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Abstract

Learning problems commonly exhibit an in-
teresting feedback mechanism wherein the
population data reacts to competing deci-
sion makers’ actions. This paper formulates
a new game theoretic framework for this phe-
nomenon, called multi-player performative
prediction. We establish transparent suffi-
cient conditions for strong monotonicity of
the game and use them to develop algorithms
for finding Nash equilibria. We investigate
derivative free methods and adaptive gradi-
ent algorithms wherein each player alternates
between learning a parametric description of
their distribution and gradient steps on the
empirical risk. Synthetic and semi-synthetic
numerical experiments illustrate the results.

1 INTRODUCTION

Supervised learning theory and algorithms crucially
rely on the training and testing data being generated
from the same distribution. This assumption, however,
is often violated in contemporary applications since the
underlying data distribution may “shift” in reaction to
the decision maker’s actions. Indeed, machine learning
algorithms are increasingly being trained on data that
is generated by strategic or even adversarial agents, and
then deployed in environments that react in response
to the decisions that the algorithm makes. In such
settings, the model learned on the training data may
be unsuitable for downstream inference and prediction
tasks.

The method most commonly used in machine learn-
ing practice to address such distributional shift is to
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periodically retrain the model to adapt to the chang-
ing distribution (Diethe et al., 2019; Wu et al., 2020).
Despite the ubiquity of retraining heuristics in prac-
tice, training without consideration of strategic effects
or decision-dependence can lead to unintended conse-
quences including reinforcing bias. This is a concern
for applications with potentially significant social im-
pact, such as predictive policing (Lum and Isaac, 2016),
criminal sentencing (Angwin et al., 2016; Courtland,
2018), pricing equity in ride-share markets (Chen et al.,
2015), and loan or job procurement (Bartlett et al.,
2019).

Optimization over decision-dependent probabilities has
classical roots in operations research; see, for example,
the review article of (Hellemo et al., 2018) and refer-
ences therein. The more recent work of (Perdomo et al.,
2020), motivated by the literature on strategic classi-
fication (Dong et al., 2018; Hardt et al., 2016; Miller
et al., 2020), sets forth an elegant framework—aptly
named performative prediction—for modeling decision-
dependent data distributions in machine learning set-
tings. There is a growing body of research that develops
algorithms for performative prediction by leveraging
advances in convex optimization (Drusvyatskiy and
Xiao, 2020; Miller et al., 2021; Mendler-Dünner et al.,
2020; Perdomo et al., 2020; Brown et al., 2020). A more
extensive literature review is contained in Appendix A.

The existing strategic classification and performative
prediction literature focuses solely on the interplay be-
tween a single learner and the population that reacts
to the learner’s actions. On the other hand, learning
algorithms in practice are often deployed alongside
other algorithms which may even be competing with
one another. One concrete example to keep in mind
is that of university admissions, wherein applicants
may tailor their profile to make them more desirable
for the college of their choice. In this case, there are
multiple competing decision-makers (universities) and
the population of applicants reacts based on the ad-
missions policies of all the universities simultaneously.
Examples of this type are widespread in applications
and we provide more detailed vignettes in Section 3.
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Contributions. We formulate the first game the-
oretic model for decision-dependent learning in the
presence of competition, which we call multi-player
performative prediction. This is a new class of stochas-
tic games with relevance to many machine learning
tasks.

Aiming towards algorithms for finding Nash equilib-
ria for multiplayer performative prediction games, we
develop transparent conditions ensuring strong mono-
tonicity of the game. Assuming that the game is indeed
strongly monotone, we discuss a number of algorithms
for finding Nash equilibria. In particular, derivative-
free methods are immediately applicable but have a

high sample complexity O(d
2

ε2 ). Seeking faster algo-
rithms, we introduce an additional assumption that
the data distribution depends linearly on the performa-
tive effects of all the players. When the players know
explicitly how the distribution depends on their own
performative effects, but not those of their competitors,
a simple stochastic gradient method is directly applica-
ble and comes equipped with an efficiency guarantee
of O(dε ).

Allowing players to know their own performative ef-
fects may be unrealistic in some settings. Consequently,
we propose an adaptive algorithm in the setting when
the data distribution has an amenable parametric de-
scription. In the algorithm, in each iteration, the play-
ers simultaneously estimate the parameters of their
decision-dependent distribution and optimize their loss
by taking a step in the direction of their individual
gradient, again with only empirical samples of their
individual gradients given the estimated parameters.
The sample complexity for this algorithm, up to vari-
ance terms, matches the rate O(dε ) of the stochastic
gradient method.

Finally, we present illustrative numerical experiments
using a semi-synthetic example that uses data from
multiple ride-share companies (Section 6).

2 NOTATION & PRELIMINARIES

This section records basic notation that we will use.
A reader that is familiar with convex games and the
Wasserstein-1 distance between probability measures
may safely skip this section. Throughout, we let Rd
denote a d-dimensional Euclidean space, with inner
product 〈·, ·〉 and the induced norm ‖x‖ =

√
〈x, x〉.

The projection of a point y ∈ Rd onto a set X ⊂ Rd
will be denoted by projX (y) = argminx∈X ‖x − y‖.
The normal cone to a convex set X at x ∈ X is the set
NX (x) = {v ∈ Rd : 〈v, y − x〉 ≤ 0 ∀y ∈ X}.

Convex Games and Monotonicity. Fix an index
set [n] = {1, . . . , n}, integers di for i ∈ [n], and set

d =
∑n
i=1 di. We will always decompose vectors x ∈ Rd

as x = (x1, . . . , xn) with xi ∈ Rdi . Given an index i,
we abuse notation and write x = (xi, x−i), where x−i
denotes the vector of all coordinates except xi. A
collection of functions Li : Rd → R and sets Xi ⊂ Rdi ,
for i ∈ [n], induces a game between n players, wherein
each player i seeks to solve the problem

min
xi∈Xi

Li(xi, x−i). (1)

Define the joint action space X = X1 × · · · × Xn.

A vector x? ∈ Rd is called a Nash equilibrium of the
game (1) if the condition

x?i ∈ argmin
xi∈Xi

Li(xi, x?−i) holds for each i ∈ [n].

Thus x? is a Nash equilibrium if each player i has no
incentive to deviate from x?i when the strategies of all
other players remain fixed at x?−i.

We use the symbol ∇iL(x) to denote the derivative of
L(·) with respect to xi. With this notation, we define
the vector of individual gradients

H(x) := (∇1L1(x), . . . ,∇nLn(x)).

This map arises naturally from writing down first-order
optimality conditions corresponding to (1) for each
player. Namely, we say that (1) is a C1-smooth convex
game if the sets Xi are closed and convex, the functions
Li(·, x−i) are convex, and the partial gradients ∇iLi(x)
exist and are continuous. Thus, the Nash equilibria x?

are characterized by the inclusion

0 ∈ H(x?) +NX (x?).

Generally speaking, finding global Nash equilibria is
only possible for “monotone” games. A C1-smooth
convex game is α-strongly monotone (for α ≥ 0) if

〈H(x)−H(x′), x− x′〉 ≥ α‖x− x′‖2 ∀ x, x′ ∈ Rd.

If this condition holds with α = 0, the game is simply
called monotone. It is well-known from the seminal
work of Rosen (1965) that α-strongly monotone games
(with α > 0) over convex, closed and bounded strategy
sets X admit a unique Nash equilibrium, and the Nash
equilibrium x? satisfies

〈H(x), x− x?〉 ≥ α‖x− x?‖2 for all x ∈ X .

Probability Measures and Gradient Deviation.
To simplify notation, we will always assume that when
taking expectations with respect to a measure that the
expectation exists and that integration and differentia-
tion operations may be swapped whenever we encounter
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them. These assumptions are completely standard to
justify under uniform integrability conditions.

We are interested in random variables taking values in
a metric space. Given a metric space Z with metric
d(·, ·), the symbol P(Z) will denote the set of Radon
probability measures µ on Z with a finite first moment
Ez∼µ[d(z, z0)] <∞ for some z0 ∈ Z. We measure the
deviation between two measures µ, ν ∈ Z using the
Wasserstein-1 distance:

W1(µ, ν) = sup
h∈Lip1

{
E

X∼µ
[h(X)]− E

Y∼ν
[h(Y )]

}
, (2)

where Lip1 denotes the set of 1-Lipschitz continuous
functions h : Z → R. Fix a function g : Rd × Z → R
and a measure µ ∈ P(Z), and define the expected loss

fµ(x) = E
z∼µ

g(x, z).

The following standard result shows that the
Wasserstein-1 distance controls how the gradient
∇fµ(x) varies with respect to µ; see, for exam-
ple, Drusvyatskiy and Xiao (2020, Lemmas 1.1, 2.1) or
(Perdomo et al., 2020, Lemma C.4) for a short proof.

Lemma 1 (Gradient deviation). Fix a function
g : Rd × Z → R such that g(·, z) is C1-smooth for
all z ∈ Z and the map z 7→ ∇xg(x, z) is β-Lipschitz
continuous for any x ∈ Rd. Then for any measures
µ, ν ∈ P(Z), the estimate holds:

sup
x
‖∇fµ(x)−∇fν(x)‖ ≤ β ·W1(µ, ν).

3 DECISION-DEPENDENT GAMES

We model the problem of n decision-makers, each facing
a decision-dependent learning problem, as an n-player
game. Each player i ∈ [n] seeks to solve the decision-
dependent optimization problem

min
xi∈Xi

Li(xi, x−i) where Li(x) := E
zi∼Di(x)

`i(x, zi).

