Improved Regret for Differentially Private Exploration in Linear MDP

Dung Daniel Ngo *!

Abstract

We study privacy-preserving exploration in se-
quential decision-making for environments that
rely on sensitive data such as medical records. In
particular, we focus on solving the problem of
reinforcement learning (RL) subject to the con-
straint of (joint) differential privacy in the linear
MDP setting, where both dynamics and rewards
are given by linear functions. Prior work on this
problem due to (Luyo et al., 2021) achieves a re-
gret rate that has a dependence of O(K?/®) on
the number of episodes K. We provide a pri-
vate algorithm with an improved regret rate with
an optimal dependence of O(v/K) on the num-
ber of episodes. The key recipe for our stronger
regret guarantee is the adaptivity in the policy
update schedule, in which an update only oc-
curs when sufficient changes in the data are de-
tected. As a result, our algorithm benefits from
low switching cost and only performs O(log(K))
updates, which greatly reduces the amount of pri-
vacy noise. Finally, in the most prevalent pri-
vacy regimes where the privacy parameter € is a
constant, our algorithm incurs negligible privacy
cost—in comparison with the existing non-private
regret bounds, the additional regret due to privacy
appears in lower-order terms.

1. Introduction

Many real world machine learning (ML) systems operate
under the setting of interactive learning, where learning
algorithms interact with users and collect feedback from
them over time. In domains such as personalized medicine
where ML algorithms rely on sensitive data, the ability to
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protect users’ data privacy has become increasingly critical.
In order to provide rigorous and formal privacy guarantees,
there has been a growing and longstanding literature on
designing ML algorithms subject to the constraint of differ-
ential privacy (DP) (Dwork et al., 2006). While the vast
majority of the DP ML literature has focused on the setting
of supervised learning, there has been significantly less de-
velopment on interactive learning, especially reinforcement
learning (RL).

In this paper, we advance a recent line of work starting
from Vietri et al. (2020) that provides RL algorithms with
provable privacy guarantees and performance bounds. Con-
cretely, we consider a setting of episodic RL where an
agent interacts with K users that arrive sequentially over K
episodes. In each episode k, the agent interacts with user k
over a fixed horizon of H time steps. At each time step in
the episode, the current user reveals their state to the agent,
then the agent provides the user with a recommended action
to take, which subsequently generates a reward received by
the user. The goal of the agent is to maximize the cumu-
lative reward over all users, or equivalently, minimize the
regret with respect to the optimal policy. In this model, the
sequence of states and rewards of each user is considered
sensitive information. While each user may be willing to
share such information to the agent in exchange for services
or recommendations, there is still a risk that the agent in-
advertently leaks the user’s private information through the
interactions with other users.

In order to prevent such privacy risks, existing work on
private contextual bandits (Shariff & Sheffet, 2018) and
private RL (Vietri et al., 2020) have adopted the notion of
Jjoint differential privacy (JDP) (Kearns et al., 2014a), a
variant of DP that is suitable for sequential learning settings.
Informally, JDP requires that for any user k, the output
information to all other users except k cannot reveal much
about k’s private data. As a consequence, even if all other
users collude (e.g., collectively probing the agent’s policies)
against k, the private information of k is still protected.

Under the constraint of JDP, earlier work by Vietri et al.
(2020); Garcelon et al. (2020) focuses on the tabular MDP
setting, where the states and actions are discrete and the
value functions can be stored in a table. More recent work
has considered function approximation for DP RL. In par-
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ticular, Luyo et al. (2021) considers the linear MDP setting,
in which the transition dynamics and reward function are
assumed to be linear. All of these algorithms obtain the JDP
guarantee under the so-called billboard model (Hsu et al.,
2016), in which the RL agent continuously and differentially
privately releases a collection of statistics that are sufficient
for computing each user’s recommended actions when given
their own private data. The key step to obtain low regret is to
maintain these sufficient statistics at a low privacy costs. To
that end, these algorithms in prior work leverage the binary
mechanism (and its variations) (Dwork et al., 2010; Chan
et al., 2011; Shariff & Sheffet, 2018), which can continually
release any form of summation or count statistics subject
to DP with error only scaling logarithmically in the total
number of episodes.

While bringing function approximation to private RL greatly
expands its scope and practicality, it also introduces new
challenges that the existing privacy techniques based on the
binary mechanism cannot handle. In particular, algorithms
in the linear MDP setting typically maintain and update
the value function V', which cannot be re-written as a form
of summation statistics on the private data. This barrier
has led to a sub-optimal regret in the prior work of (Luyo
et al., 2021). Since their algorithm cannot leverage the
binary mechanism for tracking the value functions privately,
they resorts to applying the Gaussian mechanism repeatedly
over an non-adaptive schedule, which incurs a privacy cost
that scales with K /5 in their regret. Our work provides
a private RL algorithm that circumvents this barrier and
achieves a significantly lower privacy cost—in comparison
to the non-private bounds, the privacy cost is in lower order.

1.1. Our contributions.

We focus on the setting of linear MDP, where there exists
a feature map ¢ that maps each state-action pair (z,a) to a
d-dimensional vector ¢(z, a). For each (z, a), we assume
that both the reward and transition function are linear in
¢(x, a). Our contributions include the following:

Our results. We provide an (¢, 0)-JDP RL algorithm that
achieves the state-of-the-art regret bound of
- _ H3J5/4K1/2
(0] ( d3H*K + 1) ,
€l/2

The best known bound in prior work Luyo et al. (2021)
is O (\/ d3H*K + ‘WH;#) Note that both regret
bounds include two terms, in which the first term corre-
sponds to regret of a non-private algorithm and the second
term corresponds to the “cost of privacy.” In both results,
the non-private term matches the state-of-the-art non-private
regret bound from Jin et al. (2020). However, our regret
bound improves the cost of privacy from Luyo et al. (2021)

in the parameters d and K. In the most prevalent regimes
of differential privacy, the privacy parameter € is chosen to
be a small constant. In this case, the privacy cost term is
dominated the non-private regret rate, and thus, our regret

rate becomes O (\/ d*H*K ) , matching the non-private rate
from Jin et al. (2020).

Our techniques. The key technical ingredient that en-
ables our improved regret bound is adaptivity. In particular,
our algorithm only updates its underlying policy when it
detects a sufficient change in the collected data. Unlike
prior work (Luyo et al., 2021) that employs an non-adaptive
update schedule and triggers polynomial in X number of
updates, our algorithm draws the low switching cost tech-
niques from Wang et al. (2021) and only triggers policy
update roughly O(log(K)) times. Low switching cost is
particularly appealing for privacy since it largely reduce the
amount of noise needed to achieve the same level of privacy
parameters, which in turn leads to an improved regret.

The adaptive policy update schedule introduces challenges
for the privacy analysis, since the policy update time is
an unknown random variable that depends on the data and
the randomness of the algorithm. In order to exploit the
advantage of low switching cost, our privacy analysis needs
to bound the privacy loss to be only proportional to the
number updates, instead of total number of episodes K. To
meet this challenge, our privacy analysis relies on a novel
argument that models the interactions with the users as an
adaptive adversary with bounded sensitivity. We believe
that our low-switching-cost algorithm and analysis provide
fruitful directions for answering other private RL questions
in future, since they go beyond the existing paradigm that
heavily rely on the binary mechanism.

1.2. Related Work

Our work is most related to the line of work on RL subject
to JDP that includes the earlier work of Vietri et al. (2020);
Garcelon et al. (2020) in the tabular settings and more re-
cent work of (Luyo et al., 2021) in the linear MDP settings.
Both (Zhou, 2022) and (Luyo et al., 2021) also consider a
different form of linear function approximation called the
linear mixture MDPs, which we do not study in this work.
The linear mixture MDPs setting is arguably easier to learn
under JDP since all the relevant sufficient statistics for learn-
ing can be written as summation and the binary mechanism
is applicable. In contrast, obtaining an O(v/K) regret rate
in our linear MDP setting requires new techniques.

More broadly speaking, our work contributes to the growing
line of work on private interactive learning, which includes
the study of online learning (Guha Thakurta & Smith, 2013;
Agarwal & Singh, 2017), multi-armed bandits (Mishra &
Thakurta, 2015; Tossou & Dimitrakakis, 2017), linear con-
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textual bandits (Shariff & Sheffet, 2018).

Technically, our algorithm is closely related to the non-
private algorithms in the linear MDP settings that achives
provable low regret (Jin et al., 2020). Low switching cost
has also been a desideratum for RL algorithms, even absent
privacy concerns. For example, (Bai et al., 2019) shows
how to bound local switching cost in a tabular MDP setting:
O(H?*SAlog(K)), and (Gao et al., 2021; Wang et al., 2021)
give a provably efficient algorithm for linear MDP with low
switching cost.

