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Abstract

General soliton solutions to a nonlocal nonlinear Schrodinger (NLS)
equation with PT-symmetry for both zero and nonzero boundary conditions
are considered via the combination of Hirota’s bilinear method and the
Kadomtsev—Petviashvili (KP) hierarchy reduction method. First, general
N-soliton solutions with zero boundary conditions are constructed. Starting
from the tau functions of the two-component KP hierarchy, it is shown that
they can be expressed in terms of either Gramian or double Wronskian
determinants. On the contrary, from the tau functions of single component
KP hierarchy, general soliton solutions to the nonlocal NLS equation with
nonzero boundary conditions are obtained. All possible soliton solutions to
nonlocal NLS with Parity (PT)-symmetry for both zero and nonzero boundary
conditions are found in the present paper.
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1. Introduction

The study of the nonlinear Schrodinger (NLS) equation and its multi-component generaliza-
tion lies at the forefront of research in applied mathematics and mathematical physics. This
is the case since they have been recognized as generic models for describing the evolution
of slowly varying wave packets in general nonlinear wave systems [1-3]. In 1972 Zakharov
and Shabat found that the NLS equation possesses a Lax pair and can be solved/linearized by
inverse scattering [4]. Motivated by these results in 1973 Ablowitz, Kaup, Newell and Segur
[5] generalized the linear operators used by Zakharov and Shabat; they showed that the NLS,
sine-Gordon [6], modified-KdV, KdV all could be solved/linearized by inverse scattering.
Soon afterwards in 1974, AKNS [7] developed a general framework to find integrable sys-
tems solvable by what they termed the Inverse Scattering Transform (IST). The method was
associated with classes of equations (later called recursion operators) and was applied to find
solutions to the initial value problem with rapidly decaying data on the line.

The NLS and coupled NLS equations arise in a variety of physical contexts such as nonlin-
ear optics [8-12] , Bose—Einstein condensates [13], water waves [14, 15] and plasma physics
[16], amongst many others.

The idea in [7] was to consider the scattering problem

—ik X, t

vy =XV = <r(x, 1) q(ik )> " M

== (2 ) @
The compatibility condition of the linear spectral problem (1) and (2) leads to

ig, = qu — 2rg°,

{i];r, zqrxx — 2(;2. 3)
Under the standard symmetry reduction

r(x,t) = oq*(x,1), o==l, (4)
the system (3) gives the classical NLS equation

iq/(x,1) = qu(x.1) = 20¢" (x.1) ¢* (x. 7). Q)
Recently, an integrable nonlocal NLS equation

iq1(x,1) = qua(x.1) = 20" (=x.1) ¢*(x.1) (6)
was found in [17] under a new symmetry reduction

r(x,t) = o¢g*(—x,t), o==+l. 7

This nonlocal equation is shown to be related to an unconventional magnetic system [18]. It
is parity-time (PT) symmetric, i.e. it is invariant under the joint transformations of x — —x,
t — t and complex conjugation, thus is related to a hot research area of contemporary physics
[19, 20]. Due to this potential application, it has been shown that different symmetry reduc-
tions from the linear problem of general AKNS hierarchy and other integrable hierarchies can
also lead to various types of new nonlocal equations, which have been extensively studied
[21-57]. Typical examples are the reverse space-time nonlocal NLS equation and the reverse
time nonlocal NLS equation, the complex/real space-time sine-Gordon equation [21-24], the
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complex/real reverse space-time mKdV equation [21, 22], the nonlocal derivative NLS equa-
tion [34], and the multi-dimensional nonlocal Davey—Stewartson equation [22, 27]. On the
other hand, corresponding to the classical semi-discrete NLS equation [58, 59], the nonlocal
NLS equation also admits its semi-discrete version [26] and multi-component generalizations
[22, 36].

It has been known that the inverse scattering transform (IST) has been successfully
developed for the NLS, coupled NLS, as well as their semi-discrete analogues [60-70].
Moreover, the IST to solve the initial-value problem with vanishing boundary conditions
for the nonlocal NLS equation has been developed in [17, 21, 22]. For pure soliton solutions
corresponding to reflectionless potentials, one obtains one- and two-soliton solutions; these
solutions can have singularities. In particular, the decaying one-soliton solution is found to
be [17]

2(n+ 77)67277x74i772t+i0
T o2t d(n—nd)ti(0+9)

®)

This solution is singular at x = O when 7 # 7 and 4(n> — 7%)t + (0 + 0) = 2n7,n € Z. When
n=1,0+ 0 # 2nm,n € 7 the solution is not singular. It is also noted that the same solution
has been found in [48, 52] via Darboux transformations and AKNS reductions, respectively.

The inverse scattering transform (IST) to solve the initial-value problem with nonzero
boundary conditions has also been developed in [23]. To be specific, under the following
boundary conditions

g(x, 1) = g+ (1) = goe @ H0%) | as x — +o0, 9)
where gp > 0,0 < 61 < 27, the following cases are studied.

eog=—1,A0 =0, —0_ = 7: aone-soliton solution is found:

g = qoe' @0+ =) tanh[gox — i6,] (10)

where 6, = %(HJF + 6, + 7), where 6 is related to the associated scattering data (nor-
malization constant). This solution is stationary in space and oscillating in time.

e 0 = —1, Af = 0: in this case, there is no ‘proper exponentially decaying’ pure one soliton
solution. The simplest decaying pure reflectioness potential generates a two-soliton solu-
tion.

e 0 =1, Af = 0: in this case only an even number of soliton solutions arise; they are
related to an even number (2N) of eigenvalues.
e 0 = 1, Af = m: in this case, there is no eigenvalues/solitons.

