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Abstract. This paper answers several open questions around structures with

o-minimal open core. We construct an expansion of an o-minimal structure R
by a unary predicate such that its open core is a proper o-minimal expansion

of R. We give an example of a structure that has an o-minimal open core and

the exchange property, yet defines a function whose graph is dense. Finally,
we produce an example of a structure that has an o-minimal open core and

definable Skolem functions, but is not o-minimal.

1. Introduction

Introduced by Miller and Speissegger [5] the notion of an open core has become
a mainstay of the model-theoretic study of ordered structures. However, there are
still many rather basic questions, in particular about structures with o-minimal
open cores, that have remained unanswered. In this paper, we are able to settle
some of the questions raised by Dolich, Miller and Steinhorn [2, 3].

Throughout this paper, R denotes a fixed, but arbitrary expansion of a dense linear
order (R,<) without endpoints. We now recall several definitions from the afore-
mentioned papers. We denote by R◦ the structure (R, (U)), where U ranges over
the open sets of all arities definable in R, and call this structure the open core
of R.

Given two structures S1 and S2 with the same universe S, we say S1 and S2 are
interdefinable (short: S1 =df S2) if S1 and S2 define the same sets. For a given
theory T extending the theory of dense linear orders, we say that a theory T ′ is an
open core of T if for every M |= T there exists M′ |= T ′ such that M◦ =df M′.

Question 1 ([2, p. 1408]). If S ⊆ R and (R, S)◦ is o-minimal, is (R, S)◦ =df R◦?

We give a negative answer to this question by constructing an expansion of the
real field by a single unary predicate whose open core is o-minimal, but defines an
irrational power function. It is clear from the construction in Section 2 that there
are similar examples of expansions of the real ordered additive group that do not
define an ordered field.

We say R is definably complete (short: R |= DC) if every definable unary set has
both a supremum and an infimum in R ∪ {±∞}. We denote by dclR the definable
closure operator in R, and often drop the subscript R. We say that R has the
exchange property (short: R |= EP) if b ∈ dcl(S∪{a}) for all S ⊆ R and a, b ∈ R
such that a ∈ dcl(S ∪ {b}) \ dcl(S). For a theory T , we say T has the exchange
property (short: T |= EP) if every model of T has the exchange property. We write
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R |= NIP if its theory does not have the independence property as introduced by
Shelah [6]. We refer the reader to Simon [8] for a modern treatment of NIP and
related model-theoretic tameness notions.

Question 2 ([2, p. 1409]). If R |= DC+EP+NIP and expands an ordered group,
is R o-minimal?

By [2, p. 1374] we know that R has o-minimal open core if R |= DC+EP and
expands an ordered group. Thus Question 2 asks whether there is a combinator-
ical model-theoretic tameness condition that can be added to force o-minimality.
Again, we give a negative answer to this question. We construct a counterexample
as follows: Let Q(t) be the field of rational functions in a single variable t. We
consider an expansion Rt of the ordered real additive group (R, <,+, 0, 1) into a
Q(t)-vector space such that for all c ∈ Q(t) \ Q, the graph of the function x ↦→ cx
is dense in R2. We show that Rt |= DC+EP+NIP, but is not o-minimal.

The structure Rt has infinite dp-rank. By Simon [7], if R |= DC, expands an or-
dered group and has dp-rank 1, then R is o-minimal. However, we do not know
whether R is o-minimal if R |= DC+EC, expands an ordered group and has finite
dp-rank.

In addition to showing that Rt |= DC+EP+NIP, we prove that its open core is
interdefinable with its o-minimal reduct (R, <,+, 0, 1). Since the graph of x ↦→ cx is
dense for c ∈ Q(t) \Q, the theory of Rt provides a negative answer to the following
question.

Question 3 ([3, p. 705]). Let T be a complete o-minimal extension of the theory of

densely ordered groups. If T̃ is any theory (in any language) having T as an open

core, and some model of T̃ defines a somewhere dense graph, must EP fail for T̃?

Our counterexample Rt does not expand a field and we don’t know whether Ques-
tion 2 (or Question 3) has a positive answer if we require R (or T ) to expand an
ordered field.

We say that R has definable Skolem functions if for every definable set A ⊆
Rm×Rn there is a definable function f : Rm → Rn such that (a, f(a)) ∈ A whenever
a ∈ A and there exists b ∈ Rn with (a, b) ∈ A. Every o-minimal expansion of an
ordered group with a distinguished positive element has definable Skolem functions,
but all documented examples of non-o-minimal structures with o-minimal core do
not.

Question 4 ([2, p. 1409]). If R has definable Skolem functions and R◦ is o-
minimal, is R o-minimal?

