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ABSTRACT. This paper answers several open questions around structures with
o-minimal open core. We construct an expansion of an o-minimal structure R
by a unary predicate such that its open core is a proper o-minimal expansion
of R. We give an example of a structure that has an o-minimal open core and
the exchange property, yet defines a function whose graph is dense. Finally,
we produce an example of a structure that has an o-minimal open core and
definable Skolem functions, but is not o-minimal.

1. INTRODUCTION

Introduced by Miller and Speissegger [5] the notion of an open core has become
a mainstay of the model-theoretic study of ordered structures. However, there are
still many rather basic questions, in particular about structures with o-minimal
open cores, that have remained unanswered. In this paper, we are able to settle
some of the questions raised by Dolich, Miller and Steinhorn [2, [3].

Throughout this paper, R denotes a fixed, but arbitrary expansion of a dense linear
order (R, <) without endpoints. We now recall several definitions from the afore-
mentioned papers. We denote by R° the structure (R, (U)), where U ranges over
the open sets of all arities definable in R, and call this structure the open core
of R.

Given two structures S; and Sy with the same universe S, we say S; and Sy are
interdefinable (short: 1 =4¢ Sz) if S; and Sy define the same sets. For a given
theory T extending the theory of dense linear orders, we say that a theory T’ is an
open core of T if for every M |= T there exists M’ = T" such that M° =4¢ M'.

Question 1 (|2, p. 1408]). If S C R and (R, S)° is o-minimal, is (R, S)° =4t R°?

We give a negative answer to this question by constructing an expansion of the
real field by a single unary predicate whose open core is o-minimal, but defines an
irrational power function. It is clear from the construction in Section 2 that there
are similar examples of expansions of the real ordered additive group that do not
define an ordered field.

We say R is definably complete (short: R |= DC) if every definable unary set has

both a supremum and an infimum in RU {£o0}. We denote by dclg the definable

closure operator in R, and often drop the subscript R. We say that R has the

exchange property (short: R = EP) if b € del(SU{a}) for all S C Rand a,b € R

such that a € decl(S U {b}) \ dcl(S). For a theory T, we say T has the exchange

property (short: T' = EP) if every model of T has the exchange property. We write
1



2 ALEXI BLOCK GORMAN, ERIN CAULFIELD, AND PHILIPP HIERONYMI

R |= NIP if its theory does not have the independence property as introduced by
Shelah [6]. We refer the reader to Simon [§] for a modern treatment of NIP and
related model-theoretic tameness notions.

Question 2 ([2 p. 1409]). If R = DC+EP + NIP and ezpands an ordered group,
is R o-minimal?

By [2, p. 1374] we know that R has o-minimal open core if R | DC+EP and
expands an ordered group. Thus Question 2 asks whether there is a combinator-
ical model-theoretic tameness condition that can be added to force o-minimality.
Again, we give a negative answer to this question. We construct a counterexample
as follows: Let Q(¢) be the field of rational functions in a single variable ¢. We
consider an expansion R; of the ordered real additive group (R, <,+,0,1) into a
Q(¢)-vector space such that for all ¢ € Q(t) \ Q, the graph of the function z — cx
is dense in R2. We show that R; = DC + EP + NIP, but is not o-minimal.

The structure R; has infinite dp-rank. By Simon [7], if R | DC, expands an or-
dered group and has dp-rank 1, then R is o-minimal. However, we do not know
whether R is o-minimal if R = DC + EC, expands an ordered group and has finite
dp-rank.

In addition to showing that R, = DC + EP + NIP, we prove that its open core is
interdefinable with its o-minimal reduct (R, <, +,0,1). Since the graph of z — cz is
dense for ¢ € Q(t) \ Q, the theory of R; provides a negative answer to the following
question.

Question 3 ([3, p. 705]). Let T be a complete o-minimal extension of the theory of
densely ordered groups. If T is any theory (in any language) having T as an open
core, and some model of T defines a somewhere dense graph, must EP fail for T'?

Our counterexample R; does not expand a field and we don’t know whether Ques-
tion 2 (or Question 3) has a positive answer if we require R (or T') to expand an
ordered field.

We say that R has definable Skolem functions if for every definable set A C
R™x R" there is a definable function f : R™ — R™ such that (a, f(a)) € A whenever
a € A and there exists b € R™ with (a,b) € A. Every o-minimal expansion of an
ordered group with a distinguished positive element has definable Skolem functions,
but all documented examples of non-o-minimal structures with o-minimal core do
not.

Question 4 ([2 p. 1409)). If R has definable Skolem functions and R° is o-
minimal, is R o-minimal?