Regardless of the success of the IST for the nonlocal NLS equation, it is still not easy to come
up with its general soliton solution in closed form by this method. On the other hand, Hirota’s
bilinear method is a direct and powerful method in finding multi-soliton solutions to soliton
equations [71]. In the early 1980s, suggested by Hirota’s direct method, Sato discovered that
the soliton solutions to the Kadomtsev—Petviashvili (KP) equation and its hierarchy (named
tau-functions afterwards) satisfy the so-called Pliicker relations, and found that the totality of
solutions to the KP hierarchy forms an infinite dimensional Grassmann manifold [72]. This
is called Sato theory later on. Soon afterwards, Ueno and Takasaki extended Sato theory to
include two-dimensional Toda lattice (2DTL) hierarchy [73]; Date, Jimbo and Miwa further
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developed Sato’s idea with transformation group theory, and presented Lie algebraic classifi-
cation of soliton equations [74, 75, 76].

The KP-hierarchy reduction method was first developed by the Kyoto school [74], and
later was used to obtain soliton solutions in the NLS equation, the modified KdV equation, the
Davey—Stewartson equation and the coupled higher order NLS equations [77, 78]. Recently,
this method has been applied to derive dark—dark soliton solution in two-coupled NLS equa-
tion of the mixed type [79]. Unlike the inverse scattering transform method [60], and Hirota’s
bilinear method [71], the KP-hierarchy reduction method starts with the general KP hierarchy
including the two-dimensional Toda-hierarchy [80] and derives the general soliton solution in
either determinant or pfaffian form reduced directly by the tau functions of the KP hierarchy.
In spite of many successes of the KP-hierarchy reduction method, constructing general soliton
solutions by this method to the nonlocal NLS equation remains an unsolved and challenging
problem, especially for the nonzero boundary conditions. The difficulty lies in the simultane-
ous realization of both the nonlocal and complex conjugate reductions. Therefore, it motivates
the present work, which intends to construct general soliton solutions in determinant forms to
the nonlocal NLS equation with both the zero and nonzero boundary conditions.

In the present paper, we find solitons that are both decaying and have nonzero boundary
values. For the decaying boundary condition, we construct the general N-soliton solutions
expressed in both the Gram-type and the double Wronski-type determinants. The explicit one-
soliton solution agrees with the solution found by the inverse scattering transform [17, 57],
which is also listed in (8). For the nonzero boundary condition, the general soliton solutions
are constructed for all cases except for the case: ¢ = 1, A = 7w where there is no soliton solu-
tion. To be specific, for the case of o = —1, A = 7, the solution (97) is the same as above;
for the case of o = 1, A =0, it is true that only the determinant soliton solution 2N x 2N
can be constructed, which is consistent with the fact that only the even number of soliton
solutions with an even number of eigenvalues exist. The simplest solution based on the tau-
functions found here corresponds to (5.90) in [23] but with a simpler form. Finally, for the
case of 0 = —1, A = 0, the soliton solution (108) found in this paper is the same as the one
found in [23].

The outline of the present paper is organized as follows. In section 2, we construct the
bright soliton solution to the nonlocal NLS equation with a zero boundary condition. Both
the Gram-type and double Wronski-type solutions start from the tau functions in Gram-type
or double Wronski-type of two-component KP hierarchy. In section 3, general multi-soliton
solutions for the nonlocal NLS equation of 0 = 1 and of 0 = —1 are constructed, which
recover all possible solutions found in [23]. The paper concludes with comments and remarks
in section 4.

2. General soliton solution with zero boundary condition

In this section, we consider general soliton solutions to the nonlocal NLS equation (6) under
the boundary condition g(x, ) — 0 as x — 4co. This type of soliton solution is usually called
bright soliton solution. We first give the bilinear forms for the nonlocal NLS equation (6). By
introducing the dependent variable transformation

gl 1)
900 = ey

the nonlocal NLS equation (6) is converted into the following bilinear equations

(11)
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{(iD, —D)g(x,1) - f(x,1) = 0, (12)

D3f(x,1) - f(x, 1) + 20g(x, t)g*(—x,t) = 0,

where Hirota’s bilinear operator is defined as

o o\ /o oY)
DD (x.1) - glx.1) = (8 - a) (at - at) Fx g 1)

x=x't=t'

Similar to the classical NLS equation, the bright soliton solutions to the nonlocal NLS can be
obtained from the tau functions of two-component KP hierarchy. It is known that the tau func-
tions have two different forms: one is the Gram-type, the other is the Wronski-type. They are
basically equivalent, however, each form has advantage and disadvantage in view of different
symmetries. In what follows, we will derive two types of soliton solutions via KP hierarchy
reduction method.

2.1. General bright soliton solution expressed by Gramian determinant

In this subsection, we will construct soliton solution in terms of Gram-type determinant. To
this end, let us start with a Gram-type determinant expression of the tau functions for two-
component KP hierarchy,

0 = |A], (13)

A o7

A uT
-v 0 B

% 0 (14)

n=| C e

where the elements of matrix A are

e§i+'§j 4 1 eerﬁj

a;; = — —
Di + Dj qi + g
with
& = pixi +p,~2x2 + &io E, = pjXi —13]2x2 + gjo,
i = qiy1 + Mo, 7 = gjy1 + 7o,
and the superscript T represent the transpose, P, ®, U, U are row vectors defined by

P = (eEI’_,, 7e£/v) , U= (em’,,_ ’enN)’

d— (e&’... ’CEN)’ b= (M, o &)

It can be shown below that the tau functions given above satisfy the following two bilinear
equations

(sz - D)%I)Tl . TO - 07
(15)
DxlDy]T() s T — —2’7’17',1.