2. Preliminaries

Notation We use bold capital letters to denote matrices,
bold lower case for vectors. Let X 1.; be the matrix whose
rows are i, ..., x;, then we define the Gram matrix by
A = X[, X1 = S0z, A symmetric matrix
X is positive-semidefinite if ' Xx > 0 for any vector
x. Any such X defines a norm on vectors, so we define
HwH%( = o " Xx. For any positive integer N, we use [N]
to denote the set {1,..., N}. We use z ~ N(0,02%)¢
to denote a vector-valued random variable of dimension
d, where each coordinate is sampled i.i.d from a Gaus-

sian distribution with variance o2. For a vector z € R,

we use |z, = \/Zle x? to denote the ¢ norm of .

We can also define the spectral norm of a matrix M as
| M|,
[E]
ciated with the vector ¢5 norm.

| M| = maxgzo , which is the operator norm asso-

2.1. Markov Decision Process

We begin with the general setup for the episodic Markov
Decision Process (MDP) before we describe the linear
MDP setting we focus on. An MDP is denoted by
MDP(S, A, H,P,r), where S is the set of states, A is
the set of actions, H € Z. is the length of each episode,
P = {P, }L | are the state transition probability measures,
and finally r = {r),} /L | is the set of reward functions. We
assume that S is a measurable space with possibly infinite
number of elements and A is a finite set with cardinality
A. For each h € H, Pp,(-|x, a) denoted the transition ker-
nel over next states if action « is taken for state x at step
h € [H]. Similarly, at each round h, we denote the deter-
ministic reward function as ry, (zp,, ap) in [0, 1]." In the first
time step of each episode, the agent observes the initial state
x1, which can be adversarially selected. At each time-step
h < H, the agent observes x;, € S, then picks an action
ap, € A and receives the reward r (x, ap,). As a result, the
MDP moves to a new state xj4; drawn from probability
measures Py (xp11|2h, an). When state x4 is reached,
the episode ends and the agent receives no further reward.

"For notational simplicity, we study deterministic rewards, and
our results can be generalized to random reward functions.

A deterministic policy 7 is a function 7 : S x [H] — A,
where 7 (xp,, h) is the action that the agent takes at state xj,
and round h in the episode. For any h € [H], we define
the value function V;" : & — R as the expected value of
cumulative rewards by following policy 7 from round h at
an arbitrary state:

H
Vi(z) =E lz T (zp, T(Th h’))‘wh = x]
h'=h

(Vz € S,h € [H))
Moreover, we also define the action-value function Q7 :
S x A — R to be the expected value of cumulative rewards
when the agent starts from an arbitrary state-action pair at
the h-th step and follow policy 7:

Qh(x,a) =rp(x,a)+

E

H
Z Th (-%’h’>7r($h’7 h/)) Th =X, = a}
h/=h+1

V(z,a) € S x A,Vh € [H])

To simplify notation, we denote the expected value function
as [P, Vii1] (#,a) = Eprop, (|2,0) Vit 1(2). The Bellman
equation then becomes

Qn(x,a) = [rh + IP’th”H] (z,a)
Vhﬂ(x) = QZ(I’, m(z, h))
Viii(x) :=0forallz € S
which holds for all (z,a) € S x A. Similarly, the optimal
Bellman equation is
Qr(z,a) = [rh + Pth*H] (z,a)
Vi (@) = ma Qi (0)

Vi (x):==0forallz € S

The optimal policy 7* is a greedy policy with respect to
the optimal action-value policies {Q}; } ne[] and achieves
value {V; } he(a.-

The agent interacts with the environment over a sequence
of K episodes. At the beginning of each episode &k > 1,
the environment chooses an initial state x§ and the agent
chooses a policy ;. Then, the agent’s expected regret for
the k-th episode is the difference in the values Vi*(z¥) —
V" (z). Therefore, after playing for K episodes the total
expected regret is

K
R(K) =) [Vi'(@}) = V™ (a})]
k=1

2.2. Linear MDP

We focus on linear Markov Decision Process setting, where
reward and transition functions are assumed to be linear
(Bradtke & Barto, 1996a; Melo & Ribeiro, 2007).
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Assumption 1 (Linear MDP). MDP(S, A, H,P,r) is a
linear MDP with a feature map ¢ : S x A — R%, if
for any h € [H] there exist d unknown measures [, =
(s psl) over S and an unknown vector 0y, such that
forany (z,a) € A x S we have

Pz, a) = (d(x,a), pn(-)) s ralz,a) = (d(z;a),0n)

We assume that ||¢(x, a)|| < 1 forall (x,a) € S X A, and
max{||un(S)|[, [|0nll} < d forall h € [H].

An important property of linear MDP is that the action-value
functions are linear in the feature map ¢. Hence, it suffices
to focus on linear action-value functions.

Proposition 2 (Jin et al. (2020)). For a linear MDP, for
any policy T, there exist weights {w}, } e[ such that for
any tuple (z,a,h) € S x A x [H], we have Q (x,a) =
(¢(z,a),w])

2.3. (Joint) Differential Privacy in Episodic RL

In this work, we provide privacy-preserving RL algorithm
that incorporates the rigorous notion of differential privacy
(DP). We first revisit the standard DP definition. Formally,
we use U € UK to denote a sequence of K users partic-
ipating in the RL protocol. Technically speaking, a user
can be identified with a tree of depth H encoding the state
and reward responses they would give to all A¥ possible
sequences of actions the agent can choose. We also say two
users sequences U and U’ are neighbors if they differ in just
one user 7 < k.

Definition 3 (DP (Dwork et al., 2006)). A randomized mech-
anism M satisfies (e, 0)-differential privacy ((€,)-DP) if
for all neighboring datasets U, U’ that differ by one record
and for all event E in the output range,

PMU) e E|<ePMU')e E]|+6

When § = 0 we say pure-DP, and when § > 0, then we say
approximate-DP.

In our episodic MDP setting, there is a set of K users arriv-
ing sequentially, and each user’s sensitive data corresponds
to the sequence of states and rewards in a single episode. We
focus on the central model where users are willing to share
their sensitive information with a trusted agent in exchange
for a service or recommendation but they don’t want their
information to be leaked to third parties. Our goal is to avoid
any inference about the user’s information while interacting
with the RL agent. The standard definition of DP is too
stringent for this setting, since it would require the entire
output, which includes the action recommendations for user
in episode k, and cannot reveal user k’s private data, which
prevents any utility in the recommendations. Following the
prior work of Vietri et al. (2020), we consider the notion

of joint differential privacy (JDP) (Kearns et al., 2014b),
which informally requires that if any single user changes
their data, the information observed by all the other (KX — 1)
users cannot not change substantially.

To introduce JDP formally, we denote U = (uq,...,uk)
the user sequence that interacts with the agent over K
episodes. Technically speaking, a user can be identified
with a tree of depth H encoding the state and reward re-
sponses they would give to all the possible sequences of
actions the agent can choose. In their interaction, the agent
only gets to observe the information along a single root-to-
leaf path in each user’s tree. Let U/ denote the space of all
such trees. Let M be any RL algorithm that takes as input a
sequence of users U and outputs action recommendations
over K episodes. For any k € [K] we denote M_(U)
as all action recommendations generated by M except the
action during the k-th episode. Two user sequences U and
U’ are k-neighbors if they only differ in their k-th user.

Definition 4. (Joint-Differential Privacy (JDP)) An RL
algorithm M : UK — ATXIK=1 s (¢,6)-jointly dif-
ferentially private ((e,0)-JDP) if for all k € [K], all k-

neighboring user sequences U,U’, and all events E C
AH>< [K—1]

P[M_(U) € E] < eP[M_,(U') € E] + 6

While we state our main results in terms of JDP, we will also
use zero-Concentrated DP (zCDP) as a tool in our analysis,
since it enables cleaner analysis for privacy composition
and the Gaussian mechanism.

Definition 5 (zCDP (Bun & Steinke, 2016)). A randomized
mechanism M satisfies p-Zero-Concentrated Differential
Privacy (p-zCDP), if for all neighboring dataset U, U’ and
all a € (1,00),

Da(M(U) || M(U")) < par
where D, is the Renyi-divergence

Any algorithm that satisfies p-zCDP also satisfies
approximate-DP. The following proposition from Bun &
Steinke (2016) shows how to do the mapping between zCDP
and approximate-DP.