The answer is again negative. We say R satisfies uniform finitness (short: R =
UF) if for every m,n € N and every A C R™*™ definable in R there exists N € N
such that for every a € R™ theset {b € R : (a,b) € A} is either infinite or contains
at most N elements. By [2, Theorem A], if R | DC + UF and expands an ordered
group, then R° is o-minimal. Using a construction due to Winkler [9] and following
a strategy of Kruckman and Ramsey [4], we establish that if R = DC+ UF, then
R has an expansion S such that S has definable Skolem functions and satisfies
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S° =4¢ R°. Thus if R also expands an ordered group, then R° is o-minimal and so
is S°.
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Notation. We will use m,n for natural numbers and « for a cardinal. Let £ be
a language and T an L-theory. Let M = T. We follow the usual convention to
denote the universe of M by M. In this situation, £-definable means £-definable
with parameters. Let b be a tuple of elements in M, and let A C M. We write
tp,(b]A) for the L-type of b over A. If N is another model of T and h is an
embedding of a substructure of M containing A into NV, then htp(b|A) is the type
containing all formulas of the form ¢(z, h(a)) where p(z,a) € tp(b|A).

2. QUESTION [I]

Let R be the real ordered field (R, <, +,-) and let Rexp be the expansion of the
real field by the exponential function exp. Let I C R be a dense dclg__ -independent
set. Let 7 € I be such that 7 > 1. Set

J:= J {lallal", lal + la|"}.

acI\{7}

exp

By [3} 2.25] the open core of (Rexp, 1)° is interdefinable with Reyp,. Since (R, J) is
a reduct of (Rexp, ), we have that (R, J)° is a reduct of (Rexp, )°. As the latter
structure is o-minimal, we have that (R, J)° is o-minimal as well. In order to show
that Question [I| has a negative answer, it is left to show that (R, .J)° defines a set
not definable in R. Since R only defines raising to rational powers, it suffices to
prove the definability of x — 2”7 on an unbounded interval.

Lemma 2.1. Let uy,us,us € J such that 1 < u; < us and uy + us = uz. Then
there is a € I\ {7} such that u1 = |a| and ug = |a|".

Proof. For a € I'\ {7} observe that |a|, |a|” and |a| +|a|” are interdefinable in Reyy,
over 7. Since uj + uz = u3, we have uy,uz, u3 are dclg,, -dependent. Because I is
dclg,,,-independent, there are a € I'\ {7} and i, j € {1,2,3} such that

U, Uj € {‘a|7 |a‘|T1 |a‘ + |a‘|T}'

Let ¢ € {1,2,3} such that £ # i and £ # j. Note uy is dclg,, -dependent over u;
and uj. Thus u, € {]al,|a|™, |a| + |a|"}. Since |a| > 0, we obtain from w; + up = us
that

u1, ug € {[al,a]"}.

Since 1 < u; < ug and 7 > 0, we have that uy = |a| and ug = |a|™. O

Proposition 2.2. The graph of z +— x™ on R>y is definable in (R, .J)°.
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Proof. By Lemmathe structure (R,.J) defines
{(al,lal") :lal > 1, a e I'\{r}}.

Since I is dense in R, the closure of this set is the graph of z — 2™ on R>;, and
hence definable in (R, J)°. O

We conclude that (R, J)° is a proper expansion of R.

3. QUESTIONS 2 AND 3

In this section we give negative answers to Questions 2 and 3. Let Q(t) be
the field of rational functions in the variable t. We expand (R, <,+,0, 1) to a Q(¢)-
vector space such that for each non-constant ¢(t) € Q(¢) the graph of multiplication
by ¢(t) is dense.

We now construct such a Q(t)-vector space structure on R. Let 1 be the multiplica-
tive identity of Q(t). We fix a dense basis B of R as a Q-vector space, and a basis
T of Q(t) as a Q-vector space such that 1 € I. We choose a sequence of functions

{fy : I — B}, can, such that

B=J £
~ve2Ro
and for all v € 2%0:
° }’; is injective,
e for all n € 2% with 5 £ ~, f,(I) N £, (1) = 0,
e for all open intervals Jy,..., J,, € R open intervals and all pairwise distinct
3 Q No <
p1(t), ..., pm(t) € I there exists v € 2% such that

f’y(pl(t)) S le L) f’y(pm(t)) € Jm-
Since the order topology on the real line has a countable base, it is easy to see that
such a sequence of functions exists. For each vy € 20, f is defined on the basis I of
Q(t). Therefore, we can extend each f, : I — B to a Q-linear map f, : Q(¢t) = R.
Lemma 3.1. Leta € R. Then there are unique y1, - - -, ¥n € 2% andpy(t), ..., pa(t) €
Q(t) such that

a = fy, (pr(t)) + -+ fr, (Pn(t)).
Proof. Since B is a basis of R as a Q-vector space, there are unique by,...,b, € B
and uy,...,u, € Q such that a = u1b; + - -+ + u,b,. By the above construction,
there are unique y1,...,7, € 2% and ¢ (t),...,qn(t) € I such that b; = f..(qi(t))
for i =1,...,n. Then by Q-linearity of the f,,’s

a=uby +---+u,b,
= urfy (@) + -+ unfy, (gn(t))
= fu (g (@) + -+ + fr, (ungn(t)).