The proof is given as follows. Since
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A T A o T
8X1T0 = ‘—(I) 0 N 6)“8),17'0 = —(? 0 0 N
-v 0 0

then based on the Jacobi identify for the determinant, we have
(204,04, )10 % T = 2(0x,10) X (Ox,Ty) — 271 X T_1,

which is exactly the second bilinear equation.
Moreover, we can easily verify the following relations

oo |4 of A o
2= 5 0 -, 0}
A PT A or A @7
2 _ X1 X1 — X1
hn=\_5 o ‘—i)xl 0l a’”“‘—\i 0
and
A o T
2 T . A (I)){x
Fm=|-® 0 0|+ o o
v 0 0
Aol ey o
domi=—|=® 0 0 |+| o "
-¥ 0 0

where ®,, and ®,,,, represent the first and second derivatives of ® with respect to x;, respec-
tively. Therefore we have

A @
2 1
(8x2_8X1)T0:2’_\Ij (;C ’
A o o]
(O =) =-2|-¢ 0 0
- 0 0

From the Jacobi identity for the determinant, we have
((8):2 — 851)7'1) X To = ((GXZ — 831)7'0) X T — 2<6x17-l) X (8)(17'}00)

which gives the first bilinear equation. The proof is done.
Next, we show the reduction processes. By row operations 7y can be rewritten as

N B N ) | |
— S+ |4 — I | §tE
70 = He ‘auylgiygN - €
Jj=1 Jj=1

S fe(ni_fi)"!‘(ﬁj_gj)
pi+pi qitg

where

N —&=qyr —piX1+---, ﬁj*f_jic_]jylfﬁjxlﬂL"'-

Thus if we impose constraints on parameters
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g =vpy G =pbj» J=1-,N, (16)
then the following relation holds

(axl + aY1)az/'j =0
which implies

N
(O + )10 =D (P + D)7 (17)
j=1

Consequently, the second bilinear equation in (3) becomes
D} 1T =27T_). (18)

Due to the dimension reduction (17), y; becomes a dummy variable, which can be treated as
zero. We then have the following Lemma.

Lemma 2.1. Assume x; = x is real and x, = —it is a purely imaginary variable. If p; and
pj(j=1,---,N) are real, njo, Mjo are purely imaginary, or the subset of (pj, njo) or (p;, 7jo)
occurs in pairs such that py = pj., Mo = Mo OF Pk = Pios Tho = Mgy then

To(x, 1) = C15(—x,t)  7-1(x,1) = C1y' (—x,1), (19)
where C = C;Cs, C; = H,N=1 e&+8) C, = Hj"zl e (1 +7).

Proof. First, we prove the case when p; and p; are all real, 1, Mio are all purely imaginary.
In this case,

& =px—ipit, mi =6,
& =ppx+ IP, i = i6;,
it then follows
§(—xt) = =&xr), &(x1) = &)

We note that 7y (x, ) can be rewritten as

N

_ — . 2 =2 H 0
o, 1) = [ [ et |——— (1 4 e~ (Pp)etipl —2)ii@A0) |
]‘1:[1 Di +pj
N _
H i(0,40;) —(1+ e(Pi+1’.f)x—i(P?—Pf)’_i(ngref))’ > 20
- Di +Dj

which implies

N
T (=x,1) = Hef(ﬁﬂré)
j=1

i+P))x—i( p>—p>)t—i(0:+6;
o (1 ey <o,+e,>)" e

Therefore 79(x, 1) = C75(—x,1). On the other hand,
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) . _ =
(e(p’ﬂ)j)x (i =p))t + e‘(9f+9f)) e PiX—iplt
T1(x, 1) = P1+p] ’
_619, 0
_ ﬁ i(0,46)) p[+p (1+ e&it&—i(0:i+6; )) eEiif;
Jj=1 —1 0 ’
= lN_[e(ff+5j) pl+p,( + e~ G—GHO+ )) 1 o)
=1 —e— &t ol
j=
) pl+p] (PP x—i(PI=PD | (i(0+0)) it
T (% 1) = . At
5 (&+8) p+p (14 e &= H(O46))  o—&itio,
H J —1 0 (23)
Therefore
&i+E—i(0;+0;
T (—=x,1) He(ﬁﬁﬁ/) (—x.1) p,+p,(1 4 eSit& i)y
1 _egjfle/ 0 5
Jj=1
- —i(0;4)) ,ﬁﬁ(l + e G GHOH0)) =Lt
L J -1 0 (24)

Obviously 71 (x,1) = C7;*(—x, ). Next we prove the case where there are pairs of wave num-
bers pi, p, Pr, Pr Such that py = pi, pr = pj,. Moreover, nwo = —1, ko = —1jo. Note that
Dk» Dk’ OF Py, P being real; mro, Mo OF k70, ko being purely imaginary is simply a special case.
Under this case, we also have & (—x,1) = =& (x,1), & (—x,1) = —&v (x,1), thus

To(x, 1) = o (ST 4 emotivo)
0\As , ,
o +pk (efk +§A + el o+7lA0)
4& (1+ e€k+Ek'_nk0_nk’())
_ PkTPy!
o C2 + (1 + e‘Ek/J’_gk 77k'r)+77k0)
P/ TPk
%(] + e-(&-’-éu-ma-@m))
— Cl PkTDPy . _ -
— (& +E&—Mwo— ko)
Pk/+f’k(1+e VST 0T )
EF (1+ e*(fkmLék*m/o*ﬁko))
— Py’ TPk
=G L (1 4 em@tEomma=no)| (25)
PrTPys
Therefore
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1 (] + e(§k+§_kr—77ko—’7]m))

* _ 1| ptpr
7 (—x1) = C 1 — (& —mmo—Tio) | (26)
P (1 4 e~ & F&r —mo=Two))
We again found 79 (x, r) = C7;(—x, t). On the other hand,
m-—iﬁk/ (efk+£k/ 4 eﬁko-‘rﬁyo) 7 . ek
T (x, [) = L. W%ﬁk (efk/ +&k + eﬁm)"’ﬁko) 133%
_efin _eo 0
1 £ — — Tt e — Mk
ot (1 + eSt&w —mo—Tio) e e o
— 1 ’ — M o— 1 =Mt
=0 . o (] + g8 TE&—mo mo) e&v —Mo
—1 -1 0
1 — € — Mo — Tyt
Em (1 4 e~ &+ —mo—1y o)) ) 1
— 1 — (& ]
=C Pk/Jrﬁk(l +e (& +E&—mw0 Wko)) 1
—eo —eho 0
1 — (& +E—mpro—T0
P (1+e (& +&—nwo leo)) ) 1
— 1 — (& =Mk — Tt
=C; ... P (1+e (&et&wr —mo— Tl o)) 1!,
_eﬁko _eﬁklo 0
Pk‘:i’k’ (eﬁﬁ—gkf + emu+ﬁuo) 7 . e
T_1 (x’ t) = R ; Lﬁk (efk’+5k + e"lk’oJrﬁkD) e'l'o
— (3 —
_e§k' _eék 0
m(l + e-(ﬁy—i—&—mm—f]ku)) .. 7 e~ o
=C e Pk‘;ﬁk/ (1 4 e~ &+ —mo=Two))  g=&+mo
-1 -1 0
Thus
1 € —Mko— T —
ot (1 4 & & — o= 0) ce e&k—ho
—1 s+ E—10—1] =M
Til(*x,t) = Cl pyi—ﬁk(l _|_efk +&—wo "IkO) efk Mo | .
-1 —1 0
We again found 7_; (—x, ) = C7{*(x, t). This completes the proof. O