The answer is again negative. We say R satisfies uniform finitness (short: R |=
UF) if for every m,n ∈ N and every A ⊆ Rm+n definable in R there exists N ∈ N
such that for every a ∈ Rm the set {b ∈ Rn : (a, b) ∈ A} is either infinite or contains
at most N elements. By [2, Theorem A], if R |= DC+UF and expands an ordered
group, then R◦ is o-minimal. Using a construction due to Winkler [9] and following
a strategy of Kruckman and Ramsey [4], we establish that if R |= DC+UF, then
R has an expansion S such that S has definable Skolem functions and satisfies
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S◦ =df R◦. Thus if R also expands an ordered group, then R◦ is o-minimal and so
is S◦.
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Notation. We will use m,n for natural numbers and κ for a cardinal. Let L be
a language and T an L-theory. Let M |= T . We follow the usual convention to
denote the universe of M by M . In this situation, L-definable means L-definable
with parameters. Let b be a tuple of elements in M , and let A ⊆ M . We write
tpL(b|A) for the L-type of b over A. If N is another model of T and h is an
embedding of a substructure of M containing A into N , then h tp(b|A) is the type
containing all formulas of the form φ(x, h(a)) where φ(x, a) ∈ tp(b|A).

2. Question 1

Let R be the real ordered field (R, <,+, ·) and let Rexp be the expansion of the
real field by the exponential function exp. Let I ⊆ R be a dense dclRexp

-independent
set. Let τ ∈ I be such that τ > 1. Set

J :=
⋃

a∈I\{τ}

{|a|, |a|τ , |a|+ |a|τ}.

By [3, 2.25] the open core of (Rexp, I)
◦ is interdefinable with Rexp. Since (R, J) is

a reduct of (Rexp, I), we have that (R, J)◦ is a reduct of (Rexp, I)
◦. As the latter

structure is o-minimal, we have that (R, J)◦ is o-minimal as well. In order to show
that Question 1 has a negative answer, it is left to show that (R, J)◦ defines a set
not definable in R. Since R only defines raising to rational powers, it suffices to
prove the definability of x ↦→ xτ on an unbounded interval.

Lemma 2.1. Let u1, u2, u3 ∈ J such that 1 < u1 < u2 and u1 + u2 = u3. Then
there is a ∈ I \ {τ} such that u1 = |a| and u2 = |a|τ .

Proof. For a ∈ I \ {τ} observe that |a|, |a|τ and |a|+ |a|τ are interdefinable in Rexp

over τ . Since u1 + u2 = u3, we have u1, u2, u3 are dclRexp
-dependent. Because I is

dclRexp
-independent, there are a ∈ I \ {τ} and i, j ∈ {1, 2, 3} such that

ui, uj ∈ {|a|, |a|τ , |a|+ |a|τ}.

Let ℓ ∈ {1, 2, 3} such that ℓ ̸= i and ℓ ̸= j. Note uℓ is dclRexp
-dependent over ui

and uj . Thus uℓ ∈ {|a|, |a|τ , |a|+ |a|τ}. Since |a| > 0, we obtain from u1 + u2 = u3
that

u1, u2 ∈ {|a|, |a|τ}.

Since 1 < u1 < u2 and τ > 0, we have that u1 = |a| and u2 = |a|τ . □

Proposition 2.2. The graph of x ↦→ xτ on R≥1 is definable in (R, J)◦.
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Proof. By Lemma 2.1 the structure (R, J) defines
{(|a|, |a|τ ) : |a| > 1, a ∈ I \ {τ}}.

Since I is dense in R, the closure of this set is the graph of x ↦→ xτ on R≥1, and

hence definable in (R, J)◦. □

We conclude that (R, J)◦ is a proper expansion of R.

3. Questions 2 and 3

In this section we give negative answers to Questions 2 and 3. Let Q(t) be
the field of rational functions in the variable t. We expand (R, <,+, 0, 1) to a Q(t)-
vector space such that for each non-constant q(t) ∈ Q(t) the graph of multiplication
by q(t) is dense.

We now construct such a Q(t)-vector space structure on R. Let 1 be the multiplica-
tive identity of Q(t). We fix a dense basis B of R as a Q-vector space, and a basis
I of Q(t) as a Q-vector space such that 1 ∈ I. We choose a sequence of functions

{f̃γ : I → B}γ∈2ℵ0 such that

B =
⋃

γ∈2ℵ0

f̃γ(I)

and for all γ ∈ 2ℵ0 :

• f̃γ is injective,

• for all η ∈ 2ℵ0 with η ̸= γ, f̃η(I) ∩ f̃γ(I) = ∅,
• for all open intervals J1, . . . , Jm ⊆ R open intervals and all pairwise distinct
p1(t), . . . , pm(t) ∈ I there exists γ ∈ 2ℵ0 such that

f̃γ(p1(t)) ∈ J1, . . . , f̃γ(pm(t)) ∈ Jm.

Since the order topology on the real line has a countable base, it is easy to see that

such a sequence of functions exists. For each γ ∈ 2ℵ0 , f̃γ is defined on the basis I of

Q(t). Therefore, we can extend each f̃γ : I → B to a Q-linear map fγ : Q(t) → R.

Lemma 3.1. Let a ∈ R. Then there are unique γ1, . . . , γn ∈ 2ℵ0 and p1(t), . . . , pn(t) ∈
Q(t) such that

a = fγ1(p1(t)) + · · ·+ fγn(pn(t)).

