propose the following
objective as the goal of molecular generation:

argmax
S✓U

µ(S) s.t. Property(x) � C, x 2 S, (12)

where S ✓ U is a molecular candidate set, µ(·) is an ex-
ploration measure, Property(x) � C indicates the property
score of a molecule x being at or above threshold C.

This constrained optimization problem is very challenging
due to its combinatorial characteristics. To this end, we pro-
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Table 2. Exploration measures are optimizable through novelty terms. Adding novelty terms to MARS promotes the chemical space
exploration as quantified by the exploration measures on generated molecules (the larger the better). Underline indicates the best
performance in each measure. Results are aggregated from 5 independent runs of the experiments. Grey highlights #Circles, which is the
best exploration measure in theory (among considered).

Model #Circles(") SumBottleneck(") #FG(") Richness(") Diversity(")

‘ MARS (Xie et al., 2021) 380 ± 10 2149 ± 175 346 ± 55 134K ± 14K 0.736 ± 0.007
+ Diversity 514 ± 33 3001 ± 409 441 ± 85 186K ± 29K 0.750 ± 0.006
+ SumBottleneck 709 ± 66 3777 ± 494 868 ± 133 221K ± 30K 0.752 ± 0.003
+ #Circles 706 ± 155 3013 ± 364 601 ± 211 179K ± 31K 0.749 ± 0.006
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Figure 4. The dynamics of exploration measures over generated molecules. Adding novelty terms increases the exploration in the chemical
space. MARS+SumBottleneck achieves the highest degree of exploration over time. All models converge in Diversity quickly.

pose a relaxed alternative to Equation 12. We use a greedy
strategy to convert the molecular set generation problem
into a single molecule generation problem:

argmax
x2U

µ(S [ {x}) s.t. Property(x) � C

⇡ argmax
x2U

Property(x) + ↵ · µ(S [ {x})

= argmax
x2U

Property(x) + ↵ · [µ(S [ {x})� µ(S)]

= argmax
x2U

Property(x) + ↵ · Novelty(x,S), (13)

where x is the molecule to be generated and S is the gener-
ated drug candidates. Then to efficiently find the plausible
molecule, we can jointly optimize the molecular property
and the exploration measure. In the equations, ↵ is a co-
efficient related to the property threshold C that controls
the balance between the property and the exploration. By
introducing a constant term µ(S) and defining the novelty
of a molecule x as how much it expands the exploration,
i.e., Novelty(x,S) := µ(S [ {x})�µ(S), we obtain a new
molecular generation objective as Equation 13.

Like Equation 11, Equation 13 can be optimized with meth-
ods like deep generative models, reinforcement learning,
Markov chain Monte Carlo (MCMC), or genetic algorithms
(GA). However, one should notice that the new objective is
always shifting as the set of generated molecules S grows.
Besides, there is still a gap between the original objective

(Equation 12) and the relaxed objective (Equation 13).

5.2. Experiments

In the experiments, we study which exploration measures
are more compatible with the optimization objective Equa-
tion 13 and encourage better chemical space exploration.
The implementation details are listed in Appendix D.

5.2.1. EXPERIMENT SETUP

Properties. Following previous studies (Li et al., 2018;
Jin et al., 2020), we consider the inhibition against an
Alzheimer-related target protein c-Jun N-terminal kinase-3
(JNK3) as the biological objective. JNK3 is the neuron-
specific isoform of JNK that expresses primarily in the
brain and heart. Designing the inhibitor of JNK3 signal-
ing has raised interest in the science community as it could
become a potential drug for neural-degenerative diseases
such as Alzheimer (Antoniou et al., 2011; Nakano et al.,
2020). The JNK3 binding affinity score is predicted by
a random forest model1 based on Morgan fingerprint of
a molecule (Rogers & Hahn, 2010). A higher score indi-
cates that the small molecule design is likely to bind to the
JNK3 target. Besides, to obtain drug-like and synthesiz-
able molecules, we also consider the quantitative estimate

1The JNK3 prediction model we adopt in the experiments
is provided at https://github.com/wengong-jin/
multiobj-rationale.

https://github.com/wengong-jin/multiobj-rationale
https://github.com/wengong-jin/multiobj-rationale
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of drug-likeness (QED) (Bickerton et al., 2012) and the
synthetic accessibility (SA) (Ertl & Schuffenhauer, 2009)
as suggested in Jin et al. (2020) and Xie et al. (2021). In
summary, the overall property scoring function can be writ-
ten as Property(x) = JNK3(x) +QED(x) + SA(x), where
JNK3(·), QED(·), and SA(·) are all re-scaled to [0, 1] (the
larger the better).

