10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

@ Springer Link Search Q BT Login

International Conference on Human-Computer Interaction

Ly HCIl 2022: Human-Computer Interaction. Technological Innovation pp
195-208

A Paper-Based Keyboard Using ArUco
Codes: ArUco Keyboard

Onur Toker , Bayazit Karaman & Doga Demirel

Conference paper | First Online: 16 June 2022

628 Accesses

Part of the Lecture Notes in Computer Science book series
(LNCS,volume 13303)

Abstract

Object tracking in computer vision can be done
either by using a marker-less or marker-based
approach. Computer vision systems have been using
Fiducial markers for pose estimation in different
applications such as augmented reality [5] and robot
navigation [4]. With the advancements in Augmented
Reality (AR), new tools such as AugmentedReality uco
(ArUco) [6] markers have been introduced to the
literature. ArUco markers, are used to tackle the

localization problem in AR, allowing camera pose

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 113

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink
estimation to be carried out by a binary matrix. Using
a binary matrix not just simplifies the process but also
increases the efficiency. As a part of our initiative to
create a cost-efficient, 24/7 accessible, Virtual Reality
(VR) based chemistry lab for underprivileged
students, we wanted to create an alternative way of
interacting with the virtual scene. In this study, we
used ArUco markers to create a low-cost keyboard
only using a piece of paper and an off-the-shelf
webcam. We believe this method of keyboard will be
more beneficial to the user as they can see the keys
before they are typing in the corner of the screen
instead of an insufficient on the screen VR keyboard
or a regular keyboard where the user can't see what
they are typing with a VR headset. As potential
extensions of the base system, we have also designed
and evaluated a stereo camera and an IMU sensor
based system with various sensor fusion techniques.
In summary, the stereo camera reduces occlusion
related problems, and the IMU sensor detects
vibrations which in turn simplifies the KeyPress
detection problem. It has been observed that use of
any of these additional sensors improves the overall
system performance.

Keywords

ArUco codes IMU sensors Sensor fusion

This is a preview of subscription content, access via
your institution.

https:/link.springer.com/chapter/10.1007/978-3-031-05409-9_15 2/13

https://wayf.springernature.com/?redirect_uri=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-3-031-05409-9_15

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

Vv Chapter UsD 29.95
Price excludes VAT (USA)

e DOI: 10.1007/978-3-031-05409-9_15
e Chapter length: 14 pages

e |nstant PDF download

e Readable on all devices

e Own it forever

e Exclusive offer for individuals only

e Tax calculation will be finalised during checkout

Buy Chapter

> eBook USD 84.99

> Softcover Book USD 109.99

Learn about institutional subscriptions

References

1. ArUco keyboard demo video: Base system.

https://youtu.be/tnKc6zvXIiY

2. ArUco keyboard demo video: IMU sensor based
version. https://youtu.be/sluhZQpuOAE

3. ArUco keyboard demo video: Stereo camera
version (USB3 ZED camera).
https://youtu.be/ssbv2NqgfAlg

4. Bacik, J., Durovsky, F., Fedor, P., Perdukova, D.:
Autonomous flying with quadrocopter using fuzzy

control and ArUco markers. Intell. Serv. Robot.

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 3/13

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink
10(3), 185-194 (2017).
https://doi.org/10.1007/s11370-017-0219-8

5. Billinghurst, M., Clark, A., Lee, G.: A survey of
augmented reality. Found. Trends Hum.-Comput.
Interact. 8(2-3), 73-272 (2015).
http://dx.doi.org/10.1561/1100000049

6. Garrido-Jurado, S., Munoz-Salinas, R., Madrid-
Cuevas, F., Marin-Jiménez, M.: Automatic
generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recogn.
47(6), 2280-2292 (2014).
https://doi.org/10.1016/j.patcog.2014.01.005

Acknowledgments

Funding is provided by NSF-1919855, Advanced
Mobility Institute grants GR-2000028, GR-2000029,
and Florida Polytechnic University startup grant GR-
1900022.

Author information

Authors and Affiliations

Florida Polytechnic University, Lakeland, FL,
33805, USA

Onur Toker, Bayazit Karaman & Doga Demirel
Corresponding author

https:/link.springer.com/chapter/10.1007/978-3-031-05409-9_15 4/13

https://doi.org/10.1007/s11370-017-0219-8
http://dx.doi.org/10.1561/1100000049
https://doi.org/10.1016/j.patcog.2014.01.005

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

Correspondence to Onur Toker .