Following above Lemma, if we define 79(x,7) = VCf(x,1), 71(x,1) =

VCg(x.1),

T_1(x,1) = v/Cg(x,1), then we have f(x,t) = f*(—x,1), g(x,t) = g*(—x,), which lead to the

following bilinear equations
(iD, — DY)g(x.1) - f(x.1) =0,
D3f(x,1) - f(x, 1) — 2g(x,1)g"* (—x,1) = 0.

Moreover, if we define

q(x.1) =

5393
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we then have

r(x,t) = —q*(—x,1). (29)

In summary, we have the general N-bright soliton solution (28) to the nonlocal NLS equa-
tion (6) with 0 = —1.

1 1 N2 o _
f(x, l) - 7_(6(Pi+17j)x_1(ﬂi —p; )t + e(ﬁi+nj)) (30)
VC |pi+ P NXN
g(x t) _ 1 [ﬁ@(e@ﬂrﬁj)x*i(?f*ﬁfﬁ + e(ﬁi+77/)) ePiX*iP?’
| VC —e'l 0
(N+1)x (N+1) 31
In what follows, we list one- and two-soliton solutions:
One-soliton solution:
flx,t) = p j_ﬁ e—1(&+&—i1—if) (1 + e(pl+ﬁ1)x—i(p§—ﬁ§)t—i(al+él)) (32)
1 1
g(x’ t) _ e*%(51+§1+191+i§1)eP1X*iP%l+i§1_ (33)
So
= plx—ipzt—iOI
q(x,t) _ (pl +P1)e 1 (34)

1+ e(pr+p)x—i(pt—p)1—i(61+6)

if we let py = =20, py = —2n, §; = —0 +m, 6; = —0, then above solution exactly
recovers the one-soliton solution found in [21], also mentioned in the introduction.

Two-soliton solution:

1 £14& 710+1710 1 &i1+& M10+17720
f: ’I’H—I_’l(e _ +e ) !’|+l32(e _ +e )
1 &+& 120 +710 1 &+& 720+720
P2+p1 (e +e ) P2+p2 (G +e )

=D (1 4 e{u+§|+£z+§727mo*ﬁm*nzo*ﬁzo 4 (P1 +[72)(P2 +ﬁ1) <e§|+f|7mo*ﬁw 4 efz+fz*7720*ﬁzo)
(p1 —p2)(P1 — P2)
+M (e§|+§2*n10*ﬁzo + e§2+§|*n20*ﬁ10>) , (35)
(p1r=p2)(P1 —P2)

1 (e51+5_1 + emo+’7]10) 1 (e§1+§_2 + eflm+7720) 651

p1+p1 B pi+p2 B
g= ;#[n(efﬁfl + en20+7710) [#ﬁz(eﬁzw%z + enzo+7720) 33
_e'o _e'0 0
=D ((Pl +ﬁ])(p2 +i)1)e§1+§2+52—n10—ﬁzo—ﬁzo + (P] +[31)(P1 +Z)2)e£1—mo)
P1—Dp2 pP1—Dp2
_ ((Pl +p2)(p2 +l_72)e§]+§2+§_2777107'q207ﬁ20 I (p2+p1)(p2 +ﬁ2)egrnm) ’ (36)
Pt — D2 P1—Dp2
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where

D— [ C2 (p1 —p2)(P1 — P2)
Ci (p1+p1)(p1+p2)(p2+p1)(p2 + P2)
Two soliton solution could have the following cases:

(i) p1.p2,p1, P2 are all real and 710, 720, 710, 7720 are all purely imaginary.
(ii) p1,p2,P1,P2.M0s 10, o, Tooareallcomplex, p1 = p3,p1 = Py, M0 = —15s 10 = Tg-
(iii) p1,p2, Mo 2o are complex number, p; = p3, M0 = —13; P1, P2 are real and 710, 720
are all purely imaginary.
(iv) p1. P2, Mo, 7o are complex number, p; = p3, 10 = 75; P1, P2 are real and 11, 120 are
all purely imaginary.

It is noted that all above four cases regarding the bright soliton solution to the nonlocal
NLS equation have been recognized in [57], their dynamics and singularities have been dis-
cussed in details there.

2.2. General bright soliton solution expressed by double Wronskian determinant

Alternatively, we can also present the general bright soliton solution to the nonlocal NLS
equation (6) in terms of the double Wronskian determinant. To this end, we start with the tau
functions for two-component KP hierarchy expressed in double Wronskian determinant

0 N—1 0 M—1
R A LR
0 N—1 0 M—1
T
INM = . ) ) . ) - (37)
(0) (N—1) (0) (M—1)
¢N+M ¢N+M wN+M ¢N+M (N+M) x (N+M)

here ¢ and 1) take the form
o =plet, " = glen,
with
G=pxi+pix+&it-. m=gqy it
The above tau functions satisfy the following bilinear equations
(D, — D,%I)TNJrl,Nfl ~Tvn =0,
(Dx, = D) 7vn - TN—1n41 =0, (38)
DDy NN - TNN — 2TNHIN—1TN=1N+1 = 0.

The proof of above equations can be done by using the determinant technique [71], which
is omitted here. In what follows, we will perform reduction procedure from bilinear equa-
tion (38) to the bilinear equation (12). For the sake of convenience, we take the following
abbreviation

wm =10, ,N—1,0,---,(M—1)].