Models. We use the recently proposed molecular genera-
tion model MARS (Xie et al., 2021) as our baseline. MARS
is based on MCMC sampling and aims at optimizing mul-
tiple drug discovery objectives simultaneously. We choose
MARS mainly because of its state-of-the-art performance on
multi-objective molecular generation. The model is suitable
in dealing with the additional novelty objective in Equa-
tion 13.

Novelty terms. Based on the axiomatic and empiri-
cal analyses in previous sections, we choose the better-
performing exploration measures #Circles and SumBot-
tleneck to derive the novelty terms. The Coverage-based
measures are not included due to the consideration of com-
putational efficiency. In addition, we include the most
commonly-used Diversity measure for the purpose of com-
parison. Specifically, we consider the following three nov-
elty terms2:

NoveltyDiversity(x,S) :=
1

|S|
X

y2S
d(x, y) (14)

NoveltySumBottleneck(x,S) := min
y2S

d(x, y) (15)

Novelty#Circles(x,S) :=

min
y2S

d(x, y) > t

�
(16)

We use MARS to optimize both Equation 11 and Equation
13 with different novelty terms as in Equation 14-16.

Evaluation. We compare the molecules generated with
and without the novelty term, using multiple exploration
measures to validate whether adding the novelty terms in-
deed increases exploration. We examine the difference in
three high-quality exploration measures, #Circles, SumBot-
tleneck, and #FG, since they all have a relatively high cor-
relation with the biological functionality coverage. Note
we cannot directly measure the biological functionality cov-
erage as in Section 4, as many of the generated molecules
are not in the BioActivity database. We also include Rich-
ness and Diversity as they are widely used in the literature,
even though they perform weakly in the previous analyses
(denoted as weak measures). For each model variant, 10M
molecules are generated. Duplicated molecules are removed,
and the candidates that satisfy JNK3 � 0.5, QED � 0.6,

2Equations 14-16 are approximations of [µ(S [ {x})� µ(S)]
defined to avoid numerical issues and for computational efficiency.

MARS
+SumBottleneck

MARS
+#Circles

Figure 5. Optimizing exploration measures encourages the molec-
ular generation model to explore a larger span of the chemical
space. This figure shows principal component analysis (PCA) of
functional groups discovered by different models.

and SA � 0.67 are selected for computing the exploration
measures as suggested in Jin et al. (2018); Xie et al. (2021).

5.2.2. RESULTS AND DISCUSSION

Table 2 lists the values of exploration measures with and
without the novelty terms, estimated for the molecules gen-
erated in 2000 sampling steps.

By introducing novelty terms, all exploration measures
are significantly improved during molecular generation,
showing a strong optimizability of these measures. Com-
paring model variants implemented with different novelty
terms, both MARS+SumBottleneck and MARS+#Circles
obtain a higher degree of exploration (in all three high-
quality measures) than MARS+Diversity does. In particular,
MARS+SumBottleneck leads in all measures and even out-
performs the MARS+#Circles variant. We note a larger
variance of MARS+#Circle, which indicates it might be
less efficient to optimize. In summary, while all novelty
terms encourage the model to explore chemical space to a
greater extent, SumBottleneck and #Circles are much better
performing than Diversity.

We plot the dynamics of each exploration measure over
the generated molecules from the four models in Figure 4.
The MARS+SumBottleneck model converges to a higher
degree of exploration in multiple measures, suggesting that
it gradually spans a larger portion of the chemical space.
MARS+#Circles behaves similarly but with a larger vari-
ance. Interestingly, all four models converge in Diver-
sity very quickly, disregarding the large number of new
molecules discovered, again suggesting the widely used
Diversity might not be suitable for measuring exploration.

In Figure 5, the chemical space explored by the base-
line (MARS) and MARS+SumBottleneck as well as
MARS+#Circles is visualized by principal component anal-
ysis (PCA). The data points are calculated from Morgan
fingerprints (Rogers & Hahn, 2010) of the unique functional
groups in the generated molecules. The larger number and
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the spread from the models with exploration-based novelty
term suggest a more diverse set of structures being explored.

In summary, SumBottlenck and #Circles are both well op-
timizable when they are incorporated into the objective as
novelty terms, and they truly encourage molecular genera-
tion models to explore expansively in the chemical space.

A few limitations of optimization with novelty terms should
be noted. First, the computation of novelty terms on large
molecular generation campaigns is significantly more costly.
This limitation is to be addressed by more efficient algo-
rithms of the measures. Second, the performance of the
MARS+#Circles model can be influenced by the selection
of the distant threshold t (circle diameter); more sensitivity
tests and hyper-parameter tuning strategies are needed to
determine the optimal threshold.