(3)
Throughout, we suppose that each set Xi lies in the
Euclidean space Rdi and we set d =

∑n
i=1 di. The loss

function for the i-th player is denoted as `i : Rd×Zi →
R, where Zi is some metric space, and Di(x) ∈ P(Zi)
is a probability measure that depends on the joint
decision x ∈ X and the player i ∈ [n]. Observe that the
random variable zi in the objective function of player i
is governed by the distribution Di(x), which crucially
depends on the strategies x = (x1, . . . , xn) chosen by
all players. This is worth emphasizing: the parameters
chosen by one player have an influence on the data
seen by all other players. This is one of the critical
ways in which the problems for the different players are
strategically coupled. The other is directly through the

loss function `i which also depends on the joint decision
x. These two sources of strategic coupling are why the
game theoretic abstraction naturally arises. It is worth
keeping in mind that in most practical settings (see
the upcoming Vignettes 1 and 2), the loss functions
`i(x, zi) depend only on xi, that is `i(x, zi) ≡ `i(xi, zi).
If this is the case, we will call the game separable (which
refers to separable losses, not distributions). Thus, for
separable games, the coupling among the players is due
entirely to the distribution Di(x) that depends on the
actions of all the players.

Remark 2. The decision-dependence in the distribu-
tion map may encode the reaction of strategic users in a
population to the announced joint decision x; hence, in
these cases there is also a “game” between the decision-
makers and the strategic users in the environment—a
game with a different interaction structure known as
a Stackelberg game (Von Stackelberg, 2010). This
level of strategic interaction between decision-maker
and strategic user is abstracted away to an aggregate
level in Di(xi, x−i). The game between a single deci-
sion maker and the strategic user population has been
studied widely (cf. Appendix A). We leave it to future
work to investigate both layers of strategic interaction
simultaneously.

We assume that each player has full information of the
other players’ parameters. This is a reasonable assump-
tion in our setup: if the data population (e.g., strategic
users) are able to respond to the players’ deployed de-
cisions xi, the other players must be able to respond
to these decisions as well. In essense, these decisions
are publicly announced. The following vignettes based
on practical applications motivate different types of
strategic coupling.

Vignette 1 (Multiplayer forecasting). Players
have the same decision-dependent data distribution—
namely, D ≡ Di ≡ Dj for all i, j ∈ [n]. Multiple
mapping applications forecast the travel time between
different locations, yet the realized travel time is col-
lectively influenced by all their forecasts. The decision-
dependent players are the mapping applications. The
decision xi player i makes is the rule for recommending
routes. Users choose routes, which then impact the
realized travel time z ∼ D on the road segments in the
network observed by all players.

Vignette 2 (Multiplayer Strategic Classifica-
tion.). Players have different distributions—i.e., Di 6≡
Dj for all i, j ∈ [n]. Multiple universities classify stu-
dents as accepted or rejected using applicant data,
where each applicant designs their application to fit
desiderata of the different universities. The data
zi ∼ Di(x) is an application that university i receives,
and as a decision-dependent player, each university
i designs a classification rule xi to determine which
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applicants are accepted. Different types of universities
predominently cater to different populations (e.g., lib-
eral arts versus science and engineering), yet students
may apply to multiple programs across many universi-
ties thereby resulting in distinct distributions Di that
depend on the joint decision rule x.

Prior formulations of decision dependent learning do
not readily extend to the settings described in the
vignettes without a game theoretic model. The classical
notion of Nash equilibrium is a natural equilibrium
concept for the game (3).

Definition 3 (Nash Equilibrium). A vector x? ∈ X is
a Nash equilibrium of the game (3) if the inclusion

x?i ∈ argmin
xi∈Xi

Li(xi, x?−i) holds for each i ∈ [n].

Generally speaking, finding Nash equilibria is only
computationally feasible for monotone games. The
game (3) can easily fail to be monotone even if the
game is separable and the loss functions `i(·, z) are
strongly convex. In Section 4, we develop sufficient
conditions for (strong) monotonicity and use them to
analyze algorithms for finding Nash equilibria.

In the rest of the paper we impose the following assump-
tion that is in line with the performative prediction
literature.

Assumption 1 (Convexity and smoothness). There ex-
ist constants α > 0 and βi > 0 such that for each i ∈ [n],
the following hold: (i) For any y ∈ X , the game G(y)
is α-strongly monotone. (ii) Each loss `i(xi, x−i, zi)
is C1-smooth in xi and the map zi 7→ ∇i`i(x, zi) is
βi-Lipschitz continuous for any x ∈ X .

It is worth noting that in the setting where the losses
are seperable, the game G(y) is α-strongly monotone
as long as each expected loss Ez∼Di(y) `i(xi, zi) is α-
strongly convex in xi. Assumption 1 alone does not
imply convexity of the objective functions Li(xi, x−i)
in xi nor monotonicity of the game (3) itself. Sufficient
conditions for convexity and strong monotonicity of
the game are given in Section 4.

Next, we require the distributions Di(x) to vary in a
Lipschitz way with respect to x.

Assumption 2 (Lipschitz distributions). For each
i ∈ [n], there exists γi > 0 satisfying

W1(Di(x),Di(y)) ≤ γi · ‖x− y‖ ∀ x, y ∈ X .

In this case, we define the constant ρ :=
√∑n

i=1(βiγiα )2.

We end this section with some convenient notation that
will be used throughout.

Notation. To this end, fix two vectors x =
(x1, . . . , xn) ∈ X and z = (z1, . . . , zn) ∈ Z1 × . . .×Zn.
We then set gi(x, zi) := ∇i`i(x, zi) and g(x, z) :=
(g1(x, z1), . . . , gn(x, zn)). Taking expectations define
Gi,y(x) := Ezi∼Di(y) gi(x, zi) and

Gy(x) := (G1,y(x), . . . , Gn,y(x)). (4)

We may also express Gy as Gy(x) := Ez∼Dπ(y) g(x, z)
where Dπ(y) := D1(y) × . . . × Dn(y) is the product
measure. The following lemma bounding the devia-
tion in the vector of individual gradients is a direct
consequence of Lemma 1.

Lemma 4. Suppose Assumptions 1 and 2 hold. For
every x, y, y′ ∈ X and i ∈ [n], the estimates hold:

‖Gi,y(x)−Gi,y′(x)‖ ≤ βiγi · ‖y − y′‖,

‖Gy(x)−Gy′(x)‖ ≤
( n∑
i=1

β2
i γ

2
i

)1/2

· ‖y − y′‖.

4 MONOTONICITY

Towards developing algorithms for finding true Nash
equilibria of the game (3), this section presents suffi-
cient conditions for the game to be monotone along
with some examples. We note, however, that the suffi-
cient conditions we present are strong, and necessarily
so because the game (3) is typically not monotone.
When specialized to the single player setting n = 1, the
sufficient conditions we derive are identical to those in
(Miller et al., 2021) although the proofs are entirely
different. We impose the following mild smoothness
assumption.

Assumption 3 (Smoothness of the distribution). For
each index i ∈ [n] and point x ∈ X , the map ui 7→
Ezi∼D(ui,x−i) `i(x, zi) is differentiable at ui = xi and
its derivative is continuous in x.

Under Assumption 3, the chain rule implies the deriva-
tive of player i’s loss function with respect to their
own choice variable xi is given by ∇iLi(xi, x−i) =
Gi,x(x) +Hi,x(x), where

Hi,x(y) :=
d

dui
E

zi∼D(ui,x−i)
`i(y, zi)

∣∣∣
ui=xi

.

Stacking together the individual partial gradi-
ents Hi,x(y) for each player, we set Hx(y) =
(H1,x(y), . . . ,Hn,x(y)). Therefore the vector of individ-
ual gradients corresponding to the game (3) is simply
the map D(x) := Gx(x) + Hx(x). Thus the game (3)
is monotone, as long as D(x) is a monotone mapping.

The sufficient conditions we present in Theorem 6 are
simply that we are in the regime ρ < 1

2 and that the
map x 7→ Hx(y) is monotone for any y. The latter can
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be understood as requiring that for any y ∈ X , the
auxiliary game wherein each player aims to solve

min
xi∈X

E
zi∼Di(xi,x−i)

`i(y, zi).

is monotone. In the single player setting (i.e.,
n = 1), this simply means that the function x 7→
Ezi∼Di(x) `(y, zi) is convex for any fixed y ∈ X , thereby
reducing exactly to the requirement in (Miller et al.,
2021, Theorem 3.1). The proof of Theorem 6 crucially
relies on the following.

Lemma 5. Suppose that Assumptions 1, 2, 3 hold.
For any x ∈ X , the map Hx(y) is Lipschitz continuous
in y with parameter

√∑n
i=1 β

2
i γ

2
i .

Theorem 6 (Monotonicity of the decision-dependent
game). Suppose that Assumptions 1–3 hold, and that
we are in the regime ρ < 1

2 and the map x 7→ Hx(y) is
monotone for any y. The game (3) is strongly mono-
tone with parameter (1− 2ρ)α.

Theorem 6 gives sufficient conditions under which the
game (3) is strongly monotone and hence, admits a
unique Nash equilibrium.

The following example of a multiplayer performative
prediction problem illustrates settings where the map-
ping x 7→ Hx(y) is monotone and therefore Theorem 6
may be applied.

Example 1 (Multiplayer Revenue Maximization).
Consider a setting with two firms that each would like
to maximize their revenue by setting the price xi (e.g.,
a ride-share market). The demand zi that each firm
sees is influenced not only by the price they set but also
the price that their competitor sets. Suppose that firm
i’s loss is given by `i(xi, zi) = −z>i xi + λi

2 ‖xi‖
2 where

λi ≥ 0 is some regularization parameter. Moreover,
let us suppose that the random demand zi takes the
semi-parametric form zi = ζi +Aixi +A−ix−i, where
ζi follows some base distribution Pi and the parame-
ters Ai and A−i capture price elasticities to player i’s
and its competitor’s change in price, respectively. The
mapping x 7→ Hx(y) is monotone. Indeed, observe that
i-th component of Hx(y) is given by Hi,x(y) = −A>i yi.
Hence, the map x 7→ Hx(y) is constant and is therefore
trivially monotone.

