
NeuroBE: Escalating Neural Network Approximations of Bucket Elimination

Sakshi Agarwal1 Kalev Kask1 Alexander Ihler1 Rina Dechter1

1University of California Irvine

Abstract

A major limiting factor in graphical model infer-

ence is the complexity of computing the partition

function. Exact message-passing algorithms such

as Bucket Elimination (BE) require exponential

memory to compute the partition function; there-

fore, approximations are necessary. In this paper,

we build upon a recently introduced methodology

called Deep Bucket Elimination (DBE) that uses

classical Neural Networks to approximate mes-

sages generated by BE for large buckets. The main

feature of our new scheme, renamed NeuroBE, is

that it customizes the architecture of the neural

networks, their learning process and in particular,

adapts the loss function to the internal form or

distribution of messages. Our experiments demon-

strate significant improvements in accuracy and

time compared with the earlier DBE scheme.

1 INTRODUCTION

Two of the critical goals of probabilistic modeling are the

compact representation of probability distributions and the

efficient computation of their marginals and modes. Proba-

bilistic graphical models, such as Markov networks [Pearl,

1988, Darwiche, 2009, Dechter, 2013] provide a framework

to represent distributions compactly as normalized products

or factors : P (X) = 1
Z

∏

α fα(Xα), where X is a set of

variables, each potential fα is a function over a subset Xα

of the variables (its scope) and Z =
∑

X

∏

α fα(Xα) is

the partition function. Computing the partition function is

exponential in the induced width of the model’s graph even

for distributions that admit a compact representation.

The partition function Z is defined by two types of oper-

ations: sums and products. It can be evaluated efficiently

if
∑

X

∏

α fα(Xα) can be reorganized using the distribu-

tive law along a variable ordering [Dechter, 2003]. This

organization can be described using buckets as data struc-

tures, one for each variable in the ordering. When a bucket

is processed, its associated variable is removed, creating a

bucket output function, also called a message, that is passed

to a subsequent bucket. The time and space complexity of

computing this function is exponential in its number of argu-

ments, called scope or the bucket’s width. Overall, Bucket

Elimination (BE) [Dechter, 1999b] is time and memory ex-

ponential in the induced-width of the model’s graph along

the ordering.

Providing good approximations to BE is important not only

because it generates an answer to a query, but primarily

because it compiles a structure and a set of messages that

can be used to answer multiple queries (e.g., the probabil-

ity of evidence for various evidence variables Darwiche

[2009]). Also, the messages can be used as building blocks

for generating heuristics for search to further improve per-

formance. We therefore consider and evaluate NeuroBE in

the context of approximate BE, generating approximation

to its messages.

Schemes that approximate BE include (weighted) mini-

bucket (WMB) [Dechter and Rish, 2003, Liu and Ihler, 2012]

and generalized belief propagation schemes [Yedidia et al.,

2000, Mateescu et al., 2010]. A recently introduced scheme,

Deep Bucket Elimination (DBE) [Razeghi et al., 2021] ap-

proximates each bucket function with a neural network (NN).

While this approach is inherently time consuming, requiring

the independent training of many NNs to solve the parti-

tion function of a single problem, it has yielded more accu-

rate approximations on several benchmarks when compared

against competing schemes. Both WMB and DBE are re-

stricted by memory. Yet the memory demanded by WMB

(notwithstanding recent work [Forouzan and Ihler, 2015])

increases exponentially with its i-bound not accommodating

refined steps of memory increase. In contrast, NN architec-

tures can grow more gradually and may facilitate a more

flexible memory-accuracy balance.

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), PMLR 180:11–21.

Figure 1b shows a bucket tree for the primal graph in Figure

1a along an ordering. Each bucket in this tree contains a

set of the model’s functions depending on the given order

of processing. For example, Bucket G in Figure 1b has

functions {f(A,G), f(F,G)}, an exhaustive set of model’s

functions with variable G in its scope. There is an arc from

a bucket, say Bc, to a parent bucket, Bp, if Xp is the latest

variable in bucket Bc’s message scope along the ordering

(constants are placed in B1). In the same example, there is

an arc from Bucket G to Bucket F.