Proof. Since B is a basis of R as a Q-vector space, there are unique b1, . . . , bn ∈ B
and u1, . . . , un ∈ Q such that a = u1b1 + · · · + unbn. By the above construction,
there are unique γ1, . . . , γn ∈ 2ℵ0 and q1(t), . . . , qn(t) ∈ I such that bi = fγi

(qi(t))
for i = 1, . . . , n. Then by Q-linearity of the fγi ’s

a = u1b1 + · · ·+ unbn

= u1fγ1(q1(t)) + · · ·+ unfγn(qn(t))

= fγ1(u1q1(t)) + · · ·+ fγn(unqn(t)).

Set pi := uiqi(t) for i = 1, . . . , n. □

We now introduce a Q-linear map λ : Q(t) × R → R. Let q(t) ∈ Q(t) and a ∈ R.
By Lemma 3.1 there are unique γ1, . . . , γn ∈ 2ℵ0 and p1(t), . . . , pn(t) ∈ Q(t) such
that

a = fγ1
(p1(t)) + · · ·+ fγn

(pn(t)).
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We define

λ(q(t), a) := fγ1
(q(t) · p1(t)) + · · ·+ fγn

(q(t) · pn(t)).
By Lemma 3.1, the function λ is well-defined. For q(t) ∈ Q(t), we write λq(t) for
the map taking a ∈ R to λ(q(t), a).

Proposition 3.2. The additive group (R,+) with λ as scalar multiplication is an
Q(t)-vector space.

Proof. We only verify the following vector spaces axioms: for all a ∈ R and for all
q1(t), q2(t) ∈ Q(t).

λq1(t)·q2(t)(a) = λq1(t)
(
λq2(t)(a)

)
.

The other axioms can be checked using similar arguments and we leave this to the
reader.

Let a ∈ R and let q1(t), q2(t) ∈ Q(t). By Lemma 3.1 there are unique γ1, . . . , γn ∈
2ℵ0 and p1(t), . . . , pn(t) ∈ Q(t) such that

a = fγ1(p1(t)) + · · ·+ fγn(pn(t)).

We obtain

λq1(t)(λq2(t)(a)) = λq1(t)
(
λq2(t)

( n∑
i=1

fγi
(pi(t))

)
= λq1(t)(

n∑
i=1

fγi
(q2(t) · pi(t)))

=

n∑
i=1

fγi
(q1(t) · (q2(t) · pi(t)))

= λq1(t)·q2(t)
( n∑
i=1

fγi
(pi(t))

)
= λq1(t)·q2(t)(a).

□

Let L be the language of (R, <,+, 0, 1), and let T be its theory; that is the the-
ory of ordered divisible abelian groups with a distinguished positive element. It is
well-known that T has quantifier-elimination and is o-minimal. We will use various
consequences of this fact throughout this section. Most noteworthy: when M |= T ,
X ⊆Mn is L-definable over A and there is b = (b1, . . . , bn) ∈ X such that b1, . . . , bn
are Q-linearly independent over A, then X has interior.

Let Rt = (R, <,+, 0, 1, (λq(t))q(t)∈Q(t)) be the expansion of (R, <,+, 0, 1) by func-
tion symbols for λq(t) where q(t) ∈ Q(t). We denote the language of Rt by Lt.

3.1. Density. Let p = (p1(t), . . . , pn(t)) ∈ Q(t)n. Let λp : R → Rn denote the
function from R that maps a to (λp1(t)(a), . . . λpn(t)(a)). The main goal of this
subsection is to show the density of the image of λp when the coordinates of p are
Q-linearly independent.

Lemma 3.3. Let p = (p1(t), . . . , pn(t)) ∈ I be such that pi(t) ̸= pj(t) for i ̸= j.
Then the image of λp is dense in Rn.
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Proof. Let J1, . . . , Jn be open intervals in R. Since p1(t), . . . , pn(t) are distinct
elements of I, there exists γ ∈ 2ℵ0 such that

fγ(p1(t)) ∈ J1, . . . , fγ(pn(t)) ∈ Jn.

For each i ∈ {1, . . . , n}, we have

λpi(t)(fγ(1)) = fγ(pi(t))

by definition of λpi(t). Therefore,(
λp1(t)(fγ(1)), . . . , λpn(t)(fγ(1))

)
∈ J1 × J2 × . . .× Jn.

□

Proposition 3.4. Let q = (q1(t), . . . , qm(t)) ∈ Q(t)m be such that q1(t), . . . , qm(t)
are Q-linearly independent. Then the image of λq is dense in Rn.

Proof. Let n ∈ N, let p1(t), . . . , pn(t) ∈ I be distinct non-constant, and let A =
(ui,j)i=1,...,m,j=0,...,n be an m× (n+ 1) matrix with rational entries such that

q1(t) = u1,01+ u1,1p1(t) + . . .+ u1,npn(t)

q2(t) = u2,01+ u2,1p1(t) + . . .+ u2,npn(t)

...

qm(t) = um,01+ um,1p1(t) + . . .+ um,npn(t).

By definition of λ1, λp1(t), . . . , λpn(t), we have for each i ∈ {1, . . . ,m}

λqi(t)(x) = ui,0λ1(x) + ui,1λp1(t)(x) + . . .+ ui,nλpn(t)(x).