5 ALGORITHMS

In this section we analyze algorithms that converge to
the Nash equilibrium of the n–player performative pre-
diction game (3) when the game is strongly monotone.
Recall that the Nash equilibrium x? of this game is
characterized by the relation

x?i ∈ argmin
xi∈Xi

E
zi∼Di(xi,x?−i)

`i(xi, x
?
−i, zi) ∀i ∈ [n].

In the following subsections, we study natural learning
dynamics—namely, variants of gradient play as it is
referred to in the literature on learning and games—
seeking Nash equilibrium of continuous games in dif-
ferent information settings. Specifically, we study
gradient-based learning methods where players update
their strategies using an estimate of their individual
gradient consistent with the information available to
them.

The Nash-seeking algorithms studied in this section
all use gradient estimates of the individual gradient
∇iLi(xi, x−i) = Gi,x(x) + Hi,x(x) for each player i ∈
[n]. The main difficulty with applying gradient-based
methods is estimation of the term Hi,x(x), without
some parametric assumptions on the distributions Di.
Consequently, we start in Section 5.1 with derivative
free methods; here, each player only has access to
loss function queries, which implies that players do
not require access to Di. To improve efficiency, we
then study stochastic gradient methods with different
assumptions on oracle access to Di.

5.1 Derivative Free Method

The first information setting we consider is the “bandit
feedback” setting: players have oracle access to queries
of their loss function only, and therefore are faced with
the problem of creating an estimate of their gradient
from such queries. This setting requires the fewest
assumptions on what information is available to players.
In the optimization literature, when a first order oracle
is not available, derivative free or zeroth order methods
are typically applied, and such methods have been
extended to games (Bravo et al., 2018; Drusvyatskiy
et al., 2021). The result in this section is a direct
consequence of the results in these papers. We concisely
spell them out here in order to compare them with the
convergence guarantees discussed in the following two
sections.

The derivative free (gradient) method we consider pro-
ceeds as follows. Fix a parameter δ > 0. In each
iteration t, each player i ∈ [n] performs the update:


Sample vti ∈ Si
Sample zti ∼ Di(xt + δvt)

Set xt+1
i = proj(1−δ)Xi

(
xti − ηtgti

)
 (5)

where gti := di
δ `i(x

t + δvt, zti)v
t
i . Recall that Si denotes

the unit sphere with dimension di. The reason for
projecting onto the set (1 − δ)Xi is simply to ensure
that in the next iteration t + 1, the strategy played
by player i remains in Xi. The formal statement for
derivative free methods in general games can be found
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in Drusvyatskiy et al. (2021).1

Proposition 7 (Convergence rate of the derivative
free method). Consider an n–player decision-dependent
game (3). Under reasonable smoothness and bounded
variance assumptions, algorithm (5) with appropriately
chosen parameters δ and ηt will find a point x satisfying

E[‖x− x?‖2] ≤ ε after at most O(d
2

ε2 ) iterations.

The rate O(d
2

ε2 ) can be extremely slow in practice. In
the remainder, we focus on stochastic gradient methods,
which enjoy significantly better efficiency guarantees
albeit at cost of access to a richer oracle.

5.2 Stochastic Gradient Method

In practice, players often have some information re-
garding their data distribution Di and can leverage
this during learning. Stochastic gradient play—which
we refer to as the stochastic gradient method to be
consistent with the rest of the paper—is a natural
learning algorithm commonly adopted in the literature
on learning in games for settings where players have
an unbiased estimate of their individual gradient. To
apply the stochastic gradient method to multiplayer
performative prediction, players need oracle access to
the gradient of their loss with respect to their choice
variable, which requires some knowledge of how the
distribution Di depends on the joint action profile x.
To this end, let us impose the following parametric
assumption.

Assumption 4 (Parametric assumption). For each
index i ∈ [n], there exists a probability measure Pi and
matrices Ai and A−i satisfying

zi ∼ Di(x) ⇐⇒ zi = ζi+Aixi+A−ix−i for ζi ∼ Pi.

The mean and covariance of ζi are µi := Eζi∼Pi [ζi] and
Σi := Eζi∼Pi [(ζi − µi)(ζi − µi)>], respectively.

Assumption 4 is very natural and generalizes an anal-
ogous assumption used in the single player setting in
(Miller et al., 2021). It asserts that the distribution
used by player i is a “linear perturbation” of some base
distribution Pi. We can interpret the matrices Ai and
A−i as quantifying the performative effects of the deci-
sions of player i and all other players −i, respectively,
on the distribution Di governing player i’s data.

Under Assumption 4, player i’s loss is given by

Li(x) = E
ζi∼Pi

`i(x, ζi +Aixi +A−ix−i). (6)

1Though Theorem 2 in Drusvyatskiy et al. (2021) is
stated for deterministic games, it applies verbatim whenever
the value of the loss function for each each player is replaced
by an unbiased estimator of their individual loss functions—
our setting.

Under mild smoothness assumptions, differentiating
(6) using the chain rule, we see that the gradient of the
i-th player’s loss is simply

∇iLi(x) = E
zi∼Di(x)

[∇i`i(x, zi) +A>i ∇zi`i(x, zi)]. (7)

Therefore, given a point x, player imay draw zi ∼ Di(x)
and form the vector

wi(x, zi) = ∇i`i(x, zi) +A>i ∇zi`i(x, zi).

By definition, wi(x, zi) is an unbiased estimator of
∇iLi(x), that is Ezi∼Di(x) wi(x, z) = ∇iLi(x). With
this notation, the stochastic gradient method proceeds
as follows: in each iteration t ≥ 0 each player i ∈ [n]
performs the update:{

Sample zti ∼ Di(xt)
Set xt+1

i = projXi
(
xti − ηt · wi(xt, zti)

)} . (8)

Evaluation of the vector wi(x, zi) requires evaluation
of both ∇i`i(x, zi) and ∇zi`i(x, zi), and knowledge of
the matrix Ai. When the game is separable, it is very
reasonable that each player can explicitly compute
∇i`i(xi, zi) and ∇zi`i(xi, zi) assuming oracle access to
queries zi from the environment which does depend
on x−i and xi. Moreover, the matrix Ai depends only
on the performative effects of player i, and in this
section we will suppose that it is indeed known to each
player. In the next section, we will develop an adaptive
algorithm wherein each player i ∈ [n] simultaneously
learns Ai and A−i while optimizing their loss.

In order to apply standard convergence guarantees for
stochastic gradient play, we need to assume that (i) the
vector of individual gradients is Lipschitz continuous
and (ii) that the variance of w(x, zi) is bounded.

Assumption 5 (Smoothness). The map (∇1L1(x),
∇2L2(x), . . . ,∇nLn(x)) is L-Lipschitz continuous.

The constant L may be easily estimated from the
smoothness parameters of each individual loss func-
tion `i(x, z) and the magnitude of the matrices Ai
and A−i; this is the content of the following lemma.
In what follows, we define the mixed partial deriva-
tive ∇i,zi`i(x, zi) = (∇i`i(x, zi),∇zi`i(x, zi)). Recall
that ∇i`i(xi, x−i, zi) denotes the partial derivative of `i
with respect to the xi argument and ∇zi`i(xi, x−i, zi)
denotes the partial derivative with respect to zi.

Lemma 8 (Sufficient conditions for Assumption 5.).
Suppose Assumption 4 holds and for each i there exist
constants ξi ≥ 0 such that (x, zi) 7→ ∇i,zi`i(x, zi) is ξi-
Lipschitz continuous. Then, Assumption 5 holds with
L = (

∑n
i=1 ξ

2
i max{1, ‖Ai‖2op} · (1 + ‖Āi‖2op))1/2.

Next we assume a finite variance bound.
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Assumption 6 (Finite variance). Suppose that there
exists a constant σ > 0 satisfying

E
z∼Dπ(x)

‖w(x, z)− E
z′∼Dπ(x)

w(x, z′)‖2 ≤ σ2 ∀x ∈ X .

Let us again present a sufficient condition for Assump-
tion 6 to hold in in terms of the variance of the indi-
vidual gradients ∇i,zi`(x, zi). The proof is immediate
and we omit it.

Lemma 9 (Sufficient conditions for Assumption 6).
Suppose there exist constants s1, s2 ≥ 0 such that for
all x ∈ X and i ∈ [n] the estimates hold:

E
z′i∼Di(x)

‖∇i`i(x, z′i)− E
zi∼Di(x)

∇i`i(x, zi)‖2 ≤ s2
1,

E
z′i∼Di(x)

‖∇zi`i(x, z′i)− E
zi∼Di(x)

∇zi`i(x, zi)‖2 ≤ s2
2

Then, Assumption 6 holds with σ2 =
∑n
i=1 2(s2

1 +
‖Ai‖2ops

2
2).

The following is a direct consequence of standard con-
vergence guarantees for stochastic gradient methods.

Theorem 10 (Stochastic gradient play). Consider an
n-player performative prediction game (3). Suppose
that Assumptions 4-6 hold and that the game is α-
strongly monotone with α > 0. Then a single step of
the stochastic gradient method (8) with any constant
η ≤ α

2L2 satisfies

E[‖xt+1−x?‖2] ≤ 1

1 + αη
E[‖xt−x?‖2]+

2η2σ2

1 + ηα
, (9)

where x? is the Nash equilibrium of the game (3).

This theorem is immediate from Theorem 15 in Ap-
pendix E with B ≡ Ct ≡ D ≡ 0.

Analogous to the analysis of the stochastic repeated
gradient method, applying a step-decay schedule on η
yields the following corollary. The proof follows directly
from the recursion (9) and the generic results on step
decay schedules; e.g. (Drusvyatskiy and Xiao, 2020,
Lemma B.2).