BE performs inference along the bucket tree as a 1-iteration

message-passing algorithm (bottom-up). It processes each

bucket from leaves to the root passing messages from child

(c) to parent (p). For a child variable Xc, BE encompasses

all the functions in bucket Bc. This includes the original

functions in the graphical model as well as the messages

received by processing previous variables. It then marginal-

izes Xc out from the product of functions in Bc generating

a new, so called, bucket function or message, denoted λc→p,

or λc for short:

λc =
∑

Xc

∏

fα∈Bc

fα (1)

The λc function is placed in Bp, the bucket of Xp. Once all

the variables are processed, BE outputs all the messages and

the exact value of Z by taking the product of all the constants

present in the bucket of the first variable. We illustrate BE

message flow in our example problem in Figure 1b.

Complexity. Both the time and space complexity of BE

are exponential in the induced width, which is the size of

the largest number of variables in the scope of any mes-

sage over all buckets [Dechter, 2013]. Clearly, BE becomes

impractical if the induced width is large.

2.2 WEIGHTED MINI-BUCKET

Given a variable ordering d, Weighted Mini-Bucket (WMB)

[Dechter and Rish, 2003, Liu and Ihler, 2011b] approxi-

mates BE by partitioning each bucket Bc with high width

into several disjoint “mini-buckets” Bj
c to ensure that indi-

vidual Bj
c has low (≤ i−bound) width. The method also

assigns a weight pcj to each mini-bucket Bj
c . WMB then

eliminates the bucket’s variable X in the jth mini-bucket

Bj
c using the power sum following Holder’s inequality [Liu

and Ihler, 2011a]:

µj
c =

(

∑

X

∏

fα∈B
j
c

f
1

pcj
α

)pcj

,

and µj
c is passed to a parent bucket Bp. For example, using

an i-bound = 2 in Figure 1b, WMB approximates the exact

message λD→C(A, B, C), passed from bucket D to bucket

C, by three messages corresponding to partitioning bucket

BD into three mini-buckets each with a single function

f(A,D), f(B,D), f(C,D). Based on Holder’s inequality

[Liu and Ihler, 2011a], the exact message is bounded by the

product of the mini-bucket messages when the weights pcj’s

are non-negative and sum to one. Thus, for any i-bound

WMB generates an upper bound of the partition function.

Generally, time and accuracy in WMB increases with the

i-bound. Yet, due to memory constraints it can run with a

maximum i-bound of about 20 and therefore, the generated

bounds can be extremely loose when a problem’s induced-

width is high. Interestingly, when it is run, WMB terminates

quickly, taking a few seconds and up to a minute.

2.3 DEEP BUCKET ELIMINATION

Given a variable ordering d, Deep Bucket Elimination (DBE)

approximates each message generated in the bucket tree

whenever the scope (S) of a message is high (> i-bound)

using a neural network (NN). Following the previous ex-

ample of i-bound = 2 in Figure 1b, rather than sending the

exact message from bucket D to bucket C, DBE sends a NN

µθ,D→C(A,B,C) parameterized by θ that approximates

the exact message λD→C(A,B,C), as we elaborate next.

We use µ∗
c→p to denote the local exact message computed

using all functions in bucket c, regardless of the local func-

tions being exact or approximate (as defined by the right

side of Eq. (1)). However, if we execute exact BE, in which

case the bucket contains exact messages only, we denote the

output message as λc→p and refer to it as the global exact

message.

Let B be a bucket with width w > i-bound and µ∗(S) be

its local exact message having scope S whose size is the

bucket’s width, w. DBE constructs a fully-connected feed-

forward NN having w nodes in the input layer, followed by

L hidden layers each having h hidden nodes with ReLU
activation function. The output layer contains one node

with a real-valued output. Subsequently, DBE generates a

training set {(sn, µ
∗(sn))} of size N, where sn is the nth

configuration of S , sampled uniformly at random and where

µ∗(sn) is the local exact message value defined in Eq. (1).