Set p; :=u;q;(t) fori=1,...,n. 0

We now introduce a Q-linear map A : Q(t) x R — R. Let ¢(¢t) € Q(¢t) and a € R.
By Lemma there are unique 71, ...,v, € 2% and py(t),...,pn(t) € Q(t) such
that

a = fo, (P1(2)) + -+ fr, (P (2))-
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We define

Aq(t),a) = fy, (q(t) - p1 () + - + [y, (a(t) - pu(t)).
By Lemma the function A is well-defined. For ¢(t) € Q(t), we write Ay ) for
the map taking a € R to A(q(t),a).

Proposition 3.2. The additive group (R,+) with A as scalar multiplication is an
Q(¢)-vector space.

Proof. We only verify the following vector spaces axioms: for all « € R and for all
q1(t), q2(t) € Q(2).
Ags(0)-020) (@) = Mgy () (Ao (@)

The other axioms can be checked using similar arguments and we leave this to the
reader.

Let a € R and let ¢1(t), ¢2(t) € Q(¢). By Lemma there are unique ~1,...,7v, €
2% and py(t),...,pn(t) € Q(t) such that

a= fy,(p1(t)) + -+ fry, (pn(2)).
We obtain

Agu () Pty (@) = Agy 1y g Z Fru(0i®)))

=X fri(a2(t) - pi(1))

i=1

- Z Syl (t) - (q2(t) - pi(t)))

= A (0-aaty (DO Fru (i)

i=1
= /\ql (t)-q2(t) (a).
O

Let £ be the language of (R, <,4,0,1), and let T be its theory; that is the the-
ory of ordered divisible abelian groups with a distinguished positive element. It is
well-known that T" has quantifier-elimination and is o-minimal. We will use various
consequences of this fact throughout this section. Most noteworthy: when M | T,
X C M™ is L-definable over A and there is b = (by,...,b,) € X such that by,...,b,
are QQ-linearly independent over A, then X has interior.

Let Ry = (R, <,+,0,1, (Agt))qv)cn(r)) be the expansion of (R, <,+,0,1) by func-
tion symbols for A,y where q(t) € Q(t). We denote the language of R; by L;.

3.1. Density. Let p = (p1(t),...,pn(t)) € Q(¢)". Let A\, : R — R™ denote the
function from R that maps a to (Ap, (4)(a),... Ay, (#)(a)). The main goal of this
subsection is to show the density of the image of A\, when the coordinates of p are
Q-linearly independent.

Lemma 3.3. Let p = (p1(t),...,pn(t)) € I be such that p;(t) # p;(t) fori # j.
Then the image of A, is dense in R™.
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Proof. Let Jy,...,J, be open intervals in R. Since pi(t),...,pn(t) are distinct
elements of I, there exists v € 280 such that

f’y(pl(t)) € le . 5f’y(pn(t)) S Jn

For each i € {1,...,n}, we have

Apity (F2 (1) = fy(pi(t))
by definition of A, ;). Therefore,

()\pl(t)(ffy(l)), .. -a)‘pn(t)(f’y(l))) ceJi x Jyx ... xJy,.
g

Proposition 3.4. Let ¢ = (q1(t),...,qm(t)) € Q(¢)™ be such that q1(t), ..., qm(t)
are Q-linearly independent. Then the image of A\q is dense in R™.

Proof. Let n € N, let p1(t),...,pn(t) € I be distinct non-constant, and let A =
(Wi,5)i=1,....m,j=0,...n be an m X (n + 1) matrix with rational entries such that

q1 (t) = ’UJ1701 + uq,1p1 (t) + ...+ ulmpn(t)
q2(t) = ug,01 + ug1p1(t) + ... + U2 npn(t)

G (t) = Um0l + Um 101 (t) + . .. + Uy D (2).
By definition of A1, Ay, (4),- - Ap,(¢), We have for each i € {1,...,m}
Aqi(0) () = wi o A1 (%) +ui 1 Ap, (1) (T) + o F Ui Ay, 1) (2).
Therefore,
AN pL(0),00 (D) T M@ (0),erm (1)
Since ¢ (t), ..., qm(t) are Q-linearly independent, the matrix A has rank m. Thus

multiplication by A is a surjective map from R™ to R™. Since matrix multi-

plication is continuous and continuous surjections preserve density, the image of
AN py(1),....pn (1)) 1s dense in R™ by Lemma O

3.2. Axiomatization and QE. In this subsection, we will find an axiomatiza-
tion of R; and show that this theory has quantifier elimination. Indeed, we will
prove that the following subtheory of the L;-theory of R, already has quantifier-
elimination.