First, we consider the dimension reduction. Imposing the condition N =M and ¢g; = p;
(i=1,---,2N), we then have
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2N

(@ + 0w = | D_pi | Tuw (39)

j=1

Under this reduction, y; becomes a dummy variable, which can be taken as zero. Applying
variable transformations

X| =X, Xxp= —it, (40)
which implies

Ox, = Oy, Oy, =10, 41
then the bilinear equation (38) can be rewritten as

(iD, — D?)Tny1n—1 - Twn = 0,

(iD; — D3) 7w - Tn—1n41 = 0, (42)
D;%TN,N “TNN + 2T iN—1TN—1N+1 = O.
Lemma 2.2. Assume x; = x is real and x, = —it is a purely imaginary variable. Suppose

there are K pairs of wave numbers (py, Mro) and ( pr, o) for k =1, -+, K such that py = pj,
Mo = Mg OF Pk = Pisy Tko = Tgs and the rest of wave numbers p; and pj are real, nj, 7jo are
purely imaginary. Then

v (x. 1) = C'(—=D)ME7  (—x. 1), (43)

v (6 1) = C (=D)L (), (44)
where C' = [, e&it) =,
Proof. We only give the proof when p; and p; are real and 7y, 7jo are purely imaginary.
Under this case, & (x, ) = pix — ip?t = —&/(—x, 1), then it can be shown
N1 (1) =0, N =20/, N’

_o &l
- ‘ew,o,... PV % i0

i N
,€ o Lpi €
N
— Hefi(x,t)flgi
i=1

N
= (~1)V [ b0 )e,&(x,,), o ple G g0 L N2

i=1

N
= (DN Heg"(x”)_ig" )egf*(_)‘"), AT S L Y e
i=1

s

—i0,v’
,

i6; N—2i6; —&(xt N o —&i(xt
Q. 20 o) L pNe6i(e)

>

s

b}

= ()M (). (45)

TN+1N—1
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TN,N(XJ):‘O"" N —1,0,--- y(N—l)/|,

i(xt N—1_&(xt) L—i0; N—1,—i6;
’éQ%“nm eSilu) =it . pN=Tg

N
I
i=1

N
= (—1VH Hef,(x,t)fie,v ‘e—f,(x,t), o pN e it L N1
i=1

s

i0;
eV, p N

i\l—]el@[’ eff[(x,t)’ . ?/—lefﬁ,»(x,t) ,

s

F(—xt N—1_&"(—xt) Li6; N—1,i6;
o (u) . pN=IeE (1) gl . )

N
_ (_1)N H e&,(x,t)fi&'

i=1

= (=) y (). (40)

€

s

For the case of complex conjuate wavenumber pairs, it can be approved the same way as the
Lemma in previous subsection. So we omit the proof here. [

Therefore if we define 7yn(x1) =VCf(x,t), Tnpin—1(x1) =+vVCgx,1),
TN—1N+1(x, 1) = —v/C'g(x, 1), then the following bilinear equations follow

(iD: — D2)g(x.1) - f(x1) = 0,
47)
D (x,t) - f(x, 1) — 2g(x,1)g* (—x,t) = 0.
Moreover, if we define
8(x.1) 8(x.1)
qlx,t) = , rix,t) = R 48
(x.7) Foo ) (x.1) Foo ) (48)
we then have
r(x,t) = —q"(—x.1). (49)
To summarize, we have the general N-bright soliton solution expressed by
g'(x.1)
5t - 9
a0 = 7o (50)
where
Z(0 Z(N=1)  7(0 “(N—1
T S /P E
~§o) o ~£N—1) ~§0) o ~§N—1)
flen=1" . : . : ; (51)
70 . ZWN=1)  5(0) o T(N=1)
2N 2N 2N 2N IN X 2N
7(0 Z(N) 70 (N2
O g e
(0 Z(N) 70 T(N—2
, I
g =" ) ) ) : ) , (52)
70 W) 70 T(N=2)
2N 2N 2N 2N [2Nx2N

here 3" and ¢ take the form
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~ x_ip? ~ i,
d)l(n) :p?epx 1plt’ wi(n) :p;1e i0;

In what follows, we will only illustrate one-soliton solution and make a comment. By tak-
ing N = 1, we get the tau functions for one-soliton solution,

13| —i6, . _— 53)
/ _|e e _ &6 10,10, &r—¢ (
fixe) = e emifs =T (1 e e )
&1 &
1 e pe &+
1) = = —p1)e . 54
g (x.1) & prel (p2—p1) (54
The above tau functions lead to the one-soliton as follows
(x t) B (p2 7p1)652+51 7 (pl fpz)e§1+i91 55)
X1 = 351—192(1 — ei92—i9le§2—51) o (1 — eigl—i‘gzefl—ﬁz)

By having p, — —py, 8 — —6, and 6, — 7 + 6, , above one soliton solution (55) coincides
with the one-soliton solution (34) obtained in previous subsection, thus the same solution
found in [21].

3. Soliton solution to the nonlocal NLS equation with nonzero boundary
condition

In this section, we consider the general soliton solution to the nonlocal NLS equation (6) with
the same nonzero boundary condition as considered in [23]

q(x,1) — pel*, (p>0) as x — oo, (56)

where Af = 0, — 6_ is either 0 or «. Similar to the classical NLS equation, to construct
soliton solutions of the nonlocal NLS equation with NZBCs, we need to start with the tau
functions for single-component KP hierarchy expressed in Gram-type determinants

Tk = |mij(k)|]<iJ<M 57
where
1 Di k 3
my(k) = c;j + _ <> bty (58)
i) = cy pi+pi \ b

&i =P,-_lx—1 + pix1 + pixa + o+
& =p; %1 +pixi —pia+ &t

Based on the Sato theory [72, 74, 75] or the Jacobi identity of determinants, the above tau
functions satisfies the following bilinear equations