The NN function µθ(S) approximating µ∗(S) is trained to

minimize the mean square error loss :

L(θ) =
1

N

N
∑

n=1

(

µ∗(sn)− µθ(sn)
)2
.

Once training is complete, DBE passes the trained NN, µθ

to its parent bucket.

While DBE showed superior quality of solutions compared

with WMB, its time performance was quite inferior. In par-

ticular, training each bucket message used the same fixed

architecture and the same sample size (quite large), need-

lessly resulting in a high total time. This paper is devoted

13

Algorithm 2 generate-samples(X,F,N)

Input: X , a variable to be eliminated, F , a set of functions

over scope S ∪ {X}, N , an integer,

Output: D, a set of N samples

1: initialize D = {},

2: for i = 1..N do

3: s← sample uniformly from domain(S)

4: µ∗(s)←
∑

x

∏

f∈F f(s, x) {Eq. (1)}

5: Add (s, µ∗(s)) to D
6: Update µ∗

min, µ
∗
max

7: end for

8: Normalize D (Eq 4)

9: return D

the graphical model (initialized in line 2, Algorithm 1) as

well as messages from the previous buckets (line 11, Al-

gorithm 1) residing in B and S be the scope of the output

message function µ∗. Then, Algorithm 2 generates a dataset

D containing a given number of samples N . The algorithm

iteratively and uniformly at random, samples a configura-

tion {S = s} from the domain of S and computes the exact

local bucket function value for s using Eq 1 (lines 3,4). The

pair <s, µ∗(s)> is added to the dataset D (line 5). A nor-

malization step occurs in line 10, where each sample s is

shifted and scaled to the range [−1, 1] and µ∗(s) is shifted

and scaled to [0, 1], to accelerate training of the NN [Le Cun

et al., 1991], by:

µ∗
norm(s) =

µ∗(s)− µ∗
min

µ∗
max − µ∗

min

(4)

where µ∗
min, µ∗

max (line 6) are defined relative to the dataset

D by µ∗
min = mins∈Dµ∗(s) and µ∗

max = maxs∈Dµ∗(s).

Loss Function Algorithm DBE sampled each message in-

put configuration uniformly and uses the mean square error

loss function for training. However, it seems intuitive that

generating the samples by taking into account the message

distribution could lead to more effective training of the func-

tion. Since sampling directly from the message distribution

is hard, we instead weight each sample by an importance

weight within the loss function, described next.

Definition 1 (I.m.s.e loss). Let µθ be the NN for approxi-

mating the function µ∗
norm. Let D = DTrain be the training

set. Then, the I.m.s.e loss function for a given mini-batch,

Di ∈ D of size #Di is defined by:

LDi
(µ∗

norm, µθ) =
1

#Di

∑

s∈Di

(µ∗
norm(s)−µθ(s))

2∗W (s),

(5)

where

W (s) =
µ∗(s)

∑

s′∈DTrain
µ∗(s′)

. (6)

Log transformations Usually in our experiments we ap-

ply a log transformation to the input functions, for com-

putational reasons. The algorithms presented here remain

the same; however the values µ∗, µ∗
min and µ∗

max in this

case refer to the log of the original function values. In cases

when we use the log-space computation, the weight func-

tion W (s) (Eq. 6) is not suitable. We instead use modified

importance weights,

W log(s) =
logµ∗(s)− logµ∗

min
∑

s′∈DTrain
(logµ∗(s′)− logµ∗

min)
(7)

Note that the importance weight, W (s) or W log(s), are

computed in the original function space that is not normal-

ized.

MaskedNet For problems with determinism, i.e., a high

proportion of zero probability states, a fully connected feed-

forward NN was unable to correctly predict deterministic

outputs and hence Razeghi et al. [2021] used a MaskedNet.