Corollary 11 (Stochastic gradient method with a
step-decay schedule). Suppose that the assumptions of
Theorem 10 hold. Consider running stochastic gradient
method in k = 0, . . . ,K epochs, for Tk iterations each,
with constant step-size ηk = α

2L2 · 2−k, and such that
the last iterate of epoch k is used as the first iterate in
epoch k + 1. Fix a target accuracy ε > 0 and suppose
we have available a constant R ≥ ‖x0 − x?‖2. Set

T0 =
⌈

2
αη0

log( 2R
ε )
⌉
, Tk =

⌈
2 log(4)
αηk

⌉
for k ≥ 1,

and K =
⌈
1 + log2

(
2η0σ

2

αε

) ⌉
. The final iterate x pro-

duced satisfies E ‖x− x∗‖2 ≤ ε, while the total number
of iterations of stochastic gradient play called is at most

O
(
L2

α2 · log
(

2R
ε

)
+ σ2

α2ε

)
.

5.3 Adaptive Gradient Method

Throughout this section, we continue working under the
parametric Assumption 4. An apparent deficiency of
the stochastic gradient method discussed in Section 5.2
is that each player i needs to know the matrix Ai that
governs the performative effect of the player on the
distribution. In typical settings, the matrix Ai may
be unknown to the player, but it might be possible to
estimate it from data.

Inspired by methods in adaptive control to simulta-
neously estimate the parameters of the system and
optimize the control input, we propose the adaptive
gradient method outlined in Algorithm 1, where “adap-
tive” refers to the adaptive estimation scheme employed
by players. That is, in each iteration, each player si-
multaneously estimates their distribution parameters
and myopically optimizes their individual loss via the
stochastic gradient method on the current estimated
loss. More precisely, the algorithm maintains two se-
quences: (i) xt that eventually converges to the Nash
equilibrium x?, and (ii) Âti that dynamically estimates
the unknown matrix Āi. In each iteration t, the algo-
rithm draws samples zti ∼ Di(xt), and each player i
takes the gradient step xt+1

i = projXi(x
t
i − ηtĝti) where

ĝti := ∇i`i(xt, zti) + (Âtii)
>∇zi`i(xt, zti)) (10)

and Âtii denotes the submatrix of Âti whose columns
are indexed by player i’s action space. Next, in
order to update Ât, the algorithm draws a sample
qti ∼ Di(xt + ut) where ut is a user-specified noise se-
quence. Observe that conditioned on ut, the equality
holds:E[qti − zti | ut] = Āiu

t. Therefore, a good strat-

egy for forming a new estimate Ât+1
i of Āi from Âti is

to take a gradient step on the least squares objective
minBi

1
2‖q

t
i − zti −Biut‖2. Explicitly, this gives the up-

date Ât+1
i = Âti + νt(q

t
i − zti − Âtiut)(ut)>. Analogous

to estimation in adaptive control or machine learning,
we exploit noise injection ut to ensure sufficient explo-
ration of the parameter space. In particular, the noise
vector needs to be sufficiently isotropic. We impose the
following assumption.

Assumption 7 (Injected Noise). The injected noise
vector ut = (ut1, . . . , u

t
n) ∈ Rd is a zero-mean ran-

dom vector that is independent of xt, and independent
of the injected noise at any previous queries to the
environment by any player. Moreover, there exists
constants cl, R > 0 and cu,i > 0 for each i ∈ [n]
such that for all t ≥ 0 and i ∈ [n] the random vector
vi := uti satisfies 0 ≺ cl · I � E[viv

>
i ], E ‖vi‖2 ≤ cu,i,

and E[‖vi‖2viv>i ] � R2E[viv
>
i ].

In the simple Gaussian case where ut ∼ N (0, Id), we
may set2 cl = 1, cu,i = di, and R2 = 3 maxi∈[n] di. An-

2For the justification of the expression for R2, see
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Algorithm 1: Adaptive Gradient Method

1 Input: Stepsizes {ηt}t≥1, {νt}t≥1; initial x1 ∈ Rd,
Â1
i ∈ Rm×d;

2 for t = 1, . . . , t do
3 for i ∈ [n] do
4 Query the environment: Draw samples

zti ∼ Di(xt) and qti ∼ Di(xt + ut);
5 Gradient update:

xt+1
i = projXi (xti − ηtĝti),

6 where ĝti is defined in (10).
7 Estimation update:

Ât+1
i = Âti + νt(q

t
i − zti − Âtiuti)(uti)>

8 end

9 end

alyzing the convergence of Algorithm 1 amounts to de-
composing the analysis into convergence of the stochas-
tic gradient method on the estimated losses induced by
the sequence of Âti, and convergence of the estimation

error E ‖Âti− Āi‖2. The former analysis proceeds in an
analogous fashion to that of Theorem 10 in Section 5.2.
For the latter, we leverage the injected noise to ensure
there is sufficient exploration. The following lemma
establishes a one-step improvement guarantee on esti-
mation of Āi. Throughout, we set Ât := (Ât1, . . . , Â

t
n)

and let ‖ · ‖F denote the Frobenius norm. We also let
Et be the conditional expectation with respect to the
σ-algebra generated by (xl, ul)l=1,...,t.

Lemma 12 (Estimation error). Suppose Assump-
tions 4 and 7 hold and let νt ∈ (0, 2

R2 ). The matrices

Âti generated by Algorithm 1 satisfy the estimate:

1
2Et‖Â

t+1
i − Āi‖2F ≤

1−clνt(2−νtR2)
2 ‖Âti − Āi‖2F

+ ν2
t tr(Σi)cu,i.

(11)

Therefore, with νt = 2/
(
cl(t+ 2R2

cl
)
)

for all t ≥ 0, the

estimate holds:

E‖Ât − Ā‖2F

≤
max

{
(1 + 2R2

cl
)‖Â1 − Ā‖2F , 8

∑n
i=1

tr(Σi)cu,i
c2l

}
(
t+ 2R2

cl

)
Next we show that the direction of motion of Algo-
rithm 5.3 is well-aligned with the direction of motion
of the stochastic gradient method. To this end, define
the true (stochastic) vector of individual gradients

vt := (∇i`i(xt, zti) +A>i ∇zi`i(xt, zti))i∈[n],

(Dieuleveut et al., 2017, Section 2.1).

and its estimator that is used by the algorithm

v̂t := (∇i`i(xt, zti) + (Âtii)
>∇zi`i(xt, zti))i∈[n].

We make the following Lipschitzness assumption on
the loss `i(x, zi) in the variable zi.

Assumption 8 (Lipschitz continuity in z).
Suppose that there exists a constant δ > 0
such that for all x ∈ X , the estimate holds:
Ez∼Dπ(x)

√∑n
i=1 ‖∇`i(x, zi)‖2 ≤ δ.

Lemma 13. Suppose Assumptions 4 and 8 hold. For
each t ≥ 1 and i ∈ [n], the estimate holds:

Et‖v̂t − vt‖ ≤ δ‖Ât − Ā‖2F .

In light of Lemmas 12 and 13, we may interpret Algo-
rithm 5.3 as an approximation to the stochastic gra-
dient method with a bias that tends to zero; we may
then simply invoke generic convergence guarantees for
biased stochastic gradient methods, which we record in
Theorem 15 of Appendix E. We will make use of the
following assumption.

Assumption 9 (Finite variance). There exists σ > 0
such that for all x ∈ X , the variance bound holds:

E
zi∼Di(xt)

‖∇i,zi`i(xt, zti)− E
z′i∼Di(xt)

∇i,zi`i(xt, z′i)‖2 ≤ σ2.

The end result is the following theorem, which in par-
ticular implies a O(d/t) rate of convergence when ut

are standard Gaussian. See the discussion after the
theorem.

Theorem 14 (Convergence of the adaptive method).
Suppose that Assumptions 4, 5, 7, and 8 hold and
that the game (3) is α-strongly monotone. Define the

constant k0 = 1 + 8L2

α2 and q0 = 2R2

cl
and set ηt =

2
α(t+k0−2) and νt = 2

cl(t+q0) for all t ≥ 0. Then for all

t ≥ 1, the iterates generated by Algorithm 1 satisfy

E‖xt − x?‖2 ≤
max

{
1
2α

2(1 + k0)‖x1 − x?‖2, 32Z1σ
2 + 8δ2Z

}
α2(t+ k0)

+
max

{
1
2α

2(1 + k0)
3
2 ‖x1 − x?‖2, 64σ2Z

}
α2(t+ k0)

3
2

.

where we set Z1 = (1 + 2‖Ā‖2F ), Z2 = ‖Â1 − Ā‖2F and

Z = max{ 1+k0
1+q0

, 1}·max
{

(1 + 2R2

cl
)Z2,

8
∑n
i=1 tr(Σi)cu,i

c2l

}
In particular, consider the Gaussian case ut ∼ N (0, Id)
in the setting when di = Cid for some numerical con-
stants Ci, and when the traces tr(Σi) ≡ tr(Σ) are equal
for all i ∈ [n]. Then, treating all terms besides d and t
as constants, yields the rate O(dt ).
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6 SEMISYNTHETIC SIMULATIONS

We consider a semi-synthetic competition between two
ride-share platforms.3

Consider a ride-share market with two platforms that
each seek to maximize their revenue by setting the
price xi. The vector of demands zi ∈ Rmi containing
demand information for mi locations that each ride-
share platform sees is influenced not only by the prices
they set but also the prices that their competitor sets.
Suppose that platform i’s loss is given by

`i(xi, zi) = − 1
2z
>
i xi + λi

2 ‖xi‖
2

where λi = 1, i = 1, 2 is a regularization parameter,
and xi ∈ Rmi represents the vector of price differen-
tials from a nominal price for each of the mi locations.
Observe that this game is separable since the losses `i
do not explicitly depend on x−i. Moreover, we model
the random demand zi in the semi-parametric form
zi = ζi + Aixi + A−ix−i, where ζi follows some base
distribution Pi and the parameters Ai and A−i cap-
ture price elasticities to player i’s and its competitor’s
change in price, respectively; naturally, the price elas-
ticity for player i to its own price changes is negative
while the price elasticity for player i’s demand given
changes in its competitors actions is positive. Namely,
we have that Ai � 0 and A−i � 0 capturing that an
increase in player i’s prices results in a decrease in
demand, while an increase in its competitor’s prices
results in a increase in demand. Moreover, we showed
in Example 1 that the mapping x 7→ Hx(y) is trivially
monotone. Hence, the game between ride-share plat-
forms is strongly monotone and admits a unique Nash
equilibrium. In Appendix H.1 we describe how the
data is processed.