Definition 3.5. Let T; be the Li-theory extending T by axiom schemata stating
that for every model M = (M, <,4,0,1,(A;u))qt)e)) F Tt
(T1) (M, 4,0, (Agt))qtyeqe)) is a Q(t)-vector space.
(T2) If 1(t), - .., qm(t) € Q(t) are Q-linearly independent, then the image of the
)‘(Q1(t)7~~-,qm(t)) is dense in M™.

By Proposition and Proposition we know that Ry = T;. Let M |E T;.
We observe that by (T1) the L£;-substructures of M are precisely the Q(t)-linear
subspaces of M containing 1.

Lemma 3.6. Let M = T; and let A be an Ly-substructure of M. Letb € M\ A and
let p1(t),...,pu(t) € Q(t) be Q-linearly independent. Then Ay, (+)(b), ..., Ay, (1)(b)

are Q-linearly independent over A.
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Proof. Since A is a Q(t)-linear subspace of M, we know that A, (b) ¢ A for all
non-zero q(t) € Q(¢). Let uy,...,u, € Q. Since M is a Q(t)-vector space,
U Apy (1) (0) + -+ UunAp, (1)(8) = Ay (1) 4+ +unpn (1) (0)-
Because p1(t), .. .,pn(t) € Q(t) are Q-linearly independent and b ¢ A, we get that
U A, (1) (D) + - Funp, (1y(b) € A= up = -+ = u, = 0.
Thus Ap, (#)(b), ..., Ap, () (b) are Q-linearly independent of A. O

Proposition 3.7. The theory T; has quantifier elimination.

Proof. Let M,N = T; be such that N is |M|*-saturated. Let A C M be a sub-
structure that embeds into N via the embedding h : A — N. Let b € M \ A.
To prove quantifier elimination of T}, it is enough to show that the embedding h
extends to an embedding of the L;-substructure generated by A and b.

Consider the tuple (Ay)(b))p)er- We first find ¢ € N such that
(1) htpz (A (0)ierlA) = tpe ((Apy (e))ier|h(A))

By saturation of A it is enough to show that for every
e pairwise distinct py(t),...,pn(t) € I,
e L-formula 1(x,y) and a € AW! such that
M ): q/}( Pl(t)( ) v)‘pn,(t)(b)aa)a
there is ¢ € N \ h(A) such that

NE U Qpm(€) s A, 0 (0), h(a).

Because [ is a Q-linear basis of Q(t), the sequence (A, 4)(b))ies is Q-linear indepen-
dent over A by Lemma[3.6] Thus the set

{de N" : N 14(d, h(a))}

has interior. The existence of ¢ now follows from (T2) and saturation of A.

Let ¢ € N be such that (1)) holds. Let X be the Q-linear subspace of M generated by
(Ap(t)(b))ier and A. Let y be the Q-linear subspace of N generated by (A, (c))ier
and h(A). Observe that X is the Q(¢)-subspace of M generated by b and A, and ) is
the Q(t)-subspace of N generated by c and h(A). Hence X and Y are L;-structures
of M and N respectively. Since c satisfies , there is an £L-isomorphism h' : X — C
extending h and mapping A, )(b) to Ay (c) for each p(t) € I. It follows easily that
this A" is Q(t)-linear and hence an L;-isomorphism extending h. O

Corollary 3.8. Let M,N | Ty, let A C M be an Li-substructure such that
h: A< N is an Li-embedding. Let b € M\ A and ¢ € N\ h(A) such that

htpﬁ(()‘p(t)(b))p(t)ellA) = tpﬁ(()‘p(t) (C))p(t)el‘h(A))'
Then tpg, (b|A) = tp,, (c|h(A)).
Proof. Let X' be the Q-linear subspace of M generated by () (b))icr and A, and
let Y be the Q-linear subspace of N generated by (A,)(c))ier and h(A). It is
easy to check that X and Y are £;-substructures of M and N respectively. By our

assumption on b and ¢, the embedding h extends on an £-isomorphism A’ between X
and Y mapping A, (b) to Ay (c) for each p(t) € I. Since h is an L-embedding, it
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follows easily that h’ is an £;-isomorphism between X’ to ). Since T} has quantifier
elimination, we get that tp,, (b|A) = tp,, (c[h(A)). O

Proposition 3.9. The theory of R, is axiomatized by the theory Ty in conjunction

with the axziom scheme that specifies tpﬁ(()\p(t)(l))p(t)el).