The input configuration is sent to a fully connected layer

with a RELU activation function to obtain a feature vector.

This feature vector is then sent to two sister layers: the first

layer outputs a binary mask responsible for determining

whether the final output is zero, and the second layer is

responsible for predicting the target value of the Bucket’s

function. The activation functions of the two final layers are

the logistic function and the softplus function, respectively.

The outputs from the two sister networks are multiplied to-

gether to get the final output of the MaskedNet. The loss for

the MaskedNet in NeuroBE is thus a sum of the binary cross-

entropy loss (from the first output layer) and the proposed

I.m.s.e loss (from the second output layer). Thus when a

sample configuration s has µ∗(s) = 0, the loss becomes

the binary cross-entropy error, since W (s) = 0, following

Eq. (5) and (6).

NN-Train Algorithm 3 describes the procedure NN-Train.

Its input parameters are L, b, η where L is the number of

layers, b is a constant to determine the number of hidden

units, b · w (line 1), and η is another constant to determine

the training sample size N (line 2, Eq. (3)). A major step

occurs next where the algorithm generates a dataset D and

splits it into the training set DTrain of size N , validation

set DV al of size N/4 and testing set DTest of fixed size

(50k) (lines 3-4; see also Algorithm 2). Lines 8-12 then

describe the batch training for updating the NN parameters

θ using the I.m.s.e loss function (line 11, Eq. (5)), and the

Adam optimizer [Kingma and Ba, 2014] (line 12) with a

learning rate of 0.001 and a batch-size of 256 across all

benchmarks. At the end of each epoch, the current model

is evaluated on a holdout validation set (line 14). We evalu-

ate the early-stopping criteria (line 15), which is assigned

True when either the maximum limit #epochs is reached

15

Algorithm 3 NN-train(F ,X ,L,b, η, #epochs)

Input: F , a set of functions over scope S ∪ {X} where X
is to be removed, w scope size.

Parameters: L: # layers in NN, #epochs, η, b: constants

Output: µθ: NN message approximation, ǫ̂: an estimated

bucket error bound

1: #h← b ∗ w
2: N ← # training samples(w, η, L, b) {Eq. 3}

3: D ← generate-samples(X,F,N +N/4 + 50k)

4: DTrain, DV al, DTest ← Split(D)

5: Initialize NN parameters θ, p=1, early-stopping← False

6: while p ≤ #epochs and ¬ early-stopping do

7: D1, .., Dk ← divide DTrain to minibatch

8: for i = 1..k do

9: Let Di = {(s, µ
∗
norm)}

10: Compute {µθ(s)|s ∈ Di}
11: lossDi

← LDi
(µ∗

norm, µθ) {Eq. 5}

12: θ ← update θ by optimize(Adam, lossDi
, θ)

13: end for

14: lossDval
← LDval

(µ∗
norm, µθ) {For stop condition}

15: early-stopping← evaluate early-stopping(lossDV al
)

16: p← p+ 1
17: end while

18: Unnormalize {µθ(s), µ
∗(s)|s ∈ DTest} {Inverse of Eq.

4}

19: ǫ̂← maxs∈DTest
(logµ∗(s)− logµθ(s))

20: return µθ, ǫ̂

or the validation error increases for two consecutive epochs.

Once training is complete, we compute the maximum log

relative error between the target and NN approximated mes-

sages over a test set (lines 18-19). In the next section, we

use this maximum error to analyse the propagation of er-

ror in NeuroBE. The NN-train procedure then returns the

approximated message µθ, along with its estimated error.

Complexity. The time and space complexity for learning

a single message in NeuroBE is a function of the NN and

sample size. In contrast to DBE, here the NN and sample

sizes vary with the bucket’s width.

4 ERROR ANALYSIS

We now analyse the relationship between the local errors

contributed by each approximated message and the global

partition function error, focusing on a simple case where the

bucket tree is a chain.