6. Conclusion
We present a systematic study on the measurement of chem-
ical space exploration in drug discovery. We formally define
the concept of exploration measures and propose a novel
framework of validation in three aspects: analytical vali-
dation with two axioms, examination of the correlations
between exploration measures and biological functionality
coverage, and benchmark of the optimizability in the real-
world molecular generation task. Overall, we find that the
#Circles measure is an outstanding choice both theoretically
and empirically. A new distance-based measure, SumBot-
tleneck, also demonstrates excellent empirical and practical
performance. Diversity, although widely reported to be used
in literature, is sub-optimal as a measure of exploration.

For future work, it would be interesting to design and eval-
uate more exploration measures under this framework and
apply them to practical drug discovery scenarios. The opti-
mization of Equation 13 inspires further investigation, since
the objective will be consistently shifting. The proposed
exploration measures can be applied to other domains.
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A. Subadditivity Corollaries
Corollary A.1. (Subtraction). If an exploration measure µ
is subadditive, then for any two molecular sets 8S1,S2 ✓ U ,

we have

µ(S1) � µ(S1 \ S2) � µ(S1)� µ(S2).

Corollary A.2. (Monotonicity). If an exploration measure

µ is subadditive, then for any molecular set 8S ✓ U and a

single molecule x 2 U , we have µ(S [ {x}) � µ(S) and

µ(S \ {x})  µ(S).

Corollary A.3. (Dominance). If an exploration measure µ
is subadditive, then for any two molecular sets 8S1,S2 ✓ U ,

if S1 ✓ S2, then µ(S1)  µ(S2).

B. Proofs for Subadditivity and Dissimilarity
In Figure 2 we show the exploration measures according to
whether they will satisfy subadditivity and/or dissimilarity.
In this section, we provide proofs to verify each measure’s
subadditivity and dissimilarity.

Note that for distance-based measures, when |S| = 1, µ(S)
is not defined through Equation 1-7. So without loss of gen-
erality, we assume µ({x}) = w(x), x 2 U in such cases,
where w : U ! R is an importance function. However in
the following proofs, we can see that the choice of w(·) will
not influence our conclusion.

Proposition B.1 (Subadditivity of exploration measures.).
Coverage-based exploration measures and #Circles are sub-

additive. Distance-based exploration measures including

Diversity, SumDiversity, Diameter, SumDiameter, Bottle-

neck, SumBottleneck, and DPP are not subadditive.

Proof. For the coverage-based exploration measures, we
denote the cover(·, ·) function as cov(·, ·) for short. We
prove the subadditivity of coverage-based measures by first
proving the subadditivity of the maximum of cover(·, ·).

To prove the subadditivity of the maximum of cov(·, ·), we
consider combining any two molecular sets S1,S2 ✓ U .
For any reference y 2 R, we have

max

✓
max
x2S1

cov(x, y),max
x2S2

cov(x, y)
◆

 max
x2S1[S2

cov(x, y)

 max
x2S1

cov(x, y) + max
x2S2

cov(x, y).

Therefore,

max (Coverage(S1),Coverage(S2))

 Coverage(S1 [ S2)

 Coverage(S1) + Coverage(S1),

thus proving the Coverage measure is subadditive.

For the #Circles exploration measure, we denote #Circles(·)
as #C(·) for short and define C⇤(S) ✓ S as an arbitrary set
that satisfies |C⇤(S)| = #C(S). We prove the subadditivity
of #C in two parts.

In the first part, we prove the left-hand side of the subadditiv-
ity inequation, i.e., max(#C(S1), #C(S2))  #C(S1 [ S2).
For any two molecular sets S1,S2 ✓ U , since C⇤(S1) ✓
S1 [ S2, according to the definition of #C, we have

#C(S1)  #C(S1 [ S2).

Similarly, we also have

#C(S2)  #C(S1 [ S2),

proving the left-hand side of subadditivity.

In the second part, we prove the right-hand side of the sub-
additivity inequation, i.e., #C(S1[S2)  #C(S1)+#C(S1).
We prove this by contradiction. For any two molecular sets
S1,S2 ✓ U , we assume #C(S1 [ S2) > #C(S1) + #C(S1).
Use the notations C1 := C⇤(S1 [ S2) \ S1 and C2 :=
C⇤(S1 [ S2) \ S2. We have

|C1|+ |C2| � #C(S1 [ S2) > #C(S1) + #C(S1).

Since all values are non-negative, we must have |C1| >
#C(S1) or |C2| > #C(S2), contradicting with the definition
of #C(S1) or #C(S1), thus proving the right-hand side of
subadditivity.