Therefore,

Aλ(1,p1(t),...,pn(t)) = λ(q1(t),...,qm(t)).

Since q1(t), . . . , qm(t) are Q-linearly independent, the matrix A has rank m. Thus
multiplication by A is a surjective map from Rn to Rm. Since matrix multi-
plication is continuous and continuous surjections preserve density, the image of
Aλ(1,p1(t),...,pn(t)) is dense in Rm by Lemma 3.3. □

3.2. Axiomatization and QE. In this subsection, we will find an axiomatiza-
tion of Rt and show that this theory has quantifier elimination. Indeed, we will
prove that the following subtheory of the Lt-theory of Rt already has quantifier-
elimination.

Definition 3.5. Let Tt be the Lt-theory extending T by axiom schemata stating
that for every model M = (M,<,+, 0, 1, (λq(t))q(t)∈Q(t)) |= Tt

(T1) (M,+, 0, (λq(t))q(t)∈Q(t)) is a Q(t)-vector space.
(T2) If q1(t), . . . , qm(t) ∈ Q(t) are Q-linearly independent, then the image of the

λ(q1(t),...,qm(t)) is dense in Mm.

By Proposition 3.2 and Proposition 3.4 we know that Rt |= Tt. Let M |= Tt.
We observe that by (T1) the Lt-substructures of M are precisely the Q(t)-linear
subspaces of M containing 1.

Lemma 3.6. Let M |= Tt and let A be an Lt-substructure of M. Let b ∈M \A and
let p1(t), . . . , pn(t) ∈ Q(t) be Q-linearly independent. Then λp1(t)(b), . . . , λpn(t)(b)
are Q-linearly independent over A.
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Proof. Since A is a Q(t)-linear subspace of M, we know that λq(t)(b) /∈ A for all
non-zero q(t) ∈ Q(t). Let u1, . . . , un ∈ Q. Since M is a Q(t)-vector space,

u1λp1(t)(b) + · · ·+ unλpn(t)(b) = λu1p1(t)+···+unpn(t)(b).

Because p1(t), . . . , pn(t) ∈ Q(t) are Q-linearly independent and b /∈ A, we get that

u1λp1(t)(b) + · · ·+ unλpn(t)(b) ∈ A⇒ u1 = · · · = un = 0.

Thus λp1(t)(b), . . . , λpn(t)(b) are Q-linearly independent of A. □

Proposition 3.7. The theory Tt has quantifier elimination.

Proof. Let M,N |= Tt be such that N is |M|+-saturated. Let A ⊆ M be a sub-
structure that embeds into N via the embedding h : A ↪→ N . Let b ∈ M \ A.
To prove quantifier elimination of Tt, it is enough to show that the embedding h
extends to an embedding of the Lt-substructure generated by A and b.

Consider the tuple (λp(t)(b))p(t)∈I . We first find c ∈ N such that

(1) h tpL
(
(λp(t)(b))i∈I |A

)
= tpL

(
(λp(t)(c))i∈I |h(A)

)
By saturation of N it is enough to show that for every

• pairwise distinct p1(t), . . . , pn(t) ∈ I,
• L-formula ψ(x, y) and a ∈ A|y| such that

M |= ψ
(
λp1(t)(b), . . . , λpn(t)(b), a

)
,

there is c ∈ N \ h(A) such that

N |= ψ
(
λp1(t)(c), . . . , λpn(t)(c), h(a)

)
.

Because I is a Q-linear basis of Q(t), the sequence (λp(t)(b))i∈I is Q-linear indepen-
dent over A by Lemma 3.6. Thus the set

{d ∈ Nn : N |= ψ(d, h(a))}
has interior. The existence of c now follows from (T2) and saturation of N .

Let c ∈ N be such that (1) holds. Let X be the Q-linear subspace ofM generated by
(λp(t)(b))i∈I and A. Let Y be the Q-linear subspace of N generated by (λp(t)(c))i∈I

and h(A). Observe that X is the Q(t)-subspace ofM generated by b andA, and Y is
the Q(t)-subspace of N generated by c and h(A). Hence X and Y are Lt-structures
ofM andN respectively. Since c satisfies (1), there is an L-isomorphism h′ : X → C
extending h and mapping λp(t)(b) to λp(t)(c) for each p(t) ∈ I. It follows easily that
this h′ is Q(t)-linear and hence an Lt-isomorphism extending h. □

Corollary 3.8. Let M,N |= Tt, let A ⊆ M be an Lt-substructure such that
h : A ↪→ N is an Lt-embedding. Let b ∈M \A and c ∈ N \ h(A) such that

h tpL(
(
λp(t)(b)

)
p(t)∈I

|A) = tpL(
(
λp(t)(c)

)
p(t)∈I

|h(A)).

Then tpLt
(b|A) = tpLt

(c|h(A)).