Proof. Let T} be the theory described in the statement. Since R; = T}, we imme-
diately get that Ry = T;. It is left to show that T} is complete. Let M and N be
model of T} of size k > Rg. By Corollary 1 and 1, satisfy the same Ly-type.
Thus there is an L;-isomorphism h mapping the L;-substructure of M generated
by 1 to the Ls-substructure of N generated by 1x. By the proof of Proposition
[3-7] this isomorphism h extends to an £;-isomorphism between M and . O

3.3. Exchange property. In this subsection we establish that every model of T;
has the exchange property. We will do so by showing that the definable closure in
such a model is equal to the Q(¢)-linear span.

Lemma 3.10. Let M | T; and let A C M be an Li-substructure. Then A is
definably closed.

Proof. Without loss of generality, we can assume that M is |A|T-saturated. Let
be M\ A. It is enough to show that there exists ¢ € M such that b # ¢ and
tpe, (b|A) = tpg, (c[A). By Corollary it is sufficient to find ¢ € M such that
b # ¢ and

tbe ( (/\p(t) (b))p(t)el ‘A) =1tp, ( ()‘p(t) (c))p(t)ej |A)
Let o(x,y) be an L-formula, pi(t),...,pm(t) € I and a € A™ such that
M ): <:0()‘1'>1(t)(b)7 ceey Apm(t)(b)v (L).

By saturation of M, we only need to find ¢ € M such that ¢ # b and M |

My ty (D)3 Apo (1) (b), @). By Lemma (Ap(t) (9) pyey is Q-linear indepen-
dent over A. Thus the set

X:={deM™ : ME=p(d,a)}
has interior. By axiom (T2) the intersection

{()\pl(t)(c), e /\pm(t)(c)) S M} nxX
is dense in X. 0

Corollary 3.11. Let M =T, and let Z C M. Then the Li-definable closure of Z
is the Q(t)-subspace of M generated by Z.

Proof. By Lemma the definable closure of Z is the L;-substructure generated
by Z. However, the latter is just the Q(¢)-subspace of M generated by Z. O

The exchange property for T; follows immediately from Corollary and the
classical Steinitz exchange lemma for vector spaces.

Proposition 3.12. The theory T; has the exchange property.
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3.4. Open core. Let M = T;. Then by Axiom (T2) it defines functions from M
to M whose graph is dense. We already know that M has EP by Proposition [3.12]
To give a negative answer to Question 3, it is left to show that every open subset
of M™ definable in M is already definable in the reduct (M, <,+,0,1).

Theorem 3.13. The theory T is an open core of T;.

Proof. Let M |= T;. We prove that every open set is L-definable. Without loss of
generality, we can assume that M is Ny-saturated. Let C be a finite subset. Using
Boxall and Hieronymi [I Corollary 3.1], we will show that for every n € N and
every subset of M™ that is £;-definable over C, is also L-definable over C. Let
n € N and p1(t),...,pn—1(t) € I be distinct and non-constant. We define

D := {(a, )\pl(t)(a), ey )\pnfl(t)(a)) La ¢ dCl[t (C)}
From (T2) and saturation of M, it follows easily that D is dense in M™. Thus
Condition (1) of [I, Corollary 3.1] is satisfied. Condition (3) of [I Corollary 3.1]
holds by Corollary It is only left to establish Condition (2).

Let b € D and a ¢ dclg, (C) be such that b = (a, A, 1)(a), ..., Ap, _,1)(a)). Let
U C M™ be open and suppose that tp,(b|C) is realized in U. We need to show that
tp-(b|C) is realized in U N D. By Lemma we know that the coordinates of b
are Q-linearly independent over dclz, (C). Thus the set of realizations of tp,(b|C)
is open, and so is its intersection with the open set U. Denote this intersection
by V. By (T2) and Ny-saturation of M, we find o’ ¢ dclg,(C) such that ¥ =
(a’,)\pl(t)(a’), .. .,)\pnfl(t)(a’)). Now b’ is the desired realization of tp,(b|C) in
UNnD. ([l

By Theorem [3.13| every model of T} has o-minimal open core and thus is definably
complete.