For the Diversity exploration measure, we denote it as
Div(·) for short. We disprove its subadditivity by prov-
ing it violates the monotonicity corollary. For a molecule
x 2 U and a molecular set S ✓ U with size n > 1. If
x 62 S , we have
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Div(S [ {x})

=
2

(n+ 1)n

2

664
X

y,y02S
y 6=y0

d(y, y0) +
X

y2S
d(x, y)

3

775

=
n� 1

n+ 1
· Div(S) + 2

(n+ 1)n

X

y2S
d(x, y).

And the change in Div is

Div(S [ {x})� Div(S)

=

✓
n� 1

n+ 1
� n+ 1

n+ 1

◆
Div(S) + 2

(n+ 1)n

X

y

d(x, y)

=
2

n+ 1

"
�Div(S) + 1

n

X

y

d(x, y)

#
.

When the average distance of x and S , i.e., 1
n

P
y d(x, y), is

less than Div(S) (e.g., adding an molecule on the “segment”
between two existing molecules), Diversity would decrease,
thus violating the monotonicity corollary and proving Di-
versity is not subadditive.

For the SumDiversity exploration measure, we denote it
as SD(·) for short. We disprove its subadditivity by prov-
ing it violates the right-hand side of the subadditivity, i.e.,
SD(S1 [ S2)  SD(S1) + SD(S2). For two disjoint molec-
ular sets with two molecules in each, i.e., {x1, x2} and
{x3, x4}, we denote dij = d(xi, xj). Then we have

SD({x1, x2, x3, x4})
= 4 · Div({x1, x2, x3, x4})

= 4 · 2

4 · 3(d12 + d13 + d14 + d23 + d24 + d34),

and

SD({x1, x2}) + SD({x3, x4}) = 2 · d12 + 2 · d34.

When the inter-set distances are larger than the inner-set
distances, i.e., d13, d14, d23, d24 > d12, d34, we will have
SD({x1, x2, x3, x4}) > SD{x1, x2}+ SD{x3, x4}, violat-
ing the right-hand side of the subadditivity, thus proving the
SumDiversity measure is not subadditive.

For the Diameter exploration measure, we denote it as
Dia(·) for short. We disprove its subadditivity by prov-
ing it violates the right-hand side of the subadditivity, i.e.,
Dia(S1[S2)  Dia(S1)+Dia(S2). For two disjoint molec-
ular sets S1,S2 ✓ U whose sizes are larger than one, we
have

Dia(S1 [ S2) = max
x,y2S1[S2

x 6=y

d(x, y),

and

Dia(S1) + Dia(S2) = max
x,x02S1

x 6=x0

d(x, x0) + max
y,y02S2

y 6=y0

d(y, y0).

When the maximum inter-set distance is larger than the
maximum inner-set distance, i.e., maxx,y,2S1[S2 d(x, y) >
maxx,x0,2S1 d(x, x

0) + maxy,y0,2S2 d(y, y
0), we will have

Dia(S1 [ S2) > Dia(S1) + Dia(S2), violating the right-
hand side of the subadditivity inequation, thus proving the
Diameter measure is not subadditive.

For the SumDiameter exploration measure, we denote it
as SD(·) for short. We disprove its subadditivity by prov-
ing it violates the right-hand side of the subadditivity, i.e.,
SD(S1 [ S2)  SD(S1) + SD(S2). For two disjoint molec-
ular sets with two molecules in each, i.e., {x1, x2} and
{x3, x4}, we denote dij = d(xi, xj). Then we have

SD({x1, x2, x3, x4}) =
X

i2[4]

max
j2[4]
j 6=i

d(xi, xj),

and

SD({x1, x2}) + SD({x3, x4}) = 2 · d12 + 2 · d34.

When the inter-set distances are larger than the inner-set
distances, i.e., d13, d14, d23, d24 > d12, d34, we will have
SD({x1, x2, x3, x4}) > SD{x1, x2}+ SD{x3, x4}, violat-
ing the right-hand side of the subadditivity, thus proving the
SumDiameter measure is not subadditive.

For the Bottleneck exploration measure, we denote it as
Bot(·) for short. We disprove its subadditivity by proving
it violates the monotonicity corollary. Consider adding a
molecule x into a molecular set S with size n > 1. If x 62 S ,
we have

Bot(S [ {x}) = min

✓
Bot(S), min

y2S
d(x, y)

◆
.
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When x introduces a more restricting bottleneck, i.e.,
miny d(x, y) < Bot(S), we will have Bot(S [ {x}) <
Bot(S), violating the monotonicity corollary, thus proving
Bottleneck is not subadditive.