{(sz = D2) T - =0,

DDy | — )Ty Th = —Th1 Tkt (59)
7 Vxi 1

As stated in the subsequent sections, above two set of bilinear equations will be the key in con-
structing soliton solutions to the nonlocal NLS equation. We also assume c;; = c;0;; hereafter.
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3.1. General soliton solution to the nonlocal NLS equation of o = 1, A9 = 0 with nonzero
boundary condition

The nonlocal NLS equation (6) of o = 1 is converted into a set of bilinear equations

{(iD,—Dﬁ)g-f:O, 60)
(D2 —=2p%)f - f = —2p%g(x.1)g" (—x.1),
via a variable transformation
X, 1)
q(x,t) :pg( ) 2p2t (61)

flx1)

under the condition f(x,#) = f*(—x,t). Here p is a positive constant representing the ampl-
itude of the nonzero plane wave background as x — oco. In what follows, we will show how to
reduce the bilinear equation (59) to the bilinear equation (60) by the KP hierarchy reduction
method. We remark here that similar reductions starting from the (constraint) KP hierarchy
have been done to find various soliton solutions to the NLS equation in the literature [§1-84].

Firstly, we perform the dimension reduction. Note that, by row operations, 7 can be rewrit-
ten as

N N k
_ - - 1 .
T8 |t | = T8 |essye— (@9 4 L (Jﬁ) . 62
Tk Jl;[l | ]’ ]1;[1 ij Pt P 2 (62)
Since
0 _
(O, — p*0r_)m = (pi +P)) (1 - ) cide (G, (63)
’ PiPj
thus, if we impose the constraints
ppi=p> Jj=1,--.N, (64)
then
Omiy = p*0_,mi, (65)
which leads to
O = 2Ok, Th. (66)
Therefore, the bilinear equation (59) become
(sz —D)%I)Tk-&-l -1 =0,
2 > P (67)
(Dx] — 2p )Tk Tk = —2p Tk+1Tk—1-
Furthermore, we assume x; = x, x, = —it and define
T0(x, 1) = Cf (x,1), 71(x,7) = Cg(x, 1), 7—1(x,1) = Cg(x,1), (68)
with C = vazl e&14, then the bilinear equations become
{0, -t 1) —o. )
(DF = 2p°)f(x,1) - f (1) = —2p%g(x, )& (. 1).

Lemma 3.3. Consider 2N x 2N matrices for f(x,t), g(x,t) and g(x,t). If p; = p; to be the
complex conjugate of pj, let cyyj = —cj, pn+j = —pj to be complex, for j=1,--- N, and
Eon+j = & to be real, then we have
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fxt) =f"(—x1), glxt)=g"(—x1). (70)
Proof. Since
&+ &) 1) = (pi+p))x— (p; = (p)))it + &oi,
and
F 2 24
(Ensi + Enei) (6 1) = (pyyi + Pyai)X — (P — (Pyai) )it + Sonvri
= —(pi+pi)x — (pi — (p7)?)it + &,
so we have
(Evti + v () = (G + &) (—x1), (& + &) 1) = (Engi + Evg) (—x.1).
Note that
S.e—(&+E) 1 _ 1
Cl(slje i)+ [71"‘1’[7]-* p’_+p;\f,+j
flxn) = 1 Cn s v s e~ (ENiTENE) N —
P+itD] NHONFLN+] PN+iTPR 4 1<ij<N
. o a—(EvpitEv) o 1 _
_ CN+l5N+l’N+Je i PN+iTDPN PN+itD]
B 1 .o (&itE) _1
PitPy cidye U
_ox8.a—Evpitivy) _ 1 __ 1
_ | gyeT TRy pitp; Pitpi
- 1 _* e (&) 1
pN+itp] CN+56’Je ! PN+itDN
* 5. a—(Enritén) 1 1
_[GrogeT T A PP (71)
- _ * . a—(&+E) 1
py+itp] CN 0/ "+ PN+itPy
On the other hand,
Soa—(&+E) 4 1 1
_ Cléye 7+ pitp; Pitry;
f(x’ t) B 1 Y a— (EntitEnt) + 1
PP, CN+ION+iN+ P+t PRy
..o~ (E+E) S
_ ¢joje™ T Pitp; PPN
= 1 (v : 1 ’
o N4 jON e Ettene) 4 P (72)
thus
¢j0e~ (&) (=) 4 o S
f*(fx, t) _ | j N+j 1 (73)

pN+itD]

CN+jON-+jN+i€

—(Ev+itEni) " (—xit) 4

PN+iTPy

Obviously f(x,t) = f*(—x,1). Next, let us proceed to prove g(x,t) = g*(—x,1). Note g(x,17)

can be written as
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1
(1) cidjj ( )e (&+8) +5 p* PP
glx1) = ' /
1 Pt | o= (Enpiténey) 4 1
PN+itP] CN+’6N+'N+/ ( > + PN+,+PN+,
. S Di it N S 1
_ CN+iON-+iN+ ( Pas ) e (vt 4 ﬂ~+l+ﬁ~+, P+t
N 1 5o (—p) o (6tE)
pitpy; 6’6’/( r ) +p, +p;
c¥ (Entitensi) _ 1
_ 5’/ ( p; )e ! p,+p, Pitpyy;’
I U P e—E+E) 1|’
PN+itP] CN+i ( P;.H) ON-+iN+/€ PN+iTPN
* 5 EntitE .
_erdn (=5 pr) et A7 Ry (74)
1 e (=2 ) Gyinge e ¢ 1|
Pnyitp; N+i pN+ TN+ pN+z+pN+,
thus
S Pi ) a—(Entitén4i)* (—x1) 1
(o) = cidjj ( ) e j + 7 +p, R~
’ S (P —(EGHE) (x) f 1
Py4itpi ONi ( DPN+j ) 5 € + pN+1+pN+J
(75)
On the other hand,
0\ e (6+8) 1 1
g(x, 1) = €y <7ﬁ> et pitp; PitpPyy;
> b)) = -1 7 B
N . Y (B )\~ —(Evtitény) L 1
p"’+'+pf CN-4iONj N +i ( P?Cfﬂ) ¢ 7 PN+itPY 4
AN + 1
_ | ( b ) T 4 Pﬂrﬂ, o
1 I SN (. 25 R (VS BT S
e CN4ON-j N+i ( ”h:) e i + P +pN+/
Obviously g(x, 1) = g*(—x,1). O

Based on above Lemma, two sets of bilinear equations (60) and (69) coincide. In summary,
the nonlocal NLS equation admits the following general soliton solution with nonzero bound-
ary conditions.