Proof. Let X be the Q-linear subspace of M generated by (λp(t)(b))i∈I and A, and
let Y be the Q-linear subspace of N generated by (λp(t)(c))i∈I and h(A). It is
easy to check that X and Y are Lt-substructures of M and N respectively. By our
assumption on b and c, the embedding h extends on an L-isomorphism h′ between X
and Y mapping λp(t)(b) to λp(t)(c) for each p(t) ∈ I. Since h is an Lt-embedding, it
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follows easily that h′ is an Lt-isomorphism between X to Y. Since Tt has quantifier
elimination, we get that tpLt

(b|A) = tpLt
(c|h(A)). □

Proposition 3.9. The theory of Rt is axiomatized by the theory Tt in conjunction
with the axiom scheme that specifies tpL(

(
λp(t)(1)

)
p(t)∈I

).

Proof. Let T ∗
t be the theory described in the statement. Since Rt |= Tt, we imme-

diately get that Rt |= T ∗
t . It is left to show that T ∗

t is complete. Let M and N be
model of T ∗

t of size κ > ℵ0. By Corollary 3.8, 1M and 1N satisfy the same Lt-type.
Thus there is an Lt-isomorphism h mapping the Lt-substructure of M generated
by 1M to the Lt-substructure of N generated by 1N . By the proof of Proposition
3.7 this isomorphism h extends to an Lt-isomorphism between M and N . □

3.3. Exchange property. In this subsection we establish that every model of Tt
has the exchange property. We will do so by showing that the definable closure in
such a model is equal to the Q(t)-linear span.

Lemma 3.10. Let M |= Tt and let A ⊆ M be an Lt-substructure. Then A is
definably closed.

Proof. Without loss of generality, we can assume that M is |A|+-saturated. Let
b ∈ M \ A. It is enough to show that there exists c ∈ M such that b ̸= c and
tpLt

(b|A) = tpLt
(c|A). By Corollary 3.8 it is sufficient to find c ∈ M such that

b ̸= c and

tpL(
(
λp(t)(b)

)
p(t)∈I

|A) = tpL(
(
λp(t)(c)

)
p(t)∈I

|A).

Let φ(x, y) be an L-formula, p1(t), . . . , pm(t) ∈ I and a ∈ An such that

M |= φ(λp1(t)(b), . . . , λpm(t)(b), a).

By saturation of M, we only need to find c ∈ M such that c ̸= b and M |=
φ(λp1(t)(b), . . . , λpm(t)(b), a). By Lemma 3.6,

(
λp(t)(b)

)
p(t)∈I

is Q-linear indepen-

dent over A. Thus the set

X := {d ∈Mm : M |= φ(d, a)}

has interior. By axiom (T2) the intersection

{(λp1(t)(c), . . . , λpm(t)(c)) : c ∈M} ∩X

is dense in X. □

Corollary 3.11. Let M |= Tt and let Z ⊆M . Then the Lt-definable closure of Z
is the Q(t)-subspace of M generated by Z.

Proof. By Lemma 3.10 the definable closure of Z is the Lt-substructure generated
by Z. However, the latter is just the Q(t)-subspace of M generated by Z. □

The exchange property for Tt follows immediately from Corollary 3.11 and the
classical Steinitz exchange lemma for vector spaces.

Proposition 3.12. The theory Tt has the exchange property.
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3.4. Open core. Let M |= Tt. Then by Axiom (T2) it defines functions from M
to M whose graph is dense. We already know that M has EP by Proposition 3.12.
To give a negative answer to Question 3, it is left to show that every open subset
of Mn definable in M is already definable in the reduct (M,<,+, 0, 1).

Theorem 3.13. The theory T is an open core of Tt.

Proof. Let M |= Tt. We prove that every open set is L-definable. Without loss of
generality, we can assume that M is ℵ0-saturated. Let C be a finite subset. Using
Boxall and Hieronymi [1, Corollary 3.1], we will show that for every n ∈ N and
every subset of Mn that is Lt-definable over C, is also L-definable over C. Let
n ∈ N and p1(t), . . . , pn−1(t) ∈ I be distinct and non-constant. We define

D := {
(
a, λp1(t)(a), . . . , λpn−1(t)(a)

)
: a /∈ dclLt

(C)}.
From (T2) and saturation of M, it follows easily that D is dense in Mn. Thus
Condition (1) of [1, Corollary 3.1] is satisfied. Condition (3) of [1, Corollary 3.1]
holds by Corollary 3.8. It is only left to establish Condition (2).

Let b ∈ D and a /∈ dclLt(C) be such that b =
(
a, λp1(t)(a), . . . , λpn−1(t)(a)

)
. Let

U ⊆Mn be open and suppose that tpL(b|C) is realized in U . We need to show that
tpL(b|C) is realized in U ∩ D. By Lemma 3.6 we know that the coordinates of b
are Q-linearly independent over dclLt(C). Thus the set of realizations of tpL(b|C)
is open, and so is its intersection with the open set U . Denote this intersection
by V . By (T2) and ℵ0-saturation of M, we find a′ /∈ dclLt

(C) such that b′ =(
a′, λp1(t)(a

′), . . . , λpn−1(t)(a
′)
)
. Now b′ is the desired realization of tpL(b|C) in

U ∩D. □

By Theorem 3.13 every model of Tt has o-minimal open core and thus is definably
complete.