For the SumBottleneck exploration measure, we denote it
as SB(·) for short. We disprove its subadditivity by proving
it violates the monotonicity corollary. Consider adding a
molecule x into a molecular set S with size n > 1. If x 62 S ,
we have

SB(S [ {x})

=
X

y2S
min

0

B@min
y02S
y0 6=y

d(y, y0), d(x, y)

1

CA+min
y2S

d(x, y),

and

SB(S) =
X

y2S
min
y02S
y0 6=y

d(y, y0).

When x introduces some more restricting bottlenecks, i.e.,
for many y 2 S, d(x, y) is small (e.g., adding a molecule
into a set whose size is two, and the new molecule is added
near one of the two molecules), we will have SB(S[{x}) <
SB(S), violating the monotonicity corollary, thus proving
SumBottleneck is not subadditive.

Fot the DPP exploration measure, we disprove its subad-
ditivity by proving it violates the monotonicity corollary.
Consider adding x into {x0} where x 6= x0 1� d(x, x0) is
denoted as b. We have

DPP({x0, x}) =
����
1 b
b 1

���� = 1� b2.

When b > 0 we will have DPP({x0, x}) < DPP({x0}) =
1, violating the monotonicity corollary, thus proving DPP is
not subadditive.

Proposition B.2 (Dissimilarity property of exploration mea-
sures.). Diversity, SumDiversity, Diameter, Bottleneck, Sum-

Bottleneck, DPP, and #Circles have preferences to dissimi-

larity. The SumDiameter measure does not has the dissimi-

larity property.

Proof. In the proof, for adding a molecule x into the molec-
ular set {x1, x2}, we denote d(x1, x2) as a, d(x, x1) as �,
and d(x, x2) as a� � for short.

For the Diversity exploration measure, we denote it as
Div(·) for short. For the molecular set {x1, x2}, when
adding a new molecule x from X (x1, x2) as defined in
the dissimilarity axiom, we have

Diversity({x1, x2, x}) =
2

3 · 2(a+ � + (a� �)) =
2a

3

= Diversity({x1, x2, x
⇤}) = 2

3 · 2(a+
a

2
+

a

2
) =

2a

3
,

which means it can take the optimal value at x = x⇤, thus
proving the dissimilarity property of Diversity.

For the SumDiversity exploration measure, we denote it
as SD(·) for short. For the molecular set {x1, x2}, when
adding a new molecule x 2 X (x1, x2), we have

SD({x1, x2, x}) = a+ � + (a� �) = 2a

= SD({x1, x2, x
⇤}) = a+

a

2
+

a

2
= 2a,

which means it can take the optimal value at x = x⇤, thus
proving the dissimilarity property of SumDiversity.

For the Diameter exploration measure, we denote it as
Dia(·) for short. For the molecular set {x1, x2}, when
adding a new molecule x 2 X (x1, x2), we have

Dia({x1, x2, x}) = max {a, �, a� �} = a

= Dia({x1, x2, x
⇤}) = max {a, a

2
,
a

2
} = a,

which means it can take the optimal value at x = x⇤, thus
proving the dissimilarity property of Diameter.

For the Bottleneck exploration measure, we denote it as
Bot(·) for short. For the molecular set {x1, x2}, when
adding a new molecule x 2 X (x1, x2), we have

Bot({x1, x2, x}) = min {a, �, a� �} = min(�, a� �)

 Bot({x1, x2, x
⇤}) = min {a, a

2
, a

a

2
} =

a

2
,

which means it can take the optimal value at x = x⇤, thus
proving the dissimilarity property of Bottleneck.

For the SumBottleneck exploration measure, we denote it
as SB(·) for short. For the molecular set {x1, x2}, when
adding a new molecule x 2 X (x1, x2), we have

SB({x1, x2, x}) = � + (a� �) + min(�, a� �)

 SB({x1, x2, x
⇤}) = a

2
+

a

2
+

a

2
=

3a

2
,
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which means it can take the optimal value at x = x⇤, thus
proving the dissimilarity property of SumBottleneck.

For the DPP exploration measure, for the molecular set
{x1, x2}, when adding a new molecule x 2 X (x1, x2), we
have

DPP({x1, x2, x})

=

������

1 1� a 1� �
1� a 1 1� (a� �)
1� � 1� (a� �) 1

������

= (2a� 4)(�2 � a�).

This term will take its largest value when � = a
2 , i.e., when

x = x⇤, thus proving the dissimilarity property of DPP.

For the #Circles exploration measure, we denote it as
#C(·) for short. we denote #Circles(·) as #C(·) for short
and define C⇤(S) ✓ S as an arbitrary set that satisfies
|C⇤(S)| = #C(S). We prove the dissimilarity property
of #C by contradiction.