Lemma 6. If M satisfies p-zCDP then M satisfies

(o + 2P o(175).5)-D

Another basic but important property of zCDP is easy com-
position of zCDP mechanisms:

Lemma 7 (zCDP Composition). Let M : UK — Y and
M' . UK — Z be randomized mechanisms. Suppose
that M satisfies p-zCDP and M’ satisfies p'-zCDP. Define
M": UK - Y x Zby M"(U) = (M(U),M'(U)). Then
M satisfies (p + p’)-zCDP.
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To apply DP techniques to some mechanism we must know
the sensitivity of the function we want to release. Here we
give the definition and the notation we use:

Definition 8 (¢3-Sensitivity). Let U ~ U’ denote neigh-
boring datasets. Then the {y-sensitivity of a function
f:U—Rs

A(f) = max [|f(U) = f(U")]2

U~U

if f:UX — R¥™? is a matrix valued function, then
A (f) = maxp~o [|f(U) = F{U")op-

In our analysis, we use the Gaussian mechanism:

Definition 9 (Gaussian mechanism). The Gaussian mech-
anism GAU(U, f, p) takes as input a dataset U, a function
f: X — R% and a privacy parameter p > 0 and outputs
f(U) + n where each coordinate i € [d] is sampled as

_ AW?
1, ~N(0,0%) and 0? = (27[))

We use the following facts about the Gaussian mechanism:

Lemma 10. For any dataset U € UK and low sensitive
function f : UK — R and privacy parameter p. The
Gaussian mechanism satisfies p-zCDP and, for v € (0,1),
the error is given by:

P (150) ~ GAU. £ p)lhe > /TR ) <

3. JDP RL with Low Switching Cost

We now introduce our RL algorithm for the linear MDP
setting. We will first revisit the non-private algorithm of
Least-Squares Value Iterations (LSVI) and then introduce
our techniques to make such an algorithm private with a
desirable privacy-accuracy trade-off.

LSVI In the linear MDP setting, we leverage the fact that
the action value function @), is linear in the feature vector
(Proposition 2) and thus they can be estimated using the idea
of Least-Squares Value Iterations (Bradtke & Barto, 1996b;
Osband et al., 2016). In particular, the true action-value
function )}, is parameterized by a vector w7, If we updated
the policy on episode k, then Algorithm 1 recursively es-
timates w, for all 4 using LSVI. Let QF and w? denote
the running estimates of the action-value functions and their
corresponding parameters over episodes. In each episode
k, the algorithm computes the following sufficient statistics
relevant to the estimation of wj: For some A > 0, start-
ing with h = H down to h = 1, compute a least-squares

estimate 'w’fL via

k-1

AF :)xI—!-Z(b(xﬁl,az)qﬁ(z%,aﬁb)T (1)
i=1

yﬁ = Z ¢ (ziu a’?L) (T;z + V}f+1(z;L+1)) (2)

=1
wh = (Af) o ©)

which subsequently define the the corresponding optimistic
estimates for action-value and state-value functions:

Qn(x,a) = (6w, a),wh) + Bl () ppy @
Vi () = max Qji(, a) (5)

Given these optimistic estimates, the non-private algorithm
follows a greedy policy with respect to the estimates of
action-value functions.

Private LSVI-UCB To provide a JDP variant of the LSVI
algorithm, our strategy is to identify a collection of statistics
that are compatible with differentially private releases and
sufficient for constructing estimates for the action value
functions.

Binary Mechanism We first introduce the mechanism
to privatize the sequence of Gram matrices AZ, defined
in (1). First, notice that the Gram matrix statistic is in
form of a sum. This allows us to use a variation of the
binary mechanism due to Shariff & Sheffet (2018), which
is a tree-based aggregation mechanism that sequentially
releases sums of matrices privately. Our goal is to use the
binary mechanism to produces a sequence of privatized

~k
gram matrices, which we denote by {Ay, } 1. ne[r]x[#]-

Gaussian mechanism with low switching cost Our sec-
ond set of statistics is yﬁ (defined in Equation (2)). The
challenge with privatizing yéf is that it does not take the form
of summation, as it depends on the value function estimate
th+1 for episode k. As a result, we cannot apply the binary
mechanism. Therefore, we use the Gaussian mechanism
on each update episode to privatize ﬂﬁ However, adding
Gaussian noise to every episode would lead to too much
noise. For this reason, we minimize the number of episodes
we update the policy.

In Algorithm 1, an update episode occurs every time the

determinant of the noisy gram matrix KZ doubles for any
h € [H]. Since Algorithm 1 does not update the action-
value function every round, we use k to denote the last
episode the policy ﬂ’,j was updated.

As shown in (Wang et al., 2021), this adaptive update sched-
ule allows us to bound the number of policy updates by
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O(dH log(K)) while increasing the regret only by a fac-
tor of 2. Therefore, instead of applying composition over
K Gaussian mechanisms, we only have O(dH log(K)).
Having O(log(K)) updates is critical for obtaining our im-
proved regret rate. The algorithm from (Luyo et al., 2021)
uses a non-adaptive batching technique that leads to a num-
ber of updates polynomial in K. In the next section, we
show how to analyze the privacy guarantee of this adaptive
update algorithm.

Algorithm 1 Private LSVI-UCB
input Privacy parameter p, policy update rate C, fail prob-
ability p, confidence width 3.
1: Notation: Let ¢(z},al) = ¢t
~ log(K)(6vd+1+2log( 3£ ))

2: Ap = NeTs
3: Npax := 1g210g(1+~ )
~1 ~

4: Initialize: For all h € [H] : A, « 2Xx1,

5: Initialize: A counter C\’ )(2 547 ) as in Equation (6).

6: Initialize: k < 1, and Neoune < 1.

7: fork=1,..., K do

. det (/NX];)
8: if Jh € [HL — =\ Z C and Ncoum < Nmax
det (Aﬁ)
then

9: for h = H, L 1 do .

10: y’;  2ic1 Pu(ry + th-gl(xzﬂ))

11 NN( ,”76“’2;\[“”*1)

1
~k 5

13 B =860 (Ay) el )]

14: Q§(7)?mln{¢(a)Tw£+BZ(a)aH}
15: Update k < k and Noune < Neount + 1
16: end for

17:  endif

18: forsteph=1...,H do

19: Observe x’,j i
20: Take action afl < argmax, ¢ 4 Q’fL (x’,j, a).
21: Observe reward rf < rp, (25, ak) .
22: Update Cg) (557) with ¢F (¢F) " and set

~ k41
Ay, C}(zk)(LH> + 20T

23:  end for
24: end for
4. Analysis

We begin by analyzing the switching cost of Algorithm 1,
then the privacy and regret guarantees.

4.1. Switching Cost

We begin by analysing the switching cost of Algorithm 1,
which will be used in Section 4.2 for the privacy analysis .

Theorem 11. [Similar to Lemma C.3 in (Wang et al., 2021)]
Let A\ be defined as in Algorithm 1. Condition on the event

~k ~
that HAh —AZH < A forall hk € [H] x [K]. For
op

C =2and XA > 0, the global switching cost of Algorithm 1
is bounded by: N oy < 10 5 log (1 + "

Proof Sketch. See the full proof derivation in Appendix C.
We use a determinant-based analysis, similar to that of the
non-private algorithm in (Wang et al., 2021). The main

~k
difference in our proof is that the determinant of A, is now
at most (Ax + (k — 1)/d)? to account for the perturbation
from binary mechanism. Also, we notice that every time the

e . ~k+1,
update criteria is met, the determinant of A;,  increases by
at most twice. Hence, in total we can bound the number of

updates by O ( log(1 + ﬁ)) O

log 2

The low switching cost guarantee above is crucial for our
algorithm to achieve our improved regret guarantee since it
allows us to reduce the level of noise to preserve privacy.

4.2. Privacy Analysis

This section provides the privacy analysis of Algorithm 1.
But, first, we state our main privacy guarantee:

Theorem 12 (Privacy). Algorithm 1 satisfies (e, 0)-JDP.

For the privacy analysis of Algorithm 1, we use zCDP (Bun
& Steinke, 2016) because it simplifies the composition of
Gaussian mechanisms. At the end, we translate our results
in terms of approximate DP. In this section, we show that

~k
releasing statistics { A}, } i he[i)x (] satisfies (p/2)-zCDP

and then show that releasing {#/ } k,he[K]x[H) also satisfies
(p/2)-zCDP. Thus, by composition of zZCDP mechanisms
(Theorem 7), we have that releasing the sufficient statistics
satisfies p-zCDP and, by Theorem 6, also satisfies (¢, §)-DP

fore = p+ /plog(1/6).