3.5. Neostability results. We will now show that Tt is NIP, but not strong. We
use an equivalent definition of the independence property in the theorem below,
namely that in a monster model M of Tt there is no formula φ(x, y) and no element
a ∈M such that for some indiscernible sequence (bi)i<ω of tuples in M |y| we have

M |= φ(a, bi) if and only if i < ω is even.

For a proof that this is equivalent to the classic definition of NIP, see [8].

Theorem 3.14. Every completion of the theory Tt has NIP.

Proof. We let M |= Tt be a monster model of Tt. We suppose for a contradiction
that there is an Lt-formula φ(x, y) along with an element a ∈M and indiscernible
sequence (bi)i<ω of elements in M |y| that witnesses IP, i.e. M |= φ(a, bi) precisely
if i is even. Let |y| = n and for each i < ω we denote the j-coordinate of bi by
bi,j . By quantifier elimination in the language Lt, we can assume that the formula
φ(a, y) is equal to a boolean combination of formulas of the form

(1) a−
∑n

j=1 λqj(t)(yj) = 0

(2) a−
∑n

j=1 λqj(t)(yj) > 0

where q1, . . . , qn(t) ∈ Q(t). Since NIP is preserved under boolean combinations,
we can assume that φ is of the form (1) or (2). For ease of notation, let f(bi) =∑n

j=1 λqj(t)(bi,j) for each i < ω.
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Suppose that φ is of form (1). We suppose without loss of generality that a−f(bi) =
0 holds if and only if i < ω is odd. Then we have that f(b1) = f(b3), but
f(b2) ̸= f(b1). Thus we conclude tpLt

(b1b2) ̸= tpLt
(b2b3), contradicting indis-

cernability.

Now assume that φ is of the form (2). Without loss of generality assume that
a−f(bi) > 0 holds if and only if i < ω is odd. Then for all i < ω, we have a < f(b2i)
and a > f(b2i+1). However, this means that f(b1) < f(b2) and f(b2) > f(b3). So
we again obtain tpLt

(b1b2) ̸= tpLt
(b2b3), contradicting indiscernability.

□

Thus Rt |= DC+EP+NIP, but Rt is not o-minimal. This gives a negative answer
to Question 2.

Proposition 3.15. No completion of the theory Tt is strong.

Proof. Fix a family (qj(t))j∈N of distinct elements of I. Consider the family of
Lt-formulas given by (λqj(t)(x) ∈ (ak, bk))j,k∈N such that

• (ak, bk) ∩ (aℓ, bℓ) = ∅, for all ℓ ̸= k ∈ N, and
• the tuples (ak, bk)k∈N form an indiscernible sequence.

In the array that corresponds to varying j ∈ N along the rows and the k ∈ N along
the columns, it is easy to see that formulas in the same row are pairwise inconsistent.
However, for every path (λqγ(k)(t)(x) ∈ (aγ(k), bγ(k)))k∈N, every finite subset of these

formulas are consistent by our axiom scheme (T2). So by compactness, every path
through the entire array is consistent. □

4. Question 4

Let T be a theory extending the theory of dense linear orders without endpoints
in an language L. We write T |= UF if every model of T satisfies UF. The main
goal of this section is to establish the following theorem.

Theorem 4.1. Suppose that T |= DC+UF. Let T ′ be an open core of T . There
is a theory T∞

Sk extending T such that T∞
Sk has definable Skolem functions and T ′ is

an open core of T∞
Sk .

This immediately gives a negative answer to Question 4, as there are many docu-
mented examples of a theory T with T |= DC+UF and o-mininal open core that
is not o-minimal itself. To prove Theorem 4.1 we follow a strategy of Kruckman
and Ramsey [4] and rely on a construction due to Winkler [9] allowing us to succes-
sively add definable Skolem functions to the language L of a given theory T while
preserving uniform finiteness. As explained below, this construction preserves the
open definable sets by a result from [1]. We begin by recalling notations and results
from [9].

4.1. Skolem expansions. Let L be a language and Θ = {θt(x, y) : t < |L|} be an
enumeration of all L-formulas φ(x, y) where the variable y has length 1. Define LSk

to be L∪ {ft : t < |L|}, where the arity of ft is the length of the tuple x appearing
in θt(x, y).

The Skolem expansion T+ of T is the LSk-theory

T+ = T ∪ {∀x∃y (θt(x, y) → θt(x, ft(x))) : t < |L|}.
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We refer to the ft’s as Skolem functions.

From here on we assume that T has quantifier elimination in the language L
and assume that for each L-definable function f there is an L-term t such that
T |= ∀x f(x) = t(x). Let M+ |= T+, and denote its reduct to L by M. For A ⊆M
we denote by ⟨A⟩Sk the LSk-substructure generated by A.

Following [9], we say an LSk-formula χ(x1, . . . , xn) is a uniform configuration if
it is a conjunction of equalities of the form ft(xi1 , . . . , xim) = xi0 involving Skolem
functions. We need the following result about uniform configurations from [9].

Fact 4.2 ([9, p. 448]). Let χ(x) be a uniform configuration. Then there exists an
L-formula χ′(x) such that for all A |= T+ and a ∈ A|x| the following are equivalent:

• A |= χ′(a).
• The result of altering the Skolem structure of A precisely so that A |= χ(a)
is again a model of T+.