For the molecular set {x1, x2}, consider adding an ar-
bitrary new molecule x 2 X (x1, x2) or the molecule
x⇤. We assume #C({x1, x2, x}) > #C({x1, x2, x⇤}).
This means that we must have #C({x1, x2, x}) = 3
and C⇤({x1, x2, x}) = {x1, x2, x}, otherwise accord-
ing to the monotonicity corollary of #C’s subadditivity,
#C({x1, x2, x}) = #C({x1, x2})  #C({x1, x2, x⇤}).

Therefore, according to the definition of #C, we have � > t
as well as a � � > t where t is the distance threshold,
indicating that

a

2
> min(�, a� �) > t.

This means C⇤({x1, x2, x⇤}) can also simultaneously in-
clude x1, x2, and x⇤, contradicting with our assumption,
thus proving the dissimilarity property of #Circles.

For the SumDiameter exploration measure, we denote it
as SD(·) for short. For the molecular set {x1, x2}, when
adding a new molecule x 2 X (x1, x2), we have

SD({x1, x2, x}) = a+max(�, a� �)

� SD({x1, x2, x
⇤}) = a+max(

a

2
,
a

2
) =

3a

2
,

which means x can be better than x⇤ when one of � and a��
is larger than a

2 , thus disproving the dissimilarity property
of SumDiameter.

Discussing the dissimilarity property of coverage-based
measures. We denote the cover(·, ·) function as cov(·, ·)
for short. Then for the molecular set {x1, x2}, when adding
a new molecule x 2 X (x1, x2), we have

Coverage({x1, x2, x})

=
X

y2R
max (cov(x1, y), cov(x2, y), cov(x, y)) .

The value of Coverage({x1, x2, x}) will depend on the par-
ticular definition of cov(·, ·). Generally, an arbitrary cov-
erage function does not necessarily meet the dissimilar-
ity requirement. In our study, we define this function as
cov(x, y) := I[molecule x contains fragment y], where I[·]
is the indication function, which is loosely correlated with
the distance metric d. So the dissimilarity property does not
hold for exploration measures #FG, #RS, and #BM.
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C. Random Subset Experiment Details
C.1. Bio-Activity Dataset

The 10K BioActivity dataset (Koutsoukas et al., 2014)
contains 10,000 compound samples excerpted from the
ChEMBL database (Gaulton et al., 2017) with bio-activity
labels. These labels are the 50 largest ChEMBL activity
classes, including enzymes (e.g., proteases, lyases, reduc-
tases, hydrolases, and kinases) and membrane receptors
(e.g., GPCRs and non-GPCRs). The label distribution is
shown in Figure 6.

Figure 6. Label distribution of the BioActivity dataset (Koutsoukas
et al., 2014). 50 bio-activity functionality classes are included.

We use UMAP (McInnes et al., 2018) to visualize the
molecules in this dataset based on their Morgan fingerprints
(Rogers & Hahn, 2010) as displayed Figure 7. From the
visualization, we can see that the fingerprint similarity is
indeed correlated with the bio-activity similarity.

Figure 7. UMAP visualization of compounds in the BioActivity
dataset. Different colors stand for different bio-activity labels.

C.2. Random Subsets with Fixed Sizes

In this experiment, we repeat Algorithm 1 for ten times to
obtain reliable correlations.

Algorithm 1 Calculating exploration measures for random
subsets with fixed sizes.

Input: The fixed subset size n; The bio-activity dataset
{(xi, yi)}10K

i=1 where yi 2 Y are bio-activity labels and
|Y| = 50; K exploration measures {µk}Kk=1.
repeat

Sample a number m uniformly from {1, . . . , 50}.
Sample m labels Y 0 uniformly from Y .
Sample n molecules S with labels in Y 0 uniformly.
Compute GS(S) and µk(S) for k 2 [K].

until repeated for 1000 times
Calculate the correlations between GS and {µk}Kk=1
based on the 1000-times experiment results.

Experiment results. We show the experiment results for
different fixed random set size n in Figure 8. We find the
#Circles and SumBottleneck measures perform constantly
better than all other measures.

When the fixed size n increases, most exploration measures’
performances also increase, except for Bottleneck and DPP,
meaning they are not suitable for measuring the variety
when the molecules are distributed crowdedly.
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(a) Random subsets with a fixed size n = 50.

(b) Random subsets with a fixed size n = 200.

(c) Random subsets with a fixed size n = 1000.