8% 1) iy
qx,1) = po——=e, 76
fe) 7o
where
2 1
fl) = |eidze™ &) 4 = , (77)
pi D 0<ij<2N
_ Pio-etdy y 1
gl 1) = Jeiby | —— | e T + o (78)
pj pi T+ D; 0<ij<ON
with ey4i = —cf, PN+i = —Pi, {ongi = Eoi fori = 1,-- -, N. In what follows, we give explicit

form of the solution for N = 1 and detailed analysis. By taking N =1 in (77) and (78) and
p1 = pe % we get the tau functions
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—(&+&) 1 1
cie e pitp;
_ _ora—(&+&) 4 1
ptpy “ae T ptps

_ 2 1 _ . 2,
=—p 2(|cl|2pze4p tsin 20 + EPCI sec fe 2px cos 0+2p°tsin 26

1 .
4 EPCT sec 962pxcos 0-+2p°tsin 20 + CSCZ 29), (79)

—(@+&) L 1 (_p 1 _pn
cie T orr \ T ptrs \p;

8= -
1 _ P2 _o*a—(62+8&) 1 _ P2
patpy ( p.*) ce + P23 P>

Ze4p2tsin 20-2i6 1 —2px cos O4+2p’1sin 20

20 )=2( Fpeisec fe

—e le1*p

1 . .
. EpCT sec eeszCDS 0+2p%sin 20 + CSCZ 203210)' (80)

It can be easily shown that the resulting solution g(x,#) = p%eﬁpz’ corresponds to the

solution (5.90) in [23] with ¢ = 1 and A# = 0, and also the solution (12) in [31]. As analyzed
in [31], there are three different cases which include dark—dark, dark—antidark (the amplitude
of soliton is greater than the amplitude of the plane wave background) and antidark—antidark
soliton interactions. This is the new phenomena in compared with the classical NLS equa-
tion. It is also noted that the nonsingular condition for the solution was also given by (13) in
[31]. These three cases are illustrated in figures 1-3 below. Next, we investigate the asymp-
totic behavior of above two-soliton solution. To this end, we assume 0 < 6 < 7/2 without
loss of generality, and x = 2pcosf > 0. We define the right-moving soliton along the line
m = x — 2ptsin @ as soliton 1, and the left-moving soliton along the line 7, = x + 2ptsin 0
as soliton 2. For the above choice of parameters, we have (i) 171 ~ 0, 7, — Foo as t — F00
for soliton 1 and (ii) 72 ~ 0, n; — Fo00 as  — F00 for soliton 2. This leads to the following
asymptotic forms for the two-soliton solution.

(i) Before collision (t — —o0)
Soliton 1 (m; = 0, 9, = —o0):

csc? 6 — %pcl sec fe—rm—20

4 ei2p’1+4i0
csc2 6 + %pcl sec fe—+rm )
1 —2p|ey] sin? 6 cos Pe—rm —i(20—a) Jopevii o
1+ 2p|c] sin? 6§ cos fe—Em+id )
cosh(n; — n;,) — cos(260 —
g2 — p? (m — ) ( ) ' o

cosh(m — nyy) + cos ¢
Soliton 2 (1, = 0, n; — 00):

2 1% —Kkmp—2i0
csc” 20 — 3 pcy sec fe ci2PH4i0
b

csc? 20 + 1 pci sec Ge=rm

—) 1 —2p|ci] sin? 6 cos Pe—rm —i(20+) v o
1+ 2P|Cl | sin® 6§ cos fe—xm—id s
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Figure 2. Dark—antidark soliton with p =2.0,¢; =04 +iand § = 7/3.

Figure 3. Antidark—antidark soliton with p = 2.0, ¢; = —1.0 4+ 0.3i and § = /3.
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»cosh(n —n;o) — cos(26 + )

2
g =P = 84
g cosh(n —ny,) + cos ¢ &4
where e"0 = 2plc; | sin” @ cos 6.
(i1) After collision (t — o0)
Soliton 1 (1 = 0, 7, — 00):
lc12p? — $pct sec ferm+20 ot
lc1 202 + §pct sec Germ
2p|ei| cos fe=rm —i20=0) — | 202 1-+4i0 (85)
" 2pler| cos Pe—rmtie 4]
cosh(m — njh) — cos(26 —
|q|2 N p2 (771 771()) - ( (b) (86)
cosh(n —nfy) + cos ¢
Soliton 2 (), = 0, n; — —o0):
le1]?p* — %pcl sec fermt2i0 21
e 9
|c1[2p? + 3 pcy sec ferm
20Pﬁ|00596_“"“4@9+¢)—'1eﬁp%+4w (87)
2p|cy| cos fe—rm—i¢ 4 1
cosh(m — njh) — cos(26 +
|q|2 N p2 (771 771()) - ( (b)’ (88)
cosh(n —nfy) + cos ¢
where et = 2p|cy| cosb.
3.2. Soliton solution with nonzero boundary condition to the nonlocal NLS equation with
c=—-1,A0=n
In this subsection, we consider the soliton solutions to the nonlocal NLS equation witho = —1
igi(x,1) = que(x, 1) + 24" (—x, 1) ¢* (x,1) (89)

under boundary condition g(x,#) — p as x — 4o00. To this end, we introduce a variable
transformation

g('x’ t) eZiepzl
fx1)

with the condition f(x,f) = £f*(—x, 1), then the nonlocal NLS equation is converted into the
following bilinear equations

{(iD, —D?)g(x,1) - f(x,1) = 0,
(D7 = 2¢p) f(x,1) - f(x, 1) = £2p°g(x,1)g* (—x, 1),