Editor information

Editors and Affiliations

The Open University of Japan, Chiba, Japan

Masaaki Kurosu

Appendices

Appendix I: ArUco Code Detection Module
aruco_tools.py

import cv2
from cv2 import aruco
import numpy as np

Module constants
my_aruco_dictionary = aruco.DICT_4X4_50

def detect_markers(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

OTSU threshold

aruco_dict = aruco.Dictionary_get(aruco.DICT_ARUCO_ORIGINAL)
aruco_dict = aruce.Dictionary_get(my_aruco_dictionary)
parameters = aruco.DetectorParameters_create()
corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters)
frame_markers = aruce.drawDetectedMarkers(gray.copy(), corners, ids)
ids = np.array(ids)
ids = ids.reshape((-1,)}
s =[]
for k, mid in enumerate(ids):
if not (mid == Nome):

print(k, mid, corners([k])

¢ = corners[k] [0]

x_pixel = int(np.round(cl:, 0] .mean()))

y.pixel = int(ap.round(cl:, 1] .mean()))

1s.append((mid, x_pixel, y_pixel))

return ls

Appendix Il: Base System minikdb_mono.py

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 5/13

mailto:otoker@floridapoly.edu

10/18/22, 10:41 PM

import cv2

from aruco_toocls import detect _markers

import winsound
import pyttsxd

initialize Text-to-speech engine
engine = pyttsx3.init()

openCV

cap = cv2.VideoCapture(0)

mid_list = [0,1,2,3,4,5,6,7,8,9]
tte = {0:'zero’, 1:'one’,

frame_counter = 0
num_rep=T

key_pressed = False

key_value = -1

hist_list = pum_reps[-1]

while True:

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

2:'two®, 3:'three’, 4:’four’, 5:'five’, 6:'six’, T:’'seven’, B:’eight’, 9:’'nine’}

frame_counter += 1

success, color_frame = cap.read()

if not success:
print("Ignoring empty camera frame.")
comtinue

To improve performance, opticmally mark the image as not writeable to paes by reference.
color_frame.flags.writeable = False

L = detect_markers(color_frame)
Ty
dL = []
for mid, x pixel, y pixel im L:
dL.append (mid)
cv2.circle(color_frame, (x_pixel, y_pixel), 5, (0, 0, 255), 3)
except Exception as e:
print(e)

keypress_set = set(mid list).difference(set(dL})
if len(keypress_set) > 0:
print(frame_counter, max(keypress_set))
hist_list.pop(0)
hist_list.append(max(keypress_set))

hist_set = set(hist_list)
print(hist_list, key_prassed)

if len(hist_set) ==
ckey_value = min(hist_list)
if key_pressed == False:
key_value = ckey_value
key_pressed = True
print(’KeyPress’, key_value)

pyautogui.keyDown(str(key_value)) #Key press event
print(key_value, end=’") #Write to conscle
winsound.Beep (2500, 200) #Audio feedback
engine.say (tts [key_value])

engine.runAndWait ()

elif (key_pressed == True):
key_pressed = False
Key release event
print (’KeyRelease’)

cv2.imshow(’ARUCO’, color_frame)
key = cv2.waitKey(1)
Press esc or 'q’ to close the image window
if key & OxFF == ord(’q’) or key == 2T:
cv2.destroyAllWindows ()
break

cap.release()
cv2.destroyAllWindows ()

Appendix lll: IMU Based System minikbd_imu.py

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15

6/13

10/18/22, 10:41 PM

import cv2

from aruco_tools import detect_markers
import winsound

import pyttsx3

import pyautogui

import serial

ilmport winsound

import random

initialize Text-to-speech engine
engine = pyttexd.init()

opentV
cap = cv2.VideoCapture(D)

mid_list = [0,1,2,3,4,5,6,7,8,9]
tts = {0:'zero’, 1:'one’, 2:'two’, 3:'three’, 4:'four’, 5:'five’, 6:’six’, T:'seven’, 8:'eight’, 9:'nine’}

frame_counter = 0
num_rep=5
key_pressed = False
key_value = -1
armed = False

configure the serial connecticns (the parameters differs on the device you are connecting te)
ser = serial.Serial(port="COM3’, baudrate=57600)
ser.islpen()

num_fail = 0
for test_num in range(100):

rnd_num = int(randem.uniform(100,998))
engine.say(str(rod_nun)), engine.runfndWait()
print{rnd_num)

in_str=""'
for digit_ne in range(3):

hist_list = num_rep*[-1]
while True:
frame_counter += 1

success, color_frame = cap.read()
if not success:
print("Ignoring empty camera frame.")