Definition 2 (local and global bucket errors). Given a

bucket B, let λ be the (global) exact message generated

in B, µ∗ be the (local) exact message in B at the time of

message computation, and µ = NN-train(µ∗) be its NN

approximation. Then, we define the local and global log

relative errors as:

E = log µ∗ − logµ,

and,

G = log λ− logµ.

We use log relative error since it simplifies the analysis. We

now show the following relationship:

Theorem 1. Assume a bucket-chain along an ordering d,

and let Bc be a bucket along the chain at position c having

scope S of its bucket message. Let Ec(s) = logµ∗
c(s) −

logµc(s) and let ǫc = maxs∈D(S) |Ec(s)|. Then,

Gc = log λc − logµc ≤

n−c
∑

k=0

ǫc+k

In particular, since λ1 = Z and µ1 = Ẑ,

G1 = logZ − log Ẑ ≤

n−1
∑

k=0

ǫ1+k (8)

For the proof see the supplementary material.

5 EMPIRICAL EVALUATION

5.1 EXPERIMENTAL SETUP

We conducted experiments comparing NeuroBE against

WMB [Dechter and Rish, 2003, Liu and Ihler, 2012] and

DBE [Razeghi et al., 2021] over several benchmarks. We

also compare the impact of the two loss functions, m.s.e

and I.m.s.e, on the performance of NeuroBE. Finally, we

illustrate how increasing sample and NN complexity impact

performance.

i-bounds. All three algorithms, WMB, DBE and NeuroBE,

use the i-bound parameter (i). As noted, in WMB higher

i-bounds lead to more accurate bounds with more time and

memory, up to their memory limit. Algorithms DBE and

NeuroBE are also observed to improve accuracy and time

with increasing i-bounds because of the reduced number of

trained buckets #NB(i). Hence, for a fair comparison we

use an i-bound of 10 for some (easy) benchmarks, while

primarily using the highest feasible i-bound of 20 dictated

by WMB’s memory bound for other (hard) benchmarks.

Benchmarks Following the example of DBE, we evalu-

ated NeuroBE on instances selected from three well-known

benchmarks from the UAI repository used in Kask et al.

[2020]: grids (vision domain), pedigree (genetic linkage

analysis) and DBNs. We targeted diverse benchmarks (in

structure and level of determinism) and aimed for different

16

the loss functions in NeuroBE show similar performance.

DBN We report results for the DBN benhcmark for two

i-bounds. Overall, the results are mixed. For i-bound = 20,

NeuroBE achieves a higher accuracy than DBE for half of

the instances with far less #training samples (but with more

training time). It is superior to WMB on instances 2, 3, and 5.

When comparing the two loss functions in NeuroBE, I.m.s.e

loss has better (or similar) performance for most instances.

However, WMB performs better on instance 1, 4, and 6, as

the induced-width is closer to the i-bound. For i-bound =

10, DBE and NeuroBE show better accuracy than WMB

for those three instances. DBE has better accuracy when

compared with NeuroBE, using more #training samples

(and hence, more time). NeuroBE with I.m.s.e loss is better

performing compared with m.s.e loss on most instances.

Overall, NeuroBE when trained with I.m.s.e loss takes more

time than with m.s.e loss for the same #training samples.

In summary, NeuroBE using I.m.s.e compared against DBE

is about 50% faster while also far more accurate on pedi-

grees, twice as fast and 5 to 10 fold more accurate on hard

grids. It is also faster and more accurate on easy grids and

has a mixed but still comparable performance on DBNs.

The impact of loss functions. We observe that NeuroBE

with the I.m.s.e loss shows better performance (lower av-

erage error and standard deviation) than NeuroBE with the

m.s.e loss for the pedigree instances and the majority of

DBN, grid-easy and grid-hard instances. An F-test with a

significance level of 0.05 on the two groups of partition

function estimates (each consisting of five approximations)

showed that the means are significantly different for pedi-

grees, in Figure 3(a). For the grids and DBN, there was no

statistical difference between the two means. However, by

inspection, we see a reduction in the standard deviation for

almost all instances.