It follows that Algorithm 1 is (¢, §)-JDP by the Billboard
lemma due to Hsu et al. (2016), since the actions sent to
each user depends on a function constructed with DP and
their private data only. We state the billboard lemma here:

Lemma 13 (Billboard lemma (Hsu et al., 2016)). Sup-
pose that randomized mechanism M : U — R is (¢,0)-
differentially private. Let U € U be a dataset contain-
ing n users. Then, consider any set of functions f; :
U; x R = R, for i € [n], where U; is the portion of
the database containing the i’s user data. Then the com-
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position { f; (proj;(U), M(U))};¢ ) is (€,6)-JDP, where
proj : U — U is the projection to @’s data.

We start with bounding the sensitivity of the two types of
sufficient statistics.

Lemma 14 (¢5-sensitivity). For any (k,h) €
We have A (AZ) < 2and A (y’,fb) <2H + 2.

(K] x [H].

Proof Sketch. In order to bound the sensitivity of y’fb, we
need to consider any two neighboring user sequences U
and U’ with outputs yF and ( "k, respectively Let
i < k be some episode with 2, # z'} and ai # d’},

where (z},a}) € U and (2,,a’;) € U'. By deﬁni—
tion of neighboring user sequences and triangle inequal-
ity, the difference between yj and (y'); can be written
as the sum of ||¢(x},,a},) (ra(z}, af) + ViFy (z,1)) ||,
and |[é(a'ha'h) (r(@’h a'h) + Vi, @) - Also,
by assumption of linear MDP, we have ||¢(-,-)|| < 1 and
rp(+,+) < 1, so the first summand in both terms is at most 1.
Furthermore, V;! | (2}, ;) and V}/, | ('}, ;) are at most H.
Using the assumption that ||¢(-,-)|| < 1, the second sum-

mand in each term is at most H. Combining these bounds,
we arrive at the claim.

By definition of neighboring sequences and triangle in-
equality, the sensitivity of A can be written as the sum

ofH¢ (zF, af)p(zk, ak) TH and H(b i h,a h (' h,a h H
Since || (-, -)|| < 1, the sensitivity of A¥ is at most 2.
We release these two types of statistics with two mecha-

nisms. Next, we show that both the Binary mechanism and
the Gaussian mechanism each satisfies p/2-zCDP.

Analysis of Binary Mechanism: First, we use the Gaus-
sian binary mechanism (Shariff & Sheffet, 2018) (a variant
of the binary mechanism due to (Chan et al., 2011; Dwork
et al., 2010) that preserves positive definiteness (PD) in ma-
trices) to privatize the statistics {AF} k.he[K]x|H]- Here we
show that releasing the sequence of private Gram matrices,

~k
denoted by {A}, }1 he[kx (] satisfies p/2-zCDP and also,
with high probability, the all are PD matrices.

The algorithm initializes H private counters C,(L')(ﬁ) for
h € [H] such that each satisfies (p/(2H))-zCDP. Denote

(bh = ¢ (chl, afl) as the data observed during episode k.
Each counter C,, () (3%
Uy = (q§h¢h ey qﬁffcf)h ) over K episodes and main-
tains a binary tree in which each internal node represents a
partial sum. Let ¥%/ be the function of the input stream U},
that computes the partial sum of all events between between
time i and j, defined as X/ (U,) = Y7L ¢7(¢7) 7. The
sum of all events before episode k is can be computed by a

) observes a stream of Gram matrices

function ¥ which is the output of at most log(K) partial
sums. Note that A(X5*) < log(K). On each episode k,

(%)

the private counter for / outputs a random matrix C
using the Gaussian mechanism as follows:

log(K)?
e () « Gau (UL,E““ Ogép) ) ©)

Each partial sum satisfies (WM)‘ZCDR However,
since any single data point in Uy, appears in at most log(K)
nodes of C;, ) (%

events. It follows that the output of C,(l (577) satisfies
L=-2CDP. By another round of composition over all time
steps H, we have that releasing K - H counts given by

k .
{C}(l )(ﬁ)}ke[K],he[H] satisfies p/2-zCDP.
The noise added by the BinMechcan violate the require-

%), we must do composition over log(K)

~k . . .
ment that A, is positive definite (PD). For that reason, in

Equation (6), we shift the noisy Gram matrix of C, ) (%)

by a constant 22 1.

Next we show that the shifted noisy Gram matrix Ki is PD,
by showing that all eigenvalues are strictly positive. First,
let M f be the noise added by the BinMech on episode
k such that K: = Zﬁ }(;ST(QST) + 201 + MY, then
we only need to show that 2)\AI + Mh is PD. By known
concentration bounds (Tao, 2012) on the matrix operator

norm state that with probability at least 1 — p on all for
k,h € [K] x [H]:

log(K)(G\/d+1+2 log(M;H)) 7
v2p

i -
1M llop < An =

If the eigenvalues of Mﬁ are \q,..., Ay, then MZ + QXAI
A Ad + 2XA. By definition of
1Al =
M5 ||op < Aa. Therefore, all eigenvalues of Ah are posi-
tive and thus the matrix is PD.

has eigenvalues A\; + 2\y, .. .,
operator norm and Equation (7) we have nnaxlE

Analysis of Gaussian Mechanism: For the remaining of
this section, the focus is to show that releasing the statistics

{gﬁ}k,he[K] «[H] also satisfies (p/2)-zCDP. Recall that, if &
is an update episode then Algorithm 1 adds Gaussian noise
to the statistics yﬁ Naively, we could update the episode
every round, but the noise added would scale with O(p/K),
giving an error in the order of O(/K/(p)), which leads
to sub-optimal regret on the variable K. Therefore, one
would want to update the policy at most O(dH log(K))
times because it allows us to scale the noise with p/ log(K),
which gives logarithmic error on the parameter K.

The main challenge is that the update episode is a random
variable dependent on the user sequence. Thus, any sin-
gle user in the sequence affects the future update episodes.
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Therefore, to simplify the analysis, we pretend to run a hypo-
thetical Gaussian mechanism to release a constant function
during rounds in which an update is not triggered. Formally,
for any h € [H], we construct an adversary that selects
an adaptive sequence of functions f}, ..., fX as follows:
On episode k, if k is an update episode then the adversary
sets fE(Uy) = V1 ¢ (i, a) i == gk forall h € [H].
Otherwise, the adversary sets f~(Uy) = 0 for all h € [H].
On non-update episodes, fF is a constant function indepen-
dent of the data. Also, Algorithm 1 uses f,’f only on update
episodes to modify the policy and ignores it otherwise.

The following lemma gives a tool to analyze the protocol
under zCDP as long as the joint sensitivity of the sequences

{f}%a ey f}f(}he[}(] iS bounded.

Lemma 15. Forany K > 0, let { fi, : U — R} ¢ (k) be a
sequence of adaptively chosen functions, such that the joint
sensitivity is bounded by: Zszl A(f;) < A. Then, the
composition of { fi,(D}) + ni Y ke (k) where ni ~ N(0, %)
satisfies p-zCDP.

It only remains to show that the joint sensitivity of the adap-
tive sequences is bounded. First, we show that each f}f has
bounded sensitivity. By definition of f,’f and Theorem 14,
we have on any update episode its sensitivity is given by
A(fF) = A(yF) < 3H , and on non-update episodes we
have that the sensitivity is A(fF) = 0 for any h € [H].

Next, we use the fact that number of update episodes is
bounded by Nyay 1= 125 log (1 + £
sensitivity of the the adaptive sequences is given by

H K H K
SIS AU =D AYR) < 3H? Ny

h=1k=1 h=1k=1

. Then the joint

Therefore releasing fF witha ((1/2)p/ (3H? Npax ) )-zCDP
Gaussian mechanism on every episode & € [K] satisfies
p/2-zCDP. This concludes the proof.

4.3. Regret Analysis

After showing that Algorithm 1 is JDP, we finish the analysis
by showing the regret guarantees in the following theorem.

Theorem 16 (Regret). For any p € (0,1), any privacy
parameter p > 0, if we set C' = 2 and

B = 5H?\/dAx log(x) + 6dH /log(x

with x = M in Algorithm 1, then with prob-

ability 1 — p, the total regret of Private LSVI-UCB (Algo-
rithm 1) is at most Algorithm 1 satisfies (e, )-differential

privacy with e = p+24/plog(1/0). Ife < 1, then the total

regret of Algorithm 1 is at most

34/ K (g <;>>2>

R(K)<O <d3/2H2K1/2 + 7
€

Proof Sketch. We present a proof sketch here for the regret
analysis. Here the O(-) notation hides all log and constants
terms. See Appendix B for full detail of the proof. The
analysis is similar to Jin et al. (2020), but there are several
challenges we need to handle due to privacy noise. The
proof structure is as follows: (1) Show that the privacy
cost to preserve the set of sufficient statistics scales with
O(log(K). (2) Construct new confidence bounds given the
private statistics and show that the action-value function
from Algorithm 1 is optimistic. (3) As in Jin et al. (2020)
and Wang et al. (2021), we follow an optimism strategy
and upper bound the regret by the sum of bonus terms:
S ST BE(2k, ak), where B is defined in line 13 of
Algorithm 1.