To validate the theory developed in the previous sec-
tions, we show the iteration complexity of the algo-
rithms in Section 5. We run each algorithm from
twenty random initial conditions, and compute the er-
ror between the trajectory of the algorithm and the
Nash equilibrium. In Figure 1 we show the mean of
these error trajectories and plus and minus one stan-
dard deviation. For the stochastic gradient method,
we use a constant step-size η = 5e-5, and for the adap-
tive gradient method we use the step-size schedule
ηt = η0/t for the gradient update and νt = ν0/t for the
estimation update where η0 = 5e-5 and ν0 = 1e-4. For
the derivative free method, we use a constant query
radius δ = 5 and step-size schedule ηt = 2/t. The plots
in Figure 1 demonstrate the that empirical iteration
complexity of the adaptive gradient method and the

3The data can be found linked here.

Figure 1: Error to Nash Equilibrium. Iteration
Complexity for derivative free gradient method (DFM),
stochastic gradient method (SGM) and adaptive gradi-
ent method (AGM). The plot demonstrates that the
iteration complexities of AGM and SGM are nearly
identical and outperform DFM as expected.

stochastic gradient method are nearly identical, and
outperform the derivative free method as expected.

In Appendix H we provide additional experiments on
the effects of ignoring performativity. The general
message is that players are better off under the Nash
equilibrium arising from modeling performative effects
of their competitors.

7 DISCUSSION

The new class of games introduced in this paper mo-
tivates interesting future work at the intersection of
statistical learning theory and game theory. For in-
stance, it is of interest to extend the present framework
to handle more general parametric forms of the distri-
butions Di. Many multiplayer performative prediction
problems exhibit a hierarchical structure such as a gov-
erning body that presides over an institution; hence, a
Stackelberg variant of multiplayer performative predic-
tion is of interest. Along these lines, the multiplayer
performative prediction problem is also of interest for
mechanism design problems arising in applications such
as recommender systems.
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A Related Work

Performative Prediction. The multiplayer setting in the present paper is inspired by the single player
performative prediction framework introduced by (Perdomo et al., 2020), and further refined by (Mendler-Dünner
et al., 2020) and (Miller et al., 2021). These works introduce the notions of performative optimality and stability,
and show that repeated retraining and stochastic gradient methods convergence to a stable point. Subsequently,
(Drusvyatskiy and Xiao, 2020) showed that a variety of popular gradient-based algorithms in the decision-
dependent setting can be understood as the analogous algorithms applied to a certain static problem corrupted
by a vanishing bias. In general, performative stability does not imply performative optimality. Seeking to develop
algorithms for finding performatively optimal points, (Miller et al., 2021) provide sufficient conditions for the
prediction problem to be convex. For decision-dependent distributions parameterized by a location parameter,
(Miller et al., 2021) additionally introduce a two-stage algorithm for finding performatively optimal points. The
paper (Izzo et al., 2021) instead focuses on algorithms that estimate gradients with finite differences. It is
noteworthy that performative prediction is largely motivated by strategic classification (Hardt et al., 2016).

Gradient-Based Learning in Continuous Games. There is a broad and growing literature on learning in
games. We focus here on the most relevant subset: gradient-based learning in continuous games. The seminal work
by Rosen (1965) showed that convex games which are diagonal strictly convex—i.e., strictly monotone—admit a
unique Nash equilibrium and gradient play—a gradient method in which each player follows the partial gradient
of their cost with respect to their choice variable—converges to it. There is literature extending this work to
more general continuous games to obtain a local characterization for equilibria and local convergence guarantees
(see, e.g., (Ratliff et al., 2016; Chasnov et al., 2020)). Under the assumption of strong monotonicity, the iteration
complexity of stochastic and derivative free gradient methods has also been obtained (Mertikopoulos and Zhou,
2019; Bravo et al., 2018; Drusvyatskiy et al., 2021). Relaxing strong monotonicity to monotonicity, by incorporating
a regularization term that decays to zero asymptotically, Tatarenko and Kamgarpour (2019, 2020) show that
the stochastic gradient and derivative free gradient methods—i.e., where players use a single-point query of the
loss to construct an estimate of their individual gradient of a smoothed version of their loss function—converge
asymptotically.

Stochastic programming. Stochastic optimization problems with decision-dependent uncertainties have
appeared in the classical stochastic programming literature, such as (Ahmed, 2000; Dupacová, 2006; Jonsbr̊aten
et al., 1998; Rubinstein and Shapiro, 1993; Varaiya and Wets, 1988). We refer the reader to the recent paper
(Hellemo et al., 2018), which discusses taxonomy and various models of decision dependent uncertainties. An
important theme of these works is to utilize structural assumptions on how the decision variables impact the
distributions. Consequently, these works sharply deviate from the framework explored in (Perdomo et al., 2020;
Mendler-Dünner et al., 2020; Miller et al., 2021) and from our paper.

B Proof for Section 3

Proof of Lemma 4 (Bound on Deviation of Vector of Individual Gradients).

Lemma 4. Suppose Assumptions 1 and 2 hold. For every x, y, y′ ∈ X and i ∈ [n], the estimates hold:

‖Gi,y(x)−Gi,y′(x)‖ ≤ βiγi · ‖y − y′‖,

‖Gy(x)−Gy′(x)‖ ≤
( n∑
i=1

β2
i γ

2
i

)1/2

· ‖y − y′‖.

Proof. Using Lemma 1 and the standing Assumptions 1 and 2 we compute

‖Gi,y(x)−Gi,y′(x)‖ =

∥∥∥∥ E
zi∼Di(y)

∇i`i(x, zi)− E
zi∼Di(y′)

∇i`i(x, zi)
∥∥∥∥ ≤ βi ·W1(Di(y),Di(y′)) ≤ βiγi · ‖y − y′‖.

Therefore, we deduce

‖Gy(x)−Gy′(x)‖2 =
n∑
i=1

‖Gi,y(x)−Gi,y′(x)‖2 ≤
n∑
i=1

β2
i γ

2
i · ‖y − y′‖2.

The proof is complete.
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C Proofs for Section 4

Proof of Lemma 5.

Lemma 5. Suppose that Assumptions 1, 2, 3 hold. For any x ∈ X , the map Hx(y) is Lipschitz continuous in y
with parameter

√∑n
i=1 β

2
i γ

2
i .

Proof. Fix three points x, x′, y ∈ X . Player i’s coordinate of Hx′(x)−Hx′(y) is simply

Hi,x′(x)−Hi,x′(y) =
d

dui
E

zi∼Di(ui,x′−i)
(`i(x, zi)− `i(y, zi))

∣∣∣
ui=x′i

.

Setting γ(s) = y + s(x− y) for any s ∈ (0, 1), the fundamental theorem of calculus ensures

`i(x, zi)− `i(y, zi) =

∫ 1

s=0

〈∇i`i(γ(s), zi), x− y〉 ds.

Therefore differentiating, taking an expectation, and using the Cauchy-Schwarz inequality we deduce

‖Hi,x′(x)−Hi,x′(y)‖ ≤
∫ 1

s=0

∥∥∥∥∥ d

dui
E

zi∼Di(ui,x′−i)
∇i`i(γ(s), zi)

∣∣∣
ui=x′i

∥∥∥∥∥ · ‖x− y‖ ds. (12)

Now for any s ∈ (0, 1), Lemma 4 guarantees that the map ui 7→ Ezi∼Di(ui,x′−i)∇i`i(γ(s), zi) is Lipschitz continuous
with parameter βiγi and therefore its derivative is upper-bounded in norm by βiγi. We therefore deduce that the
right hand side of (12) is upper bounded by βiγi‖x − y‖. Applying this argument to each player leads to the
claimed Lipschitz constant on Hx(y) with respect to x.

Proof of Theorem 6.

Theorem 6 (Monotonicity of the decision-dependent game). Suppose that Assumptions 1–3 hold, and that we
are in the regime ρ < 1

2 and the map x 7→ Hx(y) is monotone for any y. The game (3) is strongly monotone with
parameter (1− 2ρ)α.

Proof. Fix an arbitrary pair of points x, x′ ∈ X . Expanding the following inner product, we have

〈D(x)−D(x′), x− x′〉 = 〈Gx(x)−Gx′(x′), x− x′〉+ 〈Hx(x)−Hx′(x
′), x− x′〉. (13)

We estimate the first term as follows:

〈Gx(x)−Gx′(x′), x− x′〉 = 〈Gx′(x)−Gx′(x′), x− x′〉+ 〈Gx(x)−Gx′(x), x− x′〉

≥ α‖x− x′‖2 −

(
n∑
i=1

β2
i γ

2
i

)1/2

· ‖x− x′‖2 (14)

= (1− ρ)α‖x− x′‖2, (15)

where (14) follows from Assumption 1 and Lemma 4. Next, we estimate the second term on the right side of (13)
as follows:

〈Hx(x)−Hx′(x
′), x− x′〉 = 〈Hx′(x)−Hx′(x

′), x− x′〉+ 〈Hx(x)−Hx′(x), x− x′〉
≥ 〈Hx′(x)−Hx′(x

′), x− x′〉 (16)

≥ −‖Hx′(x)−Hx′(x
′)‖ · ‖x− x′‖ (17)

≥ −

(
n∑
i=1

β2
i γ

2
i

)1/2

‖x− x′‖2, (18)

where (16) follows from the assumption that the map x 7→ Hx(y) is monotone and (18) follows from Lemma 5.
Combining (13), (15), and (18) completes the proof.
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D Proofs for Section 5

Lemma 8 (Sufficient conditions for Assumption 5.). Suppose Assumption 4 holds and for each i there exist
constants ξi ≥ 0 such that (x, zi) 7→ ∇i,zi`i(x, zi) is ξi-Lipschitz continuous. Then, Assumption 5 holds with
L = (

∑n
i=1 ξ

2
i max{1, ‖Ai‖2op} · (1 + ‖Āi‖2op))1/2.