Impact of architecture size. Figure 4 shows the impact of

architecture size on time and accuracy for a few problem

instances. We show results for two different NN architec-

tures and their associated sample sizes. As expected, we see

that increasing the sample and NN sizes increases both time

and accuracy for pedigrees. For grid-hard instances, we just

increased the sample sizes and kept the same architecture

having h = w. We observe that the average error is reduced,

as expected. Instances from grid-easy and DBN (except ID

2) show a similar improvement in performance with a larger

NN and training sample size. This trend illustrates that in-

creasing the size of the NN (matched by a suitable increase

in sample size), improves the accuracy of NeuroBE, at the

cost of more time and memory. A key question for future

work is how to develop a policy that can facilitate gradual

control of architecture and sample size increase to improve

performance in an anytime way.

6 CONCLUSION & FUTURE WORK

In this work, we advance the earlier theme of using Neural

Networks to approximate the class of bucket-elimination

algorithms that is at the heart to probabilistic reasoning.

NeuroBE can be viewed as a realization of Neuro-Dynamic

Programming schemes [Bertsekas and Tsitsiklis, 1996], in

the context of graphical models. That being said, it requires

the training of numerous NNs per problem instance, and

thus, the central aim of NeuroBE’s design (customizing NN

architectures, training samples, and the loss function to the

message) is to enhance efficiency and scalability of such

schemes. We presented NeuroBE and illustrated on chal-

lenging instances over three benchmarks that it can be far

more accurate and requires less time compared with Deep

Bucket Elimination (DBE). It is also superior to weighted

mini-bucket (WMB) even when provided with the highest

memory resources feasible.

Future Work. We will explore further how to improve Neu-

roBE’s efficiency by customizing additional features of a

NN and its training per bucket (e.g., varying the number of

layers). We will also explore moving from training buckets

separately per single variable to training clusters of buckets

within a tree-decomposition, thus training a single function

per union of buckets [Dechter, 2013], potentially reducing

the number of trained functions at the cost of more time for

sample generation. Finally, we will explore parameter shar-

ing by training multiple bucket functions simultaneously

in a single problem instance and across a benchmark of

instances.

7 ACKNOWLEDGEMENT

We thank our reviewers and our lab colleagues Bobak

Pezeshki and Nick Cohen for their constructive feedback.

This work was supported in part by NSF grants IIS-2008516.

19

References

Ralph Abboud, Ismail Ceylan, and Thomas Lukasiewicz.

Learning to reason: Leveraging neural networks for ap-

proximate dnf counting. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages

3097–3104, 2020.

Martin Anthony and Peter L. Bartlett. Neural Network

Learning - Theoretical Foundations. Cambridge Univer-

sity Press, 2002. ISBN 978-0-521-57353-5.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas

Mehrabian. Nearly-tight vc-dimension and pseudodimen-

sion bounds for piecewise linear neural networks. Jour-

nal of Machine Learning Research, 20(63):1–17, 2019.

URL http://jmlr.org/papers/v20/17-612.

html.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic

programming, volume 3 of Optimization and neural

computation series. Athena Scientific, 1996. ISBN

1886529108. URL https://www.worldcat.org/

oclc/35983505.

A. Darwiche. Modeling and Reasoning with Bayesian Net-

works. Cambridge University Press, 2009.

R. Dechter. Bucket elimination: A unifying framework for

reasoning. Artificial Intelligence, 113:41–85, 1999a.

R. Dechter. Constraint Processing. Morgan Kaufmann

Publishers, 2003.

Rina Dechter. Bucket elimination: A unifying framework

for reasoning. Artif. Intell., 113(1-2):41–85, 1999b.