Private Least Squares As described in Section 3, Al-
gorithm 1 uses a Least-Squares-Value-Iteration (LSVI) to
estimate the action-value function Qj, := (¢(z, a), w},), but
to preserve privacy, Algorithm 1 adds noise to the sufficient
statistics. For any k, h € [K] x [H], let A} be the gram
matrix as defined in Equation (1) and y’,j be as defined in
Equation (2). Let their privatized statistics be

A=A+ 20T+ ML Gh=vftnf ®
where { M ’fL, nr} k,he[K]x[H] are noise injected to privatize
the statistics. Let Ayin(+) denote the minimum eigenvalue

of a matrix, then by Equation (7) we have a lower bound on
~k
the minimum eigenvalue of A,

Y log (K)(6v/dF1+2 log( 3KH
Amin(Ap) > Ay = GGl \/T\/% s(%5%)) )

Also, by tlle tail bound on the Gaussian noise we have
[mEll2 < O (Hd/\/p). It follows that

<0 (HQ\/dXA) (10)

Recall that LSVI, on episode k, starts with h = H and

. ~k
recursively computes 'wﬁ = (Ah)_ yZ

Upper Confidence Bounds (UCB) Let 7 be any policy
with corresponding action-value Q7 (x, a) = (¢(z, a), wF).
Let QF(z,a) = (¢(z,a), wy) be the private empirical
action-value function induced by w} without the bonus
term. We give a confidence bound around @Z and construct
an optimistic action-value function Q¥ (i.e., Q¥ (z,a) >
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Q; (z, a) for all (x, a)), taking into account the noise added
to privatize the statistics. We begin by decomposing the

term wf — w7 as follows:

k x kT - <k
wy, —wy, = (Ah> (yh)—wh+(Ah) M

a b

Then, for all (z, a, h, k), we can write

@Z(m’a) - QZ(.%‘,G) = <¢($7CL),CL + b)

and bound each term independently. Next we directly use
the Lemma B.4 in Jin et al. (2020) to bound (¢(z, a), a) by
the expected difference at next step, plus an error term that
depends on the minimum eigenvalue of the gram matrix,
which in our case is \ A. Therefore, we obtain:

(¢(x,a),a)| < PR(V¥ = Vi)(@,a)+

where P, (V}¥ — V) (x, a) is the expected error in time step
h + 1 between V;¥, | and V;7,, after taking action (z,a).
It remains to give a confidence bound for the second term
(¢(x, a), b), which follows simply by the Cauchy-Schwartz
inequality:

[ {6(x0), b NG )l g5
Note that by the bound in (10), the term HT’ZH(Kk)71 is
h
smaller than the second term in (11). Therefore, choosing
8=0 (H2 Ay + dH
(11) and (12). That is, with high probability, for any policy
mand all (z, a, k, h) we have:
@Z(l’, a) - QZ($, a)
< ]P)h(vhk - Vhﬂ-)(xv CL) + B||¢(Jf, a)”(Ki‘L)—l

Furthermore, by the upper bound (13) the optimistic action-
value function is given by QF(z,a) = (¢(z,a),w}) +
Bllo(z, a)||(1~\k)_l. That is for all (x, a, k, h):

h

Qh(w,a) > Qj(z,a)

) is enough to upper bound both
(13)

(14)

Regret proof In this section we use the following nota-
tion ¢ = ¢ (z,a’). Note that on episode k, the agent
acts according to policy 73 which is given by mx(z, h) =
argmax, QF (x,a), where & < k be the last episode the
algorithm updated its policy for time step h.

By optimism (14), the regret can be upper bounded by
the difference of the optimistic value function V}*(:) =
max, Q¥ (-, a) and the value function induced by policy 7:

K K B
K) =Y Vi) = Vit () £ 3 Vi) = Vi ()
= k=1

For the next step we set 6k = Vk(al) — VT (2f) and
Ci’:—&-l = ]P’h(Vh 174 )(xh, ah) 5’,;_1 Then by the bound
in (13), we can recursively relate the error on time step h to
the error on time step i + 1. The results is:

— Vi) (ay, af) — 650 +Bl 65

k
Ch+1

6h < 6h+1 —|—Ph(V (Ki)*l

Unfolding the recursion, we have that with high probability,
the regret of Algorithm 1 is upper bounded by:

K H K H
)<y N & +35226”¢h”(xk) .

(15)
k=1h=1 k=1h=1
PP a— =
<O(VKHS?) <O(HBVK)

The first term of (15) is the sum of a zero-mean martingale
difference sequence bounded by 2H. Thus, using standard

concentration inequalities it’s at most 9] (2\/ KH 3) with

high probability. For the second term, the first step is to show
that the low switching cost constraint only adds a constant
to the regret. This can be seen by the following inequality:
The ||¢>h|| Kbyr S < V2|oF || < (&%) 1- The final bound of the

second term 1n (15) follows from an application of Cauchy-
Schwartz inequality and the trace-determinant lemma and
elliptical potential lemma from Abbasi-Yadkori et al. (2011).

The final bound on the second term is O (H BVdAK ) O

5. Conclusion

Our algorithm follows an adaptive policy update schedule
and benefits from low switching cost, i.e only performs
O(log(K)) updates, compared to O(poly(K')) updates in
previous works using non-adaptive batching. However, the
update time is an unknown random variable depending on
the data and randomness of the algorithm, which introduces
new challenges in privacy analysis. We view the interactions
between the algorithm and the users as an adaptive adversary
with bounded sensitivity. Hence, our privacy cost is only
proportional to the number of updates, instead of the number
of episodes. Our low-switching cost algorithm and analysis
advances the existing paradigm using binary mechanism
and provides a foundation for future works in private RL.
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A. Privacy Analysis

Proof of Theorem 14 Let U and U’ be any two neighboring user sequences and y e (y )ﬁ are the outputs of these
two user sequences, respectively. Let i < k be some episode with 2, # 2’} and a} # a’},, where (2,a}) € U and

(z ;L, a h) € U’. Then, by definition we have:

s — @)k,
k—1 k—1

Jj=1 Jj=1

= Hﬁb(x;m GZ) (Th(méma;;) + Vif+1($§z+1)) - d)(m/;m GI;L) (?"h(év’Zva’Z) + Vif+1(xl2+1))

> olwh,ad) (ra(@dal) + Vi @lin)) = S olh, ah) (m@hed'h) + Vi @)

2

(since the two user sequences only differs in the ¢-th user.)

< 2+ |[@(wh 0} Vit (@ 0) = 0075, @) Vil (@750

(by linear MDP assumption, 7, (2, a}) < 1 and ||¢(x}, a)|]2 < 1)
<24 H(b(xz, aZ)V,fH(xZH)HZ + H¢(x’,’w a’h)V}fH(x’hH)Hz (by triangle inequality)
<2+ Vi (@hg)] + ‘V,fﬂ(x'zﬂ)‘ (by linear MDP assumption, ||¢(.,.)|l2 < 1)
<2+4+2H
Observe that for A(AF), by definition, we have
k- <A’>’;H
— )\I—i—Zgb Yo(z),al)T | — )\I—i—Zd)mh,ah xh,a’i)—r

2

= o aotah, a) T - oahs ah)o(a b a's)T

IN

2

‘ (since the two user sequences only differ in the ¢-th user)
2

oGt ai)étwh ai) T, + |6’ @) a) | (by triangle inequality)

<9 (Note that [|¢(z},,a})|l, < 1)

With these two bounds, we conclude our proof.

B. Full Regret Analysis
B.1. Notation and math tools

We start this section by listing our commonly used notations:

* A= B := 5H2\/dA log(x) + 6dH \/log(X)

2
- H- {2 Jog 1+ log( 2K ) ~t _
')\y:\/< o ( ApACi)) « Mj=A,— A}, mf=0) -yl
T, log(K)(6v/d+1+2log( 252 ) * For any episode k € [K], k < k is the last update
A= V2p episode before k.
o Uk = max{l 2H dK _|_ } o= 254~162'K4'd~UK~H.
AA p
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Notation (as in (Jin et al., 2020))

Fact 17. For any two PSD matrices A, B € R If B = A then for any vector x € R% we have ||z||a < ||z|/5 and
Izl -+ < [lzflg-.