Figure 8. Correlations between the gold standard GS and explo-
ration measures in the fixed-size random subset setting. The fixed
size is set as different values. A larger correlation indicates the
better. The average results are obtained by running experiments
independently for ten times.

Correlation between exploration measures. We also
visualize the pairwise correlation between exploration mea-
sures in Figure 9. From the figure we can see that, the gold
standard GS, #Circles, and SumBottleneck are most similar
with each other in the fixed-size setting.

Figure 9. Correlations between exploration measures in the fixed-
size random subset setting. The fixed size is set as n = 200.
A larger correlation indicates the better. The average results are
obtained by running experiments independently for ten times.

Figure 10. Correlations between the gold standard GS and the #Cir-
cles measure in the fixed-size random subset setting with different
threshold t. The fixed size is set as n = 200. A larger correlation
indicates the better. The average results are obtained by running
experiments independently for ten times.

Threshold t for #Circles. The #Circles threshold t is
selected to maximize the correlation to the gold standard GS.
Taking n = 200 as an example, we test different t values as
Figure 10 displays and select t = 0.70 as the threshold. We
can see #Circles works well for a wide range of thresholds
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like [0.40, 0.70]. In Olivecrona et al. (2017), the authors
suggest to use a threshold t = 0.60 to decide whether two
molecules are dissimilar with each other3, which aligns our
results. For n = 50 and n = 1000, the threshold is set as
t = 0.70 and t = 0.65 respectively.

Distance metric d. We also study the impact of distance
metric d. In Table 3, we listed the experiment results for
both fingerprint-based Tanimoto distance and VAE-based
latent space dissimilarity (Samanta et al., 2020). We find the
experiment results obtained with the VAE dissimilarity re-
main consistent with the results obtained with the Tanimoto
distance.

Table 3. Correlations between the gold standard and exploration
measures in the fixed-size random subset setting. The fixed size is
set as n = 200. A larger correlation indicates the better. Results
are obtained by averaging ten independent experiments. Italic texts
indicate molecular representation and the distance metric. Top
three measures are highlighted in green , and the best measure is
printed in bold.

Distance-based
Tanimoto distance VAE dissimilarity

Diversity 0.478 ± 0.011 0.388 ± 0.040
SumDiversity 0.478 ± 0.011 0.388 ± 0.040

Diameter 0.179 ± 0.031 0.112 ± 0.022
SumDiameter 0.228 ± 0.028 0.201 ± 0.029

Bottleneck -0.293 ± 0.015 -0.298 ± 0.027
SumBottleneck 0.821 ± 0.010 0.527 ± 0.013

DPP -0.183 ± 0.021 -0.244 ± 0.030

Coverage-based
Fgragment

#FG 0.421 ± 0.033
#RS 0.574 ± 0.025

#BM 0.610 ± 0.028

Locality-based
Tanimoto distance VAE dissimilarity

#Circles 0.831 ± 0.008 0.745 ± 0.014
SMILES

Richness -0.207 ± 0.025

3In the original text, the authors suggest a similarity threshold
of 0.40 that is equivalent to a distance threshold of 0.60.

C.3. Random Subsets with Growing Sizes

In this experiment, we repeat Algorithm 2 for ten times to
obtain reliable DTW distances.

Algorithm 2 Calculating exploration measures for random
subsets with growing sizes.

Input: The maximum subset size n; The bio-activity
dataset {(xi, yi)}10K

i=1 where yi 2 Y are bio-activity labels
and |Y| = 50; K exploration measures {µk}Kk=1.
Sample a number m uniformly from {1, . . . , 50}.
Sample m labels Y 0 from Y .
for i in {1, . . . , n} do

Sample an unseen molecule xi whose label is in Y 0.
Set Si := {x1, . . . , xi}
Compute GS(Si) and µk(Si) for k 2 [K].

end for
Plot exploration measure curves for GS and {µk}Kk=1
where the x axes are i 2 {1, . . . , n} and the y axes are
exploration measure values GS(Si) and µk(Si).
Transform the cumulative curves into incremental ones.
Calculate DTW distances between incremental curves.

Experiment results. To mimic the way in which gener-
ation models propose new molecules, in Algorithm 2, we
require the newly sampled molecule xi to be similar to the
already sampled molecules {x1, . . . , xi�1}. The specific
implementation can be found in our code4. Moreover, we
also test the following two cases: (1) All molecules are
sampled uniformly; (2) The newly sampled molecule xi

have to be most similar to the already sampled molecules
{x1, . . . , xi�1}. The results of DTW distances for these
two cases are shown in Figure 11.

From Figure 11 we can see that, #Circles performs the best.
Also, as the new molecules to add become more similar
to the existing ones, the advantage of #Circles over other
measures becomes larger. This makes #Circles especially
suitable for measuring molecular generation models.