Rina Dechter. Reasoning with probabilistic and determin-

istic graphical models: Exact algorithms. Synthesis Lec-

tures on Artificial Intelligence and Machine Learning, 7

(3):1–191, 2013.

Rina Dechter and Irina Rish. Mini-buckets: A general

scheme for bounded inference. Journal of the ACM

(JACM), 50(2):107–153, 2003.

Sholeh Forouzan and Alexander T. Ihler. Incremental re-

gion selection for mini-bucket elimination bounds. In

UAI, pages 268–277, 2015. URL http://auai.org/

uai2015/proceedings/papers/57.pdf.

Nicolas Heess, Daniel Tarlow, and John Winn. Learning

to pass expectation propagation messages. In NIPS, vol-

ume 26, pages 3219–3227, 2013.

Kalev Kask, Bobak Pezeshki, Filjor Broka, Alexander T.

Ihler, and Rina Dechter. Scaling up AND/OR abstrac-

tion sampling. In Proceedings of IJCAI 2020, pages

4266–4274, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization, 2014.

Yann Le Cun, Ido Kanter, and Sara A. Solla. Eigen-

values of covariance matrices: Application to neural-

network learning. Phys. Rev. Lett., 66:2396–2399,

May 1991. doi: 10.1103/PhysRevLett.66.2396.

URL https://link.aps.org/doi/10.1103/

PhysRevLett.66.2396.

Qiang Liu and Alexander Ihler. Bounding the partition

function using holder’s inequality. pages 849–856, 01

2011a.

Qiang Liu and Alexander Ihler. Belief propagation for struc-

tured decision making. In Proceedings of the 28th Con-

ference on Uncertainty in Artificial Intelligence, pages

523–532, 2012.

Qiang Liu and Alexander T. Ihler. Bounding the partition

function using holder’s inequality. In Proceedings of

the 28th International Conference on Machine Learning,

ICML 2011, Bellevue, Washington, USA, June 28 - July 2,

2011, pages 849–856, 2011b.

Robert Mateescu, Kalev Kask, Vibhav Gogate, and Rina

Dechter. Join-graph propagation algorithms. J. Artif.

Intell. Res. (JAIR), 37:279–328, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex

Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep rein-

forcement learning. nature, 518(7540):529–533, 2015.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.

Morgan Kaufmann, 1988.

D. Pollard. Convergence of Stochastic Processes. Springer-

Verlag, 1984.

Yasaman Razeghi, Kalev Kask, Yadong Lu, Pierre Baldi,

Sakshi Agarwal, and Rina Dechter. Deep bucket elimina-

tion. In Zhi-Hua Zhou, editor, Proceedings of the Thir-

tieth International Joint Conference on Artificial Intelli-

gence, IJCAI-21, pages 4235–4242. International Joint

Conferences on Artificial Intelligence Organization, 8

2021. Main Track.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Ha-

genbuchner, and Gabriele Monfardini. The graph neu-

ral network model. Trans. Neur. Netw., 20(1):61âĂŞ80,

jan 2009. ISSN 1045-9227. doi: 10.1109/TNN.2008.

2005605. URL https://doi.org/10.1109/TNN.

2008.2005605.

Vladimir N. Vapnik. The Nature of Statistical Learning

Theory. Springer, second edition, November 1999. ISBN

0387987800.

20

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss.

Generalized belief propagation. In (NIPS) 2000, pages

689–695. MIT Press, 2000.

KiJung Yoon, Renjie Liao, Yuwen Xiong, Lisa Zhang, Ethan

Fetaya, Raquel Urtasun, Richard S. Zemel, and Xaq

Pitkow. Inference in probabilistic graphical models by

graph neural networks. 2018.

21

	Introduction
	Background
	Bucket Elimination
	Weighted Mini-Bucket
	Deep Bucket Elimination

	NeuroBE
	Error Analysis
	Empirical evaluation
	Experimental Setup
	Results

	Conclusion & Future Work
	Acknowledgement