In the case of Fact 4.2, we say that χ′(x) codes the eligibility of the configu-
ration χ(x).

Lemma 4.3. Let t1(x), . . . , tn(x) be LSk-terms such that for every i ≤ n there is
an LSk-function symbol fi with

ti(x) = fi(x, t1(x), . . . , ti−1(x)).

Then there is an L-formula φ(x, y) and a uniform configuration χ(x, y) such that

T+ |= ∀x∀y
((
φ(x, y) ∧ χ(x, y)

)
↔

( n⋀
i=1

yi = fi(x, y1, . . . , yi−1)
))
.

Proof. Let J ⊆ {1, . . . , n} be the set of all i such that fi ∈ LSk \ L. Let χ(x, y),
where y = (y1, . . . , yn), be the uniform configuration given by⋀

i∈J

fi(x, y1, . . . , yi−1) = yi

and let φ(x, y) be the L-formula given by⋀
i∈{1,...,n}\J

fi(x, y1, . . . , yi−1) = yi.

It is easy check this pair of formulas has the desired property. □

One of the main results in [9] is that if T |= UF, then the Skolem expansion has a
model companion. Indeed, more is true:

Fact 4.4 ([9, Theorem 2, Corollary 3]). Let T |= UF. Then the Skolem expansion
T+ has a model companion TSk that satisfies UF .

From here on we assume that T |= UF. We have the following axiomatization of
the model companion of the Skolem expansion.

Fact 4.5 ([9, p. 447]). The theory TSk is axiomatized as the expansion of T+ by
the set Φ of all sentences of the form ∀x1 . . . ∀xkψ(x), where x = (x1, . . . , xn) and

(i) ψ(x) = ∃∞xk+1 . . . xnφ(x) ∧ χ′(x) → ∃xk+1, . . . xnφ(x) ∧ χ(x),
(ii) φ(x) is a quantifier free L-formula,
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(iii) χ(x) is a uniform configuration,
(iv) χ′(x) codes the eligibility of the configuration χ(x).

Let MSk be an |L|+ -saturated model of TSk with underlying setM , and denote its
reduct to L by M. We need following easy corollary of the axiomatization of TSk.

Fact 4.6. Let I be the set of partial L-elementary maps ι : X → Y between MSk

and itself such that

• ι is a partial LSk-isomorphisms and
• X = ⟨X⟩Sk and Y = ⟨Y ⟩Sk.

Then I is a back-and-forth system.

Proof. Let ι : X → Y in I. Let a ∈ M \ X. By symmetry, it is enough to
find a′ ∈ M such that there exists ι′ ∈ I extending ι such that ι(a) = a′. By
saturation of MSk, we just need to find a′ ∈ M such that for all LSk(X)-terms
t(x) = (t1(x), . . . , tn(x))

tpL(a
′, t(a′)|Y ) = ι tpL(a, t(a)|X).

Without loss of generality, we can assume that there is c ∈ Xm such that for every
i ∈ {1, . . . , n} there is a function symbol fi ∈ LSk with

ti(x) = fi(x, t1(x), . . . , ti−1(x), c).

Let φ(x, y1, . . . , yn, z) be the L-formula and χ(x, y1, . . . , yn, z) be the uniform con-
figuration given by Lemma 4.3. Let the L-formula χ′(x, y1, . . . , yn, z) code the
eligibility of χ(x, y1, . . . , yn, z). For ease of notation, set y := (y1, . . . , yn).

Consider an L-formula ψ(x, y, z) and c′ ∈ X |c′| such that ψ(x, y, c′) ∈ tpL(a, t(a)|X).
Extending c, we can assume that c = c′. By saturation of MSk it suffices to find
a′ ∈M such that MSk |= ψ(a′, t(a′), ι(c)). Since M |= ψ(a, t(a), c) ∧ φ(a, t(a), c) ∧
χ′(a, t(a), c) and a ̸∈ X, we have that

M |= ∃∞xy ψ(x, y, c) ∧ φ(x, y, c) ∧ χ′(x, y, c).

Since ι is L-elementary,

M |= ∃∞xy ψ(x, y, ι(c)) ∧ φ(x, y, ι(c)) ∧ χ′(x, y, ι(c))).

Thus from the axiomatization of TSk we know that there is (a′, a′1, . . . , a
′
n) ∈M1+n

such that

M |= ψ(a′, a′1, . . . , a
′
n, ι(c)) ∧ φ(a′, a′1, . . . , a′n, ι(c)) ∧ χ(a′, a′1, . . . , a′n, ι(c)).

By our choice of φ and χ, we have that a′i = ti(a
′) for each i. Thus M |=

ψ(a′, t(a′), c). □

We now collect the following easy corollary of Fact 4.6.

Fact 4.7. Let a, a′ ∈ Mn and let σ : M → M be an LSk-automorphism fixing C
such that σ(a) = a′ and for all LSk-terms t(x) = (t1(x), . . . , tn(x))

tpL(t(a)|C) = tpL(t(a
′)|C).