Proof. Since A, B are PSD and B >~ A then we have that B — A > 0 is also PSD. Then by definition of PSD we have
2T (B — A)z > 0, which implies that # T (B)z > x T (A). O

B.2. Private statistics

~k ~ . .
Recall from B.1 that M} := Ay, — AZ and 0} := yﬁ — yk. Then consider the following events:

£y ~ H-y3g5 log ( 1+575 QIOE(SI;H)

&1 = {V(k h) € (K] x [H] : |nk]|, < Ay}, Ay = \/< ( " ) 16)

& = {v(k,h) € [K] < [H]: | Mg <af. Ka= log () (VT 2on(*57)) (17)
k-1 } ' ) o

& i= (k. ) € [K] x [H] |3 04, [ViFys () 0) = PaVilia (o ah)| < 6dH\/Tog(x) (18)
i=1 ~%

(Ap)~1

Consider event £ = & U Ey U E3.

B.3. High probability events

We will show that the probability of £ is at most p. We begin by analyzing the error of the private algorithm. The next
theorem states the utility guarantees given by the privacy mechanism:

Theorem 18 (Utility). Let {Ah}he[H ek and {yh}he H],ke[k)] be the privatized sufficient statistics of Algorithm 1
satisfying p-zCDP. Then with probability at least 1 — p we have for any k € [K]| and h € [H]

16V H log(K) (4\/m+ 2log (%H))
NeT)

~k &
1A} = Agllop <

and for any k € [K| and h € [H] we have

(s (1 553)) s (5)

p

~k
s — yrll2 <

By Theorem 18 we have that Pr [£;] <

g and Pr[&;] < L. From Theorem 25, condition on event & U &;, we have
Pr[&€3] < £. Then by union bound, Pr[£] < p

B.4. Lemmas from Jin et al. (2020)

Here we state key lemmas in the regret analysis. See Appendix B.6 for the proofs.

Lemma 19 (Lemma B.1 in (Jin et al., 2020)). Under the linearity assumption, for any fixed policy , let {w}; }c[m) be the
corresponding weights such that QF (xz,a) = (¢(z, a), w}) for all tuples (z,a,h) € S x A x [H]. Then, we have

Vh € [H], |wf|| < 2HVd

Lemma 20 (Lemma B.2 in (Jin et al., 2020)). Under the event &, for any (k,h) € [K| x [H|, the parameter vector w¥ in

Algorithm 1 satisfies:
dK X
HwhH <Ug :=max{1,2H,|— + £
)\A )‘A
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Theorem 21 (Theorem D.3 in (Jin et al., 2020)). Let {¢;}32, be a real-valued stochastic process with corresponding
Siltration {F;}$2,. Let ¢;|Fi=1 be zero-mean and o- subGaussmn i.e. Ele;|Fiz1] =0, and

YA ER, Elexp(Ae;)|Fi_i1] < exp(A\2a?/2)

Let {ng7 © o be an Re-valued stochastic process where ¢; € F;_1. Assume N is a d x d positive definite matrix, and let
A Ao + Zs:l b5¢] + M. Then for any § > 0, with probability at least 1 — 6, we have for all i > 0:

[det(fxi)lﬂ det(Ko)‘l/Q]

€s < 202 log

, 5
(A1

Lemma 22 (Lemma D.4 in (Jin et al., 2020)). Ler {x;}:°, be a stochastic process on state space S with corresponding
filtration {F}3°. Let {$;}32, be an RY-valued stochastic process where ¢; € F;_1, and ||¢;|| < 1. Let A = 2A\z 1 + M +
Zle b:¢. . Then for any § > 0, with probability at least 1 — §, for all k > 0, and any V € V so that sup,, |V (z)| < H,

we have:
d k+ Aa N. 8k2e2
—log = +log | — + —=
2 >\A 0 )\A

where N is the e-covering of V with respect to the distance dist(V, V') = sup,, |V (z) — V'(z)|.

Lemma 23 (Lemma D.5 in (Jin et al., 2020)). For any € > 0, the e-covering number of the Euclidean ball in R® with radius
R > 0 is upper bounded by (1 + 2R /¢)“.

Lemma 24 (Similar to Lemma D.6 in (Jin et al., 2020)). Let V denote a class of functions mappings from S to R with
following parametric form:

< 4H?

k 2
Z ¢V (2:) — B[V (i) Fia]}

(&)=

V(.):min{maxw o a) + B8 )T (R) 14, a),H}

where the parameters (w, 3, A) satisfy |w|| < L, € [0, B] and the minimum eigenvalue satisfies Amin(A) > Xp.
Assume ||¢(z,a)|| < 1 for all (x,a) pairs, and let N, be the e-covering number of V with respect to the distance
dist(V, V') = sup,, |V (x) — V'(z)|. Then,

log(N,) < dlog(1 +4L/€) 4 d? log(1 + 8d"/2B? /(Are€)?)

Lemma 25 (Similar to Lemma B.3 in (Jin et al., 2020)). Under the event £1 U &, for x = 252162 K2 d Ui -H g

P
B =5H2\/d\ log(x) + 6dH +/log(x), for any fixed p € (0, 1) if we let E5 be the event that

k—
V(k,h) € Z Vikr@hn) = PaVilia (s ah)| < 6dH /los(x)

&)

Then P(€[€) > 1 - £

Recall that our value function for episode & and timestep A is given by Q% (z,a) = <qz5(a:, a), w§>, where k < k is the last
update episode.

Lemma 26 (Similar to Lemma B.4 in (Jin et al., 2020)). Under event £, U Es, for any fixed policy m, on the event E3 defined
in Theorem 25, we have for all (x, a, h, k) that:

Qh(w,0) = Qi (w,0) = Pu (Vi = Vi) (3,0) + Af(w,0)

for some A¥(x,a) that satisfies |Af (z,a)| < B |¢(z, a)||(K,;
h

)~
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Lemma 27 (Lemma B.5 in (Jin et al., 2020), (UCB)). Under the event £, we have that Qﬁ(m, a) > Q;(z,a) for all
(x,a,h, k) € S x Ax [H] x [K].

Lemma 28 (Lemma B.6 in (Jin et al., 2020)(Recursive Lemma)). Let k be the last update episode before k. For any
(h,k) € [H] x [K], let 6} = Vh (zf) — Vi *(x§) denotes the errors of the estimated VI¥ relative to V,*. Let (f,, =
[5,’§+1 |z¥, ak] — 5,’§+1 Then condition on the event € defined in Theorem 25, we have the following: for any (k,h) €

(K] % (] ~
< B+ S+ 28 (6D 4,
B.S. Final Regret Proof

Finally, we prove the regret bound stated in Theorem 16. For any k € [K], let k < k be the last episode the algorithm updated
its policy. That is, on episode k the agent acts according to policy 7, which is given by 7 (z, h) = argmax,, QZ(:U, a).

We begin by decomposing the regret using the optimistic approximation. Thus, by Theorem 27 we can decompose the regret
as follows:

K
Z Vi () = V™ (27))] Z Vl y) — Vi (af)] 251

Recall that 6F = ViF(zF) — V™ («k) and ¢F,, = E[5F, |ak,af] — 0%, ,. On the event €, by the recursive lemma
Theorem 28 we obtain the following:

K H ~ K H i -1
SHRIED NI
k=1h=1

k=1h=1

For the first term, since the computation of Vh’~€ is independent of the new observation ;v’fL at episode k, we obtain that
{¢F} is a martingale difference sequence satisfying (¥ < 2H for all k,h € [K] x [H]. Therefore, we can apply the
Azuma-Hoeffding inequality, for any ¢ > 0, we have :

Hence, with probability at least 1 — p/4, we have

K H
D) G < V2K H3log(4/p) < /2K H3 log(x) (19)

k=1h=1

2 2
where x 1= W. On the event &,, the condition of Theorem 11 is satisfied, which means that the total number of

updates is bounded by % log (1 + %) and the condition Ngoynt > Npax from Line 8 in Algorithm 1 never happens. It
A
follows that on &, the following bound holds: .