4The code will be released after publication.
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(a) The new molecule xi is uniformly sampled from all unseen
molecules.

(b) The new molecule xi needs to be similar to the already sampled
ones x1, . . . , xi=1.

(c) The new molecule xi needs to be most similar to the already
sampled ones x1, . . . , xi=1.

Figure 11. DTW distances between the gold standard GS and ex-
ploration measures in the growing-size random subset setting. The
maximum size is set as n = 1000. A smaller distance indicates the
better. The average results are obtained by running experiments
independently for ten times.

DTW distances between exploration measures. We vi-
sualize the pairwise DTW distances between exploration
measures in Figure 12. From the figure, we can see that
the gold standard GS and the #Circles measure are almost
similar to each other in the growing-size setting.

In addition, we find the Richness, SumDiversity, SumDiam-
eter, SumBottleneck, and #BM are forming a large cluster,
while #FG and #RS tend to be similar with each other.

Figure 12. DTW distances between exploration measures in the
growing-size random subset setting. The maximum size is set as
n = 1000, and the new molecule needs to be similar to the already
samples ones. A smaller distance indicates the better. The average
results are obtained by running experiments independently for ten
times.

Threshold t for #Circles. The #Circles threshold t is
selected to minimize the DTW distance to the gold standard
GS. Taking the second scenario as an example, we test
different t values as Figure 13 displays and select t = 0.76
as the threshold. For the first and the third scenarios, the
threshold is set as t = 0.84 and t = 0.78 respectively.

Distance metric d. We also study the impact of distance
metric d. In Table 4, we listed the experiment results for
both fingerprint-based Tanimoto distance and VAE-based
latent space dissimilarity (Samanta et al., 2020). We find the
experiment results obtained with the VAE dissimilarity re-
main consistent with the results obtained with the Tanimoto
distance.
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Figure 13. DTW distances between the gold standard GS and the
#Circles measure in the growing-size random subset setting with
different threshold t. The maximum size is set as n = 1000, and
the new molecule needs to be similar to the already samples ones.
A smaller distance indicates the better. The average results are
obtained by running experiments independently for ten times.

Table 4. DTW distances between the gold standard and exploration
measures in the growing-size random subset setting. The maxi-
mum size is set as n = 1000, and the new molecule needs to be
similar to the already samples ones. A smaller distance indicates
the better.

Distance-based
Tanimoto distance VAE dissimilarity

Diversity 18.668 ± 6.973 30.063 ± 4.284
SumDiversity 5.425 ± 0.404 5.484 ± 0.296

Diameter 17.299 ± 4.801 28.071 ± 3.917
SumDiameter 5.328 ± 0.396 5.472 ± 0.297

Bottleneck 38.668 ± 5.769 37.168 ± 5.422
SumBottleneck 5.167 ± 0.353 5.432 ± 0.293

DPP 18.845 ± 3.962 12.052 ± 2.176

Coverage-based
Fgragment

#FG 3.797 ± 0.295
#RS 4.382 ± 0.247

#BM 5.365 ± 0.396

Locality-based
Tanimoto distance VAE dissimilarity

#Circles 2.173 ± 0.910 2.470 ± 0.629
SMILES

Richness 5.454 ± 0.347

D. Molecular Generation Experiment Details
We implement the MARS baseline (Xie et al., 2021) by
following the official code provided by the author and set
the hyperparameters as default5.

For the model variants, we test different ↵ values from
{0.1, 0.3, 1.0, 3.0} and report the best performance. Specif-
ically, we use ↵ = 1.0 for MARS+Diversity, ↵ = 0.3 for
MARS+SumBottlenck, and ↵ = 0.1 for MARS+#Circles.
The threshold we use for the #Circles measure is t = 0.60.

The computing server has two 2.4 GHz Intel Xeon Gold
6148 CPUs, 192GB memory (about 50G used), and one
NVIDIA Tesla V100 GPU with 16G memory. It takes
approximately 40 hours for the MARS model to sample in
total 10M molecules within 2000 steps.

We show the molecular clustering results in Figure 14. Clus-
ters are calculated based on Morgan fingerprints of the gen-
erated molecules and their Tanimoto similarity. Compared
to the baseline model, a larger number of clusters can be
obtained from MARS+SumBottleneck.
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Figure 14. Hierarchical clustering results of generated molecules.
Different colors stand for different clusters. The clustering thresh-
old is set as 0.7⇥ the height of the highest linkage in accordance
with SciPy’s default value.

5MARS code: https://github.com/yutxie/mars.

https://github.com/yutxie/mars