continue

To improve performance, optionally mark the image as not writeable to pass by reference.
color_frame.flags.writeable = False

L = detect_markers(color_frame)
try:
dL = []
for mid, x_pixel, y_pixel in L:
dI..appe:ud(midJ
cv2.circle(color_frame, (x_pixel, y_pixel), 5, (0, 0, 255), 3)
except Exception as e:
print(e)

if armed == False:
if ser.inWaiting() == 0:
pass
else:
print(’beep’)
ser.read(ser.inWaiting())
if armed == False:
armed = True
hist_list = num_rep * [-1]

if armed == True:

keypress_set = set(mid_list).difference(set(dL))

if len(keypress_set) > O:
print(frame_counter, max(keypress_set))
hist_list.pop(0)
hist_list.append(max(keypress_set))
hist_set = set(hist_list)
print(hist_set, hist_list, key_pressed)

if len(hist_set) == 1:
ckey_value = min(hist_list)
key_value = ckey_value
print(’KeyPress’, key_value)
pyautogui.keyDown(str (key_value))
print(key_value, end='’)
in_str = in_str + str(key_value)
winsound.Beep(5000, 200)
engine.say(tts[key_valuel)
engine.runAndWait ()

armed = False

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15

A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

7/13

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

ser.read(ser.inWaiting())
Koy release event

print('KeyRelease')
winsound . Beep (2500, 200)
break

v, imshow (' ARUCO® , color_frame)
key = cv2.waitKey(1)
Press esc or 'q’ to close the image window
if key & OxFF == ord(’q’) or key == 27:
cv2.destroyAllWindowe()
break

#end of digit_num

if (str{rnd_num) == in_strj:
print(’ ok *, end="")
else:
print(’ failed’, end=""'}
num_fail += 1
print(? ', num_fail, * fails in’, test_num + 1, ' pf = %', round(100snum fail / (test_num + 1)))

end of test_num
cap.releasa()
cv2.destroyAllWindous ()

Appendix IV: Stereo Camera Based System
minikbd_zed.py

import cv2

import pyzed.sl as sl

from aruco_tools import detect _markers
import beepy

import serial

import Tandom

ZEDCAM

init = gl.InitParameters()

cam = gl.Camera()

if not cam.is_opened():
print("Opening ZED Camera...")

status = cam.open(init)

if status != sl.ERROR_CODE.SUCCESS:
print(repr(status))
exit ()

rTuntime = sl.RuntimeParameters()
mat = sl.Mat()

ArUco
mid_list = [0,1,2,3.4,5,6,7,8,9]
tts = {0:'zera’, i:’ome', 2:°two’, 3:'three’, 4:'four’, 6:'five’, 6:’'eix’, T:'seven’, 8:'eight', 9:'nine’}

frame_counter = 0
num_tep=5
key_pressed = False
key_value = -1
armed = False

configure the serial commections (the parameters differs om the device you are connecting to)
ser = serial.Berial{port="/dev/ttyACMD’, baudrate=5T7600)
ser.isOpen()

mum_fail = 0
for test_num in range(100):

rod_num = int(random.uniform{100,999))
print{rnd_num}

in_str='"
for digit_mo in range(3):

hist_list = num_rep*[-1]
while True:

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 8/13

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink
frame_counter += 1

err = cam.grab(runtime)

if err == s1.ERROR_CODE.SUCCESS:
cam.retrieve_image (mat, sl.VIEW.LEFT)
imgl. = mat.get_data()
cam.retrieve_image(mat, s1.VIEW.RIGHT)
imgR = mat.get_data()

L = detect_markers (imgL)
mL. = []
for mid, x_pixel, y_pixel in L:
mL.append (mid)
cv2.circle(imgl, (x_pixel, y_pixel), 5, (0, 0, 255), 3)