Proof of Lemma 8.

Proof. Let Āi be a matrix satisfying Āix = Aixi +A−ix−i. Observe that we may write

∇iLi(x) = E
ζi,0∼Pi

V >∇i,zi`i(x, ζi + Āix) where V =

[
I 0
0 Ai

]
.

Therefore, we deduce

‖∇iLi(x)−∇iLi(x′)‖ ≤ ‖V ‖op E
ζi∼Pi

‖∇i,zi`i(x, ζi + Āix)−∇i,zi`i(x′, ζi + Āix
′)‖

≤ max{1, ‖Ai‖op} · ξi · E
ζi∼Pi

‖(x, ζi + Āix)− (x′, ζi + Āix
′)‖

= max{1, ‖Ai‖op} · ξi ·
√
‖x− x′‖2 + ‖Āi(x− x′)‖2

≤ max{1, ‖Ai‖op} · ξi ·
√

1 + ‖Āi‖2op · ‖x− x′‖.

This completes the proof.

Proof of Lemma 12.

Lemma 12 (Estimation error). Suppose Assumptions 4 and 7 hold and let νt ∈ (0, 2
R2 ). The matrices Âti

generated by Algorithm 1 satisfy the estimate:

1
2Et‖Â

t+1
i − Āi‖2F ≤

1−clνt(2−νtR2)
2 ‖Âti − Āi‖2F

+ ν2
t tr(Σi)cu,i.

(11)

Therefore, with νt = 2/
(
cl(t+ 2R2

cl
)
)

for all t ≥ 0, the estimate holds:

E‖Ât − Ā‖2F

≤
max

{
(1 + 2R2

cl
)‖Â1 − Ā‖2F , 8

∑n
i=1

tr(Σi)cu,i
c2l

}
(
t+ 2R2

cl

)
Proof. This follows from a standard estimate for online least squares, which appears as Lemma 18 in Appendix G.
Namely, let G1 be the σ-algebra generated by x1, . . . , xt and let G2 be the σ-algebra generated by G1 ∪ {ut}. Set
b = qti − zti , y = uti, B = Âti, V = Āi, v = uti, λ1 = cl, and λ2 = cu,i.

Let us upper bound the variance E[‖V y − b‖2 | G2]. To this end, let w and w′ be drawn i.i.d from Pi. Observe
that conditioned on uti, the random vector Āiu

t
i − (qti − zti) has the same distribution as w − w′. Let us compute

E ‖w − w′‖2 = tr(E((w − w′)(w − w′)>) = 2tr(Σi).

Therefore, we may set σ2 = 2tr(Σi). An application of Lemma 18 completes the proof of (11). Summing up (11)
for i = 1, . . . , n and using the tower rule for for conditional expectations yields:

E‖Ât+1 − Ā‖2F ≤ (1− νtcl(2− ν2
tR

2))E‖Ât − Ā‖2F + 2ν2
t

n∑
i=1

tr(Σi)cu,i.

Noting νt ≤ 1
R2 , we deduce 1− νtcl(2− ν2

tR
2) ≤ 1− νtcl. The result follows directly from plugging in the value

of νt and using Lemma 16 in Appendix F.
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Proof of Lemma 13.

Lemma 13. Suppose Assumptions 4 and 8 hold. For each t ≥ 1 and i ∈ [n], the estimate holds:

Et‖v̂t − vt‖ ≤ δ‖Ât − Ā‖2F .

Proof. Notice that we may write v̂t − vt = Btwt, where Bt is the block diagonal matrix with blocks Âtii −Ai and
we set wt = (∇zi`i(xt, zti))ni=1. Using Hölder’s inequality we estimate:

Et‖v̂t − vt‖ = Et‖Btwt‖ ≤ ‖Bt‖F · Et‖wt‖ ≤ δ‖Ât − Ā‖2F ,

as claimed.

Proof of Theorem 14.

Theorem 14 (Convergence of the adaptive method). Suppose that Assumptions 4, 5, 7, and 8 hold and that the

game (3) is α-strongly monotone. Define the constant k0 = 1 + 8L2

α2 and q0 = 2R2

cl
and set ηt = 2

α(t+k0−2) and

νt = 2
cl(t+q0) for all t ≥ 0. Then for all t ≥ 1, the iterates generated by Algorithm 1 satisfy

E‖xt − x?‖2 ≤
max

{
1
2α

2(1 + k0)‖x1 − x?‖2, 32Z1σ
2 + 8δ2Z

}
α2(t+ k0)

+
max

{
1
2α

2(1 + k0)
3
2 ‖x1 − x?‖2, 64σ2Z

}
α2(t+ k0)

3
2

.

where we set Z1 = (1 + 2‖Ā‖2F ), Z2 = ‖Â1 − Ā‖2F and

Z = max{ 1+k0
1+q0

, 1} ·max
{

(1 + 2R2

cl
)Z2,

8
∑n
i=1 tr(Σi)cu,i

c2l

}
Proof. We will apply the standard convergence guarantees in Theorem 15 of Appendix E for biased stochastic
gradient methods. To this end, using Lemma 13 we estimate the gradient bias:

‖Et[v̂t]− Et[vt]‖ = Et‖v̂t − vt‖ ≤ δ‖Ât − Ā‖2F .

Next, we estimate the variance:

Et[‖v̂ti − E v̂ti‖2] = Et
∥∥∥∥[I 0

0 Âtii

]
(∇i,zi`i(xt, zti)− E

z′i∼Di(xt)
∇i,zi`i(xt, z′i))

∥∥∥∥2

.

Summing these inequalities over i ∈ [n], we deduce

E[‖v̂ti − E v̂ti‖2] ≤ max{1, ‖Ât‖2op}σ2.

Recalling the definition of Z and q0 and applying Theorem 15 in Appendix E we deduce

Et‖xt+1 − x?‖2 ≤ 1

1 + ηtα
‖xt − x?‖2 +

2η2
t (max{1, ‖Ât‖2op})σ2

1 + ηtα
+

2ηtδ
2‖Ât − Ā‖2F

α

≤ 1

1 + ηtα
‖xt − x?‖2 + 2η2

t (1 + ‖Ât‖2F )σ2 +
2ηtδ

2‖Ât − Ā‖2F
α

≤ 1

1 + ηtα
‖xt − x?‖2 + 2η2

t (1 + 2‖Ā‖2F )σ2 +
2ηtδ

2‖Ât − Ā‖2F
α

+ 4η2
t σ

2‖Ât − Ā‖2F ,
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where the last inequality follows from the algebraic expression ‖Ât‖2 ≤ 2‖Ā‖2 + 2‖Ât− Ā‖2. Taking expectations
and using the tower rule, we compute

E‖xt+1 − x?‖2 ≤ 1

1 + ηtα
E ‖xt − x?‖2 + 2η2

t (1 + 2‖Ā‖2F )σ2 +
2ηtδ

2 E ‖Ât − Ā‖2F
α

+ 4η2
t σ

2 E ‖Ât − Ā‖2F

≤ 1

1 + ηtα
E ‖xt − x?‖2 + 2η2

t (1 + 2‖Ā‖2F )σ2 +
2ηtδ

2Z

α(t+ q0)
+

4η2
t σ

2Z

t+ q0
,

where the last inequality follows from Lemma 12.

Now our choice ηt = 2
α(t+k0−2) ensures the equality 1

1+ηtα
= 1− 2

t+k0
. Therefore we deduce

E‖xt+1 − x?‖2 ≤
(

1− 2

t+ k0

)
E ‖xt − x?‖2 +

8(1 + 2‖Ā‖2F )σ2

α2(t+ k0 − 2)2
+

16σ2Z

α2(t+ q0)(t+ k0 − 2)2

+
4δ2Z

α2(t+ q0)(t+ k0 − 2)
.

(19)

We now aim to apply Lemma 17 in Section F. To this end, we need to upper bound the last three terms in (19)
so that the denominators are of the form (t+ k0)p for some power p. To this end, note the following elementary
estimates:

t+ k0

t+ k0 − 2
≤ k0 + 1

k0 − 1
≤ 2

and
(t+ k0)2

(t+ q0)(t+ k0 − 2)
≤ k0 + 1

k0 − 1
· t+ k0

t+ q0
≤ c(k0 + 1)

k0 − 1
≤ 2c

where c = maxt≥1{ t+k0t+q0
} = max{ 1+k0

1+q0
, 1}. Combining these estimates with (19), we obtain

E‖xt+1 − x?‖2 ≤
(

1− 2

t+ k0

)
‖xt − x?‖2 +

32(1 + 2‖Ā‖2F )σ2 + 8δ2Zc

α2(t+ k0)2
+

64σ2Z · c
(α2(t+ k0)3)

.

Applying Lemma 17 in Section F, we conclude:

E‖xt − x?‖2 ≤
max

{
1
2α

2(1 + k0)‖x1 − x?‖2, 32(1 + 2‖Ā‖2F )σ2 + 8δ2Zc
}

α2(t+ k0)

+
max

{
1
2α

2(1 + k0)3/2‖x1 − x?‖2, 64σ2Zc
}

α2(t+ k0)3/2
.