3.5. Neostability results. We will now show that 7} is NIP, but not strong. We
use an equivalent definition of the independence property in the theorem below,
namely that in a monster model M of T} there is no formula ¢(x, y) and no element
a € M such that for some indiscernible sequence (b;);<. of tuples in M Il we have

M = ¢(a,b;) if and only if ¢ < w is even.
For a proof that this is equivalent to the classic definition of NIP, see [§].
Theorem 3.14. Every completion of the theory Ty has NIP.

Proof. We let M [= T; be a monster model of T;. We suppose for a contradiction
that there is an £;-formula p(x,y) along with an element a € M and indiscernible
sequence (b;)i<,, of elements in M¥! that witnesses IP, i.e. M = o(a, b;) precisely
if ¢ is even. Let |y| = n and for each i < w we denote the j-coordinate of b; by
b; j. By quantifier elimination in the language £;, we can assume that the formula
(a,y) is equal to a boolean combination of formulas of the form

(1) a=375_1 Ag(y;) =0

(2) a— Z?:l Ag; (1) (y5) >0
where q1,...,q,(t) € Q(t). Since NIP is preserved under boolean combinations,
we can assume that ¢ is of the form (1) or (2). For ease of notation, let f(b;) =
D1 Mgyt (big) for each i < w.
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Suppose that ¢ is of form (1). We suppose without loss of generality that a— f(b;) =
0 holds if and only if ¢ < w is odd. Then we have that f(by) = f(b3), but
f(b2) # f(b1). Thus we conclude tp.,(b1b2) # tp,,(b2b3), contradicting indis-
cernability.

Now assume that ¢ is of the form (2). Without loss of generality assume that
a— f(b;) > 0 holds if and only if i < w is odd. Then for all i < w, we have a < f(b;)
and a > f(bgi+1). However, this means that f(b1) < f(b2) and f(bz) > f(bs). So
we again obtain tp,, (bi1b2) # tp,, (b2b3), contradicting indiscernability.

O

Thus R; = DC + EP + NIP, but R; is not o-minimal. This gives a negative answer
to Question 2.

Proposition 3.15. No completion of the theory T} is strong.

Proof. Fix a family (g;(t));jen of distinct elements of I. Consider the family of
L;-formulas given by (Ag, ) (%) € (ax,br))jren such that

. (ak,bk) N (ag,bg) = @, for all ¢ 7& k € N, and

e the tuples (ag, bi)ren form an indiscernible sequence.
In the array that corresponds to varying j € N along the rows and the £ € N along
the columns, it is easy to see that formulas in the same row are pairwise inconsistent.
However, for every path (A, (t)(z) € (@y(x); by(k)))ken, every finite subset of these
formulas are consistent by our axiom scheme (T2). So by compactness, every path
through the entire array is consistent. O

4. QQUESTION 4

Let T be a theory extending the theory of dense linear orders without endpoints
in an language £. We write T' |= UF if every model of T satisfies UF. The main
goal of this section is to establish the following theorem.

Theorem 4.1. Suppose that T |= DC+UF. Let T’ be an open core of T. There
is a theory TSy extending T such that TSE has definable Skolem functions and T' is
an open core of TS.

This immediately gives a negative answer to Question 4, as there are many docu-
mented examples of a theory T with T' = DC 4+ UF and o-mininal open core that
is not o-minimal itself. To prove Theorem we follow a strategy of Kruckman
and Ramsey [4] and rely on a construction due to Winkler [9] allowing us to succes-
sively add definable Skolem functions to the language £ of a given theory T while
preserving uniform finiteness. As explained below, this construction preserves the
open definable sets by a result from [1]. We begin by recalling notations and results
from [9].

4.1. Skolem expansions. Let £ be a language and © = {0,(z,y) : t < |£|} be an
enumeration of all £-formulas ¢(x,y) where the variable y has length 1. Define Lgy,
to be LU{f; : t < |L]|}, where the arity of f; is the length of the tuple & appearing
in 0(z,y).

The Skolem expansion T of T is the Lgi-theory
Ty =T U{Vzdy (Ou(z,y) = Ou(z, fr(x))) = t <|L[}.
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We refer to the f;’s as Skolem functions.

From here on we assume that T has quantifier elimination in the language L
and assume that for each L-definable function f there is an L-term t such that
T EVz f(z) = t(x). Let M4 = T4, and denote its reduct to £ by M. For A C M
we denote by (A)sk the Lgi-substructure generated by A.

Following [9], we say an Lgk-formula x(z1,...,z,) is a uniform configuration if
it is a conjunction of equalities of the form fi(x;,,...,z;,) = x;, involving Skolem
functions. We need the following result about uniform configurations from [9].