L = detect_markers (imgR)
mR = []
for mid, x_pixel, y_pixel in L:
mR.append (mid)
cv2.circle(imgR, (x_pixel, y_pixel), 5, (0, 0, 255), 3)

if armed == False:
if ser.inWaiting() ==
pass
else:
print(’beep’)
ser.read(ser.inWaiting())
if armed == False:
armed = True
hist_list = num_rep * [-1]

if armed == True:

mC = set(mL) .union(set(mR))
keypress_set = set(mid_list).difference{mC)
if len(keypress_set) > 0:
print(frame_counter, max(keypress_set))
hist_list.pop(0)
hist_list.append(max(keypress_set))
hist_set = set(hist_list)
print (hist_set, hist_list, key_pressed)

if len(hist_set) ==

ckey_value = min(hist_list)
key_value = ckey_value

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15

9/13

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

print('KeyPress’, key_value)

pyautogui.keyDown (str(key_value))

print (key_value, end="')

in_str = in_str + strikey_value)
beepy.besp{sound=’coin’) # string as argument

armed = False
break

ev2.imshow("ZED LEFT", imgL)
cv2. imghow ("ZED RIGHT", imgR)
key = cv2.waitKey(1)
Press esc or 'q’ to close the image window
if key & OxFF == ord(’q’} or key == 27:
cv2.destroyAllWindows ()
break

#end of digit_num
if (str{rnd_num) == in_str):
print(’ ok !, end=’?)
else:
print(’ failed’, end='"')
num_fajil 4= 1
print(? *, num_fail, * fails in’, test_num+ 1, * pf = %’, round(100#num_fail / (test_mum + 1}))

end of test_num

cv2.destroyAllWindows ()
cam.close()

Appendix V: IMU Sensor Code for Arduino Uno

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 10/13

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink
#include<Wire.h>
const int MPU=0x68;
const int LED=13;
const int BUZZER=5;
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;
int16_t AcZp = 0;
float d = 0;
int key_state = 0;
int count = 0;

void setup(){
pinMode (LED, QUTPUT);
pinMode (BUZZER, OUTPUT);
digitalWrite(LED, LOW);
Wire.begin();
Wire.beginTransmission (MPU) ;
Wire.write (0x6B) ;
Wire.write(0);
Wire.endTransmission(true);
Serial.begin(57600) ;

1

void loop(){

Wire.beginTransmission(MPU) ;
Wire.write(0x3B);
Wire.endTransmission(false);
Wire.requestFrom(MPU, 12,true);
AcX=Wire.read()<<8|Wire.read();
AcY=Wire.read ()<<8|Wire.read();
AcZ=Wire.read()<<8|Wire.read();

// Digital low-pass filtering
d=0.8%d+ 0.2 x abs(AcZ - AcZp);
// Saturation/Limiter/Hysteresis
if (d > 300) {
d = 300;
digitalWrite(LED, HIGH);
analogWrite(BUZZER, 1);
if (key_state == 0) {
//Serial.println(count++) ;
Serial.print(’x’); // keypress notification
}
key_state = 1;

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 11/13

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink

if (d < 150) {
d = 0;
digitalWrite(LED, LOW);
analogWrite (BUZZER, 0);
key_state = 0;
¥
//Serial.println(round(d));
AcZp = AcZ;

delay(10) ;

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to

Springer Nature Switzerland AG

About this paper

Cite this paper

Toker, O., Karaman, B., Demirel, D. (2022). A Paper-Based
Keyboard Using ArUco Codes: ArUco Keyboard. In: Kurosu,
M. (eds) Human-Computer Interaction. Technological

Innovation. HCIl 2022. Lecture Notes in Computer Science,

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 12/13

https://s100.copyright.com/AppDispatchServlet?publisherName=SpringerNature&orderBeanReset=true&orderSource=SpringerLink&title=A%20Paper-Based%20Keyboard%20Using%20ArUco%20Codes%3A%20ArUco%20Keyboard&author=Onur%20Toker%2C%20Bayazit%20Karaman%2C%20Doga%20Demirel&contentID=10.1007%2F978-3-031-05409-9_15©right=The%20Author%28s%29%2C%20under%20exclusive%20license%20to%20Springer%20Nature%20Switzerland%20AG&publication=eBook&publicationDate=2022&startPage=195&endPage=208&imprint=The%20Author%28s%29%2C%20under%20exclusive%20license%20to%20Springer%20Nature%20Switzerland%20AG

10/18/22, 10:41 PM A Paper-Based Keyboard Using ArUco Codes: ArUco Keyboard | SpringerLink
vol 13303. Springer, Cham. https://doi.org/10.1007/978-3-
031-05409-9_15

RIS¥ ENwX BBt

DOI
https://doi.org/10.1007/978-3-031-05409-9_15

Published Publisher Name Print ISBN
16 June 2022 Springer, Cham 978-3-031-05408-
2
Online ISBN eBook Packages
978-3-031-05409- Computer Science
9 Computer Science
(RO),

Not logged in - 23.128.112.15

Not affiliated
Sp

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.

https://link.springer.com/chapter/10.1007/978-3-031-05409-9_15 13/13