This completes the proof.

E Stochastic gradient method with bias

In this section, we consider a variational inequality

0 ∈ G(x) +NX (x), (20)

where X ⊂ Rd is a closed convex set and G : Rd → Rd is an L-Lipschitz continuous and α-strongly monotone
map. We will analyze the stochastic gradient method, which in each iteration performs the update:

xt+1 = projX (xt − ηgt), (21)

where η > 0 is a fixed stepsize and gt is a sequence of random variables, which approximates G(xt). In particular,
it will be crucial for us to allow gt to be a biased estimator of G(xt). Formally, we make the following assumption
on the randomness in the process. Throughout, x? denotes the unique solution of (20).
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Assumption 10 (Stochastic framework). Suppose that there exists a filtered probability space (Ω,F ,F,P) with
filtration F = (Ft)t≥0 such that F0 = {∅,Ω}. Suppose moreover that gt is Ft+1-measurable and there exist
constants B, σ ≥ 0 and Ft-measurable random variables Ct, σt ≥ 0 satisfying the bias/variance bounds

(Bias) ‖Etgt −G(xt)]‖ ≤ Ct +B‖xt − x∗‖,
(Variance) Et‖gt − Et[gt]‖2 ≤ σ2

t +D2‖xt − x?‖2,

where Et = E[· | Ft] denotes the conditional expectation.

The following is a one-step improvement guarantee for the stochastic gradient method in the two conceptually
distinct cases Ct = 0 and B = 0. In the case Ct = 0 , the bias Etgt −G(xt) shrinks as the iterates approach x?.
The theorem shows that as long as B/α < 1, with a sufficiently small stepsize η, the method can converge to an
arbitrarily small neighborhood of x?. In the case B = 0, one can only hope to convergence to a neighborhood of
the minimizer whose radius depends on {Ct}t≥0.

Theorem 15 (One step improvement). The following are true.

• (Benign bias) Suppose Ct ≡ 0 for all t. Set ρ := B/α and suppose that we are in the regime ρ ∈ (0, 1).

Then with any η < α(1−ρ)
8L2 , the stochastic gradient method (21) generates a sequence xt satisfying

Et‖xt+1 − x?‖2 ≤ 1 + 2ηαρ+ 4η2D2 + 2η2α2ρ2

1 + 2ηα( 1+ρ
2 )

‖xt − x?‖2 +
4η2σ2

t

1 + 2ηα( 1+ρ
2 )

. (22)

• (Offset bias) Suppose B ≡ 0. Then with any η ≤ α
4L2 , the stochastic gradient method (21) generates a

sequence xt satisfying

Et‖xt+1 − x?‖2 ≤ 1 + 2η2D2

1 + ηα
‖xt − x?‖2 +

2η2σ2
t

1 + ηα
+

2ηC2
t

α(1 + ηα)
. (23)

Moreover, in the zero bias setting B ≡ Ct ≡ 0, the estimate (23) holds in the slightly wider parameter regime
η ≤ α

2L2 .

Proof. We begin with the first claim. To this end, suppose Ct ≡ 0 for all t. Set ρ := B/α and suppose that we
are in the regime ρ ∈ (0, 1). Fix three constants ∆1,∆2,∆3 > 0 to be specified later. Noting that xt+1 is the
minimizer of the 1-strongly convex function x 7→ 1

2‖x
t − ηgt − x‖2 over X , we deduce

1

2
‖xt+1 − x?‖2 ≤ 1

2
‖xt − ηgt − x?‖2 − 1

2
‖xt − ηgt − xt+1‖2.

Expanding the squares on the right hand side and combining terms yields

1

2
‖xt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − η〈gt, xt+1 − x?〉 − 1

2
‖xt+1 − xt‖2

=
1

2
‖xt − x?‖2 − η〈gt, xt − x?〉 − 1

2
‖xt+1 − xt‖2 − η〈gt, xt+1 − xt〉.

Setting µt := Et[gt], we successively compute

1

2
Et‖xt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − η〈Etgt, xt − x?〉 −

1

2
Et‖xt+1 − xt‖2 − ηEt〈gt, xt+1 − xt〉

≤ 1

2
‖xt − x?‖2 − η〈µt, xt − x?〉 − 1

2
Et‖xt+1 − xt‖2 − ηEt〈gt, xt+1 − xt〉

=
1

2
‖xt − x?‖2 − ηEt〈G(xt+1), xt+1 − x?〉 − 1

2
Et‖xt+1 − xt‖2

+ η Et〈gt − µt, xt − xt+1〉︸ ︷︷ ︸
P1

+η Et〈µt −G(xt+1), x? − xt+1〉︸ ︷︷ ︸
P2

]. (24)

Taking into account strong monotonicity of G, we deduce 〈G(xt+1), xt+1 − x?〉 ≥ α‖xt+1 − x?‖2 and therefore

1 + 2ηα

2
Et‖xt+1 − x?‖2 ≤ 1

2
‖xt − x?‖2 − 1

2
Et‖xt+1 − xt‖2 + η(P1 + P2). (25)
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Using Young’s inequality, we may upper bound P1 and P2 by:

P1 ≤
σ2
t +D2‖xt − x?‖2

2∆1
+

∆1Et‖xt+1 − xt‖2

2
. (26)

Next, we decompose P2 as

P2 = 〈µt −G(xt), x? − xt〉+ Et〈µt −G(xt), xt − xt+1〉+ Et〈G(xt)−G(xt+1), x? − xt+1〉. (27)

We bound each of the three products in turn. The first bound follows from our assumption on the bias:

〈µt −G(xt), x? − xt〉 ≤ B‖xt − x?‖2. (28)

The second bound uses Young’s inequality and our assumption on the bias:

Et〈µt −G(xt), xt − xt+1〉 ≤ ∆2‖µt −G(xt)‖2

2
+

Et‖xt − xt+1‖2

2∆2

≤ ∆2B
2‖xt − x?‖2

2
+

Et‖xt − xt+1‖2

2∆2

(29)

The third inequality uses Young’s inequality and Lipschitz continuity of G:

Et〈G(xt)−G(xt+1), x? − xt+1〉 ≤ ∆3‖G(xt)−G(xt+1)‖2

2
+

Et‖x? − xt+1‖2

2∆3

≤ ∆3L
2‖xt − xt+1‖2

2
+

Et‖x? − xt+1‖2

2∆3

(30)

Putting together all the estimates (25)-(30) yields

1 + 2ηα− 2η∆−1
3

2
Et‖xt+1 − x?‖2 ≤ 1 + ηD2∆−1

1 + 2ηB + η∆2B
2

2
‖xt − x?‖2

− 1− η∆1 − η∆−1
2 − η∆3L

2

2
Et‖xt+1 − xt‖2 +

ησ2
t

2∆1
.

(31)

Let us now set

∆−1
3 =

(1− ρ)α

2
, ∆1 =

1

4η
, ∆−1

2 := η−1 −∆1 −∆3L
2.

Notice ∆1 ≤ 1
2η −∆3L

2 by our assumption that η ≤ α(1−ρ)
8L2 . In particular, this implies ∆−1

2 ≥ 1
2η . Notice that

our choice of ∆2 ensures that the the fraction multiplying Et‖xt+1 − xt‖2 in (31) is zero. We therefore deduce

Et‖xt+1 − x?‖2 ≤ 1 + ηD2∆−1
1 + 2ηB + η∆2B

2

1 + 2ηα− 2η∆−1
3

‖xt − x?‖2 +
ησ2

t

∆1(1 + 2ηα− 2η∆−1
3 )

≤ 1 + 2ηαρ+ 4η2D2 + 2η2α2ρ2

1 + 2ηα( 1+ρ
2 )

‖xt − x?‖2 +
4η2σ2

t

1 + 2ηα( 1+ρ
2 )

,

thereby completing the proof of (22).

We next prove the second claim. To this end, suppose B = 0. All of the reasoning leading up to and including
(26) is valid. Continuing from this point, using Young’s inequality, we upper bound P2 by:

P2 ≤
Et‖µt −G(xt+1)‖2

2∆2
+

∆2Et‖xt+1 − x?‖2

2
. (32)

Next observe
Et‖µt −G(xt+1)‖2 ≤ 2Et‖µt −G(xt)‖2 + 2Et‖G(xt)−G(xt+1)‖2,

≤ 2C2
t + 2L2‖xt − xt+1‖2

(33)

and therefore

P2 ≤
2C2

t + 2L2‖xt − xt+1‖2

2∆2
+

∆2Et‖xt+1 − x?‖2

2
(34)
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Putting the estimates (25), (26), and (34) together yields:

1 + η(2α−∆2)

2
Et‖xt+1 − x?‖2 ≤ 1 + ηD2∆−1

1

2
‖xt − x?‖2

+
ησ2

t

2∆1
+

2ηC2
t ∆−1

2

2
− 1− 2ηL2∆−1

2 − η∆1

2
Et‖xt+1 − xt‖2

(35)

Setting ∆2 = α and ∆1 = η−1 − 2L2

α ensures that the last term on the right is zero. Notice that our assumption
η ≤ α

4L2 ensures ∆1 ≥ 1
2η . Rearranging (35) directly yields (23). In the case B ≡ Ct ≡ 0, instead of (33) we may

simply use the bound Et‖µt −G(xt+1)‖2 = Et‖G(xt)−G(xt+1)‖ ≤ L2‖xt − xt+1‖2. Continuing in the same way
as above yields the improved estimate.

F Technical results on sequences

The following lemma is standard and follows from a simple inductive argument.