We recall the bilinear equation (59) satisfied by the tau functions of single component
KP hierarchy 7 in previous section. We take the simplest case p; = p; = p, then the second

q(x.t) =p

(90)
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bilinear equation in (59) reduces to the second equation in (67). Furthermore, if we let ¢; = ﬁ,
it then follows

] _
T = Tp <1+C§1+§1>, 1)
= i (1 _ e§1+gl> (92)
2p ’
T = L (1 _ e§1+€_1) , (93)
2p
where e €1 = ¢27* then if we define f(x, 1) = e”*7o, g(x, 1) = €1y, g(x, 1) = e”*7_, we have
fout) =f"(—x1), g1 =—g"(—x1). (94)
Furthermore, if we let x; = x, x, = —it and € = 1, the bilinear equation (67) reduces to the

bilinear equation (90). In this case, if we define

(x,7) e—i2p2t’

flx1)

o

_g(x’t) i2p%t
q(x, )—mez

GO 95)

it is obvious that
r(xt) = —q*(—x,1), (96)
which leads to the 1-soliton solution

1 — e§1+§_1 . 2

a5) = pi g @ = ™ tanh(p) ©7)

This solution coincides with the solution (3.200) and (3.201) found in [23] for the case:
oc=—1,A0 =.

3.3. Soliton solution with nonzero boundary condition to the nonlocal NLS equation with
c=-1,A0=0

Again for the tau functions of single component KP hierarchy 7, and the bilinear equa-

tions the tau functions satisfy in previous section. If we impose the condition p;p; = —p?,
j=1,---,N, then similarly, we have
0Tk = —p*Or_, Tk (98)
Furthermore, if we assume x| = x, x, = —it, then the bilinear equation (59) reduces to
(iD, — D*)7(x,1) - To(x, 1) = 0, 9
(D2 +2p")70(x, 1) - To(x, 1) = 20771 (x, )71 (x, 1). ©9)
Consider a 2 x 2 matrix for 7o(x,1), 71(x,t) and 7_,(x, 1), let p; = v\, p1 = —p?/v; where
vy > pisreal, py = py, p» = p1, c2 = —cj and
1 1
¢ =

(p1+p1)?  4pipr

Since
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&+ &) x1) = (v = p*/vi)x+ (v — p* /)i,
(L +&)(x1) = (vi = p*/vi)x — (v — p* /W),

&1+& 1 4+8
7U(x l) — ‘1 +_P1+P ¢ P1+Pze
’ &+E &+&
P2+P1 Pt © e+ P2+p2e
=2 O oth _ U a+b 4 26+0+ath
P2+ D2 p1+ D1
P . i .
= 2¢eM =P /v {cl sinh [(v; — pz/vl)x] — — sin [(v% — p4/v%)t] } . (100
pP1+ D1
Therefore
2
15 (=x, 1) = —e 2P R (x p). (101)
Moreover
_pY eéité 1 &i+¢;
Tl(x t) _ c +P|+P1 ( f’l e pi1+p2 < Pz) S
’ 1 &+ Er+E
P2+p1 ( 171 e C2+p2+1” ( 17z> exe
=+ < IL) eote _ 1 (Jﬂ) 86 | 2ebitbirath
D2 +P2 p p1+ D1 D1
2 1 2oty B (2L
= e D 2¢; sinh |:(V] - &)x} + — lj—le(v' P L
Vi p1+p1 [P P1
1 + 1 P2 +¢€;
ra(nn) = ) ( Pl)efl @ P1+172 (717:) et e
Y L (_7> e§z+él ¢+ ( ) 652+52
p2+D1 P2 )23 +pz P2
— —C% + 1 (_@) efergZ _ ‘1 (_E) e£1+gl + C%e£1+gl+£2+éz
p2+p2 )23 p1+pi D1
= 1" L 2¢; sinh [(vl - p—)x} + o — pr = Ple G L
Vi p1+Dp1 | p1 D1
Therefore
2
T (—x,1) = —e 2PN (x0). (102)
Consequently, if we define
To(x, 1) = Cf (x,1), 1(x,1) = Cg(x, 1), 7—1(x,1) = Cg(x,1), (103)
with C = e(—+"/ VD)X then we can easily show that
Ot = —f*(—x,0), glx1)=—g"(—x,1), (104)

which reduces the bilinear equation (99) to

{(iD, —D¥g(x,1) - f(x,1) = 0,

(D2 +207) (1) - f oo 1) = 2028, 1)g" (—.1). (105)
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Above bilinear equation coincides with the bilinear equation (90) with € = —1 in the case
fix,t) = —f*(—x,t). Moreover, for
g8n1) o 8(n1) o
q(x,t) = —=e¢ , r(x,t)=— e s 106

it is obvious that
r(xt) = —q"(—x,1), (107)
which leads to the 1-soliton solution

2 . 2 Pt
E 7(‘}]7‘:7%)'[ . ﬁe("lfff%)‘l

" ? 2t 108
vi + p?) sinh (v — p?/vi)x] — dipvy sin [(vi — p*/v)i] ¢ (108)

(v} + p?) sinh [(vl — ’;—?)x} +
q@ﬂ:p(

This solution coincides with the solution (4.130) in [23] for the case: o = —1, Af = 0 ,which
is actually a stationary breather solution.

4. Summary and concluding remarks

In this paper, via the combination of Hirota’s bilinear method and the KP hierarchy reduction
method, we have constructed various general soliton solutions in the form of determinants
for the nonlocal NLS equation with both zero and nonzero boundary conditions. The solu-
tions obtained here coincide with the solutions found in the nonlocal NLS equation so far and
reformulate them in compact form by using tau functions of the KP hierarchy.

A natural extension of the present work will be the construction of the general soliton solu-
tions to the coupled nonlocal NLS equation

{iqk,,(x, 1) = qrax(x, 1) — 2 (Zle ojq;(x, t)q;‘(—x, t)) a(x, 1), k=1,2. (109)

It is expected that the soliton solution to the above coupled nonlocal NLS equation is even
richer and more complicated than the single component nonlocal NLS equation. We will
explore this interesting topic and report the results elsewhere in the near future.
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