Fact 4.2 ([9, p. 448)). Let x(z) be a uniform configuration. Then there exists an
L-formula x'(x) such that for all A= Ty and a € Al the following are equivalent:

o AE=x(a).
e The result of altering the Skolem structure of A precisely so that A |= x(a)
is again a model of T, .

In the case of Fact we say that x’(x) codes the eligibility of the configu-
ration x(z).

Lemma 4.3. Let t1(x),...,tn(x) be Lgk-terms such that for every i < n there is
an Lgy-function symbol f; with

tl(.’b) = fi(x,tl(x), . 7t7;,1(.’£)).

Then there is an L-formula (x,y) and a uniform configuration x(x,y) such that

T, VCEVZJ((S@(LZI) Ax(z,y)) < (/\ yi = filw,y1,. .. a%‘—l)))-

Proof. Let J C {1,...,n} be the set of all ¢ such that f; € Lg \ L. Let x(z,y),

where y = (y1,...,Yn), be the uniform configuration given by
/\ fi(xayh cee 7yi—1) =Y
ieJ

and let p(z,y) be the L-formula given by
N fi@yvi) = v
i€{1,...,n}\J
It is easy check this pair of formulas has the desired property. O

One of the main results in [9] is that if 7' = UF, then the Skolem expansion has a
model companion. Indeed, more is true:

Fact 4.4 ([9, Theorem 2, Corollary 3]). Let T |= UF. Then the Skolem expansion
Ty has a model companion Tgy that satisfies UF .

From here on we assume that T = UF. We have the following axiomatization of
the model companion of the Skolem expansion.

Fact 4.5 ([9, p. 447]). The theory Tsx is axiomatized as the expansion of Ty by
the set @ of all sentences of the form Yz ... Vzp(z), where x = (x1,...,2,) and

(i) Y(@) = 3%xpq1 .- 2pp(@) A X' (2) = Fptr, - - 2np(2) A x(@),
(i) (x) is a quantifier free L-formula,
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(iii) x(x) is a uniform configuration,
(iv) X' (x) codes the eligibility of the configuration x(x).

Let Mgy be an |£|T -saturated model of Tsy, with underlying set M, and denote its
reduct to £ by M. We need following easy corollary of the axiomatization of Tgy.

Fact 4.6. Let T be the set of partial L-elementary maps ¢ : X — Y between Mgy
and itself such that

e 1 is a partial Lgi-isomorphisms and
o X = <X>Sk and Y = <Y>Sk'

Then T is a back-and-forth system.

Proof. Let + +: X — Y in Z. Let a € M\ X. By symmetry, it is enough to
find @’ € M such that there exists ¢/ € T extending ¢ such that t(a) = a’. By
saturation of Mgy, we just need to find o’ € M such that for all Lgy(X)-terms

t(z) = (t1(2), .-, tn(2))
tpe(a’ H(a)|Y) = vtpg(a, t(a)| X).

Without loss of generality, we can assume that there is ¢ € X™ such that for every
i €{1,...,n} there is a function symbol f; € Lgy with

ti(x) = fi(l‘,tl(ﬂi), PN ,ti_l(x), C).

Let o(z,y1,-..,Yn, z) be the L-formula and x(x,y1,...,Yn, z) be the uniform con-
figuration given by Lemma Let the L-formula x'(x,y1,...,Yn,2) code the
eligibility of x(x,y1,...,Yn, 2). For ease of notation, set y := (y1,...,Yn).

Consider an £-formula ¢ (z,y, z) and ¢ € X!l such that ¢ (z,y, ¢) € tps(a, t(a)| X).
Extending ¢, we can assume that ¢ = ¢/. By saturation of Mgy it suffices to find
a’ € M such that Mgy E ¥(a’,t(a’),t(c)). Since M = ¥(a,t(a),c) Ap(a,t(a),c) A
X'(a,t(a),c) and a € X, we have that

M | Fzy Y(@,y,0) Ap(@,y,¢) AX (2,9, 0).
Since ¢ is L-elementary,
M 3%y Y(@,y,0(0) Ap(x,y,u(c)) A X (2,9, 1(c)))-

Thus from the axiomatization of Ts, we know that there is (a’,a},...,al,) € M**"
such that

M, dh, .y aly, @) A pldsdh, .l i(€)) A XAl ilc)).
t

By our choice of ¢ and x, we have that a; = t;(a’) for each i. Thus M |
P(a',t(a’), ). 0

We now collect the following easy corollary of Fact [£.6]

Fact 4.7. Let a,a’ € M™ and let 0 : M — M be an Lsx-automorphism fizing C
such that o(a) = a’ and for all Lgx-terms t(x) = (t1(x),. .., tn(x))

tp.(t(a)|C) = tp,(t(a)|C).
Then tp,, (a|C) = tp,, (a'|C).
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4.2. No new definable open sets in Ts. Let Mgy be an |Lg,|T-saturated model
of Tk with underlying set M, and denote its reduct to £ by M. Fix a subset C C M
of cardinality at most |Lgk|.