Lemma 16. Consider a sequence Dt ≥ 0 for t ≥ 1 and constants t0 ≥ 0, a > 0 satisfying

Dt+1 ≤ (1− 2
t+t0

)Dt + a
(t+t0)2 (36)

Then the estimate holds:

Dt ≤
max{(1 + t0)D1, a}

t+ t0
∀t ≥ 1. (37)

We will need the following more general version of the lemma.

Lemma 17. Consider a sequence Dt ≥ 0 for t ≥ 1 and constants t0 ≥ 0, a, b > 0 satisfying

Dt+1 ≤ (1− 2
t+t0

)Dt + a
(t+t0)2 + b

(t+t0)3 . (38)

Then the estimate holds:

Dt ≤
max{(1 + t0)D1/2, a}

t+ t0
+

max{(1 + t0)3/2D1/2, b}
(t+ t0)3/2

∀t ≥ 1. (39)

Proof. Clearly the recursion (38) continues to hold with a and b replaced by the bigger quantities max{(1 +
t0)D1/2, a} and max{(1 + t0)D1/2, b}, respectively. Therefore abusing notation, we will make this substitution.
As a consequence, the claimed estimate (39) holds automatically for the base case t = 1. As an inductive
assumption, suppose the claim (39) is true for Dt. Set s = t+ t0. We then deduce

Dt+1 ≤
(

1− 2

s

)
Dt +

a

s2
+

b

s3

≤
(

1− 2

s

)(
a

s
+

b

s3/2

)
+

a

s2
+

b

s3

≤ a
(

1

s
− 1

s2

)
+ b

(
1

s3/2
− 2

s5/2
+

1

s3

)
.

Elementary algebraic manipulations show 1
s −

1
s2 ≤

1
s+1 . Define the function φ(s) = 1

s3/2
− 2

s5/2
+ 1

s3 −
1

(1+s)3/2
.

Elementary calculus shows that φ is increasing on the interval s ∈ [1,∞). Since φ tends to zero as s tends to
infinity, it follows that φ is negative on the interval [1,∞). We therefore conclude Dt+1 ≤ a

s+1 + b
(1+s)3/2

as

claimed.

G Online Least Squares

In this appendix section, we record basic and well-known results on estimation in online least squares, following
(Dieuleveut et al., 2017).
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Lemma 18. Fix a probability space (Ω,F ,P) with two sub-σ-algebras G1 ⊂ G2 ⊂ F . Define the function

f(B) =
1

2
‖By − b‖2,

where B : Ω→ Rm1×m2 , b : Ω→ Rm1 , and y : Ω→ Rm2 are random variables. Suppose moreover that there exist
random variables V : Ω→ Rm1×m2 and σ : Ω→ R satisfying the following.

1. B, V , and σ are G1-measurable.

2. y is G2-measurable.

3. The estimates, E[b | G2] = V y and E[‖V y − b‖2 | G2] ≤ σ2 ,hold.

4. There exist constants λ1, λ2, R > 0 satisfying

λ1I � E[yy> | G1], E[‖y‖2 | G1] ≤ λ2, and E[‖y‖2yy> | G1] � R2 E[yy>].

Then for any constant ν ∈ (0, 2
R2 ), the gradient step B+ = B − ν(By − b)y> satisfies the bound:

1

2
E[‖B+ − V ‖2F | G1] ≤ 1− λ1ν(2− νR2)

2
‖B − V ‖2F +

ν2σ2λ2

2
.

Proof. Expanding the squared norm yields:

1

2
‖B+ − V ‖2F =

1

2
‖B − V − ν(By − b)y>‖2F =

1

2
‖B − V ‖2F − ν〈B − V, (By − b)y>〉

+
ν2

2
‖(By − b)y>‖2F .

Taking conditional expectations, we conclude

1

2
E[‖B+ − V ‖2F | G2] =

1

2
‖B − V ‖2F − ν〈B − V, (By − E[b | G2])y>〉+

ν2

2
E[‖(By − b)y>‖2F | G2]

=
1

2
‖B − V ‖2F − ν‖(B − V )y‖2F +

ν2

2
‖y‖2E[‖By − b‖2F | G2].

(40)

Next, observe
‖By − b‖2F = ‖(B − V )y‖2 + ‖V y − b‖2 + 2〈By − V y, V y − b〉.

Taking the conditional expectation E[· | G2], the last term vanishes, and therefore we deduce E[‖By − b‖2F | F ′] ≤
‖(B − V )y‖2 + σ2. Combining this with (40) we compute

1

2
E[‖B+ − V ‖2F | G2] ≤ 1

2
‖B − V ‖2F − ν‖(B − V )y‖2F +

ν2

2
‖y‖2‖(B − V )y‖2 +

ν2σ2

2
‖y‖2.

Taking expectations with respect to G1 and using the tower rule, we deduce

1

2
E[‖B+ − V ‖2F | G1] ≤ 1

2
‖B − V ‖2F − ν E[‖(B − V )y‖2F | G1] +

ν2

2
E[‖y‖2‖(B − V )y‖2 | G1]

+
ν2σ2λ2

2
.

Observe next

E[‖y‖2‖(B − V )y‖2 | G1] = 〈(B − V )(B − V )>,E[‖y‖2yy> | G1]]〉 ≤ R2E[‖(B − V )y‖2F | G1],

and therefore

1

2
E[‖B+ − V ‖2F | G1] ≤ 1

2
‖B − V ‖2F − (ν − ν2R2

2
)E[‖(B − V )y‖2F | G1] +

ν2σ2λ2

2

Note that ν ≥ ν2R2

2 . Next we estimate

E[‖(B − V )y‖2F | G1] = tr((B − V )>(B − V )E[yy> | G1]]〉 ≥ λ1‖B − V ‖2F .

This completes the proof.
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(a) Both Myopic
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(b) Uber Myopic Only
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(c) Lyft Myopic Only
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(d) Both Partially Myopic
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(e) Uber Partially Myopic Only
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(f) Lyft Partially Myopic Only

Figure 2: Competition in Ride-Share Markets: Experiment 3. Effects of players being (a)–(c) myopic or
(d)–(f) partially myopic relative to Nash (not myopic, and consider competition). Positive changes in revenue
indicate the Nash equilibrium is better for that player. When a player is myopic, they do not consider any
performative effects in their update—i.e., gti = (λiI)>xti − 1

2ζ
t
i—and when a player is partially myopic, they

consider their own performative effects, but not those of their competitor—i.e., gti = −(Ai − λiI)>xti − 1
2ζ
t
i . In

(a)–(c), we observe that when at least one player is completely myopic, then at least one player is worse off at the
Nash equilibrium. In (d)–(f) we observe that when at least one player is partially myopic, the Nash equilibrium
always is better for both players.

H Additional Numerical Experiments

In this appendix, we describe the data construction for the semi-synthetic experiments and also provide additional
experiments on the effects of competition.4

H.1 Semi-Synthetic Data Construction

There are eleven locations that we consider in our simulation, and each element in xi represents the price difference
(set by platform i) from a nominal price. We aggregate the rides into bins of $5 increments; this is done by taking
the raw data and rounding the price to the nearest bin as follows 5 · bp5c where p is the price of the ride. Then,
for each bin j we have a different base empirical distribution Pi,j for each player i ∈ {1, 2} which is just the
collection of rides for that bin.

For each bin, we estimate these price elasticity matrices Ai and A−i from the data using the heuristic that a
50% increase in price by any firm leads to a 75% decrease in demand. With this heuristic we use the average
base demand for each location and price bin pair to estimate both the diagonal elements of Ai and A−i. In the
experiments presented, our semi-synthetic model is such that there is no correlation between locations; however,
in the provided code base, we have additional experiments that estimate the correlation between locations and
explore the effects of positive and negative correlations on equilibrium outcomes. We further note that the results
presented in this section are for the $10 nominal price bin, however, in the repository of code it is easy to adjust
this parameter to any of the other price bins. The conclusions we draw are similar across the bins.
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H.2 Effects of Competition on Market Outcomes

Experiment 3: Effect of Ignoring Performativity. We study the impact of players ignoring performative
effects due to competition in the data distribution. In Figure 2, we explore the effects of players either being
completely myopic—i.e., gti = (λiI)>xti − 1

2ζ
t
i—or partially myopic—i.e., gti = −(Ai − λiI)>xti − 1

2ζ
t
i—on the

change in revenue, demand and average price (across locations) from nominal at the Nash equilibrium. Recall that
players employing the stochastic gradient method use the gradient estimate gti = −(Ai−λiI)>xti− 1

2 (ζti +A−ix
t
−i);

we refer to this as the non-myopic case since all performative effects are considered. Even when the players
are myopic or partially myopic, the environment, however, does have these performative effects, meaning that
zi = ζi +Aixi +A−ix−i and hence, the myopic player is in this sense ignoring or unaware of the fact that the
data distribution is reacting to its competition’s decisions. To compute the equilibrium outcomes we run the
stochastic gradient method with a constant step-size of η = 0.001.

In Figure 2 (a)–(c), we observe that when at least one player is completely myopic, then at least one player is
worse off at the Nash equilibrium in the sense that their revenue is lower. Interestingly, the player that is worse
off at the Nash is the non-myopic player. In Figure 2 (d)–(f), on the other hand, we observe that when at least
one player is partially myopic, the Nash equilibrium always is better for both players in the sense that their
individual revenues are higher at the Nash.

The values in Figure 2 represent the total demand and revenue changes, and average price change across locations.
It is also informative to examine the per-location changes. Focusing in on the setting considered in Figure 2 (d),
we examine the per-location price, revenue and demand. We see that the relative change depends on the location,
however, the majority of locations see a decrease in demand, yet an increase in price and hence, revenue. This
suggests that modeling performative effects due to competition can be beneficial for both players.

4The code for the examples can be found https://github.com/ratlifflj/performativepredictiongames.git.

https://github.com/ratlifflj/performativepredictiongames.git
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