Then tpLSk
(a|C) = tpLSk

(a′|C).
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4.2. No new definable open sets in TSk. LetMSk be an |LSk|+-saturated model
of TSk with underlying setM , and denote its reduct to L byM. Fix a subset C ⊆M
of cardinality at most |LSk|.

Theorem 4.8. Let C = ⟨C⟩Sk. Then every open set definable over C in MSk is
definable in M.

Proof. By [1, Therorem 2.2] it is enough to show that for every a ∈ Mn for which
the set of realisations of tpL(a|C) is dense in an open set, the set of realisations
of tpLSk

(a|C) is dense in the set of realizations of tpL(a|C). Let U ⊆ Mn be an
open definable set such that the set of realizations of tpL(a|C) intersected with U
is dense in U . It is left to show that there is a′ ∈ U such that a′ |= tpLSk

(a|C). By
Fact 4.7 and saturation of MSk, it is enough to find for

• every tuple t = (t1, . . . , tm) :Mn →Mm of LSk(C)-terms and
• every L(C)-definable set X ⊆Mn+m with (a, t(a)) ∈ X

an a′ ∈ U such that (a′, t(a′)) ∈ X. Fix t and X. After increasing m, we can
assume that there is c ∈ Cℓ such that X is L(c)-definable and for every i ≤ m

ti(x) = fi(x, t1(x), . . . , ti−1(x), c)

where fi is a function symbol in LSk. Let φ(x, y1, . . . , yn, c) be the L-formula
and χ(x, y1, . . . , yn, c) be the uniform configuration given by Lemma 4.3. Set
y = (y1, . . . , yn). Let the L-formula χ′(x, y, c) code the eligibility of χ(x, y, c).

We now prove the existence of a′. Let d0 be a realization of tpL(a|C) in U . Let
d1, . . . , dm ∈Mm be such that (d0, d1, . . . , dm) ∈ X and

M |= (φ ∧ χ′)(d0, d1, . . . , dm, c).

Since there are infinitely many realizations of tpL(a|C) in U , there are infinitely
many e ∈ Mn+m such that e ∈ X ∩ U and M |= (φ ∧ χ′)(e, c). Thus by Fact 4.5,
there is e = (e0, e1, . . . , em) ∈Mn+m such that

(e0, e1 . . . , em) ∈ X ∩ U and MSk |= χ(e0, e1 . . . , em, c).

Thus (e1, . . . , em) = t(e0) and we can set a′ = e0. □

Corollary 4.9. Let T ′ be an open core of T . Then T ′ is an open core of TSk.

Proof. Let L′ be the language of T ′. Without loss of generality, we can assume
that L′ ∩LSk = ∅. Let L∗ be the union of L′ and LSk. Let MSk |= TSk. Since T

′ is
an open core of T , we can expand MSk to a model M∗ of the L∗-theory T ′ ∪ TSk.
Let X ⊆Mn be an open set given by

X := {a ∈Mn : MSk |= φ(a, c)},
where φ is an LSk-formula with parameters c ∈ Mm. Let N be an elementary
extension of M∗ that is |L|+-saturated. Set Y := {a ∈ Nn : N |= φ(a, c)}. Since
X is open, so is Y . By Theorem 4.8 there is an L′-formula ψ(x, y) such that there
is d ∈ M ℓ with Y = {a ∈ Nn : N |= ψ(a, d)}. Since M∗ ⪯ N , there is d′ ∈ M ℓ

such that X = {a ∈Mn : M∗ |= ψ(a, d′)}. Thus X is L′-definable. □

Proof of Theorem 4.1. We are now able to complete the proof of Theorem 4.1 using
the same argument as in [4, Corollary 4.9]. Suppose T |= DC+UF and let T ′ be
an open core of T. Set T0 be the Morleyization of T in a language L0. For every
n > 0, we will now construct a language Ln and an Ln-theory Tn such that
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(1) Tn has quantifier-elimination,
(2) Tn |= UF, and
(3) T ′ is an open core of Tn.

Let n ≥ 0, and suppose we already constructed a language Ln and an Ln-theory
Tn with the properties (1)-(3). Let Φ be the set of Ln-formulas φ(x, y) such that
|y| = 1 and

Tn |= ∀x∃!y φ(x, y),
For each φ(x, y) ∈ Φ we introduce a new function symbol fφ of arity |x|. Let L̃ be

the union of the Ln and {fφ : φ ∈ Φ}. Let T̃ be the union of Tn with the set of

all L̃-sentence of the form

∀x∀y(fφ(x) = y) ↔ φ(x, y),

where φ ∈ Φ. Since T̃ is an expansion of Tn by definitions, it is easy to check that T̃

satisfies (1)-(3). Now consider the model companion (T̃ )Sk of the Skolem expansion

(T̃ )+. Let Tn+1 be the Morleyization of (T̃ )Sk in an expanded language Ln+1. We
know Tn+1 |= UF by Fact 4.4. By Corollary 4.9, the theory T ′ is an open core of
Tn+1.

Now set T∞
Sk :=

⋃
i∈N Tn. From the construction, it follows immediately that T ′ is

an open core of T∞
Sk and that T∞

Sk has definable Skolem functions. □
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