Theorem 4.8. Let C = (C)sx. Then every open set definable over C' in Mgy is
definable in M.

Proof. By [1l, Therorem 2.2] it is enough to show that for every a € M™ for which
the set of realisations of tp,(a|C) is dense in an open set, the set of realisations
of tp,, (a|C) is dense in the set of realizations of tp,(a|C). Let U € M™ be an
open definable set such that the set of realizations of tp,(a|C) intersected with U
is dense in U. It is left to show that there is a’ € U such that o’ |= tp,,, (a|C). By
Fact [£7) and saturation of Mg, it is enough to find for

o cvery tuple t = (t1,...,tm) : M™ — M™ of Lgi(C)-terms and

e every L(C)-definable set X C M™ ™ with (a,t(a)) € X
an o/ € U such that (a/,t(a’)) € X. Fix ¢t and X. After increasing m, we can
assume that there is ¢ € C¢ such that X is L(c)-definable and for every ¢ < m

tl(l‘) = fi(l‘, tl(ﬂf), ey ti_l(l‘), C)
where f; is a function symbol in Lgk. Let o(z,y1,...,Yn,c) be the L-formula
and x(x,y1,...,Yn,c) be the uniform configuration given by Lemma Set
y=(y1,--.,Yn). Let the L-formula x'(x,y,c) code the eligibility of x(z,y,c).

We now prove the existence of a’. Let dy be a realization of tp,(a|C) in U. Let
dy,...,dyn € M™ be such that (dg,d,...,d») € X and

M ': (SD/\X/)(dOadlw'deac)'

Since there are infinitely many realizations of tp,(a|C) in U, there are infinitely
many e € M™ ™ guch that e € X NU and M |= (¢ A X')(e,¢). Thus by Fact

there is e = (eq, €1,...,€m) € M™T™ such that
(eg,€1...,em) € XNU and Mgy = x(eg,€1.-.,€em,C).
Thus (eq,...,emn) = t(eg) and we can set o’ = eg. O

Corollary 4.9. Let T' be an open core of T. Then T’ is an open core of Tsk.

Proof. Let £’ be the language of T’. Without loss of generality, we can assume
that £'NLgx = 0. Let £* be the union of £ and Lgi. Let Mgy = Tsi. Since T” is
an open core of T, we can expand Mgy to a model M* of the L*-theory T' U Tgy.
Let X C M™ be an open set given by

X:={aeM" : Mgk F ¢(a,c)},

where ¢ is an Lgi-formula with parameters ¢ € M™. Let N be an elementary
extension of M* that is |£|T-saturated. Set Y := {a € N* : N = ¢(a,c)}. Since
X is open, so is Y. By Theorem there is an £'-formula ¥ (x,y) such that there
isdec M with Y = {a € N : N = ¢(a,d)}. Since M* < N, there is d' € M*
such that X = {a € M™ : M* = ¢(a,d')}. Thus X is £L'-definable. O

Proof of Theorem[].1 We are now able to complete the proof of Theorem [4.1] using
the same argument as in [4, Corollary 4.9]. Suppose T' = DC+ UF and let 7" be
an open core of T. Set T be the Morleyization of T in a language Ly. For every
n > 0, we will now construct a language £,, and an L,-theory T}, such that
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(1) T,, has quantifier-elimination,
(2) T, = UF, and
(3) T is an open core of Tj,.

Let n > 0, and suppose we already constructed a language £, and an L,-theory
T,, with the properties (1)-(3). Let ® be the set of L£,-formulas ¢(z,y) such that
lyl =1 and

To = Vadly ¢(z,y),
For each ¢(z,y) € ® we introduce a new function symbol f, of arity |z|. Let L be

the union of the £,, and {f, : ¢ € ®}. Let T be the union of T,, with the set of
all £-sentence of the form

VaVy(fo(z) = y) < o(z,y),

where ¢ € ®. Since T is an expansion of T}, by definitions, it is easy to check that T
satisfies (1)-(3). Now consider the model companion (T)gj of the Skolem expansion

(T)+. Let T},+1 be the Morleyization of (T')sk in an expanded language £,,41. We
know T),+1 | UF by Fact By Corollary the theory T” is an open core of
Tpir.

Now set T§g := ey Tn- From the construction, it follows immediately that 7" is
an open core of 7§y and that TSy has definable Skolem functions. O
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