~i\ ! ey —1
T (Ar) ok =200 (A2) e roral () € 1 x [ o)
Thus, by Equation (19) and Equation (20) we have

i) < /SR Toa(y) + 65 ifj (R e
k=1 h=1
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The next step is to apply Cauchy-Schwarz inequality to the second term:

R(K) < \/2KH?31og(x) +662f Z%)( )Lgk
k=1

~k ~ ~
Now recall that A;, = AJ 42X, T + M. We use the fact that on event £ (Equation (17)), we have || M5 || < X5 and thus

~ ~k o~
M ’,ﬁ + AaT > 0, which implies that the minimum eigenvalue of A;, is Ax. Then by Theorem 21 from (Jin et al., 2020) and
A5 < Aa + K we have that

K+1 ~
A K
3 () (Ah) ¢h < 2log (M) < 2dlog (AAf ) < 2dlog (x) Q1)
k=1 det A}, AA

Finally, by Equation (21), and by substituting 8 = 5H2/dA, log(x) + 6dH +/log(x), we can bound the total regret as:

R(K)

< /2K H3log(x) + 68H+/2dK log (x)
< 2K H3log(y) + 36 H2d*/*\/2K log(x )2 + 30H?d\/ 2K A5 log (x)*

_ log(K)(6vdFi+2log( 258 ))

—~

Recall that \ A= NeT . Therefore, by a union bound on the events &, £, &, and the event from
Equation (19) we have that with probability at least 1 — p, the regret of Algorithm 1 is bounded by

R(K) = 0O <d3/2H2K1/2 + H3d5/4K1/2p—1/4)

B.6. Lemma proofs from Jin et al. (2020)

Proof of Theorem 20 (Lemma B.2 in Jin et al. (2020)) For any unit vector v € R<, we have:

v wj|

-\ -1 (k=1
~k . . . ) ~
o (A) (S hlrtehech) + max Qo ohas ) +

i=1
-1

~k ~

<Ah) 77;2

; J S (&) o] [T (&5) o o  5) o

i=1 =1

N
v’ (Kﬁ) oLl (H+1)+ o7

<2H dk—1) , Ay
AA AA

2H (,{—KJFA),\JSUK
AA AA

IN
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Proof of Theorem 22 (Lemma D.4 in Jin et al. (2020)) For any V € V, we know there exists a V in the e-covering such
that

V=V+Ay and supl|Ay(z)|<e
This gives the following decomposition:

2

k
Z oi{V (x;) — E[V (2:)| Fi-1]}

(R
i 2 i 2
<2y ¢i{V (@) — E[V(2:)| Fi1]} Z i{Av (zi) — E[Av (2:)|Fi-1]}
i=1 (Kfc) 1 =1 (7\’;)*1

where we can apply Theorem 21 and a union bound to the first term, and bound the second term by 8k2¢2/ X

Proof of Theorem 24 (Lemma D.6 in Jin et al. (2020)) Equivalently, we can reparametrize the function class V by
letting A = 82(A)~", so we have

V()= min{mgxw—rqﬁ(.,a) +1/é(.,a)TAg(.,a), H} (22)

for |w|| < L and ||A|| < B2(A+ A,)~L. For any two functions V;, V5 € V, let them take the form in Equation (22) with
parameters (w1, A1) and (wq, As), respectively. Then, since both min{., H } and max, are contraction maps, we have:

dist(V7, Vo) < sup

0] 60,0+ o(0.0) Aao(0,0)] [T ol 0) + o) Aol
< sup |[w] o+ Vo Az0] - [w] o+ VoT Az |

¢:lloll<1
< sup |(wi—ws)"¢|+ sup 9T (A1 — Az)d|

¢:]|olI<1 ¢:lloll<1
= |lw1 —wal| + /| A1 — Az
< lwy —wall +/[| A1 — A2 (23)

where the second last inequality follows from the fact that [\/z — ,/y| < \/|z — y| holds for any x,y > 0. For matrices,
|I.]| and ||.|| » denote the matrix operator norm and Frobenius norm respectively.

Let Cy be an ¢/2-cover of {w € RY||w| < L} with respect to the 2-norm, and C4 be an €2/4-cover of {A €
RY4| || Al » < d/2B2X;'} with respect to the Frobenius norm. By Theorem 23, we know:

Cwl < (144LJ0),  [Cal < [148d2B?/(Ane?)] "

By Equation (23), for any V; € V), there exists wy € Cw and A € Cy such that V, parametrized by (wa, Ay) satisfies
dist(V7, Vo) < €. Hence, it holds that N; < |Cyp||C 4], which gives:
log N, < log |Cu| + log |Ca| < dlog(1 +4L/€) + d?log[1 + 8d"/2B?/(Are?)]

This concludes the proof.

Proof of Theorem 25 (Lemma B.3 in Jin et al. (2020)) Forall (k, h) € [K]x [H], by Theorem 20, we have ||w}|| < Uk-.

~k ~k ~
In addition, by construction of A,, the minimum eigenvalue of A;, is lowered bounded by Ay. Thus, by combining
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Theorem 22 and Theorem 24, with probability at least 1 — we have for any k£ > 1 that:

Gl
~ 2
-1 o -
Z%[Vf#l(%ﬂ) — PuVi¥ 1 (), i) (24)
= (&)t
4 1/2 52 H 2 2
< 4H? glog k42 +d1g(1+U>+d21g 1+ 845 + log <6 ) +% (25)
2 )\A €0 €o>\A p A

with eg = ‘%I Xa. Notice that we choose the hyperparameter 3 = 5H?/ d log(x) + 6dH +/log(x). We have:

- 2
k—1

Z O, [‘/;f“+1(w2+1) - PhV;fll(xZ, ap,)]

(A1

27172
< 4H?d? (2 + log (1 + 825 KQ/glOg(X))) +2H?dlog (1 + ?)
A

AA
G, G2
AU K H
+ 4H?dlog 1+L~ +4H210g(6>
dH\2\) NP/
Gy

G3

We can bound each term individually:

G1 < 4H?d?[2 4 log(1 + 8 - 252 K2/dlog(x))]
First, we have log(1 + 8 - 242 K2 log?(x)) < 9 - 252K 2v/d log(x).

Notice that if we set x > (9 - 252K2Vd)(18 - 252K%\/d) = 9 - 18 - 25*K*d, then we can upper bound y >
9 - 252 K2\/dlog(x). Hence, we can write:

G1 < 8H?*d*log(x) + 4H?d*log(x) = 16 H*d* log(x)
» We have Gy < 2H%d?log(2K) < 2H?d? log(x) since x > 2K.

« We have G5 = 4H?dlog (1 + #) < 4H?d?log(5Uk K) < 4H?d?log(x) since x > 5Ux K

AA

* We have G4 < 4H2d?log(x)

Therefore,

Z Vi (@hyr) — PrViys (2h, af,)] < 26d°H” log(x)

= (&)=

Proof of Theorem 26 (Lemma B.4 in Jin et al. (2020)) By Theorem 2 and the Bellman equation, we have that for any
tuple (z,a,h) € S x A x [H]:

Qr(z,a) == (¢(z,a), wp) = (rp + thl;ll)(xv a)
For any k € [K], the action-value function in Algorithm 1 is defined as

Q¥ (z,a) = <¢(w, a), w§>
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-1
~ ~k 7
where wf = (Ah> ¥y and

. L k-1
Ap = 2DWI+ME+ 36 (¢),a}) 6 (), ah) |
=1
~ k—1 o o ~ ) ~
Uh =30 (@hrah) (el al) + Vil @hi) ) + 0k

i=1

Note that k < k is the last update episode for any h € [H] before episode k and under event £, the minimum eigenvalue of

~k o~
A, is Ap. This means that

~ 1
1ol zx) s < Mol anyr = Vo G0 < [ o] 26)
y AA

Hence, we begin by decomposing the term wZ — w} as

wj — wj,
—F k=1 - . .
= A [DD bl + Vit @i )]+ | - wi;
i=1
—F k-1 o - ] i\ E o
= @0 [ X ealrh + Viataicall | - i+ (A1) of
i=1
L k-1 k-1 B
= (A7 DDdhri + D L Vira (@) + SLPR VI (s a)) — ORPRVT (2, af)
i=1 i=1
A
—wj + <A > n’fL
iy k=1 o s S . o
= (Ah)il Z Ph (T;L + PuViia (2, a%)) + Z Ph (V}ﬁ-l(x;wl) - PhVﬁl(ﬂﬁ%?a?z))
i=1 i=1

-\ -1
w ~k k
—wjp + (Ah> ny

By definition, we can replace (¢}, w] ) = r} + P,V;" (2}, aj). Then, we can continue expanding the equality above as:

- k—1 k—1 _\ -1
k- iy i (ko (i i i ™ Xk 2
= (A" Z on (P, wp) + Z on (Vlf+1(xh+1) = PaVi (@, ah)) —wp + <Ah> i,
i1 i=1

~k k-1 ) ) ~k k-1 ) = ) . AL
= (A" Z Db (Dh, wh) — Apwh + Z oh (Viﬁrl(xﬁwl) = PaVi (@, a%)) + (Ah> i,

i=1 =1
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~k
Then, plugging in for the definition of A, we get

- k-1 k-1
- Qi o 3 k i i T,
= (A" Z¢h<¢hvwh> — [ 20T + M + Z¢h¢h wp,
i=1 =1
;; o AN
+( Zqﬁz (Vhﬂ(fchﬂ) thiﬂrl(%’a%)) + (Ah> i,
% " B k—1 ) B ) ‘ ‘ oy -1
=@ S (BT = ME) i+ X ool - BV (ohail g + (A1) ok
i=1

~k = . )
(R~ (AT + M) wf + (A lzabz Vs (0ha1) = PuVila (@), ah)] +

q

a2

A o AN
+ (Ap)~ Z¢hph(vh+1 Vfﬁﬂ(%v%)‘*‘(—’xh) i,
i=1 ————

Qs a4

We proceed to bound each term in the right hand side individually. For the first term, we have:

Ho(z,a),q,)| = <¢(Jj,a), (Ki)*l (2XAI—|— M;E) ’w;:>
= (o) ®p) 2, (R) 2 (BT + M) wf )
< ot )l 55,

(2XAI + MEL) wT

(&)t
< om0l e, | (RaT) ] e,
Y .
S\Fllwhllllqﬁ(fﬂ,a)(ﬁ)l (by Equation (26))
h
=2H dXA||¢(x,a)||(K,;)71 (by Theorem 19)
h

As a straightforward application of Theorem 25, we can bound the second term as such:

(6(x0). 45)] < ﬁdH\/log<xM o(x.0) (R))(z,a)
= 6dH /log(x) || $(z.a)|

(&f)-

For the third term, by definition of linear MDP, we have:
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i=1

- k—1 R o
(¢(z,0),q3) = <¢>(w7a), (Ay)~" > OBVt — Vi) (@), a2)>

- k—1 _
<¢<x7a>, (A" _Z gt / Vi, — v,zf+1><x’>duh<x’>>

— (8.0 [0 = Vi) @)l )
= (otoa), (R) ™ (g + 0E) [0 = Vi) ) () )

P2

where, by assumption, we have

p1 = Ph(vhk+1 = Vii)(z,a)

and similar to q;, we can bound |p2| as follows:

ng\/¢(x,a)T(Ki)—1¢(x,a) (Ah)-1r2 H(2XA)I+M§§HQH\/&

L G2V ol o) (R o0, 0

<2t/ dha 10l a)l 4,

For the fourth term, we have:

(6(xa), a)| < <¢<x,a>, (Ki)_ n5>

o(,0)T (Ap)~V2(Ap) V2]

_ ((Kif)-l/%s(x,a))T (&0t

< | @ owa)| | G-

O T

= ] x5, Vot &) 1ot0.0)
il S

s\/i%b( )T (&) 0l a)

< 2 o, a)| 5

(M)t

o
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Finally, since we have (¢(z, a), w£> - QF(z,a) = (¢(z, a), wi —w}) = (¢(x,a),q; + q5 + q5 + q4), we can write:

(6(2,0),w}) = QF(,a) = Pa(Viey = Vi), a)|

< | 2H\/dXp + 6dH\/log(x) + 2H\/ dXp +

= | ot Dl

Hence, for the inequality to hold, we need to set

B> 2H\/d\y + 6dH\/log(x) + 2H\/ d\s +

= 27)
AA

Observe that the RHS of inequality (27) becomes:

RHS of Equation (27) = 2H\/d\x + 6dH \/log(x) + 2H\/d\x + —

AA
< 4H\/d\y + 6dH/log(x) + —
AA
2
~ = ~ H- 25 Jog (145 log (22 _

Finally, we upper bound the ratio ()\y)/ Aa. Recall that A, = \/( e < AAd)) and Ay, =

log(K) (6\/d+1+2 log( 3I§)H ))
N

, therefore

5, V2 (fgg; log (1 + ﬁ)) log (3K H /p)

Vs - \log () (6v/d 1+ log (3K H /p))

Observe that we can upper bound the last term by H2y/d\a log(x). Therefore, it suffices to set 3 = 5H?1/ da log(x) +

6dH \/log(x).

Proof of Theorem 27 (Lemma B.5 in Jin et al. (2020)) We will prove this lemma by induction. Base case: At the last
step H, the statement is true because Q% (v, a) > Q% (x, a). Since the value function at step H + 1 is zero, by Theorem 26,
we have:

[((x a), why) — Qs (z,0)] < N oz, )T (Rpy) 6(a,a)

Hence, we have:

Q) < min{((x, a), why) + 5\/ o(w,0)T (Riy)~16(z,0), H} = Qfy (v, a).

Induction hypothesis: Suppose the statement is true at step h + 1. Consider step h. By Theorem 26, we have:

(¢, a), wh)| — Qi(w,a) — Ba(ViEyy — Viry)(@.a) < B\/ o(a,0)T(Ap)~ (. a)

By the induction assumption that IP’h(Vh’;+1 — Vi) (@, a) > 0. we have:

Qi (x.0) < min{{g(x, a), wf) + B\/ ola.0)T(Ap)~1¢(x,a), H} = Qh(a.a)

This concludes the proof.
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C. Switching Cost Analysis

) ~k
First, we give an upper bound on the determinant of A,.

Lemma 29 (Similar to Lemma C.1 in (Wang et al., 2021)). Let {Xz, (k,h) € [K] x [H]} be as defined in Algorithm 1.
Then for all h € [H] and k € [K], we have det (KZ) < (A + (k—1)/d)?

Proof. We have
k—1
ik 5y k i i i
Tr(A,) = Te(2A + M7},) + Z Tr(o(zy, ap)d(xy, a;,)T)
i=1
~ k-1 . . 2 ~
=d+ Y [[eah, ab)|[; < Aad+k -1
i=1

~k
where the last inequality is because we assume ||¢(z, a)|| < 1. Since A, is PSD, by AM-GM, we have
~k d
~k Tr(A k-1
det(Ay) < (izh)) (A e )

Next, we provides a determinant-based upper bound for the ratio between the norms ||-|| , and ||-|| 5, where A = B.

Lemma 30 (Lemma 12 in (Abbasi-Yadkori et al., 2011)). Suppose A, B € R**? gre two PSD matrices such that A = B,
then for any x € R%, we have ||z|| , < ||z| 5 - \/det(A)/ det(B)

Finally, we can derive the switching cost of Algorithm 1 in the following lemma:
Lemma 31 (Similar to Lemma C.3 in (Wang et al., 2021)). Condition on the event that HMZ H < A forallh,k € [H]x [K].
For C' =2 and XA > 0, the global switching cost of Algorithm 1 is bounded by:

Proof. Let {ky,ka, - ,kn.,, | be the episodes where Algorithm 1 updates the policy, and let ko = 0. Then, by the update
condition on line (8), f0r each ¢ € [Neound, there exists at least one h € [H]| such that

det(Ay') > 2det(A) ")

~k ~1 ~1
By the definition of A, we know that A, > A, forall iy > i and h € [H]. Hence, we have

Hdet A >2Hdet A

= h=1

We can recursively apply the inequality above to all ¢ € [Neoun] and get

H det Ncounl > 2qum . H det Ah) — 2qum)\dH
h=1

~1 ~
as we initialize A, = 2Ap 1.
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Also, by Theorem 29, we have
H H dH
~k count ~K N K
hUl det (A7) < g det(AX) < (AA + d)

Therefore, we can combine the two inequalities above and get

dH K
N, < —1 1+ =—
count =~ 10g2 Og ( + )\Ad)

D. Auxiliary Results

Claim 32 (Concentration inequalities in (Tao, 2012)). Let M € R%*? be a symmetric matrix where each of its entries
M; j = Mj. ~N(0,1) forany 1 < i < j < d. Then, for any a > 0, P(||M]|,,, > 4v/d + 2log (1)) < o, where 1M,
is the operator norm of a matrix associated to the norm ||-||,.

Claim 33 (Corollary to Lemma 1 in (Laurent, 2005)). IfU ~ x?(d) and o € (0,1):
1 1

P (U > d+2\/dlog () + 2log ()) <«
a e
/ 1

P(Uﬁd—? d10g<a>>§a

As a consequence of the first inequality, we also have that for any vector v € R? drawn from a d—dimensional Gaussian

distribution N (0, I 4 q), then P (||11H2 > Vd+ 2@) <a.

Proof. By definition of Laplace distribution, for each i € [d], we have

(o (2):

Hence, in the union event, with probability at least 1 — o, we have ||v||, < V/dlog (). O

e

Claim 34 (Theorem 7.8 in (Zhang, 2011)). For two positive definite matrices (PSD) A, B € R%? ywe write A = B to
denote that A — B is PSD. Then, if A = B = 0, we have:

* rank(A) > rank(B)
e det(A) > det(B)
e B~' = A=l if A and B are non-singular.

Claim 35 (Lemma 12 in (Abbasi-Yadkori et al., 2011)). Supposed A, B € R**? are two PSD matrices such that A = B.
Then, for any x € RY, we have ||z|| , < ||z 5 1/